Source code for allensdk.brain_observatory.receptive_field_analysis.postprocessing

# Allen Institute Software License - This software license is the 2-clause BSD
# license plus a third clause that prohibits redistribution for commercial
# purposes without further permission.
#
# Copyright 2017. Allen Institute. All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice,
# this list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Redistributions for commercial purposes are not permitted without the
# Allen Institute's written permission.
# For purposes of this license, commercial purposes is the incorporation of the
# Allen Institute's software into anything for which you will charge fees or
# other compensation. Contact terms@alleninstitute.org for commercial licensing
# opportunities.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
# ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
# LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
# CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
# SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
# CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
# ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
# POSSIBILITY OF SUCH DAMAGE.
#
import collections

import numpy as np

from .chisquarerf import (
    chi_square_binary,
    get_peak_significance,
    pvalue_to_NLL,
)
from .fit_parameters import (
    compute_distance,
    compute_overlap,
    get_gaussian_fit_single_channel,
)
from .utilities import upsample_image_to_degrees


[docs]def get_gaussian_fit(rf): fit_parameters_dict_combined = { "on": collections.defaultdict(list), "off": collections.defaultdict(list), } counter = {"on": 0, "off": 0} for on_off_key in ["on", "off"]: fit_parameters_dict = fit_parameters_dict_combined[on_off_key] for ci in range( rf[on_off_key]["fdr_mask"]["attrs"]["number_of_components"] ): curr_component_mask = ( upsample_image_to_degrees( np.logical_not( rf[on_off_key]["fdr_mask"]["data"][ci, :, :] ) ) > 0.5 ) rf_response = upsample_image_to_degrees( rf[on_off_key]["rts_convolution"]["data"].copy() ) rf_response[curr_component_mask] = 0 if rf_response.sum() > 0: get_gaussian_fit_single_channel( rf_response, fit_parameters_dict ) counter[on_off_key] += 1 for ii_off in range(counter["on"]): fit_parameters_dict_combined["on"]["distance"].append( [None] * counter["off"] ) fit_parameters_dict_combined["on"]["overlap"].append( [None] * counter["off"] ) for ii_off in range(counter["off"]): fit_parameters_dict_combined["off"]["distance"].append( [None] * counter["on"] ) fit_parameters_dict_combined["off"]["overlap"].append( [None] * counter["on"] ) for ii_on in range(counter["on"]): for ii_off in range(counter["off"]): center_on = ( fit_parameters_dict_combined["on"]["center_x"][ii_on], fit_parameters_dict_combined["on"]["center_y"][ii_on], ) center_off = ( fit_parameters_dict_combined["off"]["center_x"][ii_off], fit_parameters_dict_combined["off"]["center_y"][ii_off], ) curr_distance = compute_distance(center_on, center_off) fit_parameters_dict_combined["on"]["distance"][ii_on][ ii_off ] = curr_distance fit_parameters_dict_combined["off"]["distance"][ii_off][ ii_on ] = curr_distance data_on = fit_parameters_dict_combined["on"]["data"][ii_on] data_off = fit_parameters_dict_combined["off"]["data"][ii_off] curr_overlap = compute_overlap(data_on, data_off) fit_parameters_dict_combined["on"]["overlap"][ii_on][ ii_off ] = curr_overlap fit_parameters_dict_combined["off"]["overlap"][ii_off][ ii_on ] = curr_overlap return fit_parameters_dict_combined, counter
[docs]def run_postprocessing(data, rf): stimulus = rf["attrs"]["stimulus"] # Gaussian fit postprocessing: fit_parameters_dict_combined, counter = get_gaussian_fit(rf) for on_off_key in ["on", "off"]: if counter[on_off_key] > 0: rf[on_off_key]["gaussian_fit"] = {} rf[on_off_key]["gaussian_fit"]["attrs"] = {} fit_parameters_dict = fit_parameters_dict_combined[on_off_key] for key, val in fit_parameters_dict.items(): if key == "data": rf[on_off_key]["gaussian_fit"]["data"] = np.array(val) else: rf[on_off_key]["gaussian_fit"]["attrs"][key] = np.array( val ) # Chi squared test statistic postprocessing: # cell_index = rf["attrs"]["cell_index"] locally_sparse_noise_template = data.get_stimulus_template(stimulus) event_array = np.zeros( (rf["event_vector"]["data"].shape[0], 1), dtype=bool ) event_array[:, 0] = rf["event_vector"]["data"] chi_squared_grid = chi_square_binary( event_array, locally_sparse_noise_template ) alpha = rf["on"]["fdr_mask"]["attrs"]["alpha"] assert rf["off"]["fdr_mask"]["attrs"]["alpha"] == alpha chi_square_grid_NLL = pvalue_to_NLL(chi_squared_grid) peak_significance = get_peak_significance( chi_square_grid_NLL, locally_sparse_noise_template, alpha=alpha ) significant = peak_significance[0][0] min_p = peak_significance[1][0] pvalues_chi_square = peak_significance[2][0] best_exclusion_region_mask = peak_significance[3][0] chi_squared_grid_dict = { "best_exclusion_region_mask": {"data": best_exclusion_region_mask}, "attrs": {"significant": significant, "alpha": alpha, "min_p": min_p}, "pvalues": {"data": pvalues_chi_square}, } rf["chi_squared_analysis"] = chi_squared_grid_dict return rf
if __name__ == "__main__": # csid = 517472416 # triple! csid = 517526760 # two ON # csid = 539917553 # csid = 540988186