{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Extracellular Electrophysiology Data\n", "\n", "At the Allen Institute for Brain Science we carry out in vivo extracellular electrophysiology (ecephys) experiments in awake animals using high-density Neuropixels probes. The data from these experiments are organized into *sessions*, where each session is a distinct continuous recording period. During a session we collect:\n", "\n", "- spike times and characteristics (such as mean waveforms) from up to 6 neuropixels probes\n", "- local field potentials\n", "- behavioral data, such as running speed and eye position\n", "- visual stimuli which were presented during the session\n", "- cell-type specific optogenetic stimuli that were applied during the session\n", "\n", "The AllenSDK contains code for accessing across-session (project-level) metadata as well as code for accessing detailed within-session data. The standard workflow is to use project-level tools, such as `EcephysProjectCache` to identify and access sessions of interest, then delve into those sessions' data using `EcephysSession`.\n", "\n", "\n", "Project-level\n", "------------------\n", "The `EcephysProjectCache` class in `allensdk.brain_observatory.ecephys.ecephys_project_cache` accesses and stores data pertaining to many sessions. You can use this class to run queries that span all collected sessions and to download data for individual sessions.\n", "* Obtaining an `EcephysProjectCache`\n", "* Querying sessions\n", "* Querying probes\n", "* Querying units\n", "* Surveying metadata\n", "\n", "\n", "Session-level\n", "-------------------\n", "The `EcephysSession` class in `allensdk.brain_observatory.ecephys.ecephys_session` provides an interface to all of the data for a single session, aligned to a common clock. This notebook will show you how to use the `EcephysSession` class to extract these data.\n", "* Obtaining an `EcephysSession`\n", "* Stimulus information\n", "* Spike data\n", "* Spike histograms\n", "* Running speed\n", "* Optogenetic stimulation\n", "* Local Field Potential\n", "* Current source density\n", "* Unitwise mean waveforms\n", "* Suggested excercises" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "# first we need a bit of import boilerplate\n", "import os\n", "\n", "import numpy as np\n", "import xarray as xr\n", "import pandas as pd\n", "import matplotlib.pyplot as plt\n", "from scipy.ndimage.filters import gaussian_filter\n", "\n", "from allensdk.brain_observatory.ecephys.ecephys_project_cache import EcephysProjectCache\n", "from allensdk.brain_observatory.ecephys.ecephys_session import (\n", " EcephysSession, \n", " removed_unused_stimulus_presentation_columns\n", ")\n", "from allensdk.brain_observatory.ecephys.visualization import plot_mean_waveforms, plot_spike_counts, raster_plot\n", "from allensdk.brain_observatory.visualization import plot_running_speed\n", "\n", "# tell pandas to show all columns when we display a DataFrame\n", "pd.set_option(\"display.max_columns\", None)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Obtaining an `EcephysProjectCache`\n", "\n", "In order to create an `EcephysProjectCache` object, you need to specify two things:\n", "1. A remote source for the object to fetch data from. We will instantiate our cache using `EcephysProjectCache.from_warehouse()` to point the cache at the Allen Institute's public web API.\n", "2. A path to a manifest json, which designates filesystem locations for downloaded data. The cache will try to read data from these locations before going to download those data from its remote source, preventing repeated downloads." ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "manifest_path = os.path.join(\"example_ecephys_project_cache\", \"manifest.json\")\n", "\n", "cache = EcephysProjectCache.from_warehouse(manifest=manifest_path)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Querying across sessions\n", "\n", "Using your `EcephysProjectCache`, you can download a table listing metadata for all sessions." ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "scrolled": false }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
published_atspecimen_idsession_typeage_in_dayssexfull_genotypeunit_countchannel_countprobe_countecephys_structure_acronyms
id
7150937032019-10-03T00:00:00Z699733581brain_observatory_1.1118.0MSst-IRES-Cre/wt;Ai32(RCL-ChR2(H134R)_EYFP)/wt88422196[CA1, VISrl, nan, PO, LP, LGd, CA3, DG, VISl, ...
7191615302019-10-03T00:00:00Z703279284brain_observatory_1.1122.0MSst-IRES-Cre/wt;Ai32(RCL-ChR2(H134R)_EYFP)/wt75522146[TH, Eth, APN, POL, LP, DG, CA1, VISpm, nan, N...
7211238222019-10-03T00:00:00Z707296982brain_observatory_1.1125.0MPvalb-IRES-Cre/wt;Ai32(RCL-ChR2(H134R)_EYFP)/wt44422296[MB, SCig, PPT, NOT, DG, CA1, VISam, nan, LP, ...
7325921052019-10-03T00:00:00Z717038288brain_observatory_1.1100.0Mwt/wt82418475[grey, VISpm, nan, VISp, VISl, VISal, VISrl]
7375810202019-10-03T00:00:00Z718643567brain_observatory_1.1108.0Mwt/wt56822186[grey, VISmma, nan, VISpm, VISp, VISl, VISrl]
\n", "
" ], "text/plain": [ " published_at specimen_id session_type \\\n", "id \n", "715093703 2019-10-03T00:00:00Z 699733581 brain_observatory_1.1 \n", "719161530 2019-10-03T00:00:00Z 703279284 brain_observatory_1.1 \n", "721123822 2019-10-03T00:00:00Z 707296982 brain_observatory_1.1 \n", "732592105 2019-10-03T00:00:00Z 717038288 brain_observatory_1.1 \n", "737581020 2019-10-03T00:00:00Z 718643567 brain_observatory_1.1 \n", "\n", " age_in_days sex full_genotype \\\n", "id \n", "715093703 118.0 M Sst-IRES-Cre/wt;Ai32(RCL-ChR2(H134R)_EYFP)/wt \n", "719161530 122.0 M Sst-IRES-Cre/wt;Ai32(RCL-ChR2(H134R)_EYFP)/wt \n", "721123822 125.0 M Pvalb-IRES-Cre/wt;Ai32(RCL-ChR2(H134R)_EYFP)/wt \n", "732592105 100.0 M wt/wt \n", "737581020 108.0 M wt/wt \n", "\n", " unit_count channel_count probe_count \\\n", "id \n", "715093703 884 2219 6 \n", "719161530 755 2214 6 \n", "721123822 444 2229 6 \n", "732592105 824 1847 5 \n", "737581020 568 2218 6 \n", "\n", " ecephys_structure_acronyms \n", "id \n", "715093703 [CA1, VISrl, nan, PO, LP, LGd, CA3, DG, VISl, ... \n", "719161530 [TH, Eth, APN, POL, LP, DG, CA1, VISpm, nan, N... \n", "721123822 [MB, SCig, PPT, NOT, DG, CA1, VISam, nan, LP, ... \n", "732592105 [grey, VISpm, nan, VISp, VISl, VISal, VISrl] \n", "737581020 [grey, VISmma, nan, VISpm, VISp, VISl, VISrl] " ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "cache.get_session_table().head()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Querying across probes\n", "\n", "... or for all probes" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
ecephys_session_idlfp_sampling_ratenamephasesampling_ratehas_lfp_dataunit_countchannel_countecephys_structure_acronyms
id
7294456487191615301249.998642probeA3a29999.967418True87374[APN, LP, MB, DG, CA1, VISam, nan]
7294456507191615301249.996620probeB3a29999.918880True202368[TH, Eth, APN, POL, LP, DG, CA1, VISpm, nan]
7294456527191615301249.999897probeC3a29999.997521True207373[APN, NOT, MB, DG, SUB, VISp, nan]
7294456547191615301249.996707probeD3a29999.920963True93358[grey, VL, CA3, CA2, CA1, VISl, nan]
7294456567191615301249.999979probeE3a29999.999500True138370[PO, VPM, TH, LP, LGd, CA3, DG, CA1, VISal, nan]
\n", "
" ], "text/plain": [ " ecephys_session_id lfp_sampling_rate name phase sampling_rate \\\n", "id \n", "729445648 719161530 1249.998642 probeA 3a 29999.967418 \n", "729445650 719161530 1249.996620 probeB 3a 29999.918880 \n", "729445652 719161530 1249.999897 probeC 3a 29999.997521 \n", "729445654 719161530 1249.996707 probeD 3a 29999.920963 \n", "729445656 719161530 1249.999979 probeE 3a 29999.999500 \n", "\n", " has_lfp_data unit_count channel_count \\\n", "id \n", "729445648 True 87 374 \n", "729445650 True 202 368 \n", "729445652 True 207 373 \n", "729445654 True 93 358 \n", "729445656 True 138 370 \n", "\n", " ecephys_structure_acronyms \n", "id \n", "729445648 [APN, LP, MB, DG, CA1, VISam, nan] \n", "729445650 [TH, Eth, APN, POL, LP, DG, CA1, VISpm, nan] \n", "729445652 [APN, NOT, MB, DG, SUB, VISp, nan] \n", "729445654 [grey, VL, CA3, CA2, CA1, VISl, nan] \n", "729445656 [PO, VPM, TH, LP, LGd, CA3, DG, CA1, VISal, nan] " ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "cache.get_probes().head()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Querying across channels\n", "\n", "... or across channels." ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
ecephys_probe_idlocal_indexprobe_horizontal_positionprobe_vertical_positionanterior_posterior_ccf_coordinatedorsal_ventral_ccf_coordinateleft_right_ccf_coordinateecephys_structure_idecephys_structure_acronymecephys_session_idlfp_sampling_ratephasesampling_ratehas_lfp_dataunit_count
id
84970555879264550411120816533146862215.0APN7798394711250.0014793a30000.035489True0
84970556079264550425940816233076866215.0APN7798394711250.0014793a30000.035489True0
84970556279264550432740816033016871215.0APN7798394711250.0014793a30000.035489True0
84970556479264550444360815732956875215.0APN7798394711250.0014793a30000.035489True0
84970556679264550451160815532886879215.0APN7798394711250.0014793a30000.035489True0
\n", "
" ], "text/plain": [ " ecephys_probe_id local_index probe_horizontal_position \\\n", "id \n", "849705558 792645504 1 11 \n", "849705560 792645504 2 59 \n", "849705562 792645504 3 27 \n", "849705564 792645504 4 43 \n", "849705566 792645504 5 11 \n", "\n", " probe_vertical_position anterior_posterior_ccf_coordinate \\\n", "id \n", "849705558 20 8165 \n", "849705560 40 8162 \n", "849705562 40 8160 \n", "849705564 60 8157 \n", "849705566 60 8155 \n", "\n", " dorsal_ventral_ccf_coordinate left_right_ccf_coordinate \\\n", "id \n", "849705558 3314 6862 \n", "849705560 3307 6866 \n", "849705562 3301 6871 \n", "849705564 3295 6875 \n", "849705566 3288 6879 \n", "\n", " ecephys_structure_id ecephys_structure_acronym ecephys_session_id \\\n", "id \n", "849705558 215.0 APN 779839471 \n", "849705560 215.0 APN 779839471 \n", "849705562 215.0 APN 779839471 \n", "849705564 215.0 APN 779839471 \n", "849705566 215.0 APN 779839471 \n", "\n", " lfp_sampling_rate phase sampling_rate has_lfp_data unit_count \n", "id \n", "849705558 1250.001479 3a 30000.035489 True 0 \n", "849705560 1250.001479 3a 30000.035489 True 0 \n", "849705562 1250.001479 3a 30000.035489 True 0 \n", "849705564 1250.001479 3a 30000.035489 True 0 \n", "849705566 1250.001479 3a 30000.035489 True 0 " ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "cache.get_channels().head()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Querying across units\n", "\n", "... as well as for sorted units." ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
waveform_PT_ratiowaveform_amplitudeamplitude_cutoffcumulative_driftd_primewaveform_durationecephys_channel_idfiring_ratewaveform_halfwidthisi_violationsisolation_distanceL_ratiomax_driftnn_hit_ratenn_miss_ratepresence_ratiowaveform_recovery_slopewaveform_repolarization_slopesilhouette_scoresnrwaveform_spreadwaveform_velocity_abovewaveform_velocity_belowecephys_probe_idlocal_indexprobe_horizontal_positionprobe_vertical_positionanterior_posterior_ccf_coordinatedorsal_ventral_ccf_coordinateleft_right_ccf_coordinateecephys_structure_idecephys_structure_acronymecephys_session_idlfp_sampling_ratenamephasesampling_ratehas_lfp_datadate_of_acquisitionpublished_atspecimen_idsession_typeage_in_dayssexgenotype
id
9159562820.611816164.8787400.072728309.713.9108730.5356788502294196.5194320.1648240.10491030.5469000.01386527.100.8981260.0015990.99-0.0875450.4809150.1023691.91183930.00.000000NaN73374464732740-1000-1000-10008.0grey7325921051249.996475probeB3a29999.915391True2019-01-09T00:26:20Z2019-10-03T00:00:00Z717038288brain_observatory_1.1100.0Mwt/wt
9159563400.439372247.2543450.000881160.245.5190240.5631498502294199.6605540.2060300.00682559.6131820.0004107.790.9876540.0009030.99-0.1041960.7045220.1974583.35790830.00.000000NaN73374464732740-1000-1000-10008.0grey7325921051249.996475probeB3a29999.915391True2019-01-09T00:26:20Z2019-10-03T00:00:00Z717038288brain_observatory_1.1100.0Mwt/wt
9159563450.500520251.2758300.001703129.363.5599110.52194385022941912.6984300.1922950.04493647.8057140.00828111.560.9300000.0049560.99-0.1531270.7812960.1388273.36219830.00.343384NaN73374464732740-1000-1000-10008.0grey7325921051249.996475probeB3a29999.915391True2019-01-09T00:26:20Z2019-10-03T00:00:00Z717038288brain_observatory_1.1100.0Mwt/wt
9159563490.424620177.1153800.096378169.292.9739590.50820885022941916.1924130.1922950.12071554.6355150.01040614.870.8746670.0216360.99-0.0860220.5533930.1369012.68463640.00.206030NaN73374464732740-1000-1000-10008.0grey7325921051249.996475probeB3a29999.915391True2019-01-09T00:26:20Z2019-10-03T00:00:00Z717038288brain_observatory_1.1100.0Mwt/wt
9159563560.512847214.9545450.054706263.012.9368510.5494148502294192.1931130.2335010.43042718.1363020.06134518.370.6373630.0006730.99-0.1060510.6329770.1088672.60540860.0-0.451304NaN73374464732740-1000-1000-10008.0grey7325921051249.996475probeB3a29999.915391True2019-01-09T00:26:20Z2019-10-03T00:00:00Z717038288brain_observatory_1.1100.0Mwt/wt
\n", "
" ], "text/plain": [ " waveform_PT_ratio waveform_amplitude amplitude_cutoff \\\n", "id \n", "915956282 0.611816 164.878740 0.072728 \n", "915956340 0.439372 247.254345 0.000881 \n", "915956345 0.500520 251.275830 0.001703 \n", "915956349 0.424620 177.115380 0.096378 \n", "915956356 0.512847 214.954545 0.054706 \n", "\n", " cumulative_drift d_prime waveform_duration ecephys_channel_id \\\n", "id \n", "915956282 309.71 3.910873 0.535678 850229419 \n", "915956340 160.24 5.519024 0.563149 850229419 \n", "915956345 129.36 3.559911 0.521943 850229419 \n", "915956349 169.29 2.973959 0.508208 850229419 \n", "915956356 263.01 2.936851 0.549414 850229419 \n", "\n", " firing_rate waveform_halfwidth isi_violations \\\n", "id \n", "915956282 6.519432 0.164824 0.104910 \n", "915956340 9.660554 0.206030 0.006825 \n", "915956345 12.698430 0.192295 0.044936 \n", "915956349 16.192413 0.192295 0.120715 \n", "915956356 2.193113 0.233501 0.430427 \n", "\n", " isolation_distance L_ratio max_drift nn_hit_rate nn_miss_rate \\\n", "id \n", "915956282 30.546900 0.013865 27.10 0.898126 0.001599 \n", "915956340 59.613182 0.000410 7.79 0.987654 0.000903 \n", "915956345 47.805714 0.008281 11.56 0.930000 0.004956 \n", "915956349 54.635515 0.010406 14.87 0.874667 0.021636 \n", "915956356 18.136302 0.061345 18.37 0.637363 0.000673 \n", "\n", " presence_ratio waveform_recovery_slope \\\n", "id \n", "915956282 0.99 -0.087545 \n", "915956340 0.99 -0.104196 \n", "915956345 0.99 -0.153127 \n", "915956349 0.99 -0.086022 \n", "915956356 0.99 -0.106051 \n", "\n", " waveform_repolarization_slope silhouette_score snr \\\n", "id \n", "915956282 0.480915 0.102369 1.911839 \n", "915956340 0.704522 0.197458 3.357908 \n", "915956345 0.781296 0.138827 3.362198 \n", "915956349 0.553393 0.136901 2.684636 \n", "915956356 0.632977 0.108867 2.605408 \n", "\n", " waveform_spread waveform_velocity_above waveform_velocity_below \\\n", "id \n", "915956282 30.0 0.000000 NaN \n", "915956340 30.0 0.000000 NaN \n", "915956345 30.0 0.343384 NaN \n", "915956349 40.0 0.206030 NaN \n", "915956356 60.0 -0.451304 NaN \n", "\n", " ecephys_probe_id local_index probe_horizontal_position \\\n", "id \n", "915956282 733744647 3 27 \n", "915956340 733744647 3 27 \n", "915956345 733744647 3 27 \n", "915956349 733744647 3 27 \n", "915956356 733744647 3 27 \n", "\n", " probe_vertical_position anterior_posterior_ccf_coordinate \\\n", "id \n", "915956282 40 -1000 \n", "915956340 40 -1000 \n", "915956345 40 -1000 \n", "915956349 40 -1000 \n", "915956356 40 -1000 \n", "\n", " dorsal_ventral_ccf_coordinate left_right_ccf_coordinate \\\n", "id \n", "915956282 -1000 -1000 \n", "915956340 -1000 -1000 \n", "915956345 -1000 -1000 \n", "915956349 -1000 -1000 \n", "915956356 -1000 -1000 \n", "\n", " ecephys_structure_id ecephys_structure_acronym ecephys_session_id \\\n", "id \n", "915956282 8.0 grey 732592105 \n", "915956340 8.0 grey 732592105 \n", "915956345 8.0 grey 732592105 \n", "915956349 8.0 grey 732592105 \n", "915956356 8.0 grey 732592105 \n", "\n", " lfp_sampling_rate name phase sampling_rate has_lfp_data \\\n", "id \n", "915956282 1249.996475 probeB 3a 29999.915391 True \n", "915956340 1249.996475 probeB 3a 29999.915391 True \n", "915956345 1249.996475 probeB 3a 29999.915391 True \n", "915956349 1249.996475 probeB 3a 29999.915391 True \n", "915956356 1249.996475 probeB 3a 29999.915391 True \n", "\n", " date_of_acquisition published_at specimen_id \\\n", "id \n", "915956282 2019-01-09T00:26:20Z 2019-10-03T00:00:00Z 717038288 \n", "915956340 2019-01-09T00:26:20Z 2019-10-03T00:00:00Z 717038288 \n", "915956345 2019-01-09T00:26:20Z 2019-10-03T00:00:00Z 717038288 \n", "915956349 2019-01-09T00:26:20Z 2019-10-03T00:00:00Z 717038288 \n", "915956356 2019-01-09T00:26:20Z 2019-10-03T00:00:00Z 717038288 \n", "\n", " session_type age_in_days sex genotype \n", "id \n", "915956282 brain_observatory_1.1 100.0 M wt/wt \n", "915956340 brain_observatory_1.1 100.0 M wt/wt \n", "915956345 brain_observatory_1.1 100.0 M wt/wt \n", "915956349 brain_observatory_1.1 100.0 M wt/wt \n", "915956356 brain_observatory_1.1 100.0 M wt/wt " ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "units = cache.get_units()\n", "units.head()" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "40010\n" ] } ], "source": [ "# There are quite a few of these\n", "print(units.shape[0])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Surveying metadata\n", "\n", "You can answer questions like: \"what mouse genotypes were used in this dataset?\" using your `EcephysProjectCache`." ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "stimulus sets: ['brain_observatory_1.1', 'functional_connectivity']\n", "genotypes: ['Sst-IRES-Cre/wt;Ai32(RCL-ChR2(H134R)_EYFP)/wt', 'Pvalb-IRES-Cre/wt;Ai32(RCL-ChR2(H134R)_EYFP)/wt', 'wt/wt', 'Vip-IRES-Cre/wt;Ai32(RCL-ChR2(H134R)_EYFP)/wt']\n", "structures: ['APN', 'LP', 'MB', 'DG', 'CA1', 'VISrl', nan, 'TH', 'LGd', 'CA3', 'VIS', 'CA2', 'ProS', 'VISp', 'POL', 'VISpm', 'PPT', 'OP', 'NOT', 'HPF', 'SUB', 'VISam', 'ZI', 'LGv', 'VISal', 'VISl', 'SGN', 'SCig', 'MGm', 'MGv', 'VPM', 'grey', 'Eth', 'VPL', 'IGL', 'PP', 'PIL', 'PO', 'VISmma', 'POST', 'SCop', 'SCsg', 'SCzo', 'SCiw', 'IntG', 'MGd', 'MRN', 'LD', 'VISmmp', 'CP', 'VISli', 'PRE', 'RPF', 'LT', 'PF', 'PoT', 'VL', 'RT']\n" ] } ], "source": [ "print(f\"stimulus sets: {cache.get_all_session_types()}\")\n", "print(f\"genotypes: {cache.get_all_full_genotypes()}\")\n", "print(f\"structures: {cache.get_structure_acronyms()}\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "In order to look up a brain structure acronym, you can use our [online atlas viewer](http://atlas.brain-map.org/atlas?atlas=602630314). The AllenSDK additionally supports programmatic access to structure annotations. For more information, see the [reference space](https://allensdk.readthedocs.io/en/latest/reference_space.html) and [mouse connectivity](https://allensdk.readthedocs.io/en/latest/connectivity.html) documentation." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Obtaining an `EcephysSession`\n", "\n", "We package each session's data into a Neurodata Without Borders 2.0 (NWB) file. Calling `get_session_data` on your `EcephysProjectCache` will download such a file and return an `EcephysSession` object.\n", "\n", "`EcephysSession` objects contain methods and properties that access the data within an ecephys NWB file and cache it in memory." ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "scrolled": false }, "outputs": [], "source": [ "session_id = 756029989 # for example\n", "session = cache.get_session_data(session_id)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "This session object has some important metadata, such as the date and time at which the recording session started:" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "session 756029989 was acquired in 2018-10-26 12:59:18-07:00\n" ] } ], "source": [ "print(f\"session {session.ecephys_session_id} was acquired in {session.session_start_time}\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We'll now jump in to accessing our session's data. If you ever want a complete documented list of the attributes and methods defined on `EcephysSession`, you can run `help(EcephysSession)` (or in a jupyter notebook: `EcephysSession?`)." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Sorted units\n", "\n", "Units are putative neurons, clustered from raw voltage traces using Kilosort 2. Each unit is associated with a single *peak channel* on a single probe, though its spikes might be picked up with some attenuation on multiple nearby channels. Each unit is assigned a unique integer identifier (\"unit_id\") which can be used to look up its spike times and its mean waveform.\n", "\n", "The units for a session are recorded in an attribute called, fittingly, `units`. This is a `pandas.DataFrame` whose index is the unit id and whose columns contain summary information about the unit, its peak channel, and its associated probe." ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "scrolled": false }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
cumulative_driftL_ratiowaveform_PT_ratiowaveform_repolarization_slopeamplitude_cutoffisolation_distancelocal_index_unitcluster_idpeak_channel_idnn_miss_ratewaveform_velocity_belowwaveform_velocity_aboved_primewaveform_recovery_slopewaveform_amplitudeisi_violationsmax_driftwaveform_spreadfiring_ratewaveform_durationpresence_ratiosnrwaveform_halfwidthsilhouette_scorenn_hit_ratec50_dgarea_rffano_dgfano_flfano_nsfano_rffano_sgf1_f0_dgg_dsi_dgg_osi_dgg_osi_sgazimuth_rfmod_idx_dgp_value_rfpref_sf_sgpref_tf_dgrun_mod_dgrun_mod_flrun_mod_nsrun_mod_rfrun_mod_sgpref_ori_dgpref_ori_sgrun_pval_dgrun_pval_flrun_pval_nsrun_pval_rfrun_pval_sgelevation_rfpref_image_nspref_phase_sgfiring_rate_dgfiring_rate_flfiring_rate_nsfiring_rate_rffiring_rate_sgon_off_ratio_fltime_to_peak_nspref_sf_multi_sgpref_tf_multi_dgpref_ori_multi_dgpref_ori_multi_sgpref_phase_multi_sgimage_selectivity_nspref_image_multi_nslifetime_sparseness_dglifetime_sparseness_fllifetime_sparseness_nslifetime_sparseness_rflifetime_sparseness_sgprobe_horizontal_positionchannel_local_indexprobe_idprobe_vertical_positionecephys_structure_idecephys_structure_acronymanterior_posterior_ccf_coordinatedorsal_ventral_ccf_coordinateleft_right_ccf_coordinateprobe_descriptionlocationprobe_sampling_rateprobe_lfp_sampling_rateprobe_has_lfp_data
unit_id
951814884463.860.0247710.5227130.6736500.04240446.750473568501263820.0162020.0000000.0000003.555518-0.249885187.4347800.18163845.6440.09.4921760.1510890.993.3425350.0961470.0337760.727333NaN2600.02.3704401.7651283.9833331.8666675.1863640.2447960.0539980.0331340.02370561.9230.6121620.3580.0415.0-0.154286-0.005676-0.228819-0.212121-0.310345180.0150.00.6197169.763807e-010.5074050.4695070.447263-5.00049290.7517.57194411.0575615.8451948.8059636.974832NaN0.0385FalseFalseFalseFalseFalse0.042644False0.0118290.0000120.0626160.0586060.03919743476064008360215.0APN816234876737probeA29999.9496111249.9979True
951814876325.210.0017850.6525140.5186330.09728685.178750458501263820.0037560.0000000.0000004.445414-0.143762129.6865050.00479940.6850.039.1005570.3159130.992.5897170.2060300.1089081.000000NaN900.03.4175730.7047620.6726900.8039801.0030550.1377090.0176750.0152480.02733472.2220.6784730.7950.042.00.3265870.2315950.0621570.0685480.068853315.0150.00.0000306.157503e-070.3535660.6741850.47287045.55650210.0043.39030144.70984836.82028844.88508435.195889NaN0.1535FalseFalseFalseFalseFalse0.214051False0.0018120.0000030.0023660.0043080.00294343476064008360215.0APN816234876737probeA29999.9496111249.9979True
951815032396.280.0356540.4842970.7663470.01548289.60883615178501263980.014673-0.686767-0.2060303.848256-0.255492207.3809400.00709940.0180.028.3832770.1648240.993.8115660.0961470.0967150.986000NaN400.02.3018101.4088662.7110281.7147902.0552580.1735970.0136650.0078860.05190985.0000.7689890.3950.0415.0-0.026107-0.220335-0.3452710.043011-0.157445135.0120.00.8271951.179300e-020.0067500.8671400.2296175.00049900.2529.46448528.82959228.25266628.02535430.002900NaN0.0495FalseFalseFalseFalseFalse-0.005102False0.0041210.0069730.0067430.0188080.0077834312760640083140215.0APN812934196762probeA29999.9496111249.9979True
951815275374.820.0167830.6006000.6289440.06380748.11433627308501264160.0036830.0000000.6867673.065938-0.206676158.1586500.03231733.3260.05.7093580.1785590.992.9181340.0961470.1442490.883598NaN200.03.2645831.1450982.1600001.0394562.6040370.3801190.0184990.0369590.07217925.0000.0130710.7860.0415.0-0.397810-0.582707-0.274725-0.2000000.068966135.0150.00.0082706.722051e-070.4661160.4929310.87205150.00049380.5010.5105498.7661141.9728038.4923653.180672NaN0.0495FalseFalseFalseFalseFalse0.298085False0.0099180.0022330.0730800.0356060.0455481121760640083220215.0APN809533496787probeA29999.9496111249.9979True
951815314420.050.0096660.4590250.7402220.07212976.91633431348501264200.017600-0.274707-0.0686774.198612-0.171503173.4757050.04807542.8090.023.9022350.1785590.993.3603240.1236180.1111060.968000NaN200.09.5211381.8155622.6851613.0298165.8379140.3530140.0214650.0331740.06038790.0001.9610570.1150.041.0-0.381593-0.1104150.051182-0.007519-0.375085135.00.00.0093572.297652e-010.8190530.9776420.117368-25.00050210.5036.37073735.51741814.13204236.25675314.647080NaN0.2055FalseFalseFalseFalseFalse0.009373False0.0066690.0253390.0230170.0287780.0279932723760640083240215.0APN808833336792probeA29999.9496111249.9979True
\n", "
" ], "text/plain": [ " cumulative_drift L_ratio waveform_PT_ratio \\\n", "unit_id \n", "951814884 463.86 0.024771 0.522713 \n", "951814876 325.21 0.001785 0.652514 \n", "951815032 396.28 0.035654 0.484297 \n", "951815275 374.82 0.016783 0.600600 \n", "951815314 420.05 0.009666 0.459025 \n", "\n", " waveform_repolarization_slope amplitude_cutoff \\\n", "unit_id \n", "951814884 0.673650 0.042404 \n", "951814876 0.518633 0.097286 \n", "951815032 0.766347 0.015482 \n", "951815275 0.628944 0.063807 \n", "951815314 0.740222 0.072129 \n", "\n", " isolation_distance local_index_unit cluster_id peak_channel_id \\\n", "unit_id \n", "951814884 46.750473 5 6 850126382 \n", "951814876 85.178750 4 5 850126382 \n", "951815032 89.608836 15 17 850126398 \n", "951815275 48.114336 27 30 850126416 \n", "951815314 76.916334 31 34 850126420 \n", "\n", " nn_miss_rate waveform_velocity_below waveform_velocity_above \\\n", "unit_id \n", "951814884 0.016202 0.000000 0.000000 \n", "951814876 0.003756 0.000000 0.000000 \n", "951815032 0.014673 -0.686767 -0.206030 \n", "951815275 0.003683 0.000000 0.686767 \n", "951815314 0.017600 -0.274707 -0.068677 \n", "\n", " d_prime waveform_recovery_slope waveform_amplitude \\\n", "unit_id \n", "951814884 3.555518 -0.249885 187.434780 \n", "951814876 4.445414 -0.143762 129.686505 \n", "951815032 3.848256 -0.255492 207.380940 \n", "951815275 3.065938 -0.206676 158.158650 \n", "951815314 4.198612 -0.171503 173.475705 \n", "\n", " isi_violations max_drift waveform_spread firing_rate \\\n", "unit_id \n", "951814884 0.181638 45.64 40.0 9.492176 \n", "951814876 0.004799 40.68 50.0 39.100557 \n", "951815032 0.007099 40.01 80.0 28.383277 \n", "951815275 0.032317 33.32 60.0 5.709358 \n", "951815314 0.048075 42.80 90.0 23.902235 \n", "\n", " waveform_duration presence_ratio snr waveform_halfwidth \\\n", "unit_id \n", "951814884 0.151089 0.99 3.342535 0.096147 \n", "951814876 0.315913 0.99 2.589717 0.206030 \n", "951815032 0.164824 0.99 3.811566 0.096147 \n", "951815275 0.178559 0.99 2.918134 0.096147 \n", "951815314 0.178559 0.99 3.360324 0.123618 \n", "\n", " silhouette_score nn_hit_rate c50_dg area_rf fano_dg fano_fl \\\n", "unit_id \n", "951814884 0.033776 0.727333 NaN 2600.0 2.370440 1.765128 \n", "951814876 0.108908 1.000000 NaN 900.0 3.417573 0.704762 \n", "951815032 0.096715 0.986000 NaN 400.0 2.301810 1.408866 \n", "951815275 0.144249 0.883598 NaN 200.0 3.264583 1.145098 \n", "951815314 0.111106 0.968000 NaN 200.0 9.521138 1.815562 \n", "\n", " fano_ns fano_rf fano_sg f1_f0_dg g_dsi_dg g_osi_dg \\\n", "unit_id \n", "951814884 3.983333 1.866667 5.186364 0.244796 0.053998 0.033134 \n", "951814876 0.672690 0.803980 1.003055 0.137709 0.017675 0.015248 \n", "951815032 2.711028 1.714790 2.055258 0.173597 0.013665 0.007886 \n", "951815275 2.160000 1.039456 2.604037 0.380119 0.018499 0.036959 \n", "951815314 2.685161 3.029816 5.837914 0.353014 0.021465 0.033174 \n", "\n", " g_osi_sg azimuth_rf mod_idx_dg p_value_rf pref_sf_sg \\\n", "unit_id \n", "951814884 0.023705 61.923 0.612162 0.358 0.04 \n", "951814876 0.027334 72.222 0.678473 0.795 0.04 \n", "951815032 0.051909 85.000 0.768989 0.395 0.04 \n", "951815275 0.072179 25.000 0.013071 0.786 0.04 \n", "951815314 0.060387 90.000 1.961057 0.115 0.04 \n", "\n", " pref_tf_dg run_mod_dg run_mod_fl run_mod_ns run_mod_rf \\\n", "unit_id \n", "951814884 15.0 -0.154286 -0.005676 -0.228819 -0.212121 \n", "951814876 2.0 0.326587 0.231595 0.062157 0.068548 \n", "951815032 15.0 -0.026107 -0.220335 -0.345271 0.043011 \n", "951815275 15.0 -0.397810 -0.582707 -0.274725 -0.200000 \n", "951815314 1.0 -0.381593 -0.110415 0.051182 -0.007519 \n", "\n", " run_mod_sg pref_ori_dg pref_ori_sg run_pval_dg run_pval_fl \\\n", "unit_id \n", "951814884 -0.310345 180.0 150.0 0.619716 9.763807e-01 \n", "951814876 0.068853 315.0 150.0 0.000030 6.157503e-07 \n", "951815032 -0.157445 135.0 120.0 0.827195 1.179300e-02 \n", "951815275 0.068966 135.0 150.0 0.008270 6.722051e-07 \n", "951815314 -0.375085 135.0 0.0 0.009357 2.297652e-01 \n", "\n", " run_pval_ns run_pval_rf run_pval_sg elevation_rf pref_image_ns \\\n", "unit_id \n", "951814884 0.507405 0.469507 0.447263 -5.000 4929 \n", "951814876 0.353566 0.674185 0.472870 45.556 5021 \n", "951815032 0.006750 0.867140 0.229617 5.000 4990 \n", "951815275 0.466116 0.492931 0.872051 50.000 4938 \n", "951815314 0.819053 0.977642 0.117368 -25.000 5021 \n", "\n", " pref_phase_sg firing_rate_dg firing_rate_fl firing_rate_ns \\\n", "unit_id \n", "951814884 0.75 17.571944 11.057561 5.845194 \n", "951814876 0.00 43.390301 44.709848 36.820288 \n", "951815032 0.25 29.464485 28.829592 28.252666 \n", "951815275 0.50 10.510549 8.766114 1.972803 \n", "951815314 0.50 36.370737 35.517418 14.132042 \n", "\n", " firing_rate_rf firing_rate_sg on_off_ratio_fl time_to_peak_ns \\\n", "unit_id \n", "951814884 8.805963 6.974832 NaN 0.0385 \n", "951814876 44.885084 35.195889 NaN 0.1535 \n", "951815032 28.025354 30.002900 NaN 0.0495 \n", "951815275 8.492365 3.180672 NaN 0.0495 \n", "951815314 36.256753 14.647080 NaN 0.2055 \n", "\n", " pref_sf_multi_sg pref_tf_multi_dg pref_ori_multi_dg \\\n", "unit_id \n", "951814884 False False False \n", "951814876 False False False \n", "951815032 False False False \n", "951815275 False False False \n", "951815314 False False False \n", "\n", " pref_ori_multi_sg pref_phase_multi_sg image_selectivity_ns \\\n", "unit_id \n", "951814884 False False 0.042644 \n", "951814876 False False 0.214051 \n", "951815032 False False -0.005102 \n", "951815275 False False 0.298085 \n", "951815314 False False 0.009373 \n", "\n", " pref_image_multi_ns lifetime_sparseness_dg \\\n", "unit_id \n", "951814884 False 0.011829 \n", "951814876 False 0.001812 \n", "951815032 False 0.004121 \n", "951815275 False 0.009918 \n", "951815314 False 0.006669 \n", "\n", " lifetime_sparseness_fl lifetime_sparseness_ns \\\n", "unit_id \n", "951814884 0.000012 0.062616 \n", "951814876 0.000003 0.002366 \n", "951815032 0.006973 0.006743 \n", "951815275 0.002233 0.073080 \n", "951815314 0.025339 0.023017 \n", "\n", " lifetime_sparseness_rf lifetime_sparseness_sg \\\n", "unit_id \n", "951814884 0.058606 0.039197 \n", "951814876 0.004308 0.002943 \n", "951815032 0.018808 0.007783 \n", "951815275 0.035606 0.045548 \n", "951815314 0.028778 0.027993 \n", "\n", " probe_horizontal_position channel_local_index probe_id \\\n", "unit_id \n", "951814884 43 4 760640083 \n", "951814876 43 4 760640083 \n", "951815032 43 12 760640083 \n", "951815275 11 21 760640083 \n", "951815314 27 23 760640083 \n", "\n", " probe_vertical_position ecephys_structure_id \\\n", "unit_id \n", "951814884 60 215.0 \n", "951814876 60 215.0 \n", "951815032 140 215.0 \n", "951815275 220 215.0 \n", "951815314 240 215.0 \n", "\n", " ecephys_structure_acronym anterior_posterior_ccf_coordinate \\\n", "unit_id \n", "951814884 APN 8162 \n", "951814876 APN 8162 \n", "951815032 APN 8129 \n", "951815275 APN 8095 \n", "951815314 APN 8088 \n", "\n", " dorsal_ventral_ccf_coordinate left_right_ccf_coordinate \\\n", "unit_id \n", "951814884 3487 6737 \n", "951814876 3487 6737 \n", "951815032 3419 6762 \n", "951815275 3349 6787 \n", "951815314 3333 6792 \n", "\n", " probe_description location probe_sampling_rate \\\n", "unit_id \n", "951814884 probeA 29999.949611 \n", "951814876 probeA 29999.949611 \n", "951815032 probeA 29999.949611 \n", "951815275 probeA 29999.949611 \n", "951815314 probeA 29999.949611 \n", "\n", " probe_lfp_sampling_rate probe_has_lfp_data \n", "unit_id \n", "951814884 1249.9979 True \n", "951814876 1249.9979 True \n", "951815032 1249.9979 True \n", "951815275 1249.9979 True \n", "951815314 1249.9979 True " ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" } ], "source": [ "session.units.head()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "As a `pandas.DataFrame` the units table supports many straightforward filtering operations:" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "684 units total\n", "81 units have snr > 4\n" ] } ], "source": [ "# how many units have signal to noise ratios that are greater than 4?\n", "print(f'{session.units.shape[0]} units total')\n", "units_with_very_high_snr = session.units[session.units['snr'] > 4]\n", "print(f'{units_with_very_high_snr.shape[0]} units have snr > 4')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "... as well as some more advanced (and very useful!) operations. For more information, please see the pandas documentation. The following topics might be particularly handy:\n", "\n", "- [selecting data](http://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html)\n", "- [merging multiple dataframes](http://pandas.pydata.org/pandas-docs/stable/user_guide/merging.html)\n", "- [grouping rows within a dataframe](http://pandas.pydata.org/pandas-docs/stable/user_guide/groupby.html)\n", "- [pivot tables](http://pandas.pydata.org/pandas-docs/stable/user_guide/reshaping.html)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Stimulus presentations\n", "\n", "During the course of a session, visual stimuli are presented on a monitor to the subject. We call intervals of time where a specific stimulus is presented (and its parameters held constant!) a *stimulus presentation*.\n", "\n", "You can find information about the stimulus presentations that were displayed during a session by accessing the `stimulus_presentations` attribute on your `EcephysSession` object. " ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
colorcontrastframeorientationphasepossizespatial_frequencystart_timestimulus_blockstimulus_namestop_timetemporal_frequencyx_positiony_positiondurationstimulus_condition_id
stimulus_presentation_id
0nullnullnullnullnullnullnullnull24.429348nullspontaneous84.496188nullnullnull60.0668400
1null0.8null45[3644.93333333, 3644.93333333][-40.0, -20.0][20.0, 20.0]0.0884.4961880gabors84.729704440300.2335161
2null0.8null45[3644.93333333, 3644.93333333][-40.0, -20.0][20.0, 20.0]0.0884.7297040gabors84.9799004-30100.2501962
3null0.8null90[3644.93333333, 3644.93333333][-40.0, -20.0][20.0, 20.0]0.0884.9799000gabors85.230095410-100.2501963
4null0.8null90[3644.93333333, 3644.93333333][-40.0, -20.0][20.0, 20.0]0.0885.2300950gabors85.480291430400.2501964
\n", "
" ], "text/plain": [ " color contrast frame orientation \\\n", "stimulus_presentation_id \n", "0 null null null null \n", "1 null 0.8 null 45 \n", "2 null 0.8 null 45 \n", "3 null 0.8 null 90 \n", "4 null 0.8 null 90 \n", "\n", " phase pos \\\n", "stimulus_presentation_id \n", "0 null null \n", "1 [3644.93333333, 3644.93333333] [-40.0, -20.0] \n", "2 [3644.93333333, 3644.93333333] [-40.0, -20.0] \n", "3 [3644.93333333, 3644.93333333] [-40.0, -20.0] \n", "4 [3644.93333333, 3644.93333333] [-40.0, -20.0] \n", "\n", " size spatial_frequency start_time \\\n", "stimulus_presentation_id \n", "0 null null 24.429348 \n", "1 [20.0, 20.0] 0.08 84.496188 \n", "2 [20.0, 20.0] 0.08 84.729704 \n", "3 [20.0, 20.0] 0.08 84.979900 \n", "4 [20.0, 20.0] 0.08 85.230095 \n", "\n", " stimulus_block stimulus_name stop_time \\\n", "stimulus_presentation_id \n", "0 null spontaneous 84.496188 \n", "1 0 gabors 84.729704 \n", "2 0 gabors 84.979900 \n", "3 0 gabors 85.230095 \n", "4 0 gabors 85.480291 \n", "\n", " temporal_frequency x_position y_position duration \\\n", "stimulus_presentation_id \n", "0 null null null 60.066840 \n", "1 4 40 30 0.233516 \n", "2 4 -30 10 0.250196 \n", "3 4 10 -10 0.250196 \n", "4 4 30 40 0.250196 \n", "\n", " stimulus_condition_id \n", "stimulus_presentation_id \n", "0 0 \n", "1 1 \n", "2 2 \n", "3 3 \n", "4 4 " ] }, "execution_count": 13, "metadata": {}, "output_type": "execute_result" } ], "source": [ "session.stimulus_presentations.head()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Like the units table, this is a `pandas.DataFrame`. Each row corresponds to a stimulus presentation and lists the time (on the session's master clock, in seconds) when that presentation began and ended as well as the kind of stimulus that was presented (the \"stimulus_name\" column) and the parameter values that were used for that presentation. Many of these parameter values don't overlap between stimulus classes, so the stimulus_presentations table uses the string `\"null\"` to indicate an inapplicable parameter. The index is named \"stimulus_presentation_id\" and many methods on `EcephysSession` use these ids.\n", "\n", "Some of the columns bear a bit of explanation:\n", "- stimulus_block : A block consists of multiple presentations of the same stimulus class presented with (probably) different parameter values. If during a session stimuli were presented in the following order:\n", " - drifting gratings\n", " - static gratings\n", " - drifting gratings\n", " then the blocks for that session would be [0, 1, 2]. The gray period stimulus (just a blank gray screen) never gets a block.\n", "- duration : this is just stop_time - start_time, precalculated for convenience.\n", "\n", "What kinds of stimuli were presented during this session? Pandas makes it easy to find out:" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "['spontaneous',\n", " 'gabors',\n", " 'flashes',\n", " 'drifting_gratings',\n", " 'natural_movie_three',\n", " 'natural_movie_one',\n", " 'static_gratings',\n", " 'natural_scenes']" ] }, "execution_count": 14, "metadata": {}, "output_type": "execute_result" } ], "source": [ "session.stimulus_names # just the unique values from the 'stimulus_name' column" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We can also obtain the `stimulus epochs` - blocks of time for which a particular kind of stimulus was presented - for this session." ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
start_timestop_timedurationstimulus_namestimulus_block
024.42934884.49618860.066840spontaneousnull
184.496188996.491813911.995625gabors0
2996.4918131285.483398288.991585spontaneousnull
31285.4833981583.982946298.499548flashes1
41583.9829461585.7344181.751472spontaneousnull
51585.7344182185.235561599.501143drifting_gratings2
62185.2355612216.26149831.025937spontaneousnull
72216.2614982816.763498600.502000natural_movie_three3
82816.7634982846.78859830.025100spontaneousnull
92846.7885983147.039578300.250980natural_movie_one4
103147.0395783177.06468830.025110spontaneousnull
113177.0646883776.565851599.501163drifting_gratings5
123776.5658514077.834348301.268497spontaneousnull
134077.8343484678.336348600.502000natural_movie_three6
144678.3363484708.36143830.025090spontaneousnull
154708.3614385397.937871689.576433drifting_gratings7
165397.9378715398.9387181.000847spontaneousnull
175398.9387185879.340268480.401550static_gratings8
185879.3402685909.36539830.025130spontaneousnull
195909.3653986389.766968480.401570natural_scenes9
206389.7669686690.017948300.250980spontaneousnull
216690.0179487170.419568480.401620natural_scenes10
227170.4195687200.44462830.025060spontaneousnull
237200.4446287680.846188480.401560static_gratings11
247680.8461887710.87134830.025160spontaneousnull
257710.8713488011.122288300.250940natural_movie_one12
268011.1222888041.14740830.025120spontaneousnull
278041.1474088569.088694527.941286natural_scenes13
288569.0886948611.62424842.535554spontaneousnull
298611.6242489152.076028540.451780static_gratings14
\n", "
" ], "text/plain": [ " start_time stop_time duration stimulus_name stimulus_block\n", "0 24.429348 84.496188 60.066840 spontaneous null\n", "1 84.496188 996.491813 911.995625 gabors 0\n", "2 996.491813 1285.483398 288.991585 spontaneous null\n", "3 1285.483398 1583.982946 298.499548 flashes 1\n", "4 1583.982946 1585.734418 1.751472 spontaneous null\n", "5 1585.734418 2185.235561 599.501143 drifting_gratings 2\n", "6 2185.235561 2216.261498 31.025937 spontaneous null\n", "7 2216.261498 2816.763498 600.502000 natural_movie_three 3\n", "8 2816.763498 2846.788598 30.025100 spontaneous null\n", "9 2846.788598 3147.039578 300.250980 natural_movie_one 4\n", "10 3147.039578 3177.064688 30.025110 spontaneous null\n", "11 3177.064688 3776.565851 599.501163 drifting_gratings 5\n", "12 3776.565851 4077.834348 301.268497 spontaneous null\n", "13 4077.834348 4678.336348 600.502000 natural_movie_three 6\n", "14 4678.336348 4708.361438 30.025090 spontaneous null\n", "15 4708.361438 5397.937871 689.576433 drifting_gratings 7\n", "16 5397.937871 5398.938718 1.000847 spontaneous null\n", "17 5398.938718 5879.340268 480.401550 static_gratings 8\n", "18 5879.340268 5909.365398 30.025130 spontaneous null\n", "19 5909.365398 6389.766968 480.401570 natural_scenes 9\n", "20 6389.766968 6690.017948 300.250980 spontaneous null\n", "21 6690.017948 7170.419568 480.401620 natural_scenes 10\n", "22 7170.419568 7200.444628 30.025060 spontaneous null\n", "23 7200.444628 7680.846188 480.401560 static_gratings 11\n", "24 7680.846188 7710.871348 30.025160 spontaneous null\n", "25 7710.871348 8011.122288 300.250940 natural_movie_one 12\n", "26 8011.122288 8041.147408 30.025120 spontaneous null\n", "27 8041.147408 8569.088694 527.941286 natural_scenes 13\n", "28 8569.088694 8611.624248 42.535554 spontaneous null\n", "29 8611.624248 9152.076028 540.451780 static_gratings 14" ] }, "execution_count": 15, "metadata": {}, "output_type": "execute_result" } ], "source": [ "session.get_stimulus_epochs()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "If you are only interested in a subset of stimuli, you can either filter using pandas or using the `get_stimulus_table` convience method:" ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
contrastorientationphasepossizespatial_frequencystart_timestimulus_blockstimulus_namestop_timetemporal_frequencydurationstimulus_condition_id
stimulus_presentation_id
37980.8180[42471.86666667, 42471.86666667][0.0, 0.0][250.0, 250.0]0.041585.7344182drifting_gratings1587.73609822.00168246
37990.8135[42471.86666667, 42471.86666667][0.0, 0.0][250.0, 250.0]0.041588.7368912drifting_gratings1590.73857122.00168247
38000.8180[42471.86666667, 42471.86666667][0.0, 0.0][250.0, 250.0]0.041591.7393982drifting_gratings1593.74107822.00168246
38010.8270[42471.86666667, 42471.86666667][0.0, 0.0][250.0, 250.0]0.041594.7419212drifting_gratings1596.74359122.00167248
38020.8135[42471.86666667, 42471.86666667][0.0, 0.0][250.0, 250.0]0.041597.7444582drifting_gratings1599.74608842.00163249
\n", "
" ], "text/plain": [ " contrast orientation \\\n", "stimulus_presentation_id \n", "3798 0.8 180 \n", "3799 0.8 135 \n", "3800 0.8 180 \n", "3801 0.8 270 \n", "3802 0.8 135 \n", "\n", " phase pos \\\n", "stimulus_presentation_id \n", "3798 [42471.86666667, 42471.86666667] [0.0, 0.0] \n", "3799 [42471.86666667, 42471.86666667] [0.0, 0.0] \n", "3800 [42471.86666667, 42471.86666667] [0.0, 0.0] \n", "3801 [42471.86666667, 42471.86666667] [0.0, 0.0] \n", "3802 [42471.86666667, 42471.86666667] [0.0, 0.0] \n", "\n", " size spatial_frequency start_time \\\n", "stimulus_presentation_id \n", "3798 [250.0, 250.0] 0.04 1585.734418 \n", "3799 [250.0, 250.0] 0.04 1588.736891 \n", "3800 [250.0, 250.0] 0.04 1591.739398 \n", "3801 [250.0, 250.0] 0.04 1594.741921 \n", "3802 [250.0, 250.0] 0.04 1597.744458 \n", "\n", " stimulus_block stimulus_name stop_time \\\n", "stimulus_presentation_id \n", "3798 2 drifting_gratings 1587.736098 \n", "3799 2 drifting_gratings 1590.738571 \n", "3800 2 drifting_gratings 1593.741078 \n", "3801 2 drifting_gratings 1596.743591 \n", "3802 2 drifting_gratings 1599.746088 \n", "\n", " temporal_frequency duration stimulus_condition_id \n", "stimulus_presentation_id \n", "3798 2 2.00168 246 \n", "3799 2 2.00168 247 \n", "3800 2 2.00168 246 \n", "3801 2 2.00167 248 \n", "3802 4 2.00163 249 " ] }, "execution_count": 16, "metadata": {}, "output_type": "execute_result" } ], "source": [ "session.get_stimulus_table(['drifting_gratings']).head()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We might also want to know what the total set of available parameters is. The `get_stimulus_parameter_values` method provides a dictionary mapping stimulus parameters to the set of values that were applied to those parameters:" ] }, { "cell_type": "code", "execution_count": 17, "metadata": { "scrolled": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "color: [-1.0 1.0]\n", "contrast: [0.8 1.0]\n", "frame: [-1.0 0.0 1.0 ... 3597.0 3598.0 3599.0]\n", "orientation: [0.0 30.0 45.0 60.0 90.0 120.0 135.0 150.0 180.0 225.0 270.0 315.0]\n", "phase: ['0.0' '0.25' '0.5' '0.75' '[0.0, 0.0]' '[3644.93333333, 3644.93333333]'\n", " '[42471.86666667, 42471.86666667]']\n", "pos: ['[-40.0, -20.0]' '[0.0, 0.0]']\n", "size: ['[1920.0, 1080.0]' '[20.0, 20.0]' '[250.0, 250.0]' '[300.0, 300.0]']\n", "spatial_frequency: ['0.02' '0.04' '0.08' '0.16' '0.32' '[0.0, 0.0]']\n", "temporal_frequency: [1.0 2.0 4.0 8.0 15.0]\n", "x_position: [-40.0 -30.0 -20.0 -10.0 0.0 10.0 20.0 30.0 40.0]\n", "y_position: [-40.0 -30.0 -20.0 -10.0 0.0 10.0 20.0 30.0 40.0]\n" ] } ], "source": [ "for key, values in session.get_stimulus_parameter_values().items():\n", " print(f'{key}: {values}')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Each distinct state of the monitor is called a \"stimulus condition\". Each presentation in the stimulus presentations table exemplifies such a condition. This is encoded in its stimulus_condition_id field.\n", "\n", "To get the full list of conditions presented in a session, use the stimulus_conditions attribute:" ] }, { "cell_type": "code", "execution_count": 18, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
colorcolorSpacecontrastdepthflipHorizflipVertframeinterpolatemaskopacityorientationphaseposrgbPedestalsizespatial_frequencystimulus_nametemporal_frequencytextexResunitsx_positiony_positioncolor_triplet
stimulus_condition_id
0nullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullspontaneousnullnullnullnullnullnullnull
1nullrgb0.80nullnullnull0circle145[3644.93333333, 3644.93333333][-40.0, -20.0][0.0, 0.0, 0.0][20.0, 20.0]0.08gabors4sin256deg4030[1.0, 1.0, 1.0]
2nullrgb0.80nullnullnull0circle145[3644.93333333, 3644.93333333][-40.0, -20.0][0.0, 0.0, 0.0][20.0, 20.0]0.08gabors4sin256deg-3010[1.0, 1.0, 1.0]
3nullrgb0.80nullnullnull0circle190[3644.93333333, 3644.93333333][-40.0, -20.0][0.0, 0.0, 0.0][20.0, 20.0]0.08gabors4sin256deg10-10[1.0, 1.0, 1.0]
4nullrgb0.80nullnullnull0circle190[3644.93333333, 3644.93333333][-40.0, -20.0][0.0, 0.0, 0.0][20.0, 20.0]0.08gabors4sin256deg3040[1.0, 1.0, 1.0]
\n", "
" ], "text/plain": [ " color colorSpace contrast depth flipHoriz flipVert \\\n", "stimulus_condition_id \n", "0 null null null null null null \n", "1 null rgb 0.8 0 null null \n", "2 null rgb 0.8 0 null null \n", "3 null rgb 0.8 0 null null \n", "4 null rgb 0.8 0 null null \n", "\n", " frame interpolate mask opacity orientation \\\n", "stimulus_condition_id \n", "0 null null null null null \n", "1 null 0 circle 1 45 \n", "2 null 0 circle 1 45 \n", "3 null 0 circle 1 90 \n", "4 null 0 circle 1 90 \n", "\n", " phase pos \\\n", "stimulus_condition_id \n", "0 null null \n", "1 [3644.93333333, 3644.93333333] [-40.0, -20.0] \n", "2 [3644.93333333, 3644.93333333] [-40.0, -20.0] \n", "3 [3644.93333333, 3644.93333333] [-40.0, -20.0] \n", "4 [3644.93333333, 3644.93333333] [-40.0, -20.0] \n", "\n", " rgbPedestal size spatial_frequency \\\n", "stimulus_condition_id \n", "0 null null null \n", "1 [0.0, 0.0, 0.0] [20.0, 20.0] 0.08 \n", "2 [0.0, 0.0, 0.0] [20.0, 20.0] 0.08 \n", "3 [0.0, 0.0, 0.0] [20.0, 20.0] 0.08 \n", "4 [0.0, 0.0, 0.0] [20.0, 20.0] 0.08 \n", "\n", " stimulus_name temporal_frequency tex texRes units \\\n", "stimulus_condition_id \n", "0 spontaneous null null null null \n", "1 gabors 4 sin 256 deg \n", "2 gabors 4 sin 256 deg \n", "3 gabors 4 sin 256 deg \n", "4 gabors 4 sin 256 deg \n", "\n", " x_position y_position color_triplet \n", "stimulus_condition_id \n", "0 null null null \n", "1 40 30 [1.0, 1.0, 1.0] \n", "2 -30 10 [1.0, 1.0, 1.0] \n", "3 10 -10 [1.0, 1.0, 1.0] \n", "4 30 40 [1.0, 1.0, 1.0] " ] }, "execution_count": 18, "metadata": {}, "output_type": "execute_result" } ], "source": [ "session.stimulus_conditions.head()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Spike data\n", "\n", "The `EcephysSession` object holds spike times (in seconds on the session master clock) for each unit. These are stored in a dictionary, which maps unit ids (the index values of the units table) to arrays of spike times." ] }, { "cell_type": "code", "execution_count": 19, "metadata": { "scrolled": true }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/home/joshs/anaconda3/envs/analysis/lib/python3.6/site-packages/allensdk/brain_observatory/ecephys/ecephys_session.py:1086: UserWarning: Session includes invalid time intervals that could be accessed with the attribute 'invalid_times',Spikes within these intervals are invalid and may need to be excluded from the analysis.\n", " warnings.warn(\"Session includes invalid time intervals that could be accessed with the attribute 'invalid_times',\"\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "236169 spikes were detected for unit 951816951 at times:\n" ] }, { "data": { "text/plain": [ "array([3.81328401e+00, 4.20301799e+00, 4.30151816e+00, ...,\n", " 9.96615988e+03, 9.96617945e+03, 9.96619655e+03])" ] }, "execution_count": 19, "metadata": {}, "output_type": "execute_result" } ], "source": [ " # grab an arbitrary (though high-snr!) unit (we made units_with_high_snr above)\n", "high_snr_unit_ids = units_with_very_high_snr.index.values\n", "unit_id = high_snr_unit_ids[0]\n", "\n", "print(f\"{len(session.spike_times[unit_id])} spikes were detected for unit {unit_id} at times:\")\n", "session.spike_times[unit_id]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "You can also obtain spikes tagged with the stimulus presentation during which they occurred:" ] }, { "cell_type": "code", "execution_count": 20, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
stimulus_presentation_idunit_idtime_since_stimulus_presentation_onset
spike_time
1585.73484137989518179270.000423
1585.73686237989518127420.002444
1585.73859137989518054270.004173
1585.73894137989518169510.004523
1585.73899537989518205100.004577
\n", "
" ], "text/plain": [ " stimulus_presentation_id unit_id \\\n", "spike_time \n", "1585.734841 3798 951817927 \n", "1585.736862 3798 951812742 \n", "1585.738591 3798 951805427 \n", "1585.738941 3798 951816951 \n", "1585.738995 3798 951820510 \n", "\n", " time_since_stimulus_presentation_onset \n", "spike_time \n", "1585.734841 0.000423 \n", "1585.736862 0.002444 \n", "1585.738591 0.004173 \n", "1585.738941 0.004523 \n", "1585.738995 0.004577 " ] }, "execution_count": 20, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# get spike times from the first block of drifting gratings presentations \n", "drifting_gratings_presentation_ids = session.stimulus_presentations.loc[\n", " (session.stimulus_presentations['stimulus_name'] == 'drifting_gratings')\n", "].index.values\n", "\n", "times = session.presentationwise_spike_times(\n", " stimulus_presentation_ids=drifting_gratings_presentation_ids,\n", " unit_ids=high_snr_unit_ids\n", ")\n", "\n", "times.head()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We can make raster plots of these data:" ] }, { "cell_type": "code", "execution_count": 21, "metadata": { "scrolled": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeMAAAH6CAYAAAA0riRrAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3Xu8HVV9///3R8ItFIQEI9FgIhYbDagEEGJBab0hUTC9CPIV9GgV22+/ttZasa0Va6tWS1v1219/qPVgqJRYNIKNolULigTkKiGYisREIsFAwjUhgcD6/rFmkjlzZvae295r5uzX8/HII/vMrMtnrVkza+81+2LOOQEAgHCeEjoAAABGHZMxAACBMRkDABAYkzEAAIExGQMAEBiTMQAAgY3EZGxmzsyuTG07L9p+UpioIElm9kYzu9nMHo6Oxz+FjqkqM7swasO80LEkmdmVZsZnGCGpveN01I3EZIzdsp6YhGJmiyR9UdL+kv5F0ockXRE0qB54AodBaPrJUhfHqZm93syWmdkaM7vfzB41szvM7N/N7JiM9CdFbez379BUvj3N7D1mdouZbYteBFxjZm/qEdsBZvbnUZ77zexBM1tlZh82s6c11QfTmiqo5Z4naVvoIDDJYkkm6Wzn3DWhg2nA+yV9TNIvQgcC9NDGcXqapGMlXS/pbkmPSfpVSUsknW5m73DOfS6Rfp38k/csR0r6LUmrnXN3xRvNbC9J35D0m1H+C6Ndp0i6yMwWOuf+JFmQmT1V0g8lPVfSDYk8L5X0l5LeYmbHOOd+WbrFKSMxGTvn1oSOAZmeEf1/d9AoGuKc2yhpY+g4gF5aOk5/3zm3Pb3RzI6Un6D/3syWOucekyTn3DpJ52UVZGb/Hj38TGrXH8hPxCslvdI5tzVKv5+k70p6t5ld7py7MpHnHfIT8bhz7q2pei6U9GZJ50j666INzeWca8U/SadK+o78INkhf4G+StIfpNJdKclJ2lvS30j6WZT+TkkflLRXRtlO0pWpbedF209KbX+WpNXyz8zelNo3R9L/lbQ2qnOzpMslHVuinfOiei+MDvIySZskPRnHIuloSZ+U9CNJWyRtl3SHpPMlHZRR5l6S3iXpJkn3y68CrJN0maRXRGneEtWb9e+8VHnHSbpU0j1RP9wl6QJJz8ioOz4ee0n6K0n/E/XNhT36oFcs8xLpjpb05ah/dkhaL+n/kzQ7o8wLo/yHSfo/km6V9Gj6uOfE8wJJ/x712Q5J90Z9+U+S9ozSrMuLOSOGZBuSx/s5Ub9ulvSwpG9JOiJK9zT5i8fG6HhfL+k3erRzXsa+k3KO55XJOFPH4C05fZJ1zuwv6QOSbpP0UNSGO+XH8NEFx388Xkqfv5IOkfQ5+Vd0TyRjlzRd/hXfLZK2SnpE/qL7xozyTP4iek10rLfLj/FvSjo9I33h816J64qk35F/VbVN/jy+RNIzM8ZG1r8rE+l+Ixobt0f9/mh0DD4oaZ9U/evyyiw4ht4g6XuSHozqWRX1694ZaddF/6ZL+oSkn0f981NJ75NkRa+LfcbMzVG8zyyQdmZ0PLcpda2M2uUkLc7I99po35dT2/8l2r4kI89vRfs+3UQ7W/HK2MzeIX+xv0fS1yTdJ2mW/EVyTP4CnPYl+WWNSyU9Lr/McZ6kY8zsVBf1Vsk4Xijp6/IXnVOcc99O7Fsof/GcIX/SfkXSwZJeL+lqM1vinPt6ieqeI+k6ST+Rv2+6r/yJJklvl1+euUrStyXtIWmhpD+R9BozO84593CirAslvVH+BF0qfxI9Q9IJkk6OyrhFflnng/KT2oWJ/Fcm2jkm6bPyJ9Xl8hepwyX9nqTXmdnxzrmfZ7Tny/LH4xuSvio/geaJY3m9pBfKP/F4INr3QBTHa6MyTf4Yr5efnH9f0mlm9uvOPztO+6SkEyWtkD+WT/SIQ2b2Avnj4KL2/kzSAfJLZH8gvxT1uPzE/HpJL5P0BfmLUBnzonp+LN/38+SP8ZXRvfMr5I//Mvkxdoakb5jZc3P6e6jMzORjfIn8JPc5STslHSo/8Xxf0o0liix7/s6QdK38JPsV+Sevv4xiO1D+lc1R8k+iPi//fphXS7rYzBY45/4yUdbfyk8wP4vieFDS7Cie35U/BnG7q573fyD/AuNy+fP4OEmnS3qhmb3IObdDfqx/SP6J0VxNXHZdl3j8Pknz5Z88rJC0j6Rfj/rrJDN7hXMuHueVx6mZfSTql/skXSzf16+R9BFJrzazVzrnHk9l21O+f54hf+7vjOr/WBRn3lJy0ZieK+nXopiKvJp/i/wTvaXOuftT+w6J/l+bkS/e9vLU9tXR/4slLU/te230/7fVhCZm9Aae+dwof/GflbHv4NTfV8pfOH+ixDMf+QO/Mtp3VipP31fGkl4hf1LeLemFqbTT5J/tbZf0stS+Z8g/U9+ojGePGe2Zp93PVj+Sk2aupD0ytr8tyve+xLanyl+YbsjJM7NfXyT2PVf+lfBPlXoWKr+884Sk5TnH49b0sSrQFxcq4xm6pF+RP/mekHRiat/7ojzfyinrF5KeXSKG86N8p2XsO0jSU/LGTJH2pI73X6TSfyDavkXS/5+q66xo3z8W6bNo30ka0Ctj+ftwLn38o31PUcaKTU658Xgpe/46+Sea03r0+5+ltu8j/wTiSUkvSmzfLGmDpOkZZR2ceFz6vE+MkYckHZnKc3G07w39jk9q/2HKeJUp6cNReaentlcZp4uibT+XdEiqD74W7fvzVDnrou1fl7RvYvss+ScaDyhaWSpxPr4iiv8j8qtVj8i/yp10fubk/3EU00sy9l0T7TslY1/8ytil2r+PpB9E26+Tv178g/zK1dZ0n9T516Z3U++Uf4Y8gXPuvpz0H3aJZz7O3294f/TnW7OzZIveSfd1+ZPreOfcj1JJFsu/kv20c+6qVHx3S/q4/LOu9LOqXn6pnGeNzrn1bvcz3aTPy5/kr04ml3/1uEP+opMua3OJmH5f/pnuHznnJry5wzn3Xfln+a8zs/0z8n6gx7Eq6zT55aZlzrnvp/adL38ReKWZPSsj78edcz+rUOej6Q3Oufudc5P6tKJ18q8Wkr4Q/b+3pPem6rpY/px4UUP1NyWrn550k1+F9FP2/H1M0p8653YmN5rZTElvknSDc+7jqbi2K1oulXRmqrzHlbFqkhrDdc77TznnVqW2fTb6/8UZ6XM559a6aGZIiT8G+OqMfWXFff43zrl7EnXvlPQe+WvL7+XkfZdz7tFEnk3yt8ieKv+qtoxXyK/evV9+dehh+SXiy/plNLOXya8grHbZbwj9z+j/PzezfRP5pkv6i0S6g+IH0Rj6TfmV2xfLr06+W9Ix8nPGVwu3rI9WLFPLL9OeL2m1mS2TX9b5gXPu3h55rsrY9n35C9hRJer+I/mL/w8knZpzUVkU/T/XzM7L2H949P/z5A9QET9yfqlqEjPbU/5NAWdIer78oE4+cXpm/MA595CZfU3S6yTdYmZflu+H65xzZd9BHrfzZWZ2bMb+WfJL5s/V5CXJH5asq5eF0f/fTe9wzu00s+/Jv+I8Sv6ZfJ04lsmPga+a2aXyS04/cM7dWbKcfm7JeIIVv3HtJ27ibQc5554ws1/K369sg9vlby+80czmyl9sr5afBB+rUF7Z83dddJFPO1Z+TLqcc3PP6P/nJbZ9Uf59BavN7D+iWFY65x5M5a1z3t+QkT5+Z+9BGftyRW8w+iP52xrPlb+NZokkz8zKV1Kvc+4nZrZB0rPN7EDn3AOJ3Q86536aUV6ltjrnzpV0btTm50r6U/nbNR9wzv1tn+zviP6/IGf/JyX9tvwS/2oz+7p8P54i36d3y6947DpPoyd7X5af5M+Q9F9RnldE5V1nZi93ztW+/rViMnbO/YOZ3Sd/n+Vdkv5Y/uS6Sv4VQ9bAnvRW8ugCtll+0ijqpfKd+50ez+5nRv//bp+yfqVEvff02LdM/sRbK3/Ru0f+la/k+2bvVPrT5V8BnKndr7a3R5PLn7rib7uP2/nePumy2tmrPWU9Nfo/7x5RvP3AunE4535oZifKPzP+HfnlYZnZ/0j6kHPu33vlLyF9oY+fWGTui+zU7skkqOjc+k35N+n9jqS/i3Y9bGZfkPR+59wjJYose/7mHdd4zB4b/cuTHLPvln/D2FslnRv92xldnN+TmFzqnPcPZGyLX9Xv0ae8XaIn5t+Vf1V2m/y14V7tXkX8oCZfD6oocs49K0qXbFtWO6UKbU1y/p3ON0v6X2Y2Q9KHzexbzrnrs9JHaX5bfuXmorwyzeyl8sf7d+Xfm7NV/o3D75d/Mij5/o2dL3///TTn3OWJ7cvMbLv8K+OPy98iqqUVk7EkOeeWSloavRnjJfKT0VslfdPMnpfxrPjpSr0qMrM95E+gh1Tc2+QPzgfNbA/n3Acy0sQXy/QBqSPzDWbRB9yXyL9CO8Ul3jBhZk+R9GeTCvJLROdJOi/6kPtL5e8Jvkn+FeSJBWOK2/lU51yZPlTOMlpVcRyH5OyfnUo3IZSylTnnVkp6rZntLf8msZPlXzldbGb3usQb+VogXsrOOneznpyULic6ByeJnqy+W/4jIL8qf5E6R9IfRnWfVaL+sudv3nGNx8A/utRnRPNEKxSflPRJM5sl/0bHM+Qv0AuiN3zt0GDO+7JOk5+Iv+Cce0tyh5nNlp+Mm5A857JWhXqdc4N2hfw5+TL5e7VZ3iz/pOQLqVfuE0ST/Aeif7uY2bPl2/7T1Iuy+E1a/51RXLzt6H4NKKJN94wlSc65B5xzX3fOvV3+jQYzlD2ZvCxj24nyF5ebS1T5gKRXyj8r+ksz+3hGmmsT5Q/ar0b/X+4mv3PxxfLvus7lnLvLOfdF+ftId0g6IVpqiT2p/Gerw2xnL/HxOym9w8ymyV88Jf/O2cY453Y4565xzv2V/AqN5C+GsXj5qtKz/YbEF4pDM/ZN+qaiQZXjnPupc+5f5c/DRzSxn4po6vz9ofyYrjRmnXObnHNfcc69Qf4V6HMkHRHtHtb58IS068lIWnw9+HLGvqw+3FWeyo3TXufcr8rfLvlZr4lugOJl+J090rw9+j/92eKi4vxfTG2PVx2yvmkr3lblNs0krZiMzezk6CKbFi9XZd37/ICZ7bofYWb7SPpo9Od4mfqj+3Unyy9XvNfMPplKcpn8s8X/bWanZJVhZouiNwLUtS76/6RU+bMk/XNGvU8zs+MyytlP/j7ITk0cLJuVfQGW/GcpH5f0j9FHCtJ17RUt6Q7aV+XfYfxGMzs+te+P5d9d+m3XwEd+zOzE6Ft20p4e/Z8ce/Gb4bLeODYs8b2ptyc3Rl+O8EclyrlBfhI7Mzluo+W+SU9IzezZZrYgo5yD5C9Yk97Y1Ucj52+0YvZF+Y9EfSDrOmJmz4le+cjM9jazl0cf1Uqm2VP+ib+0+5gP67zvNa7WRf+flKr3MO2+VVCmvDyfj/7/S0t8xWP0BOHv5eeKfy1RXmHRMXlJzr5jJb1TfqxmflVudE16nqTbct64lUx7QMa2U+TfpPYL+RWTpHjp+oPRymScZw/tviX4nV51FtWWZepL5O9xXi0/+Ez+2eix8m8Uylom/LH8Tfjk5xSfI/85vMx7Br0457bZ7s+2viu6OLzTeY+b2W/Jf85whZldI/9mlm3yE9ux8hPEbNX/2s3r5d9M9ltRPVfLTwyvkf9CjfS3VT1T0rVm9mP5V4p3yX9O9rXyyy6fSr056DuSzoje9HWj/GT9Pefc95xza8zsrfIn5mozu0L+Iyh7yp/YJ8rfT5lfs409OeceieL4D0lXRW+y+bn8ctCr5O8fntNQde+R9Crz39e9Vv5V3gL5/r5fE59p/7f8ReGjZnZEtF/Oub9pKJYiLpNf8Xijmc2R/7jFs+TH/2XyX9rQl3Nuo5l9UX5p+RYzWyE/bk6R/3KE9JuoXihpuZndKH/v8m75VwanyY+PvIkhT5Pn7x/Kv5nqryWdFV1Hfin/ZpznyZ+fb5T/XPG+8teTdWZ2nfzn1/eRXx17nvyK1I8laYjn/Xfkl8i/Et23flTSeufcRfIfK/qppD+JnnDdLH+8XyvfV1kTbulx6py7JloV/DNJt0XHZav8eXCE/HXoEzXa2Mu+kn5gZmvkr2Eb5L9I5Hny72SW/HuH8r5JMX7jVpFXxWvM7FZJa+Tfh3NMVMe9kl6X8b6h98nfNj1b0tFmFr/B7eXyb669T9KfF6i3P9fQZ6Tq/JN/5rNc/mIYf1vNzfIDY/9U2iuV/Q0+axW9mSGj/EmfrVX+N3DtJf/Bfie/TJ787Ocs+Y+n3BbF+Yj8hfFS+fuzkz4DmRHLvLjsHmlmyH/RyTr5zzjeKf+5u+nRtnWJtAfKv6nmu/LP7HbIv9niSvkLkKXKniX/sZlfyi9nZX0u9cio7euj8rZEbb5A0m9mHY+Kx/1C5XxmNtp/bDQu7pV/df9z+W/EyfomsJ5l9YjhVfKvxG6Xvx+2Vf5Jz6ckzc1I/yb5C/KjKvDNRv2Od9bYTOybcKwT2w+VfyPPliiO6+W/DeiknOOZeYzkz6FPyF/84s+Xv1/+SXr6c8ZzojH4A+1+Q+EG+S96eE2J/r5SDZy/GWn2kp+Ur4mO445ovHxHfjVlZpRuT/nryjei/duj8XWt/HUo6xvACp/36vEZ37yxIL+c/JGoDx7P6PtD5V/9/yI63qujNkw6TlXHaWLfGfIT78NR36yWf3PjPhlpM8dnv37ISLun/D3cb0djansU90/lP1t+XI+8B0Vpt0k6sEBdn5D/VrH4m8z+R/6V/9N65Hm2/PcA3BmNq/gbET+tAt8KVvSfRZV1RvQK5mXOOeuXFkC7cP4C2VpxzxgAgFHGZAwAQGBMxgAABNa5e8YAAEw1vDIGACCwoX3O+OCDD3bz5s0bVnUAAAR344033uecy/oGrwmGNhnPmzdPN9yQ9XsPAABMTWa2vkg6lqkBAAiMyRgAgMCYjAEACIzJGACAwJiMAQAIjMkYAIDAmIwBAAiMyRgAgMCYjAEACIzJGACAwJiMAQAIjMkYAIDAmIwBAAiMyRgAgMCYjAEACIzJGACAwJiMAQAIjMkYAIDAmIwbdvnGS3T5xktChwEA6BAmYwAAAmMyBgAgsGmhAwhl/Vln73q8fc0aSdI+8+dr7kVLM9PNvWjphMd5aU6dfYbWn3W21uvrPdPlxVMmT9k4q+QrU1aZugZRRpOxNhFPmTTJtNvXrMkci73KG9TYarpPq4znQcSWPP+rllG0jmGOR3QXr4wBAAiMyRgAgMDMOTeUio455hh3ww03DKUuYKpYfv5NkqQl71kYOBIAVZjZjc65Y/ql45UxAACBMRkDABAYkzEAAIGN7EebShlf7P8fWxE2DoycKXGvmPMH6ItXxgAABMZkDABAYCxTR267el3m9iNOmBd0eS2O64gT5jWSbtBxDCOWfnXk7RtGXCHqKlNfv3Rl4y6Uvs/5M+y+qqptcbYtni5rQ1/yyhgAgMCYjAEACGxKfAPX2BVjkqTxk8drpZmqRrntg1S2X9twHJqMYZDt6WrZbTGsNo5CX9bFN3ABANARTMYAAATGZAwAQGBT4p7xVLXpglslSbPOeUHgSLw2xVM1lqba0KuconW0qT/rqtsfofoiZGxT6fgPwlTpH+4ZAwDQEUzGAAAExjJ1ZMnNd0iSlh91+JSsDwAwfCxTAwDQEUzGAAAENnI/FLFqxXJt3Xzfrr/3m3mwjly8RH99921+Q7RsvGrFcknSkYuXTMib3lbV8qMO16oVy7Xq7tsaKS9t0PEXqa/J9GXjiMXlF60vna6pOOuWM8hjV1bX2tKWvmvLOTKs8tuqre3mlTEAAIExGQMAEBiTMQAAgXX/o02XX+b/P/W0cvsAlMc5hboGOYZaOD75aBMAAB3BZAwAQGDdX6auKOtHsQfxQ9l1y2z6x+DXbFmj+TPmS9Kux0XLLhJLnXjL5I3TxtZsWSNJWnnmyl3tlJTZ1nTePHEcRfut15hKlpksL1lHOi/QZm0cs22MiWVqAAA6gskYAIDAmIwBAAhsZO8ZD9qGDV+SJM2Z84bAkQAIaZDXAq4z7cc9YwAAOoLJGACAwDr7q03JX96o+ks78S84xb/clPzFn3h7LKvs9C9ASUrk2VOStOG7n921PU57/Nlv79uWOG0yhrRk7L3amJQVd1xHVpvz+rnfr0Il+1aSHvrlRu0xbc8Jdeb3Xf/+jvM/sfNxHfD02bviT0se2379lS4/XWZe3yTT5ZWfVXY6b1bs6Tx59fbLnxxz/Y5j0rVLPzupj9PHNCu2on0ely9pV1nxcd1j2p46/uy39z2/88Z4so/yzqPkvqxrQVYd6WOdHuuTy/Hj/v4fLZ/UD/36P112up33/2h32fG2a5f6a076OpPVjl7XlyLjo1eM6T6J9aszKdmW9HGW/BiUdo+d9LFPtqPI9TIkXhkDABAYkzEAAIHxbmpgQMbHx3XPPffokEMO0djY5G/9Gh+Pvn2rwL5+f1eJrUr+uvXWEdcdqxJDmfiz0g6q35s43kXLrhpj0/ma6Mui51fe46Zi6YV3UwMA0BFMxgAABMZkDABAYNwzTgh5P6yOrsZdxyi2GUD3cM8YAICOYDIGACAwlqn7GOZHQOosvYZeth10/aHbV0TVjx/1+9hFmToHrWgb+8VV9aM7vT7KUiburqn60aY6YwvNYJkaAICOYDIGACAwlqklrT/rbEnS3IuWZv5dJm+TcTSdr8lYywhV77C1pZ1l46gz/puSVWdb+rOspuIuc1zWn3W2tq9Zo33mz8+tt0iaorE0kbdfmYM4/iHGFMvUAAB0BJMxAACBMRkDABAY94xTbrt63YS/jzhhXuE8eWn77Q+hVzvz4k1uv+3qddr64Hbt99R9MtuVLqNKv/aKpej+pmTVU7buvD4JMS7SxzJUHBg9dcdb18Yr94wBAOgIJmMAAAIb6WXqDRu+JEmaM+cNQfI3XQ4AoF1YpgYAoCOYjAEACGykl6mnktMvWClJWnbOosCRABgFbbjmtCGGflimBgCgI5iMAQAIjMkYAIDAunnPeHyx//+eW/3/h7zAPz7kBdLYit75fr5S2mu/3Xni/HG+8cW7y0rXMbZid93JffH+eFuyvI8eOnF/soz4cTKmpHtulR7b6vel60mni/fFZb3/rontjutL/p0lGX9WXyT35cWdTJsnfZzy+jWW1f9Z6bP6MD0u+tUl+X6XpGct8nk/eqjf9qxFE8vNa09e+vQ4S8ccb3v/XZPHSaxovxdpe7oNeWMjPXbyzrN0u9LjKD3+03n71dmv/rx48sZPXgxZ5Wddd9Jl5bU/3p91PUiXn6wjXU/WNSivn7P6IJ0nlh6vWe1JxtOr/GS7smLq1QdlpMdFv77oN+6S516DuGcMAEBHMBkDABBYN5epG7bk5jskScuPOrzUvjJpAACjh2VqAAA6gskYAIDApoUOoA2ylpe/v3pL7r5e+eN8Jy6YUTqOqnmr5KsTZyhFYx5G29rWf6PY5q4Yxnnd5mPT5tjahFfGAAAExmQMAEBgTMYAAAQ2MveMl33o3F2PN61bq1nzDtPpH/xYbvr4/kYyn6RdeZZ96Nxd5ST3Zd0XictI1pfclt7fa19W/nSsWeVUjaVXvqy8WX3bqw+zysyr8+5LP+53LOjdnnS6Mv1btQ+LtCcrXZlYeuVNtjmrv6vGnDXOeuUte0yrjP0i8ZeNo+i2Ksc4PjbLLlXhWMvGcuKCGVr2oXP16b/Pv7bV6fui7c6qb5cFxY9RnfrLlFskz7DwyhgAgMCYjAEACIxv4Kpp9erVkqQFCxYU2l40TZH8TRlmXf0UjSVkzFl1J7fFj2PJbXl5ipRbNbaysuIvU2/ZY5hVT5EYqvRXmfO1TF9W7fcmj2+vY1DnOlUnpqLpy1wLm/570PgGLgAAOoLJGACAwFimbsj6s86WJM29aGngSMrLir3J9nShb9oSY9k44vSxOF/e9nQdZepLpx30uOlVd5V8IcuoUlfbFIktL02RsVO3zKoxl42nLJapAQDoCCZjAAACYzIGACCwzt4zvvGmMyVJRy+8uNL+OunLll03X1bevLLq1FG07ibqivPGqhzHvDLqxFs0b9XxV6Sc5La8x73KimXlKRpnkXRF46zS7l71Vy2rSH8VyZ9OX6ctvdKWHd/96umn7DHsV0eT51vZ+KuWMQjcMwYAoCOYjAEACKyzy9R9XX6Z///U05rN0y9Nr/1l8zYRT9E0ZeOo0r8h1D1em++TZh7cv511jnvRNEVji8uK5e3vdzzrxl22zKL7ip4ndcd90/uHkafKNaRsPHWuB3WuG4O65gz4WsYyNQAAHcFkDABAYFN3mXqq6rVcN+z6uyxUO9q4TAdgYFimBgCgI5iMAQAIjMkYAIDAuGc8QsbHxyVJY2Njra6vSL50mmG3DRikkOO5TN390nJecs8YAIDOYDIGACAwlqnRGktuvkOStPyowwNHkm9QMcblxtrcB8/93q2SpJ+89AUDP2ZLbr5Dqx9+VAv237fVfZKlC+O567rQxyxTAwDQEUzGAAAExmQMAEBgnb1nvGrF8gl/H7l4SWNlHrl4yYTH6X15eYpsrxJPLK+sorHm5UnXk1VfViyrVizX1s33ab+ZB9duZ7Kcun2X1R9l4uw1DrLKD6nOsct63HRcg+yjKnXktXuQ8VY5P5uop6nyYl0ZH/3G+zBiSOKeMQAAHcFkDABAYJ1dpi7j9AtWSpKWnbMoc1u//XXLb0JT5TUdV9my66Qpu71Mmrr7m8pTNX/Zuur2WZljUSRtlbqqpisbZ9266uQZdJ119ldtzyCvQW2sm2VqAAA6gskYAIDAOr1MvexD50qSTv/gxyY8bqLMtLw6itZbJNZlHzpXm9at1ax5h03Y9+mxN0iS/s/4l3LLSsY5DE33d51yqhyDYcVW1DDr6oph9EmR86fJOOqW1fQ1L++ak7e9bIxV9jcp1PUxiWVqAAA6gskYAIDAmIwBAAis0/eMN2zw91DnzHnDhMe90mX9jeLou97uvPP/SpL23nuWJPqpKsYZpgruGQMA0BFMxgAABNbpZWoAQLeMXTEmSRo/eTxwJMPBMjUAAB2x99kDAAAgAElEQVTBZAwAQGDTQgdQx+rVqyf8vWDBgtw0Zff1q7NMnmHVu3r1am3btk3Tp0/PTVem7jp910Q/jYpkXw2z3/LGS1YMTcbVVFl55dQtv8h1pWpsRfcPUxPtLSNreTrdH00dw0GN4UHglTEAAIExGQMAEBiTMQAAgY3kR5v6/bD4oH6AuuqPg1/3sy2SpP33mabnzz6g1o+LH3neNyVJz599wIR0ZX6U/vaND5WOIy+evG29tqf3xY9jTcVVNl9W3zT1g/BHnvdNPbx9p/bfZ5pWnffqUjFWjSNEmXXqzhvref3V1Dnfr542KHouVcnfpHQ9destcmwG3TY+2gQAQEcwGQMAENhILlPHbrzpTEnS0QsvbjQtRhfjpL50H9Kn1Vx51YskSSe97BZJ9GMoLFMDANARTMYAAAQ2UsvUmy64VZI065wX9NwXP45lpe9XXp1YJOkX510jSXrmeS8pnL9OPFNNkb5oor+qlDGVj9NUbhvC6fK4YpkaAICOYDIGACAwJmMAAAIbqXvGAIpr4lvJ4NX9Bqwm62siPYrjnjEAAB3BZAwAQGAjvUy9asVySdKRi5cMJH3b60e75B1fjvtwFO3nqXI82t6OtsdXFMvUAAB0BJMxAACBTYll6qxvz2rqm1ra/s0vbY9vlJQ9Fun0gzqW6W+Uiw2qnrrnYdFvyhuEpr+VrelvyuuXt43Xg7yYeo3/ou1oY3vTWKYGAKAjmIwBAAiMyRgAgMCmxD3jIsauGJMkjZ88PnIxtKHtADCKuGcMAEBHMBkDABDYyCxTD8vlGy+RJJ06+4xC24vubyqOKumaLGsYcYC+CmGQfZ4uO6uuXvU3FVvIcVXlGtGG84BlagAAOoLJGACAwFim7qi83x/N2p7cxu+WDh593D2nX7BSt298SM+ffcDQfnMYvbXhd56bwDI1AAAdwWQMAEBgTMYAAATGPeMOSb5NP+9xOl2vMsrWE8Kg6u/3EbS0vL5I99XmxzZNyjtzr1mSpM2PbdLMvWYVbkudj8MN8qMsocZEv3GedyziPo+3pf9OpsmrN6usZN1lYq3y8ZsmjvUgP/ZTtQ3p821QYyrkNY17xgAAdASTMQAAgXV2mXrJzXdIkpYfdXitNKPuud/zP879k5fW+3Huqscj3hYrcqw4rtnq9Avn027JdlYZn0U1de5Jk4/NqByrLL2uMyH6g2VqAAA6gskYAIDAmIwBAAiss/eMy1p+/k2SpCXvWRgsBgDN49xGm3HPGACAjmAyBgAgsGmhAxiWJpew1p91tiRp7kVLG8uf3hb/HataV924msrXK80g+nNQdZbN1y99kbFQptwq7Wri+G1fs0aStM/8+Zp70dIJ6Ys8zqunV/r47yWJv7evWaN95s+fFGPROvLanVVOVnn92tevvqoGUWaRstefdba23XST9MQT0h57SJKeMn26fu36H2bmT/dnrInx32tbVj1F9g8Tr4wBAAiMyRgAgMBG5t3USXW/KLzfl5v3+0GHvHwAhvdDFKF/BKWXQcfW5rZPNbybGgCAjmAyBgAgMCZjAAAC6/w949WrV0uSFixYkPu4X95YXtoiZZVRNs4m6um1bRCGVc8glIm9X9qmj8Eg+jVkPG0cJ3kxrV69Wtu2bdv19/Tp03c9Lnr9aWN760j2Sbo/kmmS4n11+qjotbufYRwP7hkDANARTMYAAATW+WXqkFatWC5JOnLxkpGOoYgm40yXlfy7Vz1Z++JtkrR1833ab+bBA+nLXnVXra9sW+uoWl4TcRRtZ9G6eo2fQcZXV8hjMIiyhi1U7CxTAwDQEUzGAAAE1vll6rErxiRJ4yeP99yfFqcfu2JMa7as0fwZ83PLSJa1Zov/Qvwi6avGWiSOIulGVbJ/0n2V13dZ29NjJ6u8OF2/MdQrpqJl1NGrfb3qqzvWBj1WB1F+1nHPqqvKOCsbQ1b+JsZ0OuY6154mjsFUvqaxTA0AQEcwGQMAEBiTMQAAgXX+nnEdS26+Q5K0/KjDa6VBb/Rhu43y8Wmq7clymuzPth+btsfXBtwzBgCgI5iMAQAIbGSWqXdct1aStPdxhzWWP6/M5Paq+crE3VSaEOrEFeeN5ZVRpX+2/9dqaeeT0jT/fNUO2HfXvrLHqex4KNMnZcZSEVXHUr98wxp/VeJoIvaiZUiSe+hRSRPH1KAkx/E+r1ygHdet9fXvfNLHMGO/SmOn6PHccd1auS1b/R/TntJYm5sc94MemwNZpjaztWb2wpx9R5jZ2qx9AAAgX9ll6nmS9s7Zt4+kubWiAQBgBJVapjazJyUd55y7PmPfOyX9rXNuZlbe0MvUAzW+2P8/tqK5cpoqM6/8rL+7Km5HrIn2TJW+wUS9jmvTx7zo+Va23rpxjurYTrb7o4dKj22V9tpPOuQFg7vmqvgy9bQCBb1b0rujP52kr5nZY6lk+0qaIemSsoECADDq+k7GktZK+k70+M2SbpB0byrNDkm3S/pcc6EBADAa+k7GzrnLJF0mSWYmSX/tnPvZgOMCAGBkjMxHm6ai0y9YKUlads6iwJEA6KXpc7VIeUee901t27FTx8ybUaterjP1NHnP+K8kfc45d3f0uBfnnPtw0SABAECxe8bnSbpC0t3R416cJCZjAABKYJkaQCEsV4YzzL7nODeLH4oAAKAjiixTZzKzWfLfujWBc+7ntSICAGDElP0GrgMkfVLS6cr5Wkzn3B5Z20dlmXp8fFySNDY2FjgSAEBojb2bOuWfJf22pH+VtEr+yz4AAEANZSfjV0t6r3PunwcRDAAAo6jsG7hM0v8MIhAAAEZV2XvGn5b0pHPuj8pW1LZ7xuvPOnvX4+1r1kiS9pk/X3MvWpqZbu5FSyc8zkuT9XdeuiL7euUpG2eVfGXKKlPXIMpoMtYm4imTJpl2+5o1mWOxV3mDGltN92mV8TyI2JLnf9UyitYxzPGI9hnUPeNvSfonM9tf0tclbUkncM59t2SZAACMtLKT8WXR/8+W9JbEdie/hO0kZb6bGgAAZCu7TH2S/ISbyzl3Vdb2ti1TA13wjQ33SZJeM+fgwJEAqGIgy9TOuSsrRwQAADKVmozNrN/9YOece3mNeAAAGDll7xk/RZOXqWdK+jVJ90r6SRNBtc7l0a3yU08LGwdGzpRYnub8Afoqu0x9UtZ2M3uOpK9K+kgDMQEAMFIa+dUm59ydkj4m6RNNlAcAwChp8icU75X03AbLAwBgJFT+CcUkM5sh6U8k3dlEeSHceNOZmduPXnhx0HtdcVxHL7y4kXSDjmMYsfSrI2/fMOIKUVeZ+vqlKxt3ofR9zp9h91VVbYuzbfF0WRv6suy7qX+myW/g2kvS06PHv91EUAAAjJKyr4yv0uTJeLuk9ZL+I7p3DAAASij1DVx1DPIbuDZdcKskadY5L6iVZqoa5bYPUtl+bcNxaDKGQbanq2W3xbDaOAp9WVfRb+Bq8g1cAACgAiZjAAACmxLL1FPVhg1fkiTNmfOGwJF4bYqnaixNtaFXOUXraFN/1lW3P0L1RcjYptLxH4Sp0j8sUwMA0BFMxgAABMZkDABAYNwzjiy5+Q5J0vKjDp+S9QEAho97xgAAdASTMQAAgTXyQxGdcvll0ub7dv8982Dp1NO0/K7b/d/xsnHWD6I3+CPpy4863Jd31+2D+SGKAcdfqL4m05eNIxaXX7S+dLqm4qxbziCPXVlda0tb+q4t58iwym+rlrabV8YAAATGZAwAQGBMxgAABNb5jzZ9f/UWSdKJC2aU2gegPM4p1DXIMdTG8clHmwAA6AgmYwAAAuv8MnVlw/roT5s+BhJ/rGvmwf7v+HGTH7WoE2+ZvOmPMMUfVxt728SPr2W1NZ03T/LjTUX6rdeYSpaZLK/pj1ABw9LGMdvCmFimBgCgI5iMAQAIbHSXqQdtfLH/f2xF2DgAhDXIawHXmdZjmRoAgI5gMgYAIDAmYwAAAuvsrzaNXTEmSRo/eXzC4/S+fmWs2bJG82fMn1COpF3bY1llx/mTduWZPcuXc/GiXdvjtCvPXNm3LXHaZAxpydh7tTEpK+64jqw25/VzVh9n9U1c3k2bbtL0adMn1Jnbd+rf33H+bTu3aeGshbviT0se2379lS4/XWZe3yTT5ZWfVXY6b1bs6Tx59fbLnxxz/Y5j0qKLF03q4/QxzYqtaJ/H5UvaVVZ8XKdPm66VZ67se37njfFkH+WdR8l9WdeCrDrSxzo91ieVE10LdMXYpH7o1//psie1M1F2vG1RdM1JX2ey2tHr+lJkfPSKMd0nsX51JiXbkj7Okh+D0u6xkz72yXYUuV6GxCtjAAACYzIGACAwPtoEDMjpF6zU7Rsf0vNnH6Bl5yzK3C+p0L5+f1eJrUr+uvXWEdcdqxJDmfiz0g6q35s43kXLrhpj0/ma6Mui51fe46Zi6YWPNgEA0BFMxgAABMYydcL4ePTOybHJ79prs67GXccothlA97BMDQBARzAZAwAQGJMxAACBcc+4nxs+4/8/5h2Dz1e1rrp5mzDo+kO3r4h0jEVjTqYr285h90vRNvaLq0pf3fAZ6eGN0v6zh3M+tknR/kmnqTO20AjuGQMA0BFMxgAABMYytfK/eL7IF4qXSTuossr8MEaV8usKVe+wtaWdZeOoM/6b0u+HR7qkqbjLHJcyP4RS5ccS6rQpL2+RH8moWmfZWAaJZWoAADqCyRgAgMBYpk5Z9qFzJ/x9+gc/VjhPXtp++0Po1c68eJPbl33oXG1at1az5h2W2a50GVX6tVcsRfc3JauesnXn9UmIcZE+lqHiwOipO966Nl5ZpgYAoCOYjAEACIzJGACAwEb6nvHy82+SJC15z8Ig+ZsuBwDQLtwzBgCgI5iMAQAIbKSXqaeS265eJ0k64oR5QeMAMBracM1pQwz9sEwNAEBHMBkDABDYtNABVLFqxXJJ0tbN90mS9pt5sLZuvk/7zTxYRy5e0jPfQ7/cqD2m7bkrT5w/zrdqxfJdZaXrOHLxkl11J/fF++NtyfKuXfrZCfuTZcSPkzElbd18n57Y+bj2mLbnpHrS6eJ9P/j817XHtD11/Nlvn9RfyTbmScaf1RfJfXlxJ9PmSR+nvH5Ntjvd/1nps/owPS761SVJT+x8XJJ0wNNn68jFS3Tt0s/qiZ2P64Cnz85sX7o9eenT4ywdc7zt+LPfPmmcxIr2e5G2p9uQNzbSYyfvPEu3Kz2O0uM/nbdfnf3qz4snb/zkxZBVftZ1J11WXvvj/VnXg3T5yTrS9WRdg/L6OasP0nli6fGa1Z5kPEcuXrJraThdfrJdWTH16oMy0uOiX1/0G3fJcy8EXhkDABAYkzEAAIExGQMAEBgfbZK0/qyzJUlzL1paal+ZNACA0cNHmwAA6AgmYwAAAmOZOsfpF6yUJC07Z9FQ8g27zjpxhlI05mG0rW39N4pt7ophnNdtPjZtjm0YWKYGAKAjmIwBAAhsZJapd1y3dtdj99CjsgP21d7HHVYqn6RdeXZct3ZXOel9eWUk9ye3pff32le0zKJp6tSXlTerb3v1YVaZTban399l0pbpi17y6i9bd7/HsSrHtcj+Mn2Tt7/K2C8SX5V2VT2n+pWfN/6bjiXv/CuTPx1z2XZn1Rcrc4zq1F92zJYtvyyWqQEA6AgmYwAAAmMyBgAgsJG5ZzwoeT9uXeRHr3ulGeaPZrfpB7qLxhIy5qy6k9vix7Hktrw8RcqtGltZWfGXqbfsMcyqp0gMVfqrzPlapi+r9nuTx7fXMahznaoTU9H0Za6FTf89aNwzBgCgI5iMAQAIjGXqhnx/9RZJ0okLZgSOpLys2JtsTxf6pi0xlo0jTh+L8+VtT9dRpr502kGPm151V8kXsowqdbVNkdjy0hQZO3XLrBpz2XjKYpkaAICOYDIGACCwzi5TLz//JknSkvcsrLS/TvqyZdfNl5U3r6w6dRStu4m64ryxKscxr4w68RbNW3X8FSknuS3vca+yYll5isZZJF3ROKu0u1f9Vcsq0l9F8qfT12lLr7Rlx3e/evopewz71dHk+VY2/qplDALL1AAAdASTMQAAgTEZAwAQWGfvGfdz401nSpKOXnhxo3n6pem1v2zeJuIpmqZsHFX6N4S6x+vhh2/X/vs/v2876xz3ommKxhaXFcvb3+941o27bJlF9xU9T+qO+6b3DyNPlWtI2XjqXA/qXDcGdc0Z9LWMe8YAAHQEkzEAAIFN2WXqqWrJzXdIkpYfdfiExyHq77JQ7ahT71Tpe2CUsEwNAEBHMBkDABAYkzEAAIFxz3iE7LhurSRp7+MOa3V9RfKl0wy7bcAghRzPZerul5bzknvGAAB0BpMxAACBsUyN1vjGhvskSa+Zc3DgSPINKsa43Fib++Df7twoSXrTc2YP/Jh9Y8N92rzjcc3ce89W90mWLoznrutCH7NMDQBARzAZAwAQWGeXqcfHxyf8PTY21liZY2NjEx6n9+XlKbK9SjyxvLKKxpqXJ11PVn1ZsYyPj+uee+7RIYccUrudyXLq9l1Wf5SJs9c4yCo/pDrHLutx03ENso+q1JHX7kHGW+X8bKKepsqLdWV89Bvvw4ghiWVqAAA6gskYAIDAmIwBAAiss/eMy1h/1tmSpLkXLc3c1m9/3fKb0FR5TcdVtuw6acpuL5Om7v6m8lTNX7auun1W5lgUSVulrqrpysZZt646eQZdZ539VdszyGtQG+vmnjEAAB3BZAwAQGCdXqZevXq1JGnBggUTHjdRZlpeHUXrLRLr6tWrtW3bNk2fPn3Cvuuvv16SdOyxx+aWlYxzGJru7zrlVDkGw4qtqGHW1RXD6JMi50+TcdQtq+lrXt41J2972Rir7G9SqOtjEsvUAAB0BJMxAACBdXqZ+vKNl0iSTp19xoTHvdJl/Y3i6Lvextd/SpI0c69ZkuinqhhnmCpYpgYAoCOYjAEACIzJGACAwDp9zxgA0C23Xb1OknTECfOCxjEs3DMGAKAjmIwBAAhsWugAarnhMxP/PuYd+WnK7utXZ5k8w6r3hs9ID2+U9p+dn65M3XX6rol+GhXJvhpmv+WNl6wYmoyrqbLyyqlbfpHrStEyunB+NNHeEjKXp9P90dQxHNQYHgBeGQMAEBiTMQAAgY3ku6mzvt2n6Ld5NV1vkTwbd9wlSdrL9tbMvWaVzp+sM/0NUbGiZV6+8RJtfmxT6Tjy4snb1mt7el/8ONZUXGXzZfVN1WOezjO+/lN6zO3QXra3xua+q1SMVeMIUWaduvPGel5/NXXO96unDcp8Q2HZ/E1q+tsSixybQbeNd1MDANARTMYAAATGZAwAQGAjec84NnbFmCRp/OTxRtNidDFO6kv3IX1azaKLF0mSVp65UhL9GAr3jAEA6AgmYwAAAhutZerxxf7/sRW998WPY1np+5VXJxZJ+uih/v/331U8f514ppoifdFEf1UpYyofp6ncNoTT4XHFMjUAAB3BZAwAQGCjtUwNoLCq777lXbuT9eqTQfRX2TI5ZoPDMjUAAB3BZAwAQGBMxgAABDbS94xPv8B/M82ycxYNJH3b60e75B1fjvtwFO3nqXI82t6OtsdXFPeMAQDoCCZjAAACmxLL1LddvU6SdMQJ8yY8brrsNmp7fKOk7LFIpx/UsYzLTRtUPXXPw155Bz3emyi/Xz8Mqm/qlj0oeTH1Gv9F29HG9qaxTA0AQEcwGQMAENiUWKYuYnw8+m3UsbGRi6ENbQeAUcQyNQAAHcFkDABAYEzGAAAENjL3jIflxpvOlCQdvfDiQtuL7m8qjirpmixrGHGAvgphkH2eLjurrl71NxVbyHFV5RrRhvOAe8YAAHQEkzEAAIGxTN1R6886W5I096Klfbcnt+XlQ3Po4+5Zf9bZ2r5mjfaZPz/zuHFMh28QfR7iOLJMDQBARzAZAwAQGMvUHbJhw5ckSXPmvCH3cTpdrzLK1hPCoOrPKzfenpbXF+m+2rFj06S8e+89S5K0Y8cm7b33rMJt6df2use5agyhxkS/cZ53LOI+j7el/06myas3q6xk3WViLXO+5pVXdF/RmOqq2ob0+TaoMRXymsYyNQAAHcFkDABAYEzGAAAE1tl7xqdfsFKStOycRbXSjLojz/umJGnVea+uVU7V4xFvixU5VhzXbHX6hfNpt2Q7q4zPopo696TJx2ZUjlWWXteZEP3BPWMAADqCyRgAgMA6u0xdVuiP6AAYDM5ttBnL1AAAdASTMQAAgTEZAwAQ2LTQAQxLk/eTxq4YkySNnzzeWP70tvjvWNW66sbVVL5eaQbRn4Oqs2y+fumLjIUy5VZpVxPHb82WNZKk+TPma/zk8QnpizzOq6dX+qy/12xZo/kz5k+KsWgdee3OKiervH7t61dfVYMos0jZY1eM6aZNN+lJ96SeYv613fRp07XyzJWZ+dP9GWti/PfallVPkf3DxCtjAAACYzIGACCwkfloU1Ldj0L0+6WRfr+ulJcPwPA+qtTmj0QNOrY2t32q4aNNAAB0BJMxAACBdX6Z+vurt0iSTlwwI/dxv7yxvLRFyiqjbJxN1NNr2yAMq55BKBN7v7RNH4NB9GvIeNo4TvJi+v7qLXpg285dfx84ffeHUYpef9rY3jqSfZLuj2SapHhfnT4qeu3uZxjHg2VqAAA6gskYAIDAmIwBAAis8/eMQ1q1Yrkk6cjFS0Y6hiKajDNdVvLvXvVk7Yu3SdLWzfdpv5kHD6Qve9Vdtb6yba2janlNxFG0nUXr6jV+BhlfXSGPwSDKGrZQsXPPGACAjmAyBgAgsM4vU59+gf9C8mXnLOq5Py1Of/oFK3X7xof0/NkH5JaRLOv2jQ9JUqH0VWMtEkeRdKMq2T/pvsrru6zt6bGTVV6crt8Y6hVT0TLq6NW+XvXVHWuDHquDKD/ruGfVVWWclY0hK38TYzodc51rTxPHYCpf01imBgCgI5iMAQAIrPPL1HWsP+tsSdLci5bWSoPe6MN2G+Xj01Tbk+U02Z9tPzZtj68NWKYGAKAjmIwBAAiMyRgAgMBG5p7xbVevkyQdccK8xvLnlZncXjVfmbibShNCnbjivLG8Mqr0z3Ur1uiJnU9qj2n++ep+T91n176yx6nseCjTJ2XGUhFVx1K/fMMaf1XiaCL2omVI0tYHt0uaOKYGJTmOj1s8X7ddvU5bH9yuJ3Y+KUk6YOb0SmOn6PG87ep1emjzNknSHtOe0libmxz3gx6b3DMGAKAjmIwBAAhsZJapB6mpZY5+y5l11VkObbOiy9VVyux632CiorcTBlFXU0urg7jlNgqS7U4u38dL54PqF5apAQDoCCZjAAACY5m6w2686UxJ0tELLw4cCYBemj5Xi5R35VUv0hNPbNOBBx5Tq16uM/WwTA0AQEcwGQMAEBiTMQAAgXHPGEAhq1YslyQduXhJ4EhGzzD7nuPcLO4ZAwDQEUzGAAAExjI1AAADwjI1AAAdwWQMAEBgTMYAAATGZAwAQGBMxgAABMZkDABAYEzGAAAExmQMAEBgTMYAAATGZAwAQGBMxgAABMZkDABAYEzGAAAExmQMAEBgTMYAAATGZAwAQGBMxgAABMZkDABAYEzGAAAEZs654VRkdq+k9QOs4mBJ9w2w/GGZKu2QaEtbTZW2TJV2SLSlrZpoy1zn3NP6JRraZDxoZnaDc+6Y0HHUNVXaIdGWtpoqbZkq7ZBoS1sNsy0sUwMAEBiTMQAAgU2lyfgzoQNoyFRph0Rb2mqqtGWqtEOiLW01tLZMmXvGAAB01VR6ZQwAQDc554L8k/R5SZsk3ZbYdp6kX0i6Jfp3SrR9T0lfkLRK0o8lvT+RZ120/RZJN+TU9d5EmbdJekLSjKL5h9iWAyVdKmlNtG9RRl0m6VOSfirpVkkLE/veLOmO6N+bO9CW/xW14VZJ10h6YZnj2qJ2nCTpwUS5f5XYd7Kk/4mO17kdOCatP1ck/Voi7S2SHpL0x108V0q0pdXnSol2nKSWnysl2tLouVK6sU39k/RSSQszOu1PM9KeKemS6PH0qKHzEo0+uES9r5P03dRALpx/wG35gqTfix7vJenAjPynSPqG/IXmeEnXRdtnSFob/X9Q9PiglrflJXGMkl4Tt6WJ4zLkdpwk6T8ztu8h6U5Jh0V5fyTp+W1uS1fOlVQf3yP/Wc5OnisF29L6c6VgOzpxrhRpS9PnSrBlaufc9yRtKZpc0n5mNk3SvpIek3+2UsUbJf17xbyZmmiLmR0gP5D+NSrzMefcAxn5T5O01HnXSjrQzGZLerWk/3LObXHO3S/pv+Sfaba2Lc65a6JYJelaSXPKxpsb2HCPSZ4XS/qpc26tc+4xSZfIH79SAralledKKs3LJd3pnMv6QqHWnytF29L2cyWVptcxydOacyWVpmhbap8rbbxn/IdmdquZfd7MDoq2XSppq6SNkn4u6e+dc3GHO0nfMrMbzewdvQo2s+nyJ92XE5sL56+gTFsOk3SvpHEzu9nMPmdm+2WU+UxJdyX+3hBty9ve5rYkvU3+VUxsUMdlUO1YZGY/MrNvmNmCaFtnj0nLz5WkM5R/EezCuZLUqy1JbTxXkvq1o+3nSlLfY9LUudK2yfhfJD1H0ovkO+j8aPuL5dfjnyHp2ZLeY2aHRft+3Tm3UH7p5n+b2Ut7lP86ST9IdXiZ/INsyzT55ZV/cc4dJT9Izs0o1zK2uR7bmzCotkiSzOw35C8w70tsHsRxGVQ7bpJfxnqhpE9L+mrctIy0nTgmave5Ikkys70knSrpP3LK7cK54gPt35Y4XVvPlaLt6MK54gMqeEzU0LnSqsnYOfdL59wTzrknJX1WvrMkv7Z/hXPucefcJkk/kHRMlOfu6P9NkpYn8mSZ9CynZP5BtmWDpA3OueuidJfKXzzTNkg6NPH3HEl399je5rbIzF4g6XOSTnPObU7U2fhxGVQ7nHMPOeceiR5/XdKeZnawOnpMIm0+V5QB+ooAAAWNSURBVGKvkXSTc+6XOUV34VyJ9WtL28+VQu3oyLlSqC0JjZwrrZqMo/s5sSXy71CT/BLCb5q3n/ybMdaY2X5mtn+Udz9Jr0rkSZf9VEkvk3RZYlvh/INui3PuHkl3mdmvReleLun2jKIvl3R2lP94SQ865zZK+qakV5nZQdEyzKuiba1ti5k9S9JXJJ3lnPtJYvtAjssA23GImVn0+MXy59VmSddLOtzMnh09yz5D/vjVNsDx1fpzJZG233261p8rRdvS9nOlRDtaf64UbUtUdnPniqv4Dry6/6JGbpT0uPyzordJukj+7eC3yh+I2VHaX5FfKlgtfwF5b7T9MPl33f0o2vcXifLfKemdib/fouidc4ltufmH3ZZo34sk3RDl+ap2v3tyV1vkl3P+Wf6dh6skHZPI/1b5jwX8VNJYB9ryOUn3a/fHA25o6rgMuR1/GOX9kfyba16SyH+KpJ9Ex6v146tD58p0+Yv4U1Pld/FcKdKWLpwrRdrRlXOlb1uaPlf4Bi4AAAJr1TI1AACjiMkYAIDAmIwBAAiMyRgAgMCYjAEACIzJGACAwJiMgSExs9eb2Z9kbD/JzJyZnRQgrExmdrSZbTOzwt8PbGafNLMVg4wLmKr4nDEwJGZ2oaRXOOfmpLYfIOn5km53zlX9NbJGmdl35eP5wxJ5Zsv/HOFi59x3BxYcMAXxyhgIzPnv6722RRPxQkm/If8F+4U5/1WTX5P0p4OIC5jKmIyBIYheFb9Z0jOjJWlnZuuifZOWqc3sSjO72sxONrNbzOxR8z99eJyZTTOzj5jZRjPbYmYXWurnEM1supn9nZn9zMwei/7/CzMrcs6/XdKtzrnVqTLPjGJ4xMweNLNVZnZOKu8lkl5tZocKQGHTQgcAjIgPS3qapGPlf5ZNknb0yfOrkj4h6W8lPSLp4/LfrXu5/Ln7FknPi9JskvRnkmT+x9K/Kb/0/WH57+U9XtIHJM2Q9J4+9Z4sacK9XzM7QdK/SfqUpPfKP5GfL+nAVN7vRfteKenzfeoBEGEyBobAOXenmd0r6THn3LUFs82U/yL9tZIUvaq9TNKznXOviNJ80/xvpf6uoslY/tdmTpD0Mufc96Jt34l+LOeDZvZ3zv+02yRm9nRJ8+S/5D7peEkPOOf+OLHtWxntvM/MNkTpmYyBglimBtrrJ/FEHIl/3i39c39rJM2Jf5pO/pXteknXREva06JXy9+StKf8RJnnGdH/96a2Xy/pIDP7NzN7rZmlXxEn3ZsoB0ABTMZAe92f+vuxHtunSdoj+nuWpLnyPyOX/PfDaP/MHnXuE/0/YQndOXeV/KvvQ+V/LP1eM/u2+R+8T3tU0r496gCQwjI1MPVslvQzSW/I2b+uT15JOii9wzl3qaRLzexXJJ0k6e8kXWFmc5xzTyaSzpD/7VgABTEZA8OzQ8N5xXiFpN+W9Ihzbk2/xCnrJG2X/4H0TM65RyT9p5kdJumT8q+075UkM9tD/tXzf5QPGxhdTMbA8NwuaYaZ/b6kGyRtd86tGkA9X5Q0Jv+mrfPl34y1l6TnyL+T+/XOuW1ZGZ1zj5nZdZJenNxuZn8t6emS/lvS3ZLmSHqXpFucc8n7y0dI2k/+XdUACmIyBobnc/JvnvqI/EeC1su/c7lRzrnHzezVks6V9A5Jz5a0VdKd8h9ZeqxHdklaJukTZrafc25rtO06+cn3H+WXoTfJvyHsA6m8r5V0j6Qr67cEGB18HSaACaKv59wg6Q+cc/9WMu/tkr7snEtP0gB64N3UACaIvpbz7yT9WeLjUn2Z2WnyS9nnDyo2YKpimRpAln+Q/6jUbPl7xEXsK+lNzrkHBhYVMEWxTA0AQGAsUwMAEBiTMQAAgTEZAwAQGJMxAACBMRkDABDY/wOCKc8uIdbXIQAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" }, { "data": { "text/plain": [ "color null\n", "contrast 0.8\n", "frame null\n", "orientation 180\n", "phase [42471.86666667, 42471.86666667]\n", "pos [0.0, 0.0]\n", "size [250.0, 250.0]\n", "spatial_frequency 0.04\n", "start_time 1585.73\n", "stimulus_block 2\n", "stimulus_name drifting_gratings\n", "stop_time 1587.74\n", "temporal_frequency 2\n", "x_position null\n", "y_position null\n", "duration 2.00168\n", "stimulus_condition_id 246\n", "Name: 3798, dtype: object" ] }, "execution_count": 21, "metadata": {}, "output_type": "execute_result" } ], "source": [ "first_drifting_grating_presentation_id = times['stimulus_presentation_id'].values[0]\n", "plot_times = times[times['stimulus_presentation_id'] == first_drifting_grating_presentation_id]\n", "\n", "fig = raster_plot(plot_times, title=f'spike raster for stimulus presentation {first_drifting_grating_presentation_id}')\n", "plt.show()\n", "\n", "# also print out this presentation\n", "session.stimulus_presentations.loc[first_drifting_grating_presentation_id]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We can access summary spike statistics for stimulus conditions and unit" ] }, { "cell_type": "code", "execution_count": 22, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
spike_countstimulus_presentation_countspike_meanspike_stdspike_semcolorcolorSpacecontrastdepthflipHorizflipVertframeinterpolatemaskopacityorientationphaseposrgbPedestalsizespatial_frequencystimulus_nametemporal_frequencytextexResunitsx_positiony_positioncolor_triplet
unit_idstimulus_condition_id
95179933624613150.8666671.9952320.515167nullrgb0.80nullnullnull0None1180[42471.86666667, 42471.86666667][0.0, 0.0][0.0, 0.0, 0.0][250.0, 250.0]0.04drifting_gratings2sin256degnullnull[1.0, 1.0, 1.0]
95180097724626151.7333332.7377430.706882nullrgb0.80nullnullnull0None1180[42471.86666667, 42471.86666667][0.0, 0.0][0.0, 0.0, 0.0][250.0, 250.0]0.04drifting_gratings2sin256degnullnull[1.0, 1.0, 1.0]
951801127246103156.8666677.4149141.914523nullrgb0.80nullnullnull0None1180[42471.86666667, 42471.86666667][0.0, 0.0][0.0, 0.0, 0.0][250.0, 250.0]0.04drifting_gratings2sin256degnullnull[1.0, 1.0, 1.0]
9518011872464150.2666670.5936170.153271nullrgb0.80nullnullnull0None1180[42471.86666667, 42471.86666667][0.0, 0.0][0.0, 0.0, 0.0][250.0, 250.0]0.04drifting_gratings2sin256degnullnull[1.0, 1.0, 1.0]
95180146224683155.5333332.5875160.668094nullrgb0.80nullnullnull0None1180[42471.86666667, 42471.86666667][0.0, 0.0][0.0, 0.0, 0.0][250.0, 250.0]0.04drifting_gratings2sin256degnullnull[1.0, 1.0, 1.0]
\n", "
" ], "text/plain": [ " spike_count stimulus_presentation_count \\\n", "unit_id stimulus_condition_id \n", "951799336 246 13 15 \n", "951800977 246 26 15 \n", "951801127 246 103 15 \n", "951801187 246 4 15 \n", "951801462 246 83 15 \n", "\n", " spike_mean spike_std spike_sem color \\\n", "unit_id stimulus_condition_id \n", "951799336 246 0.866667 1.995232 0.515167 null \n", "951800977 246 1.733333 2.737743 0.706882 null \n", "951801127 246 6.866667 7.414914 1.914523 null \n", "951801187 246 0.266667 0.593617 0.153271 null \n", "951801462 246 5.533333 2.587516 0.668094 null \n", "\n", " colorSpace contrast depth flipHoriz flipVert \\\n", "unit_id stimulus_condition_id \n", "951799336 246 rgb 0.8 0 null null \n", "951800977 246 rgb 0.8 0 null null \n", "951801127 246 rgb 0.8 0 null null \n", "951801187 246 rgb 0.8 0 null null \n", "951801462 246 rgb 0.8 0 null null \n", "\n", " frame interpolate mask opacity orientation \\\n", "unit_id stimulus_condition_id \n", "951799336 246 null 0 None 1 180 \n", "951800977 246 null 0 None 1 180 \n", "951801127 246 null 0 None 1 180 \n", "951801187 246 null 0 None 1 180 \n", "951801462 246 null 0 None 1 180 \n", "\n", " phase pos \\\n", "unit_id stimulus_condition_id \n", "951799336 246 [42471.86666667, 42471.86666667] [0.0, 0.0] \n", "951800977 246 [42471.86666667, 42471.86666667] [0.0, 0.0] \n", "951801127 246 [42471.86666667, 42471.86666667] [0.0, 0.0] \n", "951801187 246 [42471.86666667, 42471.86666667] [0.0, 0.0] \n", "951801462 246 [42471.86666667, 42471.86666667] [0.0, 0.0] \n", "\n", " rgbPedestal size \\\n", "unit_id stimulus_condition_id \n", "951799336 246 [0.0, 0.0, 0.0] [250.0, 250.0] \n", "951800977 246 [0.0, 0.0, 0.0] [250.0, 250.0] \n", "951801127 246 [0.0, 0.0, 0.0] [250.0, 250.0] \n", "951801187 246 [0.0, 0.0, 0.0] [250.0, 250.0] \n", "951801462 246 [0.0, 0.0, 0.0] [250.0, 250.0] \n", "\n", " spatial_frequency stimulus_name \\\n", "unit_id stimulus_condition_id \n", "951799336 246 0.04 drifting_gratings \n", "951800977 246 0.04 drifting_gratings \n", "951801127 246 0.04 drifting_gratings \n", "951801187 246 0.04 drifting_gratings \n", "951801462 246 0.04 drifting_gratings \n", "\n", " temporal_frequency tex texRes units \\\n", "unit_id stimulus_condition_id \n", "951799336 246 2 sin 256 deg \n", "951800977 246 2 sin 256 deg \n", "951801127 246 2 sin 256 deg \n", "951801187 246 2 sin 256 deg \n", "951801462 246 2 sin 256 deg \n", "\n", " x_position y_position color_triplet \n", "unit_id stimulus_condition_id \n", "951799336 246 null null [1.0, 1.0, 1.0] \n", "951800977 246 null null [1.0, 1.0, 1.0] \n", "951801127 246 null null [1.0, 1.0, 1.0] \n", "951801187 246 null null [1.0, 1.0, 1.0] \n", "951801462 246 null null [1.0, 1.0, 1.0] " ] }, "execution_count": 22, "metadata": {}, "output_type": "execute_result" } ], "source": [ "stats = session.conditionwise_spike_statistics(\n", " stimulus_presentation_ids=drifting_gratings_presentation_ids,\n", " unit_ids=high_snr_unit_ids\n", ")\n", "\n", "# display the parameters associated with each condition\n", "stats = pd.merge(stats, session.stimulus_conditions, left_on=\"stimulus_condition_id\", right_index=True)\n", "\n", "stats.head()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Using these data, we can ask for each unit: which stimulus condition evoked the most activity on average?" ] }, { "cell_type": "code", "execution_count": 23, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
spike_countstimulus_presentation_countspike_meanspike_stdspike_semcolorcolorSpacecontrastdepthflipHorizflipVertframeinterpolatemaskopacityorientationphaseposrgbPedestalsizespatial_frequencystimulus_nametemporal_frequencytextexResunitsx_positiony_positioncolor_triplet
unit_id
95179933681155.4000009.2874722.398015nullrgb0.80.0nullnullnull0.0None1.00[42471.86666667, 42471.86666667][0.0, 0.0][0.0, 0.0, 0.0][250.0, 250.0]0.04drifting_gratings4sin256.0degnullnull[1.0, 1.0, 1.0]
95180097741152.7333332.8401880.733333nullrgb0.80.0nullnullnull0.0None1.045[42471.86666667, 42471.86666667][0.0, 0.0][0.0, 0.0, 0.0][250.0, 250.0]0.04drifting_gratings1sin256.0degnullnull[1.0, 1.0, 1.0]
9518011272091513.9333339.7282112.511813nullrgb0.80.0nullnullnull0.0None1.090[42471.86666667, 42471.86666667][0.0, 0.0][0.0, 0.0, 0.0][250.0, 250.0]0.04drifting_gratings1sin256.0degnullnull[1.0, 1.0, 1.0]
95180118753153.5333335.9023801.523988nullrgb0.80.0nullnullnull0.0None1.0270[42471.86666667, 42471.86666667][0.0, 0.0][0.0, 0.0, 0.0][250.0, 250.0]0.04drifting_gratings4sin256.0degnullnull[1.0, 1.0, 1.0]
951801462136159.0666675.1612111.332619nullrgb0.80.0nullnullnull0.0None1.045[42471.86666667, 42471.86666667][0.0, 0.0][0.0, 0.0, 0.0][250.0, 250.0]0.04drifting_gratings2sin256.0degnullnull[1.0, 1.0, 1.0]
\n", "
" ], "text/plain": [ " spike_count stimulus_presentation_count spike_mean spike_std \\\n", "unit_id \n", "951799336 81 15 5.400000 9.287472 \n", "951800977 41 15 2.733333 2.840188 \n", "951801127 209 15 13.933333 9.728211 \n", "951801187 53 15 3.533333 5.902380 \n", "951801462 136 15 9.066667 5.161211 \n", "\n", " spike_sem color colorSpace contrast depth flipHoriz flipVert \\\n", "unit_id \n", "951799336 2.398015 null rgb 0.8 0.0 null null \n", "951800977 0.733333 null rgb 0.8 0.0 null null \n", "951801127 2.511813 null rgb 0.8 0.0 null null \n", "951801187 1.523988 null rgb 0.8 0.0 null null \n", "951801462 1.332619 null rgb 0.8 0.0 null null \n", "\n", " frame interpolate mask opacity orientation \\\n", "unit_id \n", "951799336 null 0.0 None 1.0 0 \n", "951800977 null 0.0 None 1.0 45 \n", "951801127 null 0.0 None 1.0 90 \n", "951801187 null 0.0 None 1.0 270 \n", "951801462 null 0.0 None 1.0 45 \n", "\n", " phase pos rgbPedestal \\\n", "unit_id \n", "951799336 [42471.86666667, 42471.86666667] [0.0, 0.0] [0.0, 0.0, 0.0] \n", "951800977 [42471.86666667, 42471.86666667] [0.0, 0.0] [0.0, 0.0, 0.0] \n", "951801127 [42471.86666667, 42471.86666667] [0.0, 0.0] [0.0, 0.0, 0.0] \n", "951801187 [42471.86666667, 42471.86666667] [0.0, 0.0] [0.0, 0.0, 0.0] \n", "951801462 [42471.86666667, 42471.86666667] [0.0, 0.0] [0.0, 0.0, 0.0] \n", "\n", " size spatial_frequency stimulus_name \\\n", "unit_id \n", "951799336 [250.0, 250.0] 0.04 drifting_gratings \n", "951800977 [250.0, 250.0] 0.04 drifting_gratings \n", "951801127 [250.0, 250.0] 0.04 drifting_gratings \n", "951801187 [250.0, 250.0] 0.04 drifting_gratings \n", "951801462 [250.0, 250.0] 0.04 drifting_gratings \n", "\n", " temporal_frequency tex texRes units x_position y_position \\\n", "unit_id \n", "951799336 4 sin 256.0 deg null null \n", "951800977 1 sin 256.0 deg null null \n", "951801127 1 sin 256.0 deg null null \n", "951801187 4 sin 256.0 deg null null \n", "951801462 2 sin 256.0 deg null null \n", "\n", " color_triplet \n", "unit_id \n", "951799336 [1.0, 1.0, 1.0] \n", "951800977 [1.0, 1.0, 1.0] \n", "951801127 [1.0, 1.0, 1.0] \n", "951801187 [1.0, 1.0, 1.0] \n", "951801462 [1.0, 1.0, 1.0] " ] }, "execution_count": 23, "metadata": {}, "output_type": "execute_result" } ], "source": [ "with_repeats = stats[stats[\"stimulus_presentation_count\"] >= 5]\n", "\n", "highest_mean_rate = lambda df: df.loc[df['spike_mean'].idxmax()]\n", "max_rate_conditions = with_repeats.groupby('unit_id').apply(highest_mean_rate)\n", "max_rate_conditions.head()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Spike histograms\n", "\n", "It is commonly useful to compare spike data from across units and stimulus presentations, all relative to the onset of a stimulus presentation. We can do this using the `presentationwise_spike_counts` method. " ] }, { "cell_type": "code", "execution_count": 24, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "\n", "array([[[0, 1, ..., 0, 0],\n", " [0, 0, ..., 0, 0],\n", " ...,\n", " [0, 0, ..., 0, 0],\n", " [0, 0, ..., 0, 0]],\n", "\n", " [[0, 0, ..., 0, 0],\n", " [0, 0, ..., 0, 0],\n", " ...,\n", " [0, 0, ..., 0, 0],\n", " [0, 0, ..., 0, 0]],\n", "\n", " ...,\n", "\n", " [[0, 0, ..., 0, 0],\n", " [0, 0, ..., 0, 0],\n", " ...,\n", " [0, 0, ..., 0, 0],\n", " [1, 0, ..., 0, 0]],\n", "\n", " [[0, 0, ..., 0, 0],\n", " [0, 0, ..., 0, 0],\n", " ...,\n", " [0, 0, ..., 0, 0],\n", " [0, 0, ..., 0, 0]]], dtype=uint16)\n", "Coordinates:\n", " * stimulus_presentation_id (stimulus_presentation_id) int64 3647 ... 3796\n", " * time_relative_to_stimulus_onset (time_relative_to_stimulus_onset) float64 -0.00897 ... 0.399\n", " * unit_id (unit_id) int64 951814884 ... 951814312" ] }, "execution_count": 24, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# We're going to build an array of spike counts surrounding stimulus presentation onset\n", "# To do that, we will need to specify some bins (in seconds, relative to stimulus onset)\n", "time_bin_edges = np.linspace(-0.01, 0.4, 200)\n", "\n", "# look at responses to the flash stimulus\n", "flash_250_ms_stimulus_presentation_ids = session.stimulus_presentations[\n", " session.stimulus_presentations['stimulus_name'] == 'flashes'\n", "].index.values\n", "\n", "# and get a set of units with only decent snr\n", "decent_snr_unit_ids = session.units[\n", " session.units['snr'] >= 1.5\n", "].index.values\n", "\n", "spike_counts_da = session.presentationwise_spike_counts(\n", " bin_edges=time_bin_edges,\n", " stimulus_presentation_ids=flash_250_ms_stimulus_presentation_ids,\n", " unit_ids=decent_snr_unit_ids\n", ")\n", "spike_counts_da" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "This has returned a new (to this notebook) data structure, the `xarray.DataArray`. You can think of this as similar to a 3+D `pandas.DataFrame`, or as a `numpy.ndarray` with labeled axes and indices. See the [xarray documentation](http://xarray.pydata.org/en/stable/index.html) for more information. In the mean time, the salient features are:\n", "\n", "- Dimensions : Each axis on each data variable is associated with a named dimension. This lets us see unambiguously what the axes of our array mean.\n", "- Coordinates : Arrays of labels for each sample on each dimension.\n", "\n", "xarray is nice because it forces code to be explicit about dimensions and coordinates, improving readability and avoiding bugs. However, you can always convert to numpy or pandas data structures as follows:\n", "- to pandas: `spike_counts_ds.to_dataframe()` produces a multiindexed dataframe\n", "- to numpy: `spike_counts_ds.values` gives you access to the underlying numpy array\n", "\n", "We can now plot spike counts for a particular presentation:" ] }, { "cell_type": "code", "execution_count": 25, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAcUAAALnCAYAAAD4TVwkAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3Xe4HVXZNvD7CZ1QQ6hJIEhEepEAURACSFMB26uAKCioKFiCDRtEsH3i+0ZRFBEiFooKqEHpoakQIBQpKhBqAiglKNKCSZ7vj7V2MmfOzN6zpq41c/9y7Svn7D17zZpy5plVR1QVREREBIxoOgNERES+YFAkIiKyGBSJiIgsBkUiIiKLQZGIiMhiUCQiIrK8CYoicraIqIiMr3m9D4vIw3Wus24iMt7u27Nj7zeyz4loMBE5wv59HtF0XrrEm6CYJO1iTtQ0EZlqz83JTeeF6lH2MReRyTa9qWWkVwcR2VpEzhSR20XkKRFZICJzReQqEXm7iEjCdzTD670J33ubiFwtIv8SkZdF5G8icoKIrDggjweKyKWx/M0QkUlZtnHZ7Lujcp8H8E0Aj9W83r1qXl8THgOwOYB/N50RIsrsNwBmAXii6YxE7ADgrTD5ugHmmrIegAMAXAjgFwDiAe4rKWmtAuBTABYCuDL6gYicDOBLAJ636T4DYFeb1j4isreqvhT7zggApwP4IIC5AC6y31sXwCSb91mDNtCboKiqT6CBg6+qD9S9zrqp6n8B/L3pfBBRdqr6b/h3I3u+qp4df1NEVoMJOIeJyPdU9ebeZ6o6NSkhEfmw/fFiVf1H5P3tAXwRwL8A7KCqD9r3BcCpAI4F8DkA8XQ/BRMQfw7gKFV9Jba+5TJtoar2fQGYDEABTE35/GEAD8feO8J+5wgAewC4FsB/ADwH4A8ANk9I52z7nfH296n296TXEQBeY38+J5bOxpHl3hD77Fv2/T0H5H95AB8HcBuAZwG8aJf7HYA3JuR9M5v/uQAWAPgngHMBvGbQ/o2kIQAOh7n7egrAyza9ywG8O2mfA1gdwPdhSoIvA/irzbfElh9vt/vsfvs88v62Ns3nAOxd9rZG0toHwMUAnrRpzU3axzDV/EcDuAXmzvEF+/NHAIzIsq2Rz68FoGnnOIDtYM7Rf9njfh2A1yfs/8RzM7LMugC+DeBem99/2Z/PBvAqh320A8ydcm8fPQLgBwDW7/c3BODDAO6y58U/AZwBYHWH9U61aU225+XtAF6y+ZgOYL20fQvz93OC3d4FCefdIQCugfnbehnA32BKBSskpPkGe47Ms2n9A+bie2LCsivD1DjdYff58wBuBHBIwrJVHPNNYWq7ZsP8DfeO1xkAxqYcq6TXZI1dR305LwacM9Pset6Tcflb7fL7xt4/yb5/SsJ3VgWw2OZ9mcj7q8HEmLlJ55HLq+qS4lsAHATgUphi7RYA3gRgRxHZQlWf7vPdawGsAeATAP4C4LeRz+5Q1XtF5DEAe8a+t1fs5z9Gft8T5mS4YUC+z4b5w70bwM9gLgYbwBTf9wNwVW9BEdkPppi+HMwf7xwAYwG8HcCbRWQPVb1twPoA4Gswf9APAfgVzB3i+gB2BPA/AH4ZW355m481AJxvf38HgO/C3DAck2Gdw4jIXnZ7XgCwm6reUcG2QkS+AnPhfB7m2M6F2cevB3AYIvsY5s7vULvMmTB/MG+DuQjsCuA9ebY1wUQAn4W5kJ4JYEOYfTpTRLZT1Xvtct+BqULaHcBPYS6Y0W1bGcCfAWwCUy10McxNz0Ywfw8XAHhwUGZE5C0wFz6x33kE5mL4EQAHicguqvpwwle/BWBfu94rYG5MPwhgAob/vQwyBebm5ZcALoPZ3+8HMFlEdlbVpxK+cyHMeXspzLF9MrJNZwH4AEyQuwgmEE0CcDKAvWy12EK77H4wweo5ADNgbtRGwTQFfBSRajkRWQPA1QC2h7mZnQ5zM7UvgHNFZEtV/VJCXks55tbbYW7eroG5xrwCYEsARwE4QEQmqmqveah3PTscJghfG0knKe0lPDkv4nlaOZLGXRmWfy2A18Js65Wxj9ez/w/7G1HV/4jI0wDWAbA1zA0QABwIUx17OoARIvJOmO36D4A/qepfMm9Mhmg+GflLigsB7BX77Bv2s8+m3c1E3huP/nf9P7Ofbxl57zyYu7TbAfwx8v6aABYBmNkv/zClr8Uwd3vLJKxzrViazwJ4GsAWseW2hLng35bxrukZmAvFygmfjU7IswL4EyJ3RTAXjAfsZ7sN2o/xfQ4TjF6BKXFuFFu2zG3dx673QQBjEj4fG/n5ELvsbQBWibw/0h4jBXCowzlzLdJLisPuymHurBXAD2LvT0Xkrj722QH2s2kJny0PYNUM+2gVu68XYXiNx+ds+lekHM9HAWwYeX9ZANfbz3bKeIx62/cKgO1jn/VKBGcl7VsAd8bPWfv5EfbziwCslLK+T0Teu9C+t22Gv4netsevKyvCBPPFALar6pjbz8cgubS7jz2OP0w576ampHdEPH9NnxeR706w++NkmNLmYzadr2f8/o/s8l9I+Ozr9rNvJXzWKykqgIMj73+3t34kl+ovQMK1NelVde/T81V1Zuy9M+z/O5WQfi/taOlwD5g7xqsA7Cwiq0TeHxH5ThqFuQNbALPzh36o+kzk1/fBlNROVNW/xpa7B8CPAWwvIltk2hrgvzAne3ydaSXqz6vqgshy82FOUsDczWcmIp+Ducm4CcAuqvpIbJEyt/Vj9v9P6dI752h68yK/fsD+f7yqPh9Z5gWYiwBg7sTL8Gcd3l4yHebmLs/5+lL8DVV9RVX/k+G7BwFYC8AvVfWPsc/+F+YPf28R2TDhuyep6qORdS4E8BP7q+t2/FxVb4+9NxWmJuNQEVkh4TtfTjlnPwGzLz+gsU4SMOftM0gu9SftxyXpi8haMDd0s1X1W7HlXoY5TwSmtiGutGOuqo9F/x4j718B4B6YUlpRvpwXEwCcCFPt/UEAowF8BqYtsC97TT4EZh9PT1jk9/b/oxKGi30V5lgC5ka9Zx37/2dhCkU7wwTQnWFunt8BU7M0UNXVp7MT3ptr/18z4TNX0aB4qohsBdOWM9Ou59MwbRKXYmnR/up+CarqcyJyMczd/h0iciFMFexNqvpibPHX2f+3TelWvan9f3OY0lc/58AEi3tE5NcwVSo3qmlsT7IQydXA19r/tx+wvqhpMFVDFwI4zF5I4src1kkwNx+XZcjba2FuTq5N+Ow6mJsIl23tZ9j5qqr/FZF/wu18vQ7mzvl4W010CUx16h2qOuymJ8Vr7f/DzldVXSgi18OUireHKQFElfl3d13C+v8tInfAVCVujqVVWD03x79jq9e2hSnlfDKh5z5gbkQ3j/x+DkyV5E0i8kuYask/x26aAFNVuwyAtOENvQ4Wmyd8VtYx73UEeQ9MCW9b+/1lIou8kvA1V16cF6p6GcwmLwdT5fwemFLa7iLyDo11cok5BCZgXaSRDjaRtG8QkR/BlNjvtNfg+QB2gTnW98DUTkX/lnr7+SUAB0TSvVlEDgRwH4D3isgXk27Eo6oOiv+Kv2EPHDD0ZMlFVeeJyP0w7RvLYGmJcSZMg/x/7XuX2v+fQ/KJEfdumLvLQ7G03eJlEbkAwKdV9Z/2vbXs/x8ckN4qAz4HTNvNAzAlo+Pta6GIXAJTopoTW/7plAts72RYPcM6e3az//8+JSAC5W7rGgCeTSgtJFkdwPykPzJ7LvXaF8ow7Hy1FsLhfLU3VpNgzp0DsbSE8LSI/ADAV9X0CO6nd/zSemT33l8j4bOk7Vho/3f9u/tnyvv9zrNhFzqYi64AWBumhDGQql5k288+BfN38WEAEJFbYWpJem1RvXNzR/tKk3RulnLMrf8D8EmYY3M5zI1R7xw/AqZNuShfzgsA5gYC5rp1koi8AtM89nGYTmZpPmT/PyNtAVU9WkRutsu+y759K8zf0pEwQfHJyFeetf/PigdaVX1CRG6CiQETMWDYX5bq014VYloAdbn4VuFqmJ5HO8Js9KOq+oCtXrsZwBtFZH2YXpPX2yqDvlT1JVWdqqqbwtwFHQbTfncYTN10T68Ut62qSp/XTzOsc5GqfldVt4Up7b4DZpzSgQAuS6imGm1vBOJ6jdQuXbnfCtNp5iwRSQt6pW0rzB/nmiKyUoZl/w1gVFJ3ahFZFqba5rnI24PO16SLRelUdZ6qHgkTsLeCuVA8A9O56IQMSfT293opn68fW64q66a8n3qeqW3kiektd/uA80diaf1BVfeECap7wdRqbAng95Gq+l7a0wakvYfDdjsRkXVgjvHdMD2xD1PVz9nryFSYUnAZfDkvklxq/5+ctoCIbAcTmB6C6eyTSlWnq+okVR1pX7up6lVYWmt1S2TxXoeotJucXtAceM3JEhR7iY2LfyAiE1DtRaZXEup3F9OrQt0XpsRzVeyzbQAcHFs2M1Wdq6rn2PTvB7CrbcMAlg4EfYNrugPW+aSqXqSq74IJ+pvAXFijloXpqRk32f4fbwfqZy7MvrsXwI9EJKnnapnbOgum1LBfhmVvhzlPd0v4bDeYcyPa47Xf+boallbzFpXl3IQa96jq9wDsbd9+a4b0e8dvcvwDezOwq/01U2/fAnZPWP/qMMMYesMpBrLtwfcA2FJERrlmQlVfUNWrVfU4mGq65QHsbz++GeZmqNS/wwT9jvmrYM7TK+JtxiIy1n7ukl4aX86LJGPs//0KHr2xiWem3Dz1JSL7wJS4r4tVg/au7VumfLX3/sOD1pElKP4d5k78IHs31MvcSjADKav0LEzbU1Kjcc81dpmPwpRao4HvapiL7/GR3/sSkbVFZOeEj0bC1IMvxNK2gZ/A3JmcKCLDGqpFZIRkmBJKRFYQkb0k1tBiS0e9C0i8PRMAvhEtQdqLTa/b+U8Slk+lZvKE3WG6U39fRD4VW6SUbbW+Z///XxEZE/8w9l6vIf4btl2qt8zKMGPCAOCsyHb8B+ac3SXa6ceWqv8PGe4UM+p1uBp2borIVgkdBIClpa6kYxn3W5h2lENk+PRUn4S5yF4V7ThRkffawdRRU2H+1s5L6ljSx//BBLPpdgjFECKypm2D7f2+V0ptwpD9qKpPwrQ/ThSRL9vgEE97ExHZ2CGvSVKPOZZebHeN1uDYTiU/RnLNRb/00jR6XojIrim1Nmtj6d/jH1K+OxKmSSqtg0102dUS3tsEpsp1EZZe0wEAaoZc/BnA5iJyVOx7R8G0Jz+AoaXLRAPbFG2j83cBfBnA7SLyG/u9vQE8bl+VUNXnbV3wG0TkHJjG0kUAZqjqnXaZp0XkTpiGbWBo4LsR5g9nHZgeSQPHz8Dc7cwSkb/B3G3NhamefQtMlcWpvTtBVX3Gjof5jf3OTJi74cUwJ/rrYNo7+s7VB3OhvgrAw3Z7H7Hf2RvmYM5Q1fgd+RMAVgBwt4jMgOlM8E6Y6pMfqOr1GbZ1CFV9SkT2gGkP+baIrKiqXyt5W6GqV4iZxunLAP4mIr1xiuvC3OnOgmmDgaqeKyIHwbQr3GOXVZjS1sYAfmVL8lGnwATKP9tOSy/D9D5eDmbM67Yo7hqYbf+G7eD1rM3vVwG8EcD/icgNMAH6SZjxnAfZ75wyKHF77n8AwK8BXGe341GY8Wj7wLTbfbhPEmW5FGY//grmnNvVvh5G7MI0iKpOF5EdYG5gHxCRy2G2aRTMsdwN5ubraPuV/wUwXkSutet7BWb794T5Gzk/kvyxAF4NM/D7vSLyJ5j20A1g/oZ2hOng8ZBLnmNSj7mq/kNEzoeplbpDRK6AuXHYG+b8uwOmdB11L0z71sG2Pe5RmHP75zq89zfsupo+L74PYD0R+bNd7yKYjj1vgrmO/RbpAe9gmGtpYgebmLNEZCOYdsRnYXq7HgDzN3yUqiZN13YkTDPXj0Xk7TDXp97Y+BdhhrYM7uim2caU9EpbD8CcmI/CDARdGQNmtElJTwFcG3vvbMTGKerS8TAXw9xVLU5KF+aPRwHck7Cuy+1nv0zJy5D8w1QHnwATXB+DaQt4Aqb34yGIzRZjvzMe5mS5H+YP4DmYi+HPAbw1w/5dDqYr8aV2374ME8RnwVwglk/KM8wf3WmRfP4N5cxosxrMXZcCOLnMbY2l9SaYHqjzsXRGm98gMuOQXW4EzIV0NszJ/SLMH8sxiM1oE/nOkTB/FL1ZUH4EE7SvRfo4xalZzpHI+4fBXOxest9X+/7mMKWi6MwmD8O0R78+y76JrGNHu0+ewtK/vR8C2CBh2cTjmWUbE5afapefDPP33NvOp2ACV9LMKcP2bUrab4Hpdv+k3aZ/wFSBfhXAZpHl3gUz7vh+mHGwz8G02X0NwNoJ6S4PExx7c3IusPtrJkwpaq2s+8P1mNvPVrZ5m4OlM1KdlnbeRY7vTJvf3vVtsv3sCKRcRxs8L94L00v9QXtMXoEpGP0epoPisOtj5Ls32XXtm2E9h8Ncg56x65gHM6/qNgO+Nw5mEobHIufWuUiYRS3tJTYhCojYR12p6vhmc0JtJWZow4kA9lDVa5vNDVF9vH50FBERUZ0YFImIPCAi40TkGjHPDbxHRD6RsIyIyKkiMkdE7ox1TDpcRO63r8PrzX17ePPoKCKijlsIM1HHbSKyKoBbReRKHTqt4v4wHYpeDTOF2Q9hprMcBVPdPRGm3e5WEZmhqs+CnLCkGCBVHc/2RKqSmkHnwvbE+qjqE2qfMqOmh/vfsHTsX89BAH6mxiwAa4iZnGRfAFeq6nwbCK9EtnHAFMOgSETkGTvOdXuYHptRY7B0vlLA9Moc0+d9csTq045ZXlbQFTGy6Wx4a8G4kVhh7gulfidPmmWsu8r1lpl+FfnMkmbaMvH3X8YLeEUXLJlYY989Ruoz87PO677UrXcuuAdmqEbPGao6bP5PO+D/QgCfVNXn4h8nJK193idHDIodsyJGYmfZq+8yc6ZNwoQpSWNj223JdkvK+ym/Yx6SL0kZPx+UfvT3LOtessygfPWR6RwokH4l6WRMc+D+ib1/U+zpd8/MX4SbL3eZhMZYZv37X1bVif2WsbPFXAjgHFW9KCV30SkMx8KME5yHoVO/jUXyk2VoAI5T7JjVZJQOCopEtNRNOhPP6fwlYXLititqzqB4a7+gaKd5/CnMU2E+mbLMm2EmKHgTTEebU1V1J9vR5lYsfbTUbQB2UPOMVXLANkWiGsyZFp+m0ryX9H5bpW1rln1QZD/1+27acelHASzO8S+DXWBmjNlTRO6wrzeJyNEi0pv67hKY2WTmwMyp+lFgyAPGb7GvkxgQ82FQpFRVXayqDgQu6RfNS9bvJ1VFTpgyK3M1ddn7rK7tjopWAUe/n2UfuFTnx/MW/+6gdTfVdKCqf7I9frdR1e3s6xJVPV1VT7fLqKoeo6qbqOrWqjo78v3pqjrBvpweCEBLsfq0Y1h9SuQmXn26w7Yr6A2XuXfsXHGDh/pWn5IfWFLsmAXjsvc8HVQaKLNE5lryqLPaserqvbLS9LGE7FOtQJnfpfZiSbFjmiwptqlXa5u2hfpjSbFbOCSDatOmINKmbSE3pqMNCxNtxepTIiIii0GRgsZ2Ib+19fhUNCSDPMCgSJWo62LIaky/8fhQaBgUqRK8GBJRiBgUKTdfuuWXweehA1Qt12OjUCxS9xeFgUGRiIjI4jjFjuGMNkRu4uMUt992eb3u0vWc01l9zFyOUwwAxykSETniOMX2YvUpERGRxaBIlep1YmBHk/JwnzZLASyCOr8oDGxT7Bi2KRK5ibcpbrft8jrz0nWc0xk95jG2KQaAJUUiIiKLHW2IiByxo017saRIRERkMSgSUalcOgKF2FlIAc5o02IMikRUqt68t1nmv+UcueQbBkWigIRYsiIKCTvaEAWEJSs/8OmI7cWSIhERkcWgSLmwGo/axOV81hyz2XBGm3AwKFIurMajNuH5TD0MikRERBaDIgVdFVpm3ouk1e+7edIN+Zi0SeJxUGBRjheFgROCd0xvQvA50yaxyogog/iE4Ntss5zOuGS0czobj/sHJwQPAIdkdBQDIlE+Cg7JaDNWnxIREVkMilQKtoFRFXheUd0YFKkUTVbH8sLZXn5W8wsW5XhRGBgUKXh+XjiJKEQMikRERBaDInmvDdWjPmyDD3nwSd79oQAWq/uLwsBxih3TG6dIRNnExylutc3yeuEf3McpbrbhExynGACOUyQicsSOM+3F6lMiIiKLQZGIiMhi9SkRkQMFq0/bjCVFIiIii0GRgpG3C33TQxFCXH+deW5i/xRd52IV5xeFgUMyOoZDMojcxIdkbLnN8nru79d1Tme7jeZxSEYAWFKkyvlSUmm6xBbV9u3raTpPTa+fwsOSYsewpEjkJl5S3GKb5fUXv1/POZ0dNprLkmIAWFKk2rTtrr1t20NEDIpUo7Y9zcLX7QkpWIeU1x6FYBFGOL8oDDxSRC3ja7BOElJeqRsYFIkyCLFEQ0TuGBTJWYgBomiei5Roiqy7rn1d5nrqyHPT5yDHKbYXgyI1qsqLWzTtJqvpiqw77btF91v8+2Xun6xpNR3YiJJwSEbHcEgGkZv4kIzNtllBp188xjmdXcY/xCEZAWBJkWrXheq1QXzPXwi4D6kKDIqUS5ELkkv1Wt71uFYHln2BHZRe6L0ufbixKXsfMsgSwOrTzmH1qX/mTJsUfJBss+HVpyvqj2eMdU5nt40fYPVpAFhSpEJ877VY1d1/menmDYgs2ZSD+5GiGBSpkCZ6LWZVZQmszHTzTphexbbV/XguHwJS0n7sly8FsBgjnF8UBh6pjlkwbmSl6ftwkesJpUqyXz7T9qdvwb73Pdfj7+sx8jVfVD0GxY5ZYe4LS34uK4CVPR6w7DF4ZaffBlXtgwlTZgW5f0PMM1WDHW06pu6ONuxEQqGLd7R5zTYr6g9nbOSczl4b38eONgFgSZFKk3S3HWJALDIUxEdt2haiqjEoUmmqDoB19U6dMGWWlz1C6xqz6QMGcmoKq087pmvjFFl9S0XFq0833XolPW3GeOd09nnV31l9GgCWFKl0Pt3lMyB2j0/nH4WHQZFK16anJLShJ2vecZAhydMDusg2LoY4vygMDIo0UFXzgpb9jMIqLuSD8hhCSTRPHkPYrqgubCPVg0GRBir7mX55B3qn5amMIFuX0Epgg/jYsSi0dZJf2NGmY7rW0aYu7NDTnKr3fbyjzau3Xkm/O2MT53Te/Kp72NEmACwpEhERWQyK1EllV5OxlNic+ve9YJGOcH5RGHikqJMYxIgoCYMiERGRtWzTGSAiCknveYrUTjyyNAy7pRfD/Ud5iMh0EXlSRO5O+fwzInKHfd0tIotEZJT97GERuct+NrvenLcLg2IHDbpod7m9rYyA1uX9Vyafby4WqTi/MjgbwH5pH6rqKaq6napuB+DzAK5T1fmRRfawn3PYRwEMih3Ei3Y67ht/dO1YqOr1AOYPXNA4BMB5FWansxgUiYjqMVpEZkdeH8qTiIisDFOivDDytgK4QkRuzZsuGQyK5L26qtHyrsfle2nL1v1gY5+rJn2nECzCCOcXgKdVdWLkdUbOLBwA4M+xqtNdVPW1APYHcIyI7FZwMzuLQZG8E79g11WNlnc9Lt9LW7bIg43z6FrVZMscjFjVqao+bv9/EsBvAOzUQL5agUGRvMMLdnEsCVZrsY5wfpVBRFYHsDuA30XeGykiq/Z+BrAPgMQerDQYxykStRBvLMIjIucBmAzT9jgPwIkAlgMAVT3dLvY2AFeo6guRr64L4DciAphr+rmqelld+W4blhSJCqijHdInoeY7BKp6iKqur6rLqepYVT1LVU+PBESo6tmqenDsew+q6rb2taWqfq3+3LcHS4pEBdTRDumTUPNdJgV6HWeohXhkiYiILJYUiYgcKDLPUEMBYkmRBrYTld1uFn0/aXxelvX1S8O3dq8i+YluW1I6ZYyRLEvZ6ffb7jxpZU3Ht/OH6iWq2nQeqEarySjdWfZqOhtEwbhJZ+I5nb+kaLjx1qvoSRdt5ZzO+za96VbOS+o/Vp8SETnio6Pai0eWiIjIYlAkIophu2J3MShSa/S7kPEiRy76jcdUBRbpCOcXhYFHilqj34WMg86JKAt2tCEiciJYDI5TbCuWFImIiCwGRSIiIotBkbzCDjHkOwU72rQZjxR5hR1iiKhJ7GhDROSIj45qLx5ZIiIii0GRiIjIYlAkagg7FRXXxD5UCBar+4vCwKBI1BB2KiqO+5DKxo42RESO2NGmvXhkiYiILAZFIvJaUrthWltiv/fZhktZsPqUiLyW1G6Y1pbo+n4eCmAxZ6hpLR5ZIiIiiyVFIiIngkV8dFRrsaRIpcjSXlN1u07WtOPLJf2eZZkiot/vl5bLenrL5slb3u3ptx15j4dr+knL9NsXactEj3v05wXjRmbaDmoHUdWm80A1Wk1G6c6yVy3rmjNtEseRUfBu0pl4TucvKRqO22p1/cSv3W8iPrPFFbeq6sRSM0elY0mRBt7R5y1FFA2ILiVLlx6KLmnkXbZfqSlriarocSm7dDtIXb07qzpfs36v19HG9UVh4JGigbIGtzKqy+Lrzbru6HK99F3z7RLEJ0yZ1TeYxdOK/h7/blU9JvN8v0ggTVtfkWCZ9N1+25W1dsI1XeoOVp92TJ3Vp0RtEK8+HbvV6nrMr3ZxTucLW17K6tMAsKRIRERkMSgSERFZDIpEFLw6p3BTFXa0aTEeKaoF552sT5ljKOtSdJ3sJENlYVCkWvCiVZ8meq0WxfODfMGgSKmaLN2VOWaw6jTK3E9Nb0tomtrWRTrC+UVh4JGiVFXevQ+6mLmOGWyS6/r7bXsZ29L0/qhTb1u7dCNA1WJQpEb4duGuMz++bXvT8s59Gn0/LThmnfs06ee07yuAxRDnF4WBQbGD8k4YXfYEz3nyUIRPVZN1Tl83KP26j0l8nf1uEuIzASWl1W+Zfs9ijP7fm2UoPosSb2C6hzPadAxntCFyE5/RZoMt19AP/XJ353S+svUMzmgTAJYUqRC25YSjbceque0RdrRpMR4pKoTVS+Fo27Fq2/aQH5ZtOgNERCExj45ix5m2YkmRKtFEhxqfOtJJhidTAAAgAElEQVQ0lX4I+nXuqWP/8BhQPwyKVIlBz7zL+91+aZXx/MBeL8RBXfvTuu0X3bZBvU19vqBnzWe/52TWUSUaX4fP+5Tqx+pTIiJHi1ieaC0eWRqijrtm11lI4oOty5L2lPakkkyvBBn9Pe1nl1Jm/Pd+4+qSPq+jmnpQCbD3Xr9tr+q8ck03aXmWHCmK4xQ7pt84xaQg0XsveuHrJy3Q0HAu+6qq/Zr1uIYm7/5K+l58nOJ6W47S953rPtb3lO0u4DjFALCk2DELxo10Wj4+60eSpJJOWmeKLNNwVamq2XbycCkxJ5XCerKW5LJOmRZ9Rd/rt94s79cpb5Bv280BuWNJsWM4ow2RG5YUu4UlRXJS9rCHQb0609qksrRV+VBiSZK0/Vkmos7yWV2yHsN+7ze5HVl6D/fL32KMcH5RGHikOqZXfToo2MR/7120+1XjpUka9pD0c9Jn8cmb48sNmky6igtvkcm8gfTONFk66fT7LE/QyTNmMNruFv8ZSD8mWSbrLjr8ZFC1cNK6k35m23h3sfq0Y9KqTwdd0MrokJF0Ma3j4hNfR791pl3wB32vzLykdW7K0zGnSBpt5Xpc49Wn624xSg89dx/n9X5n+1+y+jQADIodwzZFIjcMit3C6lMiIiKLQZFq5UMnkSLqyn/o+6ntFqs4vygMDIrkrMgFO96W06Q8688yVrOM9YXY7ufzuEWirBgUyVkZF+y6O3wk9czsF+AGXcj79ahN47q9WQbQD/p+0s950xgkrfesS+cgX/iUF6oXO9p0TNkdbVyDW9bly16uC5q40Rj0NJQ8NwJ1bUPWdcU72qyzxVr67l/s57y+7+9wLjvaBIAlRUqVdfoxF1mXHzSGLe/682qq5FCkytW1tNvv/Tz7Ps+xyTK2tMixSBurSNTDkmLHcEgGkZukkuI7f7G/czo/3OEclhQDwJIiUUye9jsiagc+ZJgohtVqRN3FoEhE5EABjjtsMVafEhERWQyKNESWRzI1qel8VdkzkkIhWKwjnF8UBh4pGiLLI5lclB0kmm7vq2IYAhH5g0GRKsUgQUQhYVCkRrW9urHt21eHpqr0+61vMcT5RWFgUKRERZ8un1WWGUyqXH9ZaaTxpaRcxTYWmYs1azrRqdjK3JdZ5oX15dhRvRgUaRiX+ScHzX1Z5rpc1581H4PSKOvi36QqLvCuTwxJm7qvX97KOL6D0nXdN6rAIhXnF4WBQZGGKeupBllKgYOCatJTF1zzUVTWeVj7Ld8lWW4yevuvjH3Vlv0tItNF5EkRuTvl88ki8m8RucO+Toh8tp+I3Csic0Tk+Ppy3T6c+7RjfJn7dNCjm9pyoWuz+HEK/bil5T8+9+nozUfrAT87wDn9s3c6u+/cpyKyG4DnAfxMVbdK+HwygE+r6lti7y8D4D4AewOYB+AWAIeo6l+dM0mc0YaaUbTKjJoXP06hHzeX/Fcx7lBVrxeR8Tm+uhOAOar6IACIyPkADgLAoJgDq0+JiMLxOhH5i4hcKiJb2vfGAJgbWWaefY9yYEmRiMiBQvLOfTpaRGZHfj9DVc9w+P5tADZS1edF5E0Afgvg1UDieA+2i+XEkmLHuQy9cOnQkqf7vctyZeSlSJp5lndVNP2mh7r4uK6GPa2qEyMvl4AIVX1OVZ+3P18CYDkRGQ1TMhwXWXQsgMdLy3XHsKNNx/jS0YYoFPGONmttvra+6eyDnNP5xaSzBj5k2LYp/j6lo816AP6pqioiOwG4AMBGAHodbfYC8BhMR5tDVfUe50wSS4rULJchFqFNxu1bfqg8VcxoIyLnAbgRwGtEZJ6IHCkiR4vI0XaRdwK4W0T+AuBUAAersRDAsQAuB/A3AL9iQMyPQZES1TmjTZb3snT3733uSzAqOltPiMrc3q7tO1U9RFXXV9XlVHWsqp6lqqer6un28++r6paquq2qTlLVGyLfvURVN1XVTVT1a81tRfhYfdoxPlafhjK+LZR8Urni1aejNl9b9/3J25zTOf91Px5YfUrNY0mRKpXlbj+UQBNKPokoPwZFqhQDCRGFhOMUiYgcVTGjDfmBR5aIiMhiUCQiIrJYfUpE5EJzT/NGAWBJkRrnMoVcG8autWEb6uDDfvIhD1QvBkVa8ocf/7+sNJMeFBz9PN5Dtd8sN4MGxA+aIcdltpw8DzQuOudrnfLuq+hnLsfCdd9k6bk8KB9VTC6hqGZGG/IDB+93TG/wvm8D0fPmp8ztyJNWXd+h4eraj/HB+2tuto7uOf2dzulctMsPOXg/ACwpdlDWi0lVT2lIKj3Gn+DeL53o7y4XxUHbEy+F9itBR0uuactnWafPyqwxqOJ7eQNi0RIstRtLih3TxDRvLBlRyJJKipPP+h/ndH676w9YUgwAS4pUOQZEIgoFg2LHLBg3MvH9LJ0umnhAsC/fzfL9rNVyruspmm6W5bN0Kqrr0V1ZqjPzPmS6jG1QAIvtsAyXF4WB1acd4+NTMprCal3/+XCM4tWna2y2ju5+5ruc05nxhtNYfRoAlhSps5q+2NJgPEZUN85oQ0TkiNWh7cWSIhERkcWgSAD8G5Plw9ixMtdVx9jFqvLbZBo+rk/h3smGJctwsKNNx7CjDZGbeEeb1TdbV3c9493O6Vyy+/fY0SYALCkSBcq30j1RG7CjDVGg2DOzOZzgu71YUiQiIrIYFIk8w2pRzylntGkzBkUiIiKLQZHIM2wrJGoOO9oQETnoTQhO7cSSIhERkcWgSNSAJjrTsANPedjRpr0YFIka0ES7IdsqiQZjUCQiIrLY0YaIyEFvQnBqJ5YUqVRltVv50P6VNw9t2gd5hJpvIoBBkUpWpN0qejH1of0rbx7KyrsP+yCPJvLNQExlYVDsuKovJoPSrzsQZtneOdMmeXORbbq02vS6s6ZVxbnTb92q4vyiMPB5ih3D5ykSuYk/T3HV16ynO/zgMOd0rnvj//J5igFgRxsiIkd8dFR7sfqUiIjIYlAkIiKyWH1KRORAlROCtxlLilQaX3pskp94flAIWFKk0oQ6ro7q0abzg0Ms2oslRQpWV0oeXdlOIh8wKFKw6ip5VBmUsqRd1naWsR2hPvLKpwkZyG8cvN8xHLxP5CY+eH+VTdfXrb9/uHM6s/b9fxy8HwCWFImIiCx2tCEicsSONu3FkiI1iu08ROQTBkVqVJu66RNR+BgUqbXqLoW2vdTb9u1Ls2DcyCG/K8yMNq4vCgODIrVW3aXQtpd62zAEJo8V5r7QdBaoRgyKNIRvF6Si0ran974v25s0ji4pb1nzW9d2FcljmglTZjU+NrQvNfOfur4oDByn2DEcp0jkJj5OceSr19ctTn2/czqz3/QNjlMMAEuK5BVfSm5E1E0cp0hE5Ggx2HGmrVhSJCdVl+R87qxSxbazZFwu7k8qikGRUiVdYFyCVqhDItImj07adtd1xpd3vQmoc5+GeBPQ25+hTn5OzWNHm45ZYcNxuts8P/7Y50yb5HXJkAgY3tFm5Vevr5t990jndG5/89fY0SYALCl2TJYxV2XeIfdLq8y7+q6reh+GeoxCzTc1h0GRhimz9JYlLZYWi6t6H6alX3bQKTu9avaL+2w2nNEmHAyKlEuRQeT9vlvkotiGUkGZ7aJZlytyLPMEnbR11lGd3oZzhKrFNsWO4eB9IjfD2xQ30E2/496m+Je3fJVtigFgSZFoAJYuKI7TvLUXgyLRAGzzJOoOzmhDRORI2XGmtVhS7LA81YIu32G1Y7h47KirGBQ7LE+1oMt3WO0YLh476ipWnxIROTAdZ1h92lYsKRIREVksKRIROeIMNe3FkiIREZHFoEhERGSx+pSIyBFnqGkvlhSJiDwgItNF5EkRuTvl8/eIyJ32dYOIbBv57GERuUtE7hCR2fXlun1YUiQiclTRkIyzAXwfwM9SPn8IwO6q+qyI7A/gDAA7Rz7fQ1WfriJjXcKSIpHHOLNMd6jq9QDm9/n8BlV91v46C8DYWjLWMQyKRB7jzDKtMlpEZkdeHyqQ1pEALo38rgCuEJFbC6bbeQyKNESZJZO0tKoo/YSSZpXpZk2/6HHJm/+qHi5dN4VA1f0F4GlVnRh5nZFn/SKyB0xQ/Fzk7V1U9bUA9gdwjIjsVnhDO4oPGe4YPmTYH3U8aZ6Kiz9keMUJY3T8tz7snM697zhx4EOGRWQ8gN+r6lYpn28D4DcA9lfV+1KWmQrgeVX9tnMmiSVFoqYwIIZLc7yKEpENAVwE4L3RgCgiI0Vk1d7PAPYBkNiDlQZjUCRvhFSF5pMm9huPVflE5DwANwJ4jYjME5EjReRoETnaLnICgLUA/CA29GJdAH8Skb8AuBnAH1T1sto3oCU4JIO8wZJTPk3sNx6r8qnqIQM+PwrAUQnvPwhg2+HfoDwYFImIXPDRUa3G6lMiIiKLQZEoENF2PLbpEVWD1adEgYi247FNr2EcydZaLCkSERFZLCkSETliR5v2YkmROsNlGrOmp2Jrgy5sI7UPg2LHLBg3csjvaZ03ej8Pmicz/p34+4M6h/QLQEnpufycdRviJkyZVXmb3YQpszLNUTpoG9K+1+/3ePpZ19Hv2CYpsg9dz6M8aQ9aJ3UT5z7tGM59SuRm2Nynm4zRsd/4iHM6D7z7ywPnPqXmsaRIRK3AEh6VgUGRKGAMBEvVNUxFgbyPjqIAMChS7Xghz67KdjsiGo5BkZzkeUBtWgcb13SyqjPoltXpI63DUVNBz7XTSZmdX3jTRE1iR5uOYUcbIjfxjjYrvGqMjv36Mc7pPHjIF9nRJgAsKRIREVkMijRE1rFqlE/Z+4/HY6ky98WgtFTdXxQGVp92DKtPidwkVZ+O+Zp79elDh7L6NAQsKRJ5jCVBonoxKFJr+BpAiuSr6t6ndczzWoeqei2npqs5XhQEBkXyXtY5WX0dsxfNl28BqI55XutQxjYkpdGGfUNuGBSpdq6deZIeruvzxarf9vUmAvctOLrIO8a0yrGp9XKfzYYz2oSDHW06hh1tiNwM72gzVjc42b2jzcOHfYEdbQLAkiIRUQRn1+k2BkUC0I4/fl+3oUi+6njYsY/7zXXawDL1qubnTJuUXk3PjjatxaBIAIZeCJqUZ/2977i0M2YtDZTx4NksDxTu9914XoqKptPraFNkv5cpfiyTHpgc/6yskl2/tmzqDrYpdkyWNsW+d8iOykyLqAnD2hQ3Hqvrn3SsczqPvO/zbFMMAEuKNEyZQYwBkaoW2pNVyG8MikQUpDzV5ml480Y9DIrkpK476pCeidg1RdpZyyzVVRHIMuePHW1ai22KHcNxikRuEtsUv5KjTfFwtimGgCVFGiapx5/L8kXWRcM5zclJRIUwKBIROZMcL7+IyG4iskrKZ6uIyG5158kHrD7tGFafErlJrj79mHM6jxx+vFfVpyKyCMDrVPXmhM92AHCzqi5Tf86axZIidULR6kbfqyubzp8P+9c1jULNAu3oaNOv+LoCgEV1ZcQnLCl2DEuKzQplMoNQ8lmHxJLi1BwlxSOaLymKyHgAr7K/XgXgWAB/jy22EoAPANhWVSfUljlPLNt0Boi6JJRAE88ng2RrHA7gRCwtv34PQ0uMan9fCMD9USAtwKBIRAMxIMaEW8F2NoBrYQLf1TCB76+xZRYAuE9V59eaM08wKBIRpZgzbRLwyZlNZ6M0qvoIgEcAQET2AHCbqv6n2Vz5hUGRiCjFhCmz8Ez8TQWg/g2xcKWq1zWdBx+x9ym1ig+9IKsWQh6bUva+afO+FpHlReREEfm7iLwoIotir4VN57EJLClSqxRt+wqh7SyEPDal7H2TWFJsj1Ng2hQvBXARTFti57GkSLVLm1Da9WGxVU1IXfXT6NtQ+qh6HxVRR75U3V8eeieAE1X1AFX9gqp+Jf5qOoNN4DjFjhk0TpFd7/vj/umeYeMUx4/V9U74uHM6jx75ucbHKUaJyL8BvE1Vr246Lz5hSZGGaOKCX8WdfVWlyKT9k3VdTZWsfC3RFdXodrVjRpuLAXRyftN+WFLsmK6VFPNsT9nP62vbPu2axJLil3OUFI/yrqS4M4CfATgHwCUAho1LVNUH685X01hSpCHKvng3XUqZMGWWcx4mTJnVuSDW9HHKoqw8hrCtNbkRwKsBTAVwE4D7E16dw6BImaR1rEi7wGQpbUU73GR9mnueSZ+rDnCD8p62/rKreItc7Ht5zJN+1mMXXd4lr1lL7oPy11PK+aDi/vLPBwC8374+kPLqHFafdgwnBG+fKgL/oDRDrRLOk+/E6tMvfcJ53Y9+8LNeVZ9SMpYUiQJXRXAalGaWdfpYTVnWvhJ1f1EYOHifiCqR1lM3xBJmG4nI9AGLqKoeWUtmPMKgSES1YUD0yp4YPlhkFIBVAfzLvjqHQZGIyIW/4w6dqOr4pPdFZDcApwN4T60Z8gTbFKkVXKeIo+bVcZzK6M28YNzIsrITBFW9HsA0mAcQdw6DIrVCtFqOVXRhqOM4ldFhaIW5L5SVnZA8CGD7pjPRBAZFaly/icGTfi9zXRSe5o9hjjGKfo5TTCQiywI4AsC8hrPSCLYpUiVcehnGlxv0exEsRYaPx7AcIpI0EfjyADYFsBaAo+vNkR8YFKkSvHBRq7Wgow1MTWF8S/4D82zF81X12tpz5AEGRSKiDlLVyU3nwUdsUySvVN1eVGV7Zd18fRRVVfOzEtWBQZG8UnT6sEEX3SrbK+vWVN7z9OiMTurtOrl8v2X6DcWJf5b1vMk0YXk7nqcIEdlaRC4QkadEZKGIPCkivxKRrZvOW1M4IXjH+DIheNPTfTW9fgrHsAnBNxqn6x/vPiH4Ix/9jFcTgovIjgCuA/ASgBkA/gFgPQAHAFgJwG6qemtzOWwG2xSJiFy1oyzxDQB3A9hLVf/Te1NEVgVwlf18n4by1hhWn3ZY3e13UXU94zDts6rWn6cKsMp11tWGl/VZhk3lo+zvtMQkAN+IBkQAsL//PwCvayRXDWNQ7LAyAkO/tqGs6VdxURrUrlWVLGmXvf5eO12/dVV94U9bT/z9uvJR9XdaYlB5tx3lYUdsUwyMiDwI4G2q+peEz7YCMENVX5X2/bxtinUElC4JvU0z9Py7GNamuOE4Xf9zn3RO55FjP+1bm+JVAFYHsGes+nQkgKsB/FtVO1d9yjbF8IwHsELKZysC2KiKlVZ5AezSBbYn9O2tK/9dPDdq9AUA1wJ4RER+D+AJmI42b4bpaDO5sZw1iNWnYUor3k+EJ89Ac6km40WvvYpWl/p6boi6v3yjqjfDtCteDWBfAMcB2M/+PklVb2kwe41hUAyAiEwRkUdF5FGYgHhx7/fI6ykApwG4rNncGi4Xsw53dGg9X4MazzlDVe9U1Xeq6rqqupz9/12qelfTeWsKq0/D8CCAmfbnwwHMBvBUbJkFAP4K4Mwa81UKXy+c1F485wARWRvAmqp6X8JnmwKYr6pP15+zZjEoBkBVfwfgdwAgIgBwkqo+1GimahRyu1LIeU/Stu3JzcPq0Bx+AGA+gA8nfDYF5kkZ76o1Rx5g9WlgVPX9dQVEX6qYQr4Ih5z3JG3bno7bFcDlKZ9dAWCXGvPiDZYUAyAiJwA4U1Uftz/3o6p6chnrDekC2PYSTNu3jxqxJoB/p3z2HExJsXNYUgzDVABjIz8PenmpyNMVBml7wAh9+3ypdfCZiEy3E3LfnfK5iMipIjJHRO4UkddGPjtcRO63r8MzrnIegJ1TPtsZZohG5zAoBkBVR9ju072f+72WaTq/efly4c/0lARy4sux9dzZMEMi0uwP4NX29SEAPwQAERkF4ESYQLYTgBNFZM0M67sAwBdE5M3RN+3vxwP4lWP+W4HVp1SbUC6MoeSTmlPFuENVvV5ExvdZ5CAAP1MzDdksEVlDRNaHGWR/parOBwARuRImuJ43YJUnAdgNwAwR+QeAxwCMgRnAPwvAV/JvTbgYFAMmIuvAzGIzhKo+2kB2iKhaYwDMjfw+z76X9n5fqvqiiOwO4L0A9oZpQ5wD08nmF6q6sKR8B4XVp4ERkdVE5Cci8iJMnf9DCS8vlVElyWpN8oKK+wsYLSKzI68POa5VEt7TPu8P3gzV/6rqdFU9RFX3UdVDVfXsrgZEgCXFEJ0G4B0AzgJwF8yg/SCUUS3Jqs1kVfROZY/X0j1dcELweQDGRX4fC+Bx+/7k2PvXFlhPpzEohmdfAJ9R1dOazgi1GwOid2YAOFZEzofpVPNvVX1CRC4H8PVI55p9AHy+qUyGjkExPALg3qYzQX7xMYC1tqSpqGRGGxE5D6bEN1pE5sH0KF0OAFT1dACXAHgTTLvfiwDebz+bLyInA+hN4H1Sr9MNuWNQDM/5AA4AcFXTGSHqp5UBsUKqesiAzxXAMSmfTQcwvYp8dQ2DYniuAPAdEVkV5s5x2B2hql5de66IiFqAQTE8v7P/bwzgiMj7vV5oCiDYAfxEQWjHhOAAABEZDfNcxbUAXGyrY1cE8IqqLm42d/VjUAzPnmjBn2Rr25toCB5nf4l55M63AHwMwPIw15UdYWqffgfgTwBKmUc5JAyKgVHVa5vOQxlcL5S8uIaprcesihltGvB5AMfCzGxzJYCbIp9dDDOov3NBkYP3AyMiVw94zRycSnjaenFti/ikCoN+Jy8cBdNT9esAbot9NgfAJvVnqXksKYZnBIZXn64F4DUAngIw7CnaRFWL37QM+p28MAZmjtMkrwAYWWNevMGgGBhVnZz0vohsAuC3AL5ea4aIuqgd1aePAdgKwDUJn20Lj6eMrBKrT1tCVR8A8E0ApzSdFyIKwq8BnCAiu0TeUxHZFMCnYMZEdw6DYrs8BWDTpjNB1Hqa4+WfqQD+DuB6APfb934NM6fy/TA32Z3D6tOWsA8aPQ7AA03nhYj8p6ovichkAIfCzKk8B8AzMD1Oz+nqkzIYFAMjIg9h+H3n8gDWtT+/o94cEVGoVHURgJ/b1xAisoqqPl9/rprFoBie6zA8KL4M4BEAv7Zti0QAOL6zCqLtGKcoIqeq6sdTPlsFwOUAdkn6vM0YFAOjqkc0nQcKBwMi9fF+EfmHHae4hA2Il2Hosxs7g0GRiMiVJj3sPjj/A+B3IvKEqv4EAERkZQCXwsytvFuTmWsKe58SAL9mHPEpL+Q3niv5qeplAD4I4HQReYuIrAQTEDcBMLmrTTEMigSgfzVb3RceVvlRVjxXilHVnwH4MoBfwfRXeA2APVX1/r5fbDEGRUrVC4ZZLzxlBc+23f3XtT1N7Le61+nNuRHoOEURGRF/Afg2gDMBjAewN4D7Ip91jpiHOVNXrCajdGfZq+lsEAXjJp2J53T+kkbEFceO07EfO845nQeOP+5WVZ1YauYcichipIdoiX2mqtq5fied22AioqICHpJxErwpt/qJQZGCxnF4+XRlv3VlO7NS1alN58F3nawzpnKU2b6TN63eBa9tz/PLk1+X71QZKOrc14PWlWU7k9II7Xyh8rBNsWPYpkjkJqlNcdwx7m2Kc77gRZviCQDOVNXH7c/9qKqeXEe+fMLqUyKi7pgKM1vN4/bnfhRmcvBOYVAkInIR8Nynqjoi6WdaijuFMpkzbVKhdhaX73K8nX/pt23/EKVhm2LHsE2RyM2wNsUx43TDHG2K93+x+TbFJCKyB4DXARgD4DEAN6rqNc3mqjmsPiUictWCsoR9MPmvAUyG2aJnAaxpPpJrAfyPqs5vLIMNYfUpeanr1Wdt2f6qtqMt+6dhpwLYEcB7AaykqmsDWAnA+wBMBPDdBvPWGAZF8lLXB1xHt78XAOL/+6CMcYJ5TJgya8i6037Oy6d9XKEDAHxeVc9V1f8CgKr+V1XPAfAlAAc2mruGsE2xY9imSOQmsU3xIznaFL/sV5uiiMwHcLCqXpHw2T4AzlfVUfXnrFksKVLfu+I67pjzzD7j8528S6mlzG31aSYZX9fl83nTgN8BeHfKZwcD+G2NefEGS4odw5IihSA6Z6nL/KVVzHWaVFLc6Gj3kuJ9J3hXUnw7gGkA7obpcPNPAOsCeBeALQF8AsBzveVV9eoGslk79j6l0nESZnKRdL5Ef3c5l3jeObnA/j8OwP4Jn19o/+89UmqZOjLVNAZFKl28kwgvVPUIdV+HmOeW2KPpDPiIQZESlXWBZYCsT9q+5X6nJKp6XdN58BGDIiWq4iLKC3MzuN8piYiMADBCVRdG3tsXwFYArlbV2xvLXIMYFImIXLWjf+J5ABbADNaHiBwN4Af2s/+KyJtV9aqmMtcUDskgapnQh7RUoeiE9i01CcAlkd8/A+BMAKsDuAjAF5vIVNMYFIlqUOcFOUt1adeqVCdMmdW5bc5gHZgJwCEiEwBsDOD7qvofAD8BsHWDeWsMq0+JiFwE/DzFmOcArGV/ngzgaVW90/6+CMCKTWSqaQyKRDVgKYU8dAOA40VkIYBPYmhV6gQA8xrJVcNYfUpEjQuuvU9zvPzzWQCjAMyAKRVOjXz2bgA3NpCnxjEoElUs7YLf9JyzPilSku7aviqLqt6vqpsCWFtVJ6jqw5GPPwETNDuHQZEA+H9h8T1//aRd8PsFAla3Zsd9VYyqPpPw3l2q+lQT+WkagyIB8P/C4nv+fFT2MwYpoh3Vp5SAQZEa5eNjkfKu07fAk3dS7bimtquu8Za+HTdqFoMiNaJ3Icp6sY4/ab3IOrNyDSR5A49PF+WkvMTnry2aXlau4y3zrsv13BKYIRmuLwoDn6fYMXyeIpGb+PMUV9pgnI4/yv15in8/2a/nKVIylhSJiIgsDt4nInLFCrbWYkmRlvCpbYv84ct50cuHL/mhdmJJkZbgsAdK4st50ctH4/lhx5lWY0mRiIjIYlAkIiKyWH1KROSK1aetxZIiDXH543c0nQUiosYwKNIQ+26wXdNZIALAXqbUDAZFoorleXQUedDLtB9OCN5aDIpEFcvz6CgiagY72hAROeI4xRohoBUAACAASURBVPZiSZGIiMhiUCQiIrIYFKkvdgbJJ77f2NmmZdjRprUYFKkvdgbJJ77f2trZhkGd2oZBkYLCi3C55kybVGifpgX1rCXlpuXKV55SIkuKwWBQJPJMnQFkwpRZlZRWs5aUgWYDZugldSofgyJlUrREUZamL2J17IOqt9GH4xjV5DH1bV9Q8zhOkTJpOhj5og37oQ3bUJa8+4LjFNuLJUUiIiKLJUUiIlcsKbYWS4rUOLbrEJEvGBQ7zJdg1OU2rjKPQZXH05dzhahqrD7tsC4HI1+UeQyqPJ48V4ZiR5v2YkmRgsISC7WZiOwnIveKyBwROT7h82kicod93Sci/4p8tijy2Yx6c94eLClSUFhiIS9UUFIUkWUAnAZgbwDzANwiIjNU9a9LVqs6JbL8xwBsH0niJVXdrvycdQtLikREftgJwBxVfVBVXwFwPoCD+ix/CIDzaslZhzAodlTo1ZCh579teDwyGS0isyOvD8U+HwNgbuT3efa9YURkIwAbA7g68vaKNt1ZIvLWUnPeIaw+7ajQqyFDz/8gc6ZNCmobQ8prYfkn+H5aVSf2+VxS1pbkYAAXqOqiyHsbqurjIvIqAFeLyF2q+kCunHYYS4qUS5aSQW+Z+P9V5aPokxmyLl90O0IuVaUdy37bVNezJMs63g0en3kAxkV+Hwvg8ZRlD0as6lRVH7f/PwjgWgxtb6SMRJV9i7tkNRmlO8teTWeDKJVvpeSbdCae0/lLSnErrTtOJ7znOOd07p523K39SooisiyA+wDsBeAxALcAOFRV74kt9xoAlwPYWO0FXETWBPCiqi4QkdEAbgRwULSTDmXDkiIN0dRdcp71upRWXdMtsh+qyledqspflhJlUkD0qVQnOV+DqOpCAMfCBLy/AfiVqt4jIieJyIGRRQ8BcL4OLdFsDmC2iPwFwDUAvsmAmA9Lih1TtKRY5l18WlpJ7xdZ76Dv+lYy6aeMvNaxvVnXkTcvde6HeElx5ZwlxbsGlBTJDywpkpMiF6Ksd/VlX7AHPR2+joBYVokma6ApmkZervs0upzLPmr8xkBzvCgILCl2TBNtik2VxEIqAQ7Stm0Bmuux6rovE0uKh+YoKX6HJcUQsKRIlWvq4jdovSG1n1a1D4u2n+YxYcqs3FWmRFVjUKTGNH2R8zVY1ylvgOqp8xi65LNfvsrY/6LuLwoDgyI1xqfgQPn4egx9zRf5j0GRlmi65FYl37bNt/zENTGsxPd9MgQ72rQWgyItwbvr+vi+r7Pkr65ewkR1YlCkTuAFd7igSmZENWFQpFpVfSHmhT67JodE+HSccuWF1aetxaBItar6QswSof+K9nhNUiTI8pyhKAZFIgqea2ArVFLNMRyDQzLCwaBIRJ3D0iGlYVCkTvCpDYuI/MWgSJ3AkoG7rt9I9N1+drRpLQZFIkrU9RuJrm9/VzEoUi26XupokywPCi6SVtb3+n1eRj76vc+ONu3FoEhERGQxKFLpku6uy3g4blWlzbaXYsvevn7H0rXKMekhw0lpDEo3/nmRfBRJh8LHoNhhVQWDvBcS1wtfWdp+4avyWYxlCuo4sKNNazEodlhQFyHyDs8faqNlm84AEVFo2HGmvVhSJCIishgUiSpQRnubbx2AmsqPb/uB2o1BsaOKXmhC6wla94V1wpRZhXvTurTZZd0+1/F4efPjosz9UIs8nWxY3RoMUeXR6pLVZJTuLHsVSmPOtEmZh1hkvaC5LEtUp5t0Jp7T+dL7feW1x+lm7zjOOZ3bf3Tcrao6sdTMUelYUiRnWYOXS5BjQCQiHzAoUqeF2l4Var5bg9WnrcWgSEErGhx6JdTQgkyo+QZMnl3nT80zHypRHmxT7Jgy2hSJuiTepjhy7XG62dvc2xRv+zHbFEPAkiIRlaJIyY2lPvIFgyIRlaJIZyl2tCJfcJo3IiJXbHVqLZYUqRZVVI+xys0voRyPUPJJzWBQpFpUUT3GKrdmxYNLKMejjHyKqvOLwsCgSJXz/c48T/6a2KbeOn3o0MIZiKitGBSpcr5fPPPkr4lt6q3Tdd3RQJj2Xdd5Wn0/pkR5MSgStVyWADZomUGf+14bUCpOCN5qDIpEBKDYkzZYcqS2YFAk73WqFJJDWfsna2mwyQDoy7kg6v6iMDAokvdYCumvrv3jw3HolwdfAiaFjUGRKGbQhNVdkmU/FH2Ycll5GRQweUwpC04I3jFVTAiep1qtaJf+tO9zqACVbdiE4KPH6RYHTHFOZ/bZn+KE4AFgSbGDyr5jnjBllnMgii/fu5OP5i3p97Tvx9/veqmgjBKe63Jliq8zaYxm2jJERbCk2DFFS4rRUmGe0lqbSnK9bYluE0uw1Sh7/7mkl1RS3PIt7iXFW37KkmIIGBQ7hs9TJOovHjAZFLuF1afkDVZ/tVdIx5Yl+m7jo6OIiFyxgq21WFLsKB8mlY7rtc+Fpso8h7g/kpRR+ipjQvQyvk/txjbFjmGbIpGbYW2Ka43Trd7s3qZ488/ZphgClhSJatavpJK3FMPSD1E5GBSJatavKjFvNSM7h2THGwjqh0GRSlXHgPC0AdxlDlivi2/56YJSbiD46KjWYlAkJ0Xmn0xazjUoXP74HUPWkfZzWrq+lajy5IeBlKg6DIrkpOyg4prevhtsV0m6IWnzthE1jUGRSlFH6YUlpHTcN/UR8HmKbcagSKWoo/TSVAnJ94CTZ15Q37epLtwPFMegSLnFB1OHNJzAZZ2+V1fmyZ/v21S2tOcp5t4Pqu4vCgIH73cMB+8TuYkP3l9lrXG61X6fdE/n3E9z8H4AWFIk6oCqSuN50k0rtRH5gEGRluCFqr2qqi7NW3Vb91CULIHYJX12tGkvBkVaomvtTKHq6s1LkfMzSyDm+U8AgyJ5IPSLfHxWnSyz7PRbJs+sQEmdnbJ0gMpalVl1KS0oeWazYUkxGOxo0zHRjjZ5u/KXdUfta1pl8C0/lN+wjjajxunW+7p3tJl1PjvahIBBsWPY+5TIDYNit7D6tGMWjBvZdBYI5VQZ+zgBepmdWXwmi91fFAYGxY5ZYe4LANpzcWpK0f3nUrVaZHLzuqtwy+rMwvOTmsKg2FFs7yomvv+qvIh38Vh5v83saNNaDIpUOt+nbasinaSLeN6B7VUsW8b3mhJafils7GjTMb51tGEvTfJdUkebbd7o3tHmxl+zo00IWFKkRjEgUpPylkI5o017MShSI89CDLlKrOmqWlpq0MQEg/CmjOIYFCnThaHorCTxdVRxMXIZDlCkPa6MvFdVbRxyoM1z49RvH5a1f4cNY1Lw0VEtxjbFjvGtTZHId8PaFNccp9vu9QnndG648DMD2xRFZD8A3wWwDIAzVfWbsc+PAHAKgMfsW99X1TPtZ4cD+JJ9/6uq+lPnTBKWbToDREQEiMgyAE4DsDeAeQBuEZEZqvrX2KK/VNVjY98dBeBEABNhyrK32u8+W0PWW4XVpx2TZ0absqvkfJyJxTd17fNB1eJNHQff220r6mizE4A5qvqgqr4C4HwAB2XM0r4ArlTV+TYQXglgvzzb1nUMih3Tm9HGRdltXz7OxOKbsicHSNufSY9Uiq6r7uPQW3dZ6y0jnRqnRhwDYG7k93n2vbh3iMidInKBiIxz/C4NwKBIRFSP0SIyO/L6UOxzSfhOvIx5MYDxqroNgKsA9NoNs3yXMmBQJACsrqxT0r5OqsZsqsTWVOmwt27fqtcTa1fyTfP2tKpOjLzOiKU6D8C4yO9jATw+ZLWqz6jqAvvrjwHskPW7lA17n3YMe5+2kw8zA/mQhyok9T7dbg/33qd//k3/3qcisiyA+wDsBdO79BYAh6rqPZFl1lfVJ+zPbwPwOVWdZDva3ArgtXbR2wDsoKrznTPacex9StQCPgQjH/JQB0E1M9So6kIRORbA5TBDMqar6j0ichKA2ao6A8DHReRAAAsBzAdwhP3ufBE5GSaQAsBJDIj5sPqUGtfEjDp1f7+NBg22D30Woybyq6qXqOqmqrqJqn7NvneCDYhQ1c+r6paquq2q7qGqf498d7qqTrCvn9Se+ZZgUKTMbThVXSSSej+mtbuVtY66v++D3v6L/x//OatBsxTVMYtRUf2228f8UvXYptgxbFMkchNvU1x1jbG63WT3NsU//e6zfEpGAFhSpMLqrGbKO9C8iR6NIT9Xsqw8ZM1PUum1yHqJ8mJJsWNYUsyujN6Ube2RmUeo+yKppLj97u4lxT/OYEkxBCwpdkzZs3O4lgSKpFGUa7uo6wU8Ke1eGk2XYso4TkW/H2JApO5hSbFj4iVFH+7efcgDNc/X84AlxW5hSbHjfLgIZc1D06WtprV9+5POA2+3Od+MNhQABsUO8vVCMyhfVQdwX/dLT503MFXui6zV2L6WHKndGBQ7qKwLTdkXzqYvgHnX3++xTKGq8lgkPZmj7jwUVdGjo8gDDIodVmSYQu8uPn7XH3IgyKvfY5kG6dL+8mlb23gjQ+VgUOywInfrvffjd/113N236cIVUuCs6pmOZaXvkm6/89qX/U3NYFAk7zTdtlg114tuv+3NewEvY1q3MoNHlvbDvOtzPV8GLq8AFqv7i4LAoEi1yTqfaRVBoIiyx+6VGdTz9twtIw/RNKouRfZbJs+6WRqkNAyKNEydE3+7XujKDChZt7NoCaaMPNcRdHxOv6x19/Zj4fxySEZrcfB+x3CaNyI3wwbvrz5WX7vLx53Tuf7Sz3HwfgBYUqSBBpVSqq6KKiP9pnrIVt3Lse5nUQ6qAk/6uYzJvonqwpJix5RdUuz6AOuub38XJJUUd3i9e0nxustYUgwBS4qUKsudfZld2EMsSRQJiE08zqoqVdUmhLL91B4sKXYM2xSJ3CSWFF/3Med0rrv8eJYUA8CSInnL9VFPvmlTSTBN6Pknilu26QwQpQm9rS70+T2zCD3/RHEsKVJpQig1xPMYQp6T1NWb1oeHQ/uIE4K3F4MilaboTDR1XGTjeQy1pOMy32yR/dpv1ppQ9x1RPwyK1FedpYEqL7I+9JDtV0qtsv20jOnRfCsVDhr/6Vt+KRxsUyQicsFp21qNQzI6hkMyiNwMG5Kx2lidOMl9SMa1V3JIRghYfUqlYHUVdYUAEFXnF4WBQZFKwU4XRNQGDIrUeCmv6fVXrakhE02kQxQ6BkVqvJTX9PqrVuX2lZV2249BHn1vFBbneFEQGBSpcV0upbhue96hG13ex3nxRqGbGBSpcT48mb6J9eR97FQZ3ykyU03RsYBljMnMmv+qzgt2tGkvDsnoGA7JIHITH5Kx2mpjdceJxzinc/U1X+CQjACwpEhERGQxKBJ5LoT2wBDyWBrN+aIgMCgSeS6EDh8h5JEoCwZFWqJTd/vUF8+FfhTQHC8KAoMiLVHm3b5r70ZfHi1FRtHHUfFYUagYFKkS/S6qScMD+j23L0uag75L5ckylITVqRQqBkVqXJkP/uXFuPpnCnIfA6LuLwoDgyI1giW66vSCVpHglXUAfL8HJ9eFVblUJg7e7xgO3g9L3llvqDzDBu+vOkZ32v6jzunM/OOXOHg/ACwpEnmMAZGoXgyKBMCvKiaf8kLtwnOLBlm26QyQH3wqkfiUF2qXUs4tBYSPgmotlhSJiIgsBsWOY3VSucp+tBTlV+n+44w2rcWg2HFFZy5x4WtaZcoyCUE/0e+wGnk4l33KyR4oDwbFjlkwbqTT8hOmzCrtwlHmRb7OYJ5XWQ8QzrotLttc1v5xmbLPdZ1Jy5c9FWGR/U3txHGKHcNxikRuho1TXGWM7rzNR5zTuerGL3OcYgBYUuyoUO+Gq57CrChf80VE2TAodlSo7VVlTGFWJV/zRW54c9NdDIpE1KogUMa2DLq5EVXnF4WBQZGIWlXCbdO2UP04ow0RkSuW/FqLJUUiIiKLQZGIiMhi9SkRkQsFwAnBW4slRSIiIotBkRoT7Trvy5CAvPnwJf9Nq2o/ZEm3rmMgcB+OwSEZ4eA0bx3Dad6I3MSneVt95AY6aYsPO6dzxeypnOYtACwpUpBYMiOiKjAoUpBcBmgzgFLp+DzF1mJQpNbjDCdElBWHZBARuWLJr7VYUiQqEatq/cDjQHkxKBI56nfBZVVtfXgcqAqsPiVyxAuuHxo7DpzRptVYUuygtlUtlb09c6ZNKpRm2/YvUZewpNhBrsMZfC8ZlZ2/IumFsL+oOM5Q014sKXZU1tKM7xf4JkplLm1ZLHEShYXTvHUMp3kjcjNsmreVN9DXbXqUczqX/+VkTvMWAFafEhG5YmGitVh9So1h9SDRUCKyn4jcKyJzROT4hM+PE5G/isidIjJTRDaKfLZIRO6wrxn15rw9GBSpMb63V7YZb0j8IyLLADgNwP4AtgBwiIhsEVvsdgATVXUbABcA+Fbks5dUdTv7OrCWTLcQgyIFgxfy8vCGpIgck4Fnq27dCcAcVX1QVV8BcD6Ag4asWfUaVX3R/joLwNhSN40YFCkcrhdyBtGw5Tl+gR/zMQDmRn6fZ99LcySASyO/rygis0Vkloi8tYoMdgE72lBrsTQUtjzHr5Zjrsjb0Wa0iMyO/H6Gqp4R+V3iX7BrG0ZEDgMwEcDukbc3VNXHReRVAK4WkbtU9YE8Ge0yBkUiono8PWBIxjwA4yK/jwXweHwhEXkjgC8C2F1VF/TeV9XH7f8Pisi1ALYHwKDoiNWnRER+uAXAq0VkYxFZHsDBAIb0IhWR7QH8CMCBqvpk5P01RWQF+/NoALsA+GttOW8RlhSJiFxVMCG4qi4UkWMBXA5gGQDTVfUeETkJwGxVnQHgFACrAPi1iADAo7an6eYAfiQii2EKO99UVQbFHBgUiQLH+VbbQ1UvAXBJ7L0TIj+/MeV7NwDYutrcdQOrT4kaVEZvydADYog9RkXV+UVhYFAkyqiKi3eWgFbFo7Gq+E7efDYV1OP5DTE4U/kYFImIiCw+JaNjqnxKRpG2LbaLka+GPSVjpfX19eOPcE7nsr9/k0/JCABLih1UVTVRkaDGgEhEPmBQ7CAGIPJBsG14CmCxur8oCAyKRNQI3pyRjxgUiYiILA7eJyJykvlRUBQglhSJOiLYNjyiGjEodsyCcSNrX2eVA7+j3/Phol80D1VuQ1Ib3pxpk0pbp+tg+H6f+3AsgT75qOYhw+QBjlPsmLzjFHsXhyY7RxQdy1jFWMi0NH0Zd1lnPnzZ5rING6e44nr6+nHvc07nsjmncJxiANimSJn4cLErmocqtiEtTR/2V926uM3UPqw+pUolVT8VnXsz7fuu72ddtkg1YBnLu3wnvlwvUNVdHZl1P1ZVhVrGudAXq09bi9WnHVPlNG++iFbjZanS86Fa1ofq6TYpsyo3sfp07Hud07nsgW+z+jQALClSX1WWMLKUwPKsP3oxzHJhrKpa1iXvE6bMcs6HL51RoqosBbuo9OaCM9q0GoNiB7lerKsyKO2QAkXSeqsu9aV18ElTxb5Jq651UfV+8vHmgfzFoNhBbaqiK+OiXGR9vffq2KdZLu798uHzca97KApRGgbFjmlinGIeWS+SdV/wktYXfa/K6sMsbaN1K7rtSenUKV+eFdDF7i8KAoNix6ww94XS0nLtEeky0D5+kUxKI6+sbZlF2zOr/E5cVaXVIlXtZfU8zpNG3hsNVrUSe592TBd6nxKVaVjv0xXW1ddv8B7ndC57eBp7nwaAJcUO+//tnXu8FVX1wL/Ley+gKCoPE0UlUkmjUDJBMKXygZCIWUo/tbAsTU2znz1MU7K0zJRfij184jNfmRKaKGgq5gM1zETxiUY+CkHEByjc9ftj7YPD3POYOXfOOfecs76fz3zumT171qzZM3evWXuvvXfW4++aCS+bJsfHKTYsbhSbmCTRn05+vGwcpzHxad4cx3HSkBun6DQk7ik6meDNic2JP3en0XCj6GRCvTQneiWeLfXy3B0nKd586jQVXok7meCBMw2Le4qO4ziOE3BP0XEcJy3uKTYs7ik6juM4TsCNouM4juMEvPnUcRwnFT5DTSPjnqLjOI7jBNxTdBzHSYMC7b4UVKPinqLjOI7jBNwoOo7jOE7AjaLTMPgUbk4WJHqPfOmohsWNotMw+BRuThb4e9TcuFF06p5qe4jukdaOLlP27ik2LG4Unbqn2Jd9OZXos1NGFD3PPYna4WXvVBo3ik7X+fquAOVUolsf/0CnKt9oeTZy2Uap1n02S3k6tUPU3fqmopf01uHyuVqr4Th1w4M6mzd1ieT2N2zrpyM3OiC1nNsW//4RVd0pU+WczHFPscmJf3mn+RLPl7fcL/ksPIBy9anUtcvN14zeULF7bsbycGqHe4pNhnuKTq3JGbl66R/s4Cm29tNdNto/tZyZr1/onmId4J6i49QBjeQtdbbP1nEqiRtFJxPKjfKs5vWqTZY61pMR8aZQp55xo+hkQrTSroaxq7aRKKRXLj1f32xOx2YwBNF7TPpsKlkuFS/zdk2/OXWB9yk2Gd6nmB1Rw9eZPE7XJm+fYq8JqeXMXHqR9ynWAe4pOk6ZJDF2bhAdp75wo+iUTdZNVFnJ82EPXZtSMwbVBT7NW8PizadNhjefOk468jafbrBfajkz37jYm0/rgNZaK+A4jlNXqEJ7e621cCqEN586juM4TsCNouM4juME3Cg6jtMlyGLQf9UCeDzQpmFxo+g4Tpeg2PCVpENbfAiM01ncKDoVp9hKHF3OA3CcBGh7e+rNqQ/cKDoVJ/71Ht3P92WfzwAW8gB8ns3sqOWyX2nl+7N1KoWPU2wyfJyi46SjwzjFlr46Yt1xqeXc/vblPk6xDnBP0ak7fMaa2lLrsq319aGMIBt3PuoGN4pO1ciqMvM5R2tLrcu21td3Ghuf0cZxHCcNii8F1cC4p+hUDf/Cdxynq+NG0XEcx3ECbhSdsim1Gn0W8ouNcawX0uhcqbyVoNbX7wyd1l3b029OXeBDMpqMZh+S8eyUEambccs5x+n6JH2uHYZkrNNHR3Qbk/p6t6+82odk1AHuKTqJqPXCsFlGrqaV1ZUNYj17a7Wm3OeqgLZr6s2pD9woNiHlVKRbH/9ATY1DOcasmCyoT4MS17laz6Qey8pxysGNYhPSlT2fYmStdznNqFnkKXReknNr9eySTsdX6HjacqmUEXbj7pTC+xSbjGbvU3SctMT7FHtJbx3RuldqOXesutb7FOsA9xQdp85x7yc/Xi5OObhRbEKatbJo1Puu1+bwSuPl4pSDG8UmpFkqi1oFpRTTodZUW5+udv9Z4dGnjYsbRadhKTdiNcvhJ13tA6Qa+kTLr5b3X48GWUTGiMgCEXlWRH6Y53h3Ebk2HH9QRAZGjp0Y0heIyN7V1LuR8ECbJqOWgTZdoaJ0HEg3IUO+QJty/odm6Q1FA21EpAV4GtgTWATMBb6sqvMjeY4CPqGqR4rIRGB/VT1IRLYH/gDsDGwGzAK2VdXVqRVtcnyVDKdquDF0ugpd9F3cGXhWVZ8HEJFrgP2A+ZE8+wGTw+8bgKkiIiH9GlVdCbwgIs8GefdXSfeGwY1ik7GcpW/N0hsWZCy2L7C4i8usBx0rIbMedKyEzCzlbRXdWc7SmbP0hr5lyOkhIg9H9i9Q1Qsi+5sD/4rsLwKGx2SsyaOqq0RkGdAnpD8QO3fzMnRsetwoNh8Lsh4rJSIPd3WZ9aBjJWTWg46VkFkJHXOoavqJT5MhedLi/VuF8iQ510mAB9o4juN0DRYBW0T2BwAvF8ojIq3AhsCShOc6CXCj6DiO0zWYC2wjIh8WkW7ARGB6LM904Kvh9xeBO9WiJacDE0N06oeBbYCHqqR3Q+HNp83HBaWzNKTMetCxEjLrQcdKyKyEjhUl9BEeA8wEWoBLVPUJETkNeFhVpwMXA1eEQJolmOEk5LsOC8pZBRztkafl4UMyHMdxHCfgzaeO4ziOE3Cj6DgZE8aNdXmZjuN0xI2iU3dkZSDCDCKZISK9ATTDPoncNF5ZyozJdwPuOBHcKDprkUWFJiKbikhmA4dFZHsR+XhOZhYGQkTGAIdlZRhFZBxwuohsVTJzcpl7ALeIyNgMZY4Qkb1FZCRkVpZDRWTHqAEXkU7XLWHIQSaIyCAR2VpEemUl02lMPPq0yRGRfbDpoFqBqar6Wifl7Qt8H5u948/YrB2vdkLeWOBnwELgPyJypqq+0EkdxwC/Ao6JR+iJiKQ1FCIyCvgtMElVX4wdW0dV28vQcS/gHOAVYDBwa1oZeWTui5XlXKC7iCxT1SfCsdT3Hc4bj007NhdYKSJvqurJqtpezr2LyP7AscAYVV0pIq2quiqtXjGZ+wInAyuAh0XkalV9pDMynQZGVX1r0g3YHfgH8HmsYvsn8FmgpUx5n8VCwocC22Jjpw7vhH6fAx4DPom1atwIfDKWR1LKHAY8BxwU9jcCtgS27ITM44BTwu/+wGhgXOT4OinljQEeBz6ODcJ+Hditk8+6H3AfMDTsXwjsCvTtxH1vAMwGdgr7o7AJrc8uR2Z4b54A/h7ey+4hvbUT970b8CQwBPgQcB5wQmfK0rfG3rz5tLnZDbhOVWeo6mSsQjoT2BHKakodiFWIj6nq08BvgE9LoAz92oDvqX3V9w56TRaRM0TkMCir+W89zPi/KSIjgOuwivJXInJKmTJfAlaJyPrALcCBwIkiMiPIS+sp9sDGmT2uqouAs4DdRaSlE82S3bHWgP+GJsTRwInAeSJyatAz8X2HZufVQe6ykPwIZiSH5pY9KqMsf6KqOwKPAo+ISHe18Xvltmr1AX6nqv9UawW5GviMiKyXRROv03j4S9HcvAz0FJH+Yf+f2HRRF4rIRkkrtEjlcilwc0hrwZqrBmCekorIBgnljRSRIap6m6reHmT9BJgKHIZ5UaNFZLNkt/kBqjoHOB+YFPS9ATgU+D/gEyLysYQ6RvMtxmYXOQ74jaoepaq7Ar1E5JCkuolIW9DxJlW9J9Lfx6N3NgAAFcdJREFUOR/YC9hArVky8QeGiPQIMhcBfwVux5o6p2ErK/waGCIiO6SQORIYq6rvAHcCN4bm3jOwOThPA/qm/RBS1ccwo4qqTgp6PhoxjINS6LiTiLSp6p+we831Ub6JfRi9H8qyXxodnSag1q6qb9XdsCaqwdgM+n2BPwGXY02T00Oe84H9EsrbB+ufu4BYUxnmOf4p/D4U+AHQrYS8PYF2YG4sfd3I7w0wj2xQQh2HA7vH0kYDh8bS/oitVVdK3t7APGy9ulzat7GPgFMiaacDX0qo4zjMME8FPgpsFDt+BVa5J26KDTIvAa4ENg9pm4fntU0k33XALgll7g2sxJY4yqV9L+h9btjvBtwG9Ekgby/gVOC8SFq3yO9LMeN4FObl9Ur4Tr6MtYTE38k+wC2Rd/IsYL1y/pd8a8yt5gr4VsWHDWOBZ0JFMxPzllqC0dgf6BHynQsckEDeuGAc9gH+gq3nFj3eN1Tm38G8u48lkPdgkHcJwTDHDQEwAVsn7kMJ73kpcC+wb+xYa0zmQznjUUTeeOBvwKg8Mo7CvLoDsWCjf0QNZxGZO2N9caOwgJArMa9zk0ieIdgiskk/BHLP5jOYMb0pcuxorL93C8xbfAjYKoHMz4fn86kg8zsF8h0M3FXKgIVn8zg2VdmfgXsLPJt/YP2qQxPouEXI/5m4nLC/AXA9ZogfK/VO+tZ8W80V8K0KD9matHpiTVPjQ9oQrC/s5FjeI0Jl8ZESMvuEimzPsD8M8xYnYf1/rVjT6bIgb3AJeR/GVgsfHfZ/CfwqlqclGIt5wJCE9/0r4EfBSNwSNYx8MM3hMUHHojKDvHm5yhsL3DgB8zZ2CGljgK9h/ZTbJXw+RxK8rLD/61AWRwA9Q1ov4Cpg0wTy1se8vzFhf3AwBP+LBUB9BPhFMHBzSOYdbxrKb4/IexL17gTrjvkSZmR3KCGvHzAD2DuS9kfCx0YkbXfsQ6Pk847oeWX4vVl4Dr/Bmre3wPpAX8T6z0t+sPjWfJvPfdrgREPtReQMbFb9WWF/C+AerEKeEmbX/znwC1WdV0JuG+bJ/FtE+mJNXLdixnATzIt4UUSmYBMbP15CXh+sGetfYX8QZsSPV9WbQlor8D/Y5MjzCwpbW24LZlBWYV7RROBCVb05kmcPYJGqPpVAXk9sMdcF2LI9szGDvh4W0HFfEr1iMkdhXuYlqjpbbALoTbFmyBNUdXHuXjThJM+hT/iNMKHAw1gz+fuYMbpMrc9yM+AtVX0zgbx1gfVV9b9hfwDmDf5CVS+O5BsKLFXVl0rIWw9robgHM6arMMP9Z1W9LJJvhyDvxbyCOsptxfo5p2GtH7diHwn9gcdU9TIROQmYodaH6Thr4UaxwRGR9VX1rfD7WKxZdPfI8R2w4RhHA68Bbar6bhF5O2B9Su2quiCkbYH1Ud0Z9qcBy1T1uFLjzOLyQtBOi6q+LyJHYquenwKs1oRRnCKygaouz5O+Idb8OREL3NkoyJ2dRl4wjPOAq1X11JD2c6wP7ZtpdQwG5hCsP3U5NhRhHxH5HfC8qv4y5Cs6llBEhmDGhZyBF5HuwDBVvT+iZz9VPTyhnmvJDMEzLWqBL/thHtj3VfWVhPKGYV7lCg1jJCPHTgaeUtUbwljSuar6egKZO2KGtUVVHxKRL2PDTXqr6pdDnsOxYS1fSaKn07x49GkDIzbw/XIRmSIi+6vqucCTIjI3lyd4hCswY7iqhEHcB2syPRr4o4h8Lcj4l6reGYlCfRDrA6KEQYzKu0FEDlPVdlV9P2R5EtgDGJjCIE4ALgsRrBLSJOiyDOtLOxe4FvNMFqWVp6pvA9thw0NyEZbPAsslwQw5EZmjxAa4LwJ+hzW7/hLzaAGeJ5RjuG4xgzgW63P8LnBpMCqo6kpVvT/ybBYEPUsOccgnU43cM30a66MbWEpWkDcG62P+EnCdiAwP6bkybMMmFTgQmwyhZLRykHllkHlp+Mi6D3gVGBaJ/l0OdAsequMUptbtt75VZsMGfr+KRfd9B5gCnB+O/RZr+pqARU3OBwYUkSVYE9StfNAnOQIzBEfG8n4Va67bPiN5v8P60oQSA8GxhVWfwYYenB5k5lpDJJLvOKw/taCOpeTF8h2OjdErGbSRR+Yu5IkoBY7H+jlL9ksCOwFPYc2RAnwF65dcJyob+HoKPQvJzHmKuXxnYv2SRZ9PkPcEYRKCcO+fIhKhikUnP40FRRV9NgVknoEFLfUI+hyG9c1eFuR+vNb/l751/a3mCvhWoQdrgTQ5I9gGbI0ZxvNC2hHAjzHPKWkQw2lYM19b2N8JeAGb3gys+W920sqniLyvRvIMAvonlLcl1my2ERZgMyUYspZwvFswFL8lWSRjKXndMY9xRop7LiWzDeufvDaJjuGcMUSGlwT5d8X03BkLlEmqZymZub+tSZ4PFjAzPPzuD7yBDQW6BzgspI/HWgeSBijlk3kFZlQnhvSe2IxIid4h33yruQK+VejBWpPWc8AXImnbYF/7YyJpRccNxmQehQ3n6BVJ2xXzDHPjHntnJC/R0IM8MtfP/Y0YnV1CWkFvuEx5H4rmyUhmbjxh2qnh+kflA7dG9vuEvyXH+KWQWTIKtoDMNiwK9pthfxTWl709Fh2a2njlkblrkLljOTr61tyb9yk2ICEgYyHWbPrtMNsIWB/Va9gXNgCq+l4SeSHvbwhRliKyYZgxZA42Lqybqi5W1SUZyUs9iXaQ+Va4/7eAn2JTke0tIucAs0Skl6SY3quIvCnA3SFg5q0MdZwtKVZyiJRlNNClFRggNi3cYVi/8nqaIMo0ocxJwMUi0jPSH5gItf7iS1T1gtCfeh82C1K7Wt90ooCdEjLnBJnvpJXlOL5KRoMha69MMBPYGDhJRDZU1etF5L/AR8WmzlpZRM5gbLzhw5iBWg2gqgeJyDXY7CsPhICN3bEI0WJ6pZVXcmWEuExVXZ2L0AzlsAw4QUTux8asjS9mGMqU1yHKtZI65pMJrI4993exD6AfYE2SX1ebki1rmW+nvO8WVV2tqkvB5oQNQTXDsECYopQhM9XHiuMA3nzaCBvW7LRJgWNtfDCTzUVYtGWpQepfwIIsZmP9PscSa3rDIiVPxiI4S81Uk6m8UjJZO7gkF3BUtC8ta3ldQOb9WABVkkCdTGUmkYf19eUmisjkeaeV6Ztv+TYfp1jnhLFi52ADyvtjQS8vhWPRgfsDMAO5UlVfLiKvDQtxP1dV7xORA7BAkJXAWWqeTTR/KY8zU3lpZYqNTeyZ1T0nkddFZP4IuFFLTEiQtcyU8r6MTcTwTIY6JpLpOIXwPsU6RkQ+hIXuH6yqB2NfyOeJLYkUzddbVRep6gulKt5ALywoB2wmlBlY5GZuIPTOYoOwAUr2SVZAXhKZnxKRoaq6LKN7TiuvVjKHi8i2qnpGKYNYQZlJ5G2nqn9IYbwqIdNxOuBGsb55HViCVRio6vFYE9dJIrK5qqqIfByYISLdkwRFqAUtnAN8QUQ+rdanNAebwWU3sem+RmGrEJDzRKslL4XMXARiSbKWV2OZI0nQP1cpmSnkvVEBHRPLdJyC1Lr91rfyNj6YgPkEbDB6v8ixc4E7Ivsll/CJye6BTZJ9AZEV37EB50UnCq+GvGbVsV5k1oOOvvlWaPPo0zpFVRVQEbkbG4T/johMV9XXVPVYEblCwqTQmDeZRvYKEbkKUGwF+Y9i/Tf9KCOiL2t5zapjvcisBx0dpxAeaFPHREL7h2DTZs0E/o0NtD4ZGKkhVL1M+d2wps0jsPlRf62qf+8q8ppVx3qRWQ86Ok4cN4p1TG4cWTCKU7E19EZjEyn/UDNaGkdskmvVhJNyV1teJWTWg471IrMedHScHG4U6xwR2Rab7/E0Vb0lpOVdOslxHMcpjhvFOkdE+mHzZc6TEmsXOo7jOMVxo+g4juM4AR+n6DiO4zgBN4qO4ziOE3Cj6DiO4zgBN4qO4ziOE3Cj6DiO4zgBN4qO4ziOE3CjWGVEZIKIfDdP+mgRUREZXQO1MkdEJotI6vE+IjIwnDsoz7GFIjItEwWT6zNZRD5b5Wt2uXekFmXfFRGRSSLytZTnHCAir4nIeinOuVlEzk+vodNZ3ChWnwlAhwoPeBTYJfxtZgYCpwIdjCKwP/DTqmpjulTVKOLvSFdmEpDYKIpIK3AGthjyOymuMxn4RpixyqkibhS7CKr6pqo+oKpv1lqXfIhIW5L1GCuJqv5dVZ+rpQ61pKu/I05e9sM+9C5Jc1KY5Hwe8J0K6OQUo9ZrVzXTBkzDlr6JbgvDsdFhf3Qk/1+xxVTHYP8g7wJ/B4YDuS/QV7CloaYBPWPXWw84E3gBW9H+BeAkYJ0Seg4MuhwF/BJbALgd2Dgc/zBwFfBfbPmeecD+MRmTCStcRdKOwRZBXoItCPsAMC5yPFcG8W10OL4QmBZ+7xyO7ZtH/98G3doiad8AHsNWVlgMXAz0LlEO+XSZHDl+SEzmFUD/BO/B3sDfgGXYskcLgFOq/Y7kkxfSJ4X0gZG0NWVf6PlG9F8Y2W/FvPvnIuU0B9i1RBkJcHwom/fCPUwFeuV5Rj8DjsXe7+XA3cDHkpZ5JM9QYDqwNJTjfcCnY2UdfzZ/LXEffwFuzpN+HPBkuM5S4GE6/g99N+i7brXrqmbefD3F6vJTbP23TwHjQ9rKEudsDZyFLQ31FmakpoetFavAtgt5/gN8H9Y028wEtg/XfRwYga292Bv43wT6ngTMBb4JtAArRGQL4MFwreMx43MQ8EcRmaCq04vIGwhchFWwrcC+wAwRGauqf8GaBY8GzscqubnhvPlxQar6kIgsAA4F/pxLD0sLHQhcrbZiOyLyi3C/5wLfAzbHKtIhIjJSVVcX0HcXzIhPA34f0hYFmd8MadcCJwKbYQZouIgMU9W8a/yFvtLpwA3AaViFvw0fNBdX7R2pEj/A3pOTMKPdC9gJeweLcTpWrudjzzf3Hg8Vkd117dUxDsGM3HFAN+w+bxaRj6rqqgRljogMA+7FPii+AbwDHAnMCu/II9hH4pXY/8IR4dSCXruIdMc+PH4cSz8YODvoci+wLvCJPGVyD1ZeuwB3Fi4qJ1NqbZWbbcMq2EV50keT3wt4HxgUSRsf8s2KnX8j8EJk/9CQb7dYvpOwSmGTIjoODOc+SpgfN3LsYswQ9oml3wHMi+xPJo8nETm+DlZh307kSzpSDnvkOWcha3srJ2Ff2htG0iaE83eO3MtqOnoFo0K+CSWelwI/i6W1AK8Bd8XSdw35jy0i74shT68iear1jnSQF9InkZ2nOAO4MeX/SG/Mq5wWSz8k6DU+9nyeYe1WgVwZj0xR5rMxz61b7Dk/CdwUK+85Ce9jeLjunrH0qcCjCc5vC+/uj9KUn2+d27xPsevztKo+H9l/KvydGcv3FDAg0u83BngR+JuItOY2zAi1YV5jKW7S8N8ZYQxwK7AsJncm9hXfq5AwEfmkiMwQkdeAVVhlvicwOIEu+bgS6A58KZJ2KLBAVR8K+3tiBviqmL4PYl/5u5Vx3cHAJlgT8hpUdQ5W5rsXOXcedt/XiMgXRWSTMq4fp9x3pBrMBcaKyOkismvw5EsxAnuuV8bSr8Hem3j53qGhVSDwePi7ZfhbtMxFZN0g83qgPfKOCDCL8t4RsNYDsI/IKHOBHUTkPBHZo1BUarinZRE5ThVwo9j1WRrbf69Ieiv2dQtWaW+FVQbRLWcs+iS49it50jYBvpJH7lnF5IZm19mYF/BtYCTWRHgb0COBLh1Q1RexJqZDwzU2AsZhfXtRfQGezaNzr0L6liDXzJWvfF6lSNOgqj6L9W+tE/R8VUQeFJFihrQU5b4j1eAMLIJ3PNZU+LqIXCoifYuck7d81ZZFe52O5bsktp9rbu4RzitV5r2xMvkxHd+RY4CNRaScujL3Xsebvy8HvoV5kjOBJSJyo4gMzCPjXax51akS3qfYuLyOBR4cWOD4wgQy4l5iTu69WABPPl4ukD4G2BA4UFUX5RLTjN0qwBXAhSKyFVbxdWNtD+718HcvOhqJ6PE05CrhTfMc2xQLmiiIqt4F3BX6nEZhfUu3iMhAVV1chj7lsiL8jXtvST4UVoD14arqe5H0tc4N3s6ZwJkisinweeAcLAjsoAKyo+X7RC4xeG99KOOZFStzLOirHeu/vLzA+e350kuQ03PjmCzF+qN/LyIbY+/m2Vj/9PCYjN5YcJJTJdwoVp+VVOfL7zbgAOAtVX2qVOaUcncBnlDVd1OclzN+a5q5whisUYTglUDuqzppGV0PnAccDOwD3KOqCyPH78AqvC1V9Y4U+uZ4L48uC7A+xYlYHysAIjIS887PTiJYVVcCd4rI+sDNWFTvYqr3jrwY/g7BmtVzjE157qOwxlMfiUWAdkBVXwUuEpGx4bxCPICVwUSsdSHHQViddXcC/fKSr8xVda6I3ItFnz5awgCuBDZIeLnc/90gLPI1nz5LgWtFZDgfBO8AED4iemDvm1Ml3ChWn/lAbxH5FuZRrFDVx0ucUw5XAYcBs0XkbGzoQDfgI1hT1gRNN5g4xylYE+w9IjIV8zg3xiq5QapaaGDzLKw/6PKgT3/gJ8BLrN2M/3TI9zURWYJVQgtUtVBF+6aITMeiVvtjkYPR48+JyJnAVBEZjFWoK4AtsP7Gi4IXUYj5wDgRuQ3zNF9W1ZdF5BTsS/9KrO9rcyxi8hng0kLCRORIrI/qVuBfQF8syvJl4J+Ra1b8HVHVV0TkbuBEEVmMRaYegr0jpfgL1t91oYicivUBfh+Lfl2DiNyMvXuPYuW3I9Zq8HsKoKpLROScoNfbWFlth0UMzwFuSXOfCcv8u1hT/EwRuRhruu0LDANaVPWHId984CgROQgbZrJcVfMaLVV9SURexIYPrekfFZELsA+H+7Ey3xbrArg9JiLnNd6T5n6dTlLrSJ9m24CewB+wCiLRGLTY+QNDvsNj6ZNDemskrUdIfwozLkuwTv7J0Xx5dMx7jcjxAdjQin/zwRiyO4BD4vrEzjsw6LICaxabSCxaMeQ7AngeM45ryoRYBGQk/7iQb61I1FieQzEP5G2s4n4SiwIcUOJ5jQIeCTor+ccprsSaykqOU8S87JuxynllKLvrgcE1ekcGYEMe3sD6Q88ADqdE9GlI2zW8T+9gHzOHxJ8nNhTmgVA+72Jez2Qi0aIFyinfOMXzKTBOscD9T0pa5iHfdlgwz39CvkXYUI6xkTybYsZ1OcnGKZ4JPB9L+2p4brnrvABMyXNvFwIPZ1n/+FZ6k1D4juM4TsaIyEcwwz5aLTo56Xk9MON9gqpeXCq/kx0efeo4jlMh1KYlvBT4Yam8MY7APMnLMlfKKYobRcdxnMryY2BuykjrlVjz76oK6eQUwJtPHcdxHCfgnqLjOI7jBNwoOo7jOE7AjaLjOI7jBNwoOo7jOE7AjaLjOI7jBP4f5AkcMwTTYLUAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "presentation_id = 3796 # chosen arbitrarily\n", "plot_spike_counts(\n", " spike_counts_da.loc[{'stimulus_presentation_id': presentation_id}], \n", " spike_counts_da['time_relative_to_stimulus_onset'],\n", " 'spike count', \n", " f'unitwise spike counts on presentation {presentation_id}'\n", ")\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We can also average across all presentations, adding a new data array to the dataset. Notice that this one no longer has a stimulus_presentation_id dimension, as we have collapsed it by averaging." ] }, { "cell_type": "code", "execution_count": 26, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "\n", "array([[0.026667, 0.1 , 0.08 , ..., 0.006667, 0. , 0.006667],\n", " [0.026667, 0.066667, 0.046667, ..., 0.02 , 0. , 0. ],\n", " [0.02 , 0.113333, 0.033333, ..., 0.033333, 0. , 0. ],\n", " ...,\n", " [0.026667, 0.093333, 0.053333, ..., 0.006667, 0. , 0. ],\n", " [0.026667, 0.066667, 0.026667, ..., 0.006667, 0.02 , 0. ],\n", " [0.026667, 0.12 , 0.02 , ..., 0. , 0. , 0. ]])\n", "Coordinates:\n", " * time_relative_to_stimulus_onset (time_relative_to_stimulus_onset) float64 -0.00897 ... 0.399\n", " * unit_id (unit_id) int64 951814884 ... 951814312" ] }, "execution_count": 26, "metadata": {}, "output_type": "execute_result" } ], "source": [ "mean_spike_counts = spike_counts_da.mean(dim='stimulus_presentation_id')\n", "mean_spike_counts" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "... and plot the mean spike counts" ] }, { "cell_type": "code", "execution_count": 27, "metadata": { "scrolled": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgoAAALnCAYAAADoG28JAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzsvXl4ZFd95/0591bVLS1VkroltdSWWpbV7nbbbbdpzGYHsCFhyUsgYd4sZMIbyPYywDvZnklClgmZJGQmK0kmybyZhBgIhGQIEHYIXtgMNsYYvDTd7nYvlrvVkrpbS6tVt6ruPfPHWerU1S2ppF5kMvf7PPVU1b3nnv2e8zu/VUgpyZAhQ4YMGTJkSIO32RXIkCFDhgwZMjxzkREKGTJkyJAhQ4aWyAiFDBkyZMiQIUNLZIRChgwZMmTIkKElMkIhQ4YMGTJkyNASGaGQIUOGDBkyZGiJjFDYRAgh3i6EkEKI2xPXpRDi3s2pVYZnOoQQLxNC3CeEOKfnykf09XuFEFfM3rnV/M2QIUM6hBB36nfm6s2uy3qQEQoZ/k1BCHFMCHFss+txuaAXmH8BxoG/A34L+MAmVumyQAhxmxDi94UQXxNCzAghQiHEUSHE3wghdrZ4xizCrT7XtXhuRAjxLiHESV3OMSHEO4UQfZe3lRk2G5eauP63SjznNrsC/4fjv6MW+RObXZEM3zH4bqAI/KKU8v2bXZnLiH8GBoD7gPcBdeAFwE8CPyKE+B4p5VdaPPunwFzK9dnkBSHEhC5jEEWAfRt4LvCzwCuEELdJKc9cZFsyZDB4G/Bfgac3uyLrQUYobCKklLOkLF4ZMqyC7fr75KbW4vLjT4D3Simb2imE+FXgd4G/Bm5s8ew7pZTH2iznL1FEwn+UUv65U84fAz+vy3rT+qqeIUM6pJSngFObXY91Q0q56ge4GpDAncAE8EHgDLAIfBbYq9MNoF7eU0AF+BpwR4s8c8Cbga8CC8AF4BvAWwEvJf0bUCeMJ4Fl/cyXgR9rkf+9us454FeBJ4AQeAr4b0BhrXY7eW0D/hA4CCyhTioHdX9c46S7XZf5dtTJ53PAvO6nzwC3pOT9dv3M7YnrErg3Jf1/AmLd9i2Je68D7gHO6f4/APw6ELTbVp1PJ/DLwIO67ud1Xn8GbEukHQb+AjgGVIEZ4EPAs9tta3KOJa7fqa9fDfy/wCO6baf1XOtJ6f+0z51OuhcCHwMm9ZyY0vPwN9fRRx5q8/ia7p8l/fs/kD5/pZ6T/TTekRB4DHhjm2Wu1r7b3XmfeK6Aeq8+CRzX5Z7V8/OVLcq6CfgHPa6hHteHgHcC+bQxBf5v4AHUu3wWxSm7aj1zr81+8HUZEtjaar60mdc1Ov3R5LgBJWdsuzZQTzunuQTrpq7PbwCPota/ReAI8I+kvG8t6nSvrlMA/I5ud6jz+U1S1kVn7g4Bf4M6CUfAGxJrxtuAh3V/nQe+ArwuJT8B/DiKizOj2/wUao384ZT0IyjO65O6rmeAjwLPWW2NWWs+OuOT9rnXSXeHHp/Hdb8v6zH4TaCYKP9YqzzbmaPADwFfQO0by6j17m2krOG6rGO67/8AxZUOgcOo9VukPPNq4C4a689J4PPAm9eaO+vhKFwN3I/aNO7U/38AuFcI8QLg07oj/xHYAvwI8CkhxC4ppWWtCyHyqIX65agN9/2oyXIH8OfA84DXJ8r+K9RAfUE3civwvcB7hRC7pZS/0aLO70dtDJ/Sdfte4JdQJ4g3rtVgIUQnalOeAP5V11sAY8BrUC//k4nHnoca3M+hNtGdwGuBFwkhXial/OJa5abUw0Mt0v8f8GHgR6WUFef+3wI/gdr8PoQiZp4P/DbwUs2mrbdRTh+K2NiHGpt3oQiACZ3/h1CbNEKIceBLqBPu3aiNZRT4QeD/EkL8Oynlx9fb1hb4fdR8+Rhqkb0D+GlU375EpzmGktf/nP7/Tuf5h3WdXwF8AjUXPopa9LYAe1CE62+1WZ/3Aj+KWuD+BvXi/wDqdPpdwL9PeaYXNZeqqHlTRC1m7xJCxFLKd69Rpmnf7cCLgXfrazjfadiCYsXfh5rDMygC7/uATwohflpK+TcmsRDiJtR7LlF9dBQoo/r6zSjis5Yo482oReijqIXnecAPA/uEEDdLKcM12rYeSJQYAtSGlYZXCiHK+v5h4G4p5UJKOjN3PiuljJsKkXJRCPFl4GWod+muDdb3ai5y3RRCCJ3uVtQG/DeoPhhFzYcvAl9fR53+CXgOah7WUGvZ24FbhBCvlnpXcbAFRUyfR60BMY11oBf1/j8LRUy+C0VIvxx4vxDiBinlrzt5/S5qfTyq6zGPmo/PQa0d/2gSCiH2o973LShC4kMoYvv7gS8JIX5ASvnJlPa1Mx/nUO/TG1DrufvuH3N+/zJwHer9+QTqvb1N99ftQojvllKaefhOXbfk+7kmhBDv0P0yi9q3zgOvBN4BvFyv4cn3Lo/qn+2oPa6uy/+vup62TUKInwH+f9TB6GO6nEHUoeCNqLWrNdZBGUvg1xL3fkNfPwv8DxyqHLXZS+BPWlB9fw74iZPC3+p7r0k8M5FSrwLq5a2ROLnQoJy/jnPyBrpQC0cEDLXR9u9La4NTfsn5f7vTT29NpH2Nvv5Eoo9MX9yeRsXr30UUN8X0WfLk8wZ970NAR4u+/tm12qrTv1+n/6uUcko0n+A/02JO3IqasGeA7rXamphjdyau36mvnwB2ONdzKKJRAs9No7RbtM/0476Ue/1t9tHrdB4PJdrXheLCSBQhlxxPiVrg3Tl/ve6rx9spu41+vJeVHIUAGElJ24M6GZ115w3wR6S8g/peX4v5uwDc2GIu/VC7bWuz/T+s8/1Kyj0zX5KfBeAtKen/QN//xRZl/Xd9/z9soJ5XO+Vf1LqJErFI4MMp5XhAX5t1ulfnc8h9BrXGfEXfe32LufseILdKn/9S4noRRdzEwM3O9TOoA01nSl79zu8caq2uAC9OpNuOIvJP4Zy2NzIf096ZxP1rSD+d/7bO74cT100dVryfif662rn2Ahrr3JBzPYfa1CXwq4l8junrn6T5/R1EEUFzNHP/vo7iIgyu1u8t+2EdE/4oziKn7+3Q95ZwNk19z0dt4vckJvWsHuC0SderJ9Y/tTnxX6vL/39avBDfnfLMb+l7r2ojf0MovKONtLeTQgyk1OnFzrXUSUWD3bcFdWqPgV9uUe43dD/3ptzzdX8/0Eb9B1EE1EnWYLWi2IESxcrOp9x/b3JcVnuBWJtQ+KmUZ95IOlF2jLUJhV3tzK8WefyrzuNlKfdequ/dnTKeS0A55ZnP6/ulNstfrR/vZZVFLyX9L+i8XuRc+6NW7VulLr+Tcu8Ofe8PN9rXKXmOA9N6vt+acv8nUOzbHaiN6hrgF1EbhwR+JpH+r1vNL33/d/X9t22grmZOX4p10xAK77/I/ruXFGJA37td37sncV3SeoPZiiJ0v9aivH36+d93rp3RfbKqSJTG4eoPWtz/WX3/ey9mPq73nUm0XQLvavFOrHg/9f07WUko/M+0+anv7UKty08mrh/Tz+xMeebd+t5e59rX9Xxri6hMftYjenhYNlgsBkbR6JCUctG9IaWMhBCnUZuKwS7dwU8Av644aiuwjGIFWwghdqBYQC9FvWQdiWeualHnB1OuPaW/2zF9+jyKcv0VzQb7JIp9nNYXBl+UCTamxr0oltSzdL5rYZsu6xrUi/2+ZAItGtmHIgZ+rkV/hiT6swWegyLkviClXFoj7bP09xflSnYYKFbkj+l072mj7LVwseNo8D4UcXm/EOIfUWKWL0spJ9eRx34U4XZvyr3Po17qZ6Xce0Kms79NO3pRcudLDiHEDSj9lheh2LzFRBL3/flH1CL8ESHEB1EitC9LKY+sUsSlGp+WEEIMotirAyjuwH3JNFLKdyUuPQn8kRDiIOpk9rtCiL9d5d1dUazJeoPVhkuzbj6OEp+9TggxhrLO+BLwoJSyuoE6pa0/X0Rt+mlz95iUcjrl+nNQhI0UQrw95X5ef7vrz/tQItTHhBD/S9flK1LK+cSzL9DfYy3yvtbJOyl+uGTzUQjRhXoffgC1f5VozAtovfesB/v1993JG1LKQ0KISWBcCNErpXSteeallIdT8ktr6/tQh4DH9Nr3edR7PdNOBddDKCQHEillXW9OK+5p1GlMFlBEAqhB/s1Vyuo2P4QQ16CUUvpQk/mzurwIRbX/OIq9ugKJTnXrBGqCrwop5YIQ4vkoLsSrUXI3gFkhxF+iKNfkRnm6RXZT+rtnrXI1hlCy4UlUu9PQh5q0A6zen+2gV3+3Y7Zj2tBKe9dc721xf724qHE0kFJ+SAjxKtQp8ydQCpIIIb6OOjX+axvZ9ABn0xZo/T4Y2V8SaW2ADbRjPdDz927Uu34XSm67gGYJo05u9v2RUj4ghHgh8GsoHYrX63wOAr8lpfyHlGIuyfis0oZB3YbdKDHa6vLUBKSUHxdCPI1a1K9HKYlBY91q9U6WE+k2goteNzXx8BLgP6PG5L/pW4tCiHej5u75ddRpxRqlyzhD+tydSrkGjfX8OfrTCt3O759HKU/+BPAr+lMXQnwSJQIyG5/J+wdXyTeZt8ElmY9an+5ulLnsoygieoaGjs5v0mLvWSfaWU936HRu29peU6SUf6zXpjcD/xGlyyWFEJ8H/pOUMo24srjS5pHmxfiwlPK1bT7zC6hJ80Yp5Z3uDSHE61CEwmWDPm3+pFYouh6lAPUW1EvroeSNLra1yGpIf7e76HwTJdO+E/iCEOIlUsqk4qTJ6xtSyv1cHMyka4dCNuUOtbg/nEgHamOC9Dl3qQiKNSGl/ATwCX1SeB7wKpS1wseFEM+SUj6+RhbzwBYhRD5JJAohcihlqzTOwWbh11EcuDuklPe6N4QQb0MRCk2Qyj/Bq4QQAfBs4BWoU+D7hRAzUsrPXfZaN+o4jCJwrkNxEtZFJDiYQc3tLufaQf29q8Uz5tR6aINlXjJIKc+hNtmf1w6nXowidN+Ken+SCuCrYRsJ3y1CCB+1zqbN3VYcFfN+/4mU8hfaKVhzV/4U+FNNAH4XSoHzB4EbtPJj6OT9GinlR9vJ+zLgNSgi4d1Syje4N/S8vNjDmYG7nqZx7tLW03VDSvke4D1aAfVWFJfkJ4DPCCH2tOAaAVfeM+O30Rr5mlprB8YL2z+n3HvxJalVG5AKj0lla/09+vL3pyT9Lm2lkMTt+vsb6yjz71Ev0XYUsbArcf88ysTuBiHElnbzbYEHUJv5i/QmuhpMG75Lb45J3KG/H3KundPfoynpb2m7lmsjoj1u0ZKU8m69wL0DpZz6yjby/wbqvXlRyr0X6bIfSrm3WdiJ4oDcm3Jv1fdHShlKKe+TUv5n1CkEUgiLywUhxAiKRXod8KaNEglCiB6dh6RZE/0e/f2y5DsrhCihtNuXURr/zxhIKQ9LKf8WNX7nWf+YpI37C1FEfNvrE40144XrLB8AKeW0lPJDUsofQp3cJ4C9+rbp8w3lvQ5EYAmlJDay9xgx03o4aabPb0/e0EThCHC0BYd83ZBSzkkpPyml/GnUQXQLa/TzFSUUpDLR+3MUhfRnQoikrgFCiGEhxPXOpWP6+/ZEupcDP3V5amrL2CvSfXIbrsGFlHvXotg7bj6vQU2sw7QWI6RCSvlB4N+hTqqf1/JmF3+M2uTepSnFJggh+rR+xVrlzKBsjYeBP0xZOLv1gmu4LP+KEv38XCLd81Cmg+dQppwGD+jvN7rEhRBiFMWduVQ4Awy0mFsvTbvO6uOZhJGD/57WETF5d6LMkkBZ7zxTcAzFAbnJvSiE+EkaojT3+gvNOCewnj66aGi9pM+jNo+flFL+9Rrph0SKa2chRDdqMSwCn5NSWja61rv4LGoevyXx6G+huA/vaUNn57JCCDGe8t6DEj0GKGJmPfgN4binFkIUgd/Tf/+u3Uz0CfR9KLPK30g7NAghJoQypUYIEeh3UCTS5FGbFTTm17+gTtdvEUJ8b1r5QogXuO/gBmG8bu5IuXdMf9+eKPcaGuKf9eTXCmZN+XUhxIBTjo/y4eNxkWuKEOIVLQ51RtS06nu9GZ4ZfxulgPcm4PuEEHej5OKDqE32NpR81LCA/xKl4f6/hBD/rNPuRbFD/wllLnW58N3AHwsh7kNxQ6ZR1N1rUJT0H6Q882mUAtUrUeID40ehglrw0hQdV4WU8mOa2Pgwyv76u6WU39T33iWEeDaKODkihPgMiq24BaUl/iLUy9+Od7m3ovr2TSgb4c+g7P7HUZvKq2ko8b0JpWz5B0KIl6EUiIwfhRglKrKKWlLK+4UQX9D1eUCP+zaUZclnSOc0bAR3oeSln9blhcA3pZQfQynzXC1UwK1jum3PRomTjtNGzAQp5fv1WPwQSjHoI6iT6vej+umf0hRPNxHvRI3dl4QQxm79FhTL94MombeLX0SdsO9FKQOeB25AcVvOoSwFrgQ+j9rAv05rhbY7ZcMD43XAPUKIr6B8FkyjRA3fg2LpPkn6weLNKBv5PxNCvFQ/+zwUV+wQai3abOwDPqx1aR5FKUMOoNahPK03rVY4gJq7rh+FCZSfgPeuM6+3otbt/wK8XgjxJZQOxHaUouFzUCbFR1EisM8Bx4QQ96PeuSJqjPYAH5VSHgCQUtaEEK9FrQ2f0Gvww6gNbVTnew3qYHMxxOtdqDXrQ1pPYhk4LqV8L0oB9jDwC0KIG1En/x0oceUnSCcG7kGtf78nhNiL5qRKKX+nVQWklPcJIX4f5ePnUT0uS6h3bi9KcTVtr1kPPgBU9PgcQ+m2vRDVj19HjUtrrGUWQQvTNee+JMWLoGyYcBxLuS5QMrW7ULbEVRQB8CWUJ8XRRPpbUaypcyjN8C+hFubbdflvT6S/lxYmLzT8DryhjbbvQZ3YH0TJOEPdpg+SMM9y60LDM6PxoPZZ1vAk1k6f6jIWdZ89J3HvVcDHUQtkFaWA9ADKA9t1a7XVyacLtTh+C/UCLqKItneSMJFCLcR/hXrhqyjri4+ktVWn70WZAk3rvnwU+JlWc4zVvZi1GvsuXadJlFKPzRe1uf8DyurmvB6fR1FmcAPr6CMPtcE8qPvoAuplewureGZskVfLNrZInzpnVpv3em58VY/lnJ6PLyLlXUA5GPo7PebzqAXrIMoz59g66pI6puvoY9nG53Yn/SjKocxDNBTO5lHvwK+xivmpfvbvUEpjVT2f/5SE99N11n/V9q8xJ47hrJuow8k7UIT5FOrdmURZgaR612yR77263KRnxifRinnrqaeTxnj/vE/3eYg6rNyF4jhu1enyqM3wU/p+RY/VV1EHjzTPkIMoTt2jqPfsPOr9/SDKsirnpF33fESJCN6h+6CWbK+eG+9D7U/LKFHvL6EO2a3W6R9DETXLZq62876jxMxfQr2nFV3Wr5HwAJk2R9Z6L3X/fli303ir/IZuy5qm2UJnkuEiIVS0sHtQmuFv39zaZMiQIUMzNJfoxVLKVDvqDBlaIQsznSFDhgwZMmRoiYxQyJAhQ4YMK6AV4A4KIQ4LIX4l5f6bhBCPCCEeFkJ8yVVCF0K8TT93UCueZ/gORhZmOkOGDJcdQog3oOTEa+FhKeVHLm9t1g9t/fSGNpO/U14iU7bNgta4/wuUouEk8DUhxEdls5+R90sp/4dO/2qUPtcrNMHwIygl2O3A54QKctWuR8wMzzBkhMIlglR26pnsL0OGdLyB9vyevBulEPtMw9W072DnTlp7zds0SClvX0fy5wKHpXbyJoT4AMo6whIKstkleRcNx0yvAT4gleOko0KIwzq/r2y89hk2ExmhkCFDhsuOdW5Szzj8H3gQuIpGzABQXIXnJRMJId6C8p5boBG2+yqanVRNcmliImTYJGSEQoZNQ67YJTuCPuodgvxiRK3k44eSOCeI84AHXg38ZYnU1/xlidQ+z7y6pN7pIeoQBeBF4FUl0hMgIM6DqGM1cURdXfPqqDxiEDHkliPqnT4iknh1VX69S1A4FxF1NDtYE5EEIYgK5gLkFyJqZV/ldSGmXvRs/UQMUVGoeuhr0hfEJlsP/Iokzgv8MKbe6ak2+AIRq/qCalecU/tUXAARQW5ZIo2WkfZhE+l7eCAFSE+lq3cIgjnVzjiv+lVEEhFBFAiiDtU/fojdDuM8FOYjqmU1LlFR6Lo00kih2hQF+l5d1RWg3inwQ9VftW7ILan65JfUWHs1QEriglD10H1qxjHOCfyqLjdW5cQF3ZdCpc9VwL9Qp1bKIaS65tXA131YL6o2iVjV0auBkFDvgNwFafvNtDfOgV8xYyepdXtIofqhVvLJLauxinOqrf5yRFzwqHcIvEj1YdQBXohuO9RKqn25JYmQkjjv6fmo2oPU87eGnX9+VVLvFHhV8GoqnVeTLNfOUb+wZCv98ju65Jmz6+fof/1b4WMoEzyDv5bNTq3SiKIVJnJSyr8A/kII8aMod+E/3u6zGb5zkBEKGTYNxc4tvGDnT+EtLCOH8kSlIkvbA/yqpDirYi4tbQ8oHV1icbyL8sF5vPklTn6f8s3Ue7hGMLuMqNY5s7+P4rkIP5R0PHmW83u20nV0gaXxMsXZKrWS2nE7D0xRmRgk/+VHOfu6/fhVSX4ppnT/ceZeeDUApaNLxEGO6Dqf4uOTyHI35/eoGDVdRxeISkUq/QWKs1WioJmQ8MMIf7FCtb+LuZ0Feg+rdlS25prasbC7h66TId6DB7jwin0272p/F/mFkMXxLgqLMZ0PK5f8J18/wcA3LlAr5el48iz1gRKV/gJL23x6D1e5MJSndLxCbmaRuNxBrRzghxGV/gKdT1/gwlWdTWX4YUQU+FS25uj55izhSC/FI9NMvXqErY8pR3+1Up5qyaN0dIlaOSAueLZsL6wT9neQX6zhhXWbf6XPZ8uji8RBjqXtAT3fnEUW1dhGgU9caOhPB7PLzO/qZsuXn6Y2stX2ZWF2CW9+idrIVir9BZtn2N9BtaSeL56p27Smz+Igh79YYWm8TFQQFM/U8cOI/JFTxIN9nNnfx9aHzuHNL7F4s3Kf3/m08tWzON5F8UyduOCRX6yxtF3F+ikfnLf9Vekv2PE/c0MHvYerth8Ls0tUtpfwqrGt18LuHsoH56lsLxHMLnN2b4nSiartA1NOzzdnicsdeAuq3834FWaXWBovk1+MVDsmz3Df03/fNN/OnI144DPrcQKo5+nwExUp5Wqu0ydpdoI2QiPqZRo+gPJfspFnMzzDkflRyLBp6Am2yVu3/3vk/ALxcgW/rxeCAjIoEB06gr9rgvi4igAtwxARBIjd43jzyqOunF8g3jkKjzyBPzQIYRWCAoRVonNz+EODyHklRhXFosp7fgHRU7bXbblAdG4OGYbkhrZRnzqN39uDKBZtXgD144obmxvaZp8B8DqKtpzK9SMEDzVHfxU9ZVU/sHUkKBBNTeP39SIrFeLlis0nXq4017+nTDQ1jTc2glg4jyx3Ex+fxO/rVfXTeTDYb6+b9ja1MygQDfTgHX6KeLkCN16LPzPf1HcWzvOmz0w+TfUd7EcsnG+0DWwZpk+ic3NNbfM6iohikXiwD3nwaKMeYOtg2zjUCGgY93QhKjVVXnKsgwIirNo0Zu7YsekpUz/+lB1XWe4mOqRi8IggWDGO9anTiCCw7XWf8Xt7YLAfpmdVe+dU3f3eZu/X8c5R5IOPNsrUYwQgwipyfoFobh4RBLZPbFmVyoq5+tXwUyzEZ+yJ/ZZ9RblBQuHrqxEK2t3vIeClKGdDXwN+VEr5mJPmWinlE/r39wG/KaW8Rbubfj9KL2E7yvHStZky43cuMkIhw6ah3LVd3vCqRtC5OC/IL8UsbfPpOh1ZccTsjYrx1f9Inflrcmy/6ywAZ/b30TVVp7JFnUSr3YLew1XyCyHzu7opHa+wOFZkcdRj29dCKltzdJ0MmXlWJ52nI3ofOGlPrX6o3oPKFp+eQ+e5cFUnxdkqXlhnflc3+SV1UjR1yi+qNS8ueFRLHvPX+PQ8GXFut8+2B2srTtqLoznCXsVe7jytyqp1C5YHoHxUUjpR5dStASP3XGBpe8C53T59ByNqXer0WTpRbeJK1Lo8at2C3sM1vGrMhaE8nVM18guh5Sb4ixV7ys0vhJx6YZltD6j8i2fqVLbmFNfiwBRnb7uKzqkaccGzp2I/jKiV8kSBEiEEs8t4C8vM7+un55uz1AdKllPT8eRZ4nIHM/tLbH1smaXtAXFe0PfgDHG5g7BfhdgIZpeJgxwzz+qk93BN92mtaQyC2WVq5YBayafW5REVBL1PLDdxCwAKizFLQzm6purkF2vMXdtB6USVYHLOlhkFgs6nL9j54IV1y3lY2N1jOROguD7lg/NEpSK5mUVkMc/SeJlal4dXk5QPKmJgYXcPvQ+cJBro4cJVneQXI4pHpokGemze1f4ugsk5lq/ZYrlelosUNsr0FpYt90sWck1cETdfUVXPfPXAXzMfnraEwrP3FeX9nxlZ97uXHz6yKqEAoGMsvBPlvfBdUsrfFUL8F+BBKeVHhRB/inJzX0N5zX2rISSEEL+GikxYB35OSvmpdVcywzMGGaGQYdPQ3Tciv2vbj7F8zRY6D0whgwLL12whv1hjcaxIz6Hzlh1rFm2gsXker+AvVvCmz1GbGG5agOMgZzcxszkZ1rZh/ZrrSTa6PzPP4s3DdB9Q8V2Wr9lC8aQKW2E2ABFWLbvcsJ+hIWIQ1TqykLMbZGWLT9+DM5zfs5XibNVuBp1PXyDs78CrxtRKPsXZKnPXdtB/3zSymGdhtzqhFhZjWz9RrVsCoDC7ZMsxRI63sEw40muJhahUpFbKWwIAIJicY35fv2WtL+4okF+K6f3iMWS5G8ASAobQ8CdnuHDzjqa+MISJEZeUji4R9nfYNLKgiDxRrbM0Xqb08ClqI1uplfK2vmYMFse7mtoK2E03Lnh20/cWlpm9ddCy8U3fgSLkTJ8sjnfRdTIkP3mGyoTiShgiz/SN6d/eB05yYc+QLdcQFLVSnvxizYovREXdN4SIEZ/0PTjD8jUqrlHnwyeoTQxb8UXxTJ38Qgg0RBygCDHT7jgvKJ6NKJ5cJCoprkYU+NRKPp05zevfAAAgAElEQVRPX7Bii4e++CdXjFDIkMEgIxQybBrKYot8nnhpE9s3Xq5YMQM0RA7mngtzrYldn2DFm/ygmb0sesqKRX3iVFMeAHLHsL0O4I2NNIlA/F0Tlm1s63TjtQCE/R0NOf6DB6xIJBpRQeFEtd4kOhE9ZcWmX1iG6VnLjgcQJ04hdwzb36Z99anT5Ia2WZZ7/fhT9r+t38J5xeZGi11QrHymZ5tY3QbmmgxDcmOjtn4Gbt+7/e3C9L1JE83N4/f22HRGrANYtr65Fp2bwxtTG57pa39oUIlbdF5mDE35yWvuWAPkxkaRQQGmZ5vmhgxD/N4e22Y77ol5koTpm2hq2s5LtzzznBkjc7+pX8Mq9anTNr1739TJ9JkrijB9+NXKJ1mQZx1CIZD3fXr9BgXF7UczQiFD28iUGTNsHjqLyP03c14rMHYfOENNn4TrWkGspk+TS0M5ep9YZnGsSOm4WjRr+sTVfeAM4UivVejzwgHiap1qf5e9BuBpVryBV40pMIw/fY5oZKDBvSjkYMcwXqWGCKtcuGYLJjZ1XO5ATM4o+fhgP5Q7iIOcrVcwu2wVA+Pd40SFnJW9GyJBBgXqAyXyYZXFm4cVV2Gkl0IxT71UZOZZnWx5PCRfGCUO1Cvq7RxVegWDffjlbqJyB4wMwOQM3k3XwfwSF16xT+VVDvDDEvnJM8Q9XZzb20vvo3PIQo7ayE7FEVk4TzQygKjWiUpFK6aobPHpfVRt9mfuGGHgnkm12ZY7LPt7XrPQo8AnvxAqZdRinhjwgwKVicEmpUXb17NLVDRHRk4M488sWrZ77foRyxWItGijMtJLoPVQ/IV+zu/ZSun+49Qmhq0iJijlUxaWrZvZ+X1KB+DCNp/O0xF+VZURFXLUrh8hvxAiJmfwblIEISjikEIOf3JG1UETm4DlsMTlDuTCsiVoxMJ54sE+vPklK4bofPoCzMwjb7uZ6Wd1MvzZ08TlDurlgNyRaSrXj5DXRKOZb/WBElHgIxZCZDCOmDxD+PxddDx5lop+H/KTZ5QOxpPZkp3hyiPjKGTYNPTkBuSto69vOhGbU6TLVbALdorCH9CsBKaV/sxzTYph+lvuGFYbtqOoZ5T5jEIcKMU5s7HLYt7WW1Rq9vRvTu3QOLnHg32IE6ealNdcBcNoatq20ygsmrTmRGmU6VzlOPeUaTcyRwHRvVY//lSzIp5W5MuNjTY4GVqR0px+gYZSqNPfLlfH1MNyShwlRXPPnJ5dRVLDBTGnaZfTYGBO56bNTQp9DmfA1NNwG1yYvjHjbzgIQBOXKgm3nw2nwlyP5ubJDW3jws076Dww1VDUHOxHFvN40+caSopaudHlYJgxc/vZrV+yDWa+uP1o5tZ9s//EfHU64yhkuKLIYj1k2Dz4HnJ+gdzQNrWBhyGE1cbGNDaiWOt6c3EXcFALvrvoyx3DyPkF/L5edeoLCg1rhx3D9tvImUWx2GDLVypKlFDuIO5RsnJv+pxapI1GP0oubzYDggLR3DzxckVZX2iN/8r2ktqIzzWc83kdagOTOg1hFbF7nGhqWhEqpj5B0MRSNxA9ZWQYEs3NU586nb7Z6Y0nmprG7+1R/aM3e3tNa9nL+QVbpyb2+/yCyuPcHKKnjN/Xu4JIABQxV6lYsUC8XGmud1hV7ekp2w3SWpIEAaJYVOPUUbSEYBL1qdMNIk73uUlfP/6UqlsxUS9NGJi2uf3oEgwiCPB7e8gNbSM3tK3xvGO9YImEsVHqU6cJ7vmW6reFZURPGRFWlXhIcxzMPBE9ZbwOReT4Q4N2LtgxMR89502Z8bIeq0NHmsQ0bttcvw+gnBPEyHV/MmRYDzKOQoZNg9FR2CiSMuJnKr5T6rka/i20IQ2rcRmuRNnrLfd+eVeTjsL+fYH88qe3r7vszu3HMo5ChraRCbwybBpEEJAbHrVsfyOCqE0oBT5/sWIV+rz5JcVt0CIEoMkvgmHjE1Yt6z+am0fcsrfhJwBWaK77M/OWBW/Y+PWp01Yh0CgWetPnbL2bTpCu7wEtujAscqtsOTaiytK6DaadxqcBgD85gyx3N+kOANbSo/SwkqW7Yhqxe7zRP6Z+ug7x8UnFVdEncXMyt4qejh8G85zJ37DhXR8TstyNLOaRB49atn98yx68Bw/AjddanwlNSnhaeRJoUsp0RQmuWMhC18X4Q4gOHVEcAMefAmHV+qswogG3POPbwShJymJe+V8Iq01+GoxIyavUbBrTL/FgH7KQQ1TrVpcBsG0z+RuYdrviJXfOmjEzyqxxTxe+M68Z7LdtBaxvCKDhT+L4SqeHMfGKaxkyXEpkHIUMmwbX6iHNusHVUzBIasCbdOZ/mka8SZMmI0870aXla+CmN6xpwG7ebr1bnRbde0nN97Q0rZ5xf+fGRu0m71o1uH3Zqg5p/1247UxLt1p/JccjzQrC6GYkLV2Sv5PtcK0FWo1l8p5b/6SeRNp8c68nx8nNu9XcbfWM2z/JvmmylNAEkHEMdT93Nzlc2r8vkF/89NCKOq+F7u0nMo5ChraREQoZNg2tRA/tsmRbbVoXw0ZO2/TMZgQr9SQuVbkZGrjcfdkq/80aw/WUmyZ6yAiFDJcbmeghw6ZBFPL4XY0Tluv7wJw0Dfs7HuxrYq8DTdr5rha/a4mQtOVvcm2s2dOuVYApy58+12SFkdSEd7XaufFa5Uba2MHvmlhhu++y8NNc97p1ddnXYvc4gGVXu212XQFXJgYpPq78D7hWF8bs04pJaFhzWLfNOl9jmeCKVlxNfW9sBBFWG2x1aLLYSLq7drX1jagj6abYFd2YcpmeRTiWLk1WHrp93vQ5qxxpRA9uejv+pj5u+yoVcMUjKNZ+fMseco8dbfJXYX1SOK6bXcsaoImT4FqNGO6V6VMz7qZ+lrvl+p9wXHSbuWndZpe7EYfvxYVEEmWHvQyXGZnVQ4YMGTJkyJChJTLRQ4ZNw8VaPbhol528HjbvpWZFX4xIZT15tNJnWM8zsLZeQ/J6O/oLrfJab7suBpdTxLCaLgm016er1S8penjWvoL8/KfWL3roueqpTPSQoW1kHIUMmwpj036xz7RaWFdThnPzc7/bSXup0Ep5rhXWcjOcfL6Vgt5azyTLSSrkpfVpWr2Tvi5ataOdjftS6J60k0+r+ZCWVxLJfnR/r9YPq11ba/wyPwoZLjcyQiHDpqLVAnopn1krbfJk634nf7e7ybRbj3byS6vLeurRDnHRCmlEQDQ3f8lO5FdKeTBtjM3vNAJxtVP9atye9RC+Rq8irV7tlJchw5VCpsyYYdMggoDclm1NbmyN4lp8yx7yk2esvXzx8clmO3kavgFkRXlG9A4/1VDg07/Ns/FgH5XtJToPTFEb2UpuZlHFWzhyyiqOVa4fIZicIxxRSnOF2SVle6+Vy4AmO3wD4+/fVcqrD5Sa639k2rqCtvb8wIU9Q3Q+fIJoZED5dNABomQx31Bg1KhMDDaFHfZ0jIo4yNl2xOUOG2AKHfwKHAVG57f1QKljFRh/E02+I7SvB+/wUytcXRsfBOLEqYZipVaaNP4t3HINzD2Tl3WVrV0+xztHbV+YOlllQO1/wSiiAipyqA7AZfM25eg5YMayqX9oeD20fhqcMRRhtbluTpnGB8OKe7o9AmwMDbffzXwCICjg3XSdjRaZO3LKKsf6M8p7ZrxzVPlx0P4dRNxwJQ7KM2OUcQgyXGZkOgoZNg1lb6t8Hi+5pHleaRO3jcjtLydcPwqrlbse3QVY+5TdKk+3H9rNJ/ncd/KJ+lK2QwQBXw0/1eRH4eZ9BXnXpwZXeywV/Vc9nekoZGgbmeghw+ZBE6lJmbe5ZrAelnkam309z6+V1mUvJ5XV1qtvYIMfrVLXVvmaa8l+Mmacq7Ha1wNXzJNGBKwllnGfXc+G2Y5uxVr9l9Z37rVW/Wo+aXMwLb+0Z83/FQGfLgIyDO07kyHDlUQmesiw6UhzYuRe28jJuJVS2VrYiD5D2nOtPPO5SGt3Wj6r1aOdfnLrsJri4Xqx3jza4Ui4+a5lFZFGFKW1tVWdW9039Ujr29XGJ+1etEZ/r8WRageZcmKGy42MUMiwaRC+j19ueDxMnsBct77GqU2SjS3D0DopsmGojdMaxzVw0hFTMly1yxmwznYcl7quQ5+mZ532JN1LpxELxo20cfmc3AzdsNA2BoDbZ4mYDUAjrLIT+jnZBmh2M50M553m7tk8695zkWZRkhwvc92e/h3nQmn5mXq6zpTcMtw6JeM5GIdOAFFKu9xxauXa2o1zYZwzreZgyc0jSeiYOZMch1YWJWnEQdJ9NiuHIUOGy45M9JBh0yCjCGgsyuY3qA2x1SnY6yjaDcEspK4HO6ZnLZHghls2YaVFsdhEkHgdxSZWs+uNEDRLX4dedomEaG5+BWFjCQq9OSYXfrNp1KdO2xDOpgw332hq2pZnQjiLYtGGgTbe/NyQ0/XjTzURCa4owoQ9dtN6HUX83h5L4CTDPZt+Mv3qdRRVu0x46F0TKp32HunvmrD3QXva1MRRNDevPgniSIahzdftIzMXTL+YuhqlSderpj80CNOzqk90yGtLmOjw3KZOTbEVhgatqCA3tM1u5kYZ0vQ/YdWOjQxDe99cy42NqrDUpt06RLVBbmy0KX1SbOV1FFX5fb32WW9sJF004vtN/yUQSbnuT4YM60GmzJhh01AWW+Stfa9tebqD1Z0Huf/NKdQ91blBoNLySuNSuPVIKuK599thGZsy0rgMaWUl+yAtgFDayd6tk41Y6boVdgiHZL+sh8W9XoW8tDa59yyB4pyak8+a592+MM+tJdppV7HTbVur+Zas42rpzXeSI+Jea6f8tH5IOlzat68gP/PJ/lXblobhkVOZMmOGtpFxFDJsGszpyOUauAphuaFtTac2A/fE5tqimxOtSUNQSE/nsJdlqCIvuifG3NC2Fcprpo7uhmxg0ufGRu19k0buGG5ScDNtMidptz7m1GzSpxEFXkdRhY826YcGmzgDLiwnptLYYN12mT7NDW1b0WbDYbFjodOavjefZFq3r72OYhPXJHnSFsViI26Gk5ftO6ePDPfG0yafJo05iefGRlfWu9h8UnfHydbBKc+tW1p/JkUF7txy87AioYTYJNm/yXlu8hBBgL9roqkO5rrIZ9LiDFceGUchw6YhGWZ6vVjrVJ92SnP1DpInzo3Ww5SZPPEnQwinnW7XKtMlVDZyond1ONww2Gnp0uqTpqfQqs+TaHW6djkCybTu/7Q+SLvW6rm09q1W77R+SWvLWvm1CpXe6tn1zL80jsKnNsBRuCrjKGRYBzKOQoZNg/D9FadN99TpnsTdE6sr4/V3TdgTbDJN8pSYG9pmI/eZE6cIAnvqdWXIBub5ZL3cMs3JzyUS/L5eq3vRlIc+3ablYevonIpdbos5VSZPz+Y582xT/XdNWB0Ow4lYUfexkSaOi5uX0U8QxaI9KbvPu+0zHAQ7vgnOi0skmFO0+ST/uxwLW65ud9Js0ehCuNwg99voIqRxQsxz9sTu9J2rCwMNbpM9/d90XdMcMfdc7ofbry7HoGne6/qZ/6audi5o7kJubDTjKGTYFGSzLsOmQcbKZmAtawGzYSVPjyIIiI9PrmD12lOZsykZZcQ0pTlXCz95AjZs8SYPfo7mvhvS2KMhznDzdK0qYL6hQKg9UsbLSiFPLFcainw0hx82+QBWA99LtM/Wo6Non5eOB0J56EgTIWVP+NOzRM4J2M0raS1i9B0a/V2xYoJY94E/NEj9+FNNFh5J5UqjfNrgZDRbnpi6NI2TttIwJodmg3bra8bYXHN1VGJWciDM7yYuk07jzkn7TFAgNiGhp88hdTq/t2eFVQ0AmhtjLCdMWlCWGfFyBUwYaceiJl6uIPXY1g8dUfVYriDrES4kMvPMmOGyIxM9ZNg0uNEj22Wrr8a6vRK4lGVdCpHHavlu9P7F5p9hfVjPeCVFDzfty8tPbED0sGNkKhM9ZGgbmeghw+ZB2PVuxUkv6XUvzXtjmlx8tetpaMf7nrnmbuytykrmkUzrfgxcxbj11jOt/Fay9tVk/W4ZyXxXe75VHVcrP63eac+sZxzd/NdzfYWC5Srlrqc+yXFOmwetrrtzfYWJrfPOZMhwpZCJHjJsGmR3B8svfS7dB87YYD2ymCcqFYnDOvXyToLJOeJyB7Jah4KarmapPLu3RNdUHa8aE0zOUR8o4S9qlm+hMbVFtY4s5KiVA4KHDttAO1GpCDOL+IP9hCO9+GFEbmZR1cUE4il3cOGqTkoPnwIagX1kMY8s5PAWlm2wovN7ttJ1dAEKORXIB5jb20vfJw8gdwwzt7eXnkPnbcCquRdeTe8Xj7H4vDE6n75AbkbZ55tAUbWJYaJAWYYsl3y6D5yxgZjC7aWmdp+5oYOBhxZtMCVRrTO3t5fiWcWq7jwwxdxzt9N1MsRfrFDt76JWUnl3HzhDONKLN7tEff9O229+GLG0PaDW5TFwz6QKIlXI4U/O2KBI0AgqJat1ll+8m/xixOKOAqUTVRWM6cQp4huvVcGrJs8ggwLhSC+F2SWk7ivTl3Zu6HmQm1m0YwM0BfOae+HVlI4u4c/Mq+BN0+eoTQwDEAU+ccEjv1hTvgYCn+Ljk0QjA4T9HXR89RDxzlHrMMurDlPZXiK/WGNpe0DvF4/ZYGHRyAAz+0tsu3caEVZtUDFTRy+sEwc5co8dJd45StjfQeeBKRvgKy53AFDt76B4ctEGiTJBvioTgxRmG4Gz4kKOsL+DKBB0Pn0Bf0H5jKhNDCO/9ZXESwRRxhTOcJmRiR4ybBp6isPyBVf/eNPiayLwRVPTVkYvdo8jCzl45AnlXEejNrKV3GNHrfzX7+uFoACADApKf2FosOm32VCs06KRAXjkCevpz+g8GAdNxuufjfgHtn5eR9Gm8ft6G1EkHdhoh2AVA1t6XhzsVxEJp8+p9IN9yINHAaycuzaylfzkmab+cSNvAjbSpW2/E90wWV506Aj1lzy7ObrliVM2PxOx00biPDJtIzS6bQOQO4bxps81RdOMB/sa/a3rYh1j6braehlnStOzjciTOkKmjV5p+lTDzBcb9bFSoX7DuJpL+lptZKuKLqnnRzQ1bT1TxrfsAcBfrChixY1A6kbx1G2RB4+qMTREhOMh01wjKCiHVjddp9LreRd/69t4N13XPEd0ZEzAEpxuVErriVNHF73v1D8wXznVED3clJcf3YDoYXw0Ez1kaB8ZoZBh05DUUYB0pzStZLju9TS2sHFpnPS0mGYK6Coxmo3MeFEUPWXqx59Seeq65Ya2NYVTNiGSQW2wroMjA+MSOOmaGhoupV0TwqRraZPe1M8lElxX1abeJt80d85pZoVJ0Uo7TopsXzv1SXOP7faFq3yZJLaAFfVPikrcvN0+cZVik+PrwlWubGWq6lpoJBVcW4lwVptXaf22mn5Kq+v3c3dT9Mgbb8rLf9kAoTCREQoZ1oFM9JBh86Dlre7GCDRZGLhOjlppxZvfK9LoEyU0byYxrTdBu+HojSxeruDRMAmMzs0hgsBuNF5H0Z6SXQ3+ZP2gWQPf3IucNLFzL1qlftBworTCH4HDMTD3TJ2TaNWf7SoqNvV/pZnQcYkFd1ysqagmLIzWv4skkeA+nySs4mXF+UG7uk564zRw8zD303Q13DnnjgekWNW06osWv9u9v9r1LHpkhs1ApsyYYdMgPE8pcO0eb4qbYE5vbjwBd6Nxbe1dBTD3xApq80pukubEmRsbxR8aVHb2uyaaYxcUi00bU7xcUXESKitP4yaGQfKEbtu4hmJcGqfDXHc/yU3c3UQt69uY28GKk6/7fNJfRNIDYVpdXaW/NAVAG48ipa9d74wm3oO7WZtPfeo09anTNr5F2kZu+tv0AdDkSMqMkZkPrRRPk/2b7APX/4GbvtU4p/VZ2u9WaZPKuy2fzZQZM2wCMkIhw+bBE0puffBoE1vX9WEQHTrS5ITGbCLm40IEgT1RyjBUToK0i2Pjq8C6xQ2ryPkFpS9g9A+0vN2yxbVDHUDJz7UM3XXT6zpIMgSO2RjdDci2wXEQ5bK0XWdJrvMhA3fjkmFo3RaDIoiSBIVLBLh9J4KgKXiVK45IWj2YehkCxI3L4HJ9rJttxz21277kCT+N+5MUY7gBlgwh4RIqbjmuwyTr+6DYIDqb8tVtWuGeudhcbzfYVtL9t8mnaVx1vm4/JvvHOk1KWETIMITB/qa8TaApN7/c2GgKR0EQbeCTIcN6kOkoZNg0uDoKBqvJjdtFUqa8kWcvJ9rVAXimod2+uVJ9uJY/jUtZj1Zz6VK3da02JP0o3HhTQX5oAzoKu0YzF84Z2kemo5DhGYXkoruRRdiVKV9s+ZcD32kEgsFGdBcuF9aS/V/qDbzVXLrUbb0U8z9DhkuNjFDIsGkQvo9f7mmyGhDF4kpXtmFoNeXTNODdRdy6x03I6F3WdtJSwKRxy3AtCFopAprrxuQxqXHvijzk/EJTgCigSXSSFijJ5A0N18S5sdEmF86mv+SOYeTBo4qTsmuC+Phkk0WBNzZC5LhwdtthgkYlRQRJ19BpFhxJywO3b4wJYrKN1rLE6ReXRe+KONwxMZYmQJOVSVqoanc806614ka4+SSVMFuFCzfPue13g48ly3D/rzUGK+Z4QkdBAnHGFM5wmZGJHjJsGjbiwtnFWmZoLlptAGs9eyXY6FcCl6IdV1pkcqnqfDHz6lLV42Lglp8UPey9qSD/+RPrFz1ctyMTPWRoH5kyY4ZNg/CVZ8CNLsRrmZmlaeCnpW1lJpeGdt39roWNPtdOHkkluI32b5pL5qSZY7I+a/VfO2jFCVrLgiStDhudV2uNbTv328VaaddqQ6bMmOFyIyMUMmwaZKTc8qZt1Gn/k4tzq7RuiOZ28mmqk6NJ77KYjUmgKy5wzQ7T0E45a5rDaaTFYWhF4BiiqF0djaQWvsFqzyfvmb5KmnGuFcMiDa24RKv5HHDrnqxDEu1s4qYtSTGDed5YXayXIFpNjJVGZK24lplHZtgEZDoKGZ4xSDsBrrZRtPqftsG1s+Ek6+B+xy3SrIaNpGn1jA3PvMpm2er+Ruva7ka9Wn+sh1i5GEW+tYiDS5mvDBsOsdYaj41cT/ttr2Wi4gybgIxQyJAhQ4bvUEjIRAkZLjsy0UOGZwxaseMNVlgEbICtvVreSf0D93/SAVK7+SdZx61k+O3qO6zGll4PG9wNZdyKhZ5mGZCGtcatHax1yl9v3mm6JOvtp7R0q4kHkunaSbOe8kUQZKKHDJuCjKOQYdMgfB/ihkVC2sKaNEODZvPCJj0CHT/AoJV5o5ExmzxslEodM8C6cl44T26oEUERsNErTRTHuKcLAG/6XMPF8+7xpgiBcn7BmimK3eP4OhqhLHcTH5+06byOIjiRIG2USaB+/ClrQmfM+1yzTNsmHWXSRIw0JpHGzNINZOUN9tvIkCYCoxucKR7sI/7Wt21gLDm/gEgJ/uQGdTJ1NvEvkmaTpg3Airqb6yZ/ExXU9E2s+z+amrZj7pqIGjNJ8z9psmjG3p0nKzw06rpHc/M2nWmXO1f8oUHqx5+y5pbGbNXUzzyDaZeJODo20jTmTa6ig4KNyGnG3R0Td267iGVGPGS4vMjMIzNsGox5pNnIXTt6YIUtepocO6nE5qZxiQh3Y3HzbGVXn5a/W45r5y8rFZafv4viyUWiUpHczCKymGdpvEz35w/ae978EpWJQfILIf7kDIvPG6Pr6AJRSbv4XdRukSs14nKHDXkMWKJC7B5X9/Vvb/pcU+hks9FY/wY6RHY82Ieo1BruqoMCcU8XolJTRJB2Tx2XO/AWlgE4v2crpYdPNUI4l7uRxbzKd35pRfjuqFS0Yb8B9ZwJCR1WVZjqxydtSGl3wwTHZ4QO8QzYsNs2DLVum9mI5Y5hxIlTamPX/iNMGGiTv4ki6l5zCQxojt65WvTS5G+XEHLbYPwhuNFIk8SJKatpvplQ2pq4dOssw5AH8l9gPjxtKYMbbirI93+8OS5FO7h5bDIzj8zQNjKOQoZNgyjkyW1X8QoqE4MUj0xTG9mKF9YR1TpxIUfY30HHk2cJR3rVJlPupj5QAiA/eQYZFBBOlMhooAd/YdluaHGpiAjreNU6C7t76PnmLL6zWUYDPfhBgbnnbqd8cJ7K9hKdB6a4sGeIjifPIot5olKRKFCmnPmFEIGK9CiDcRb7CxRnqxRPLiIqNfKaGADofPoCcscwHU+eJS53qE0cENU6BAW6D5yxbcnNLFIfKOEvVpDFPGF/B0t7r2fg008CUB8okWNEOdgpd+APDVLp78IvFfEXK5y9Yz/9H3mceOcolEfxZ+aRQYFwpJdA78cirBIP9uFNn7MES2V7ieq+frpOhkSBT2F2ieVrttj6VyYGCSbn1IY9v6TKnpkn7uliabxMcaCEN7NItb+LwuwScscwy9tLdDx5lvrIVvzFCtX+Lmoln66jCxAUCK8fwQ8jGNhDrZQnv1ij0l+gdP9xAGrlgEK1jizk8CdniEYGCPs7AOgAaiO9iNkGxybeOUq9vBNvdonabXsRs0ssjZfpLHcgqnVqmngz/WaJhmKehd1qoy4dXWK5v4POA1NEAz0IRvEnZ6hNDOPPLDbN2/pACS+sAyCrdcUhAsv9iAf7EOfm4MZrCcsB+YWQuFrHczhEAGLnKEK3z5+cUZyrhfNcuHkHxZNdxIWc6otiHlnIkZuZh6ezg12GK4+Mo5Bh05AW6yENG7GHT4or0swl13LQZE6C9anTTWGmk1yKpHhkNbHJpW5jKw+DG83zUtTrUpWz3jG7VPWAlZ4y07hVaRywjbgNXw+SDpeuv6kg//7jQ+vO59ljT2UchQxtI1NmzPCMQStls43Yq7s2/ckFfi1YOXfYiHwYnZtLFVG4G4hrypb8vVa5G22jaVMaQdKuMuJq964EkZAsp4q7uOgAACAASURBVJWSZfJ/q9DM7WK151xz1JYmkokomhshEpJ6Oe0qtWbIcCWRiR4ybBqE7yP27wVQ8viesmILVyoIHQcg3jmKt7BsZetG0Q2UPDca6LHybLFwXimd7RyFR55QimPlDuIgR25mUYkotNxczi/YMoyymWHV57QIhIlh8kdOUZsYxjP6A7ru3vQ5opEBRLWuwmTvmmjKv6le+rosdyPCqhVBmDpbRcKRATydn+cowQGNvjj8FAz2IxbOr1AgTMLoKwDUbxjHf+xoQ9HS0R+wfQANhTogPj6JDBsxFmRQQCycpz51WukDlDvgkSeIb9lD/sgpxTo3bQLLiZHl7qb6Ak19YcQZVjRjdCKCghJ5nDhlY1kAVrky7uki58yZcP9O8l9+lNpte8nd/XV16h8bsf1vWPxm/OOdo4qdD8Q9XchCDk+LrXw9vmYMrR6HoyNh84EmHQRXidZzlFNNu82YyB3DSlnUzB2U+MIovBqFUFeZUsgEEY0gys57GS4zMtFDhk1DUpkxyd6FlQqJa8Gkyw1ts4t1q9Nqq+eT91txJNoVLVxsm9ZCO2KUtNOu6aP15HWxSOafjMEBK71iriZ+aNX/l6vPV1OoTc6RtURAq9XdIJlHUvSw56ZAvufjw+tux3PHjmeihwxtIyNFM2wqzKnLLIitfBXYk1mCLdvKl4LZAFt5+0u1UU9Jn1zkXVa0+78Vyzhpz59sU25s1N5La1va9aSIZq2Nz5W1G10LEQT2BOyyvJObeCtWvwgafiaS9UwTIZm0xmLErZt7zyW+zLebPvl8GppO8ol2pREZq+WTFA2kzR+/r7elmMv932QKuUqZyTnmEjkmPkqGDFcSmeghw6ZBBIHVQheBCjtcmRgkeOhww25f29KLYlH5NKhUYGxEPa9Z194OdaISJ06pb52PsZIALZbQbN94uWLt2V1bedc/gGuPL3QdgaYQ2MZngREryGIezzE3PL9nK51PX1Bs9fkF5I5h/Pkl4p4ulQ4grFpiIRroQTzyhDWBFGEV3zE1NCaCLmvemjuCNXmMSkXyR05ZC4doZECJdoYGqY1sJWdEFUYcosUfpl5NYp6xEWVxcmRa17Xc5ENCaBm9CRnN2IjqY5RpprGWiKam8W66DlnIISZn8HuVtQIoy4GcI2YBJQpoMv3s7VHik8UKYvocuaGGqARjzeH4p2B6Fu+m6+yckLvHESdOrfDt0ER0aJNNr6OI1HPKmz6n6qN9ShhzWtMv+S8/CqDGUItzTN2tGWhZWWzIw8oXhmm3t7DcLBbR1iS+UyaFHL4jHuHxlT4TMj8KGS43MkIhw+ZBxlzYM4RXjQkeqiCDgjWxq5eK5IICUbkDc4aSQQGBclsLsHjzMN0HzlDZXqLjq4cI9+8keOgwMigokz5NJMTHJwnvuEmZMA72Q7mDepBj7tb9RAXwq9A1VaeyZZz8Ukz3gTPIYp56qcHdcM0j4yCHWKwgKjXm9vVTOrpErdw4YebLHdTKAZ2f/iZi97iqd7EIlRqEVar9gzYf78EDljDwFpap37JH6VNo3wfGcVPl+hHigkcwuwx02M3DEi5aFm/8OABEpSLetK7UYD9xMU9+8gxz33MdXSdDRUyUO/DA6nLk55eoXD+i2zqArNYbfa8Js9zMovpfqeH19XL2JeNsufsoDPYji3kWdP6EdfyZeSoTgxR6uqwJZTQyAGBNX+sDJaLSsK23WDiPN602zwtXdZJfHMQPI/zFiiI6NOEjdwzb/7VyQFCpEQ/04E/OEO8YVuWhNnxZyFF5/i68akx+IeTCVZ1NUzEqCAqLMcVinvPjZRZHc2z76gK1iWHyk2cAlCOuhfOI3ePEhZwiRMdGiIt5qv1d6n9QaHK2BcAjT8CN1yriNyhYvYf6QMnmba5580uKOC0W8abPEQ/2WR8Z3vS5zDNjhk1BpqOQYdNQ9rbK5wevXGFy5pqbAU2nQJf17P43nAeXzet6/kuyrJs8HGo5ublvnPcYr4XGKY/7nKuk5uZj4Dp1MvVxPeslWdhGeTGpM5Bsa1I8kOYwyvV0aZ5JehesT51O9ZLo1tN9xuZtnCIl2mz6wbRtLUsT18NhNDW9woNjci6k9aMde91vhrVv2uaKXJLOqJKeDtPmnZlTSa6TSe+Oi2ln2hi5jsNW03FZS39DhiH3czcL8RlLLVx3UyDf9bGrVvTvWrjt6qOZjkKGtpFxFDJsKsTucXzH/TE0NnnAavrXbxjHe/BAg8ULyt2yEREEhcamMzZCbaBE7rGjjQ3fES2YzdHrKFrLB7PJxIN9yBvGWS7lyQ+UqJXyTfVdGsqx9aFz1EtFaqU8HU+exUdttOdfvJvuA2est0LCqrKYCOvK4Y7j2ZCDRxvOfxy3x8a7oKmf8ZjI8ckmbX/DlpfzCzYfU3/LmtdseQAMN2ZuHlmpWEsGwIp7/N4e5e3QbFZBAREU8ItFdbI+csrW1esoIoyb4sF+5PSs5YwYF8RxT5di/bewFvDGRiCsNrllhuaN2ogk5PyCHQPX2yQnTlkiIdJOjnK63X6v43HReK7EsVC48VriQC2BF/oLVPp8SieqyDAiCnzyCyG1iUHE7BJisA/ml5SFx+QZK2bwADQ3x3Vx7eojuESGaauZ5+a+q0PivguuG+rc0DbEdKZWluHKI+MoZNg09BQG5XU/9Mv0HDqPqNYbbPYJxWrOT55h6uUj9B6uUnx8UnnJ0+xnA2OGaDwoAixtD+j55izzWizQ7KVwrmEy+Zhil5++fZDew1V7z9Tl7G1XUTpewQvrTaKFWsmnOKs2YC+s4y0sM3vrIF1TdaJAHfb8UFItedS61MJe6xb0Hq5RPLnI1Iu2UDwb03PoPIvjXXSdDFkcK5JfiskvRsQFz+ZT6Wsor215dNHWw3hLnNvbS+l4hVopb9nqM/tL+FXwq5Li2YjKFp/i2YgoEHQ+fYH5Xd10TtW4MJTHq0lqXR5+VeLVJHFe4NXUmuBX1b3KFo+Bb1ygVspTLXk2TaXPo+t0RFQQ+FWJH0pb76VtPtvunWZ+Xz9xXth65JdiooIgzgt6Dp1nZn+JrY8tk588QzSgCIT5Xd0Uz0bM7MszctcCYX8HXjUmLnjkF5Vuh79YISoVmXlWJ72Ha+QXa0SBb8fGbvTlgMLsktX5MG6rjRjFeqE8MGXFK0k9D3nwKPEte9Tcc81iCzniIKf0Jk6con7DeOMZo1ug9Seq/V0Uj0yr+Xr4KTWgrh6L9tAI2PlnzEOjUtESJ/fNfYj5CyczjkKGK4qMUMiwaSiLLfLWvtcqlvfYaNOpMcnSNaxhE3wHaGL/G3azeRZoEkMAjcA8ScsKrcSWZLW76ZJ5mnol2dFWHKI5AzIMm9rm5m2DN9Hw8R9pGbsbvAmwQZ5swCCj3GjqYvogRWTi+kgwSPY1NNjzroJkMhCR67EwqQAKrLhmlUMTIgtX5JIWPMoVMaTFU3Db5o69G2TK6G4ARIeONItJRgasrw1o1heIBnqsAqrbRy43yg02lpyHru8IV1k0GfDJcFEMd8cE/oqXK1Y51I6dHr/7Tn8gQSgU5f/86AjrxYvGj2SEQoa2kYkeMmwehLAWBoB1JERQgOVKk5jBsnPDaiMSIloevasfpk5bpzzWCZGO9GiIg2jqNOKWvQjNYXCDLNVu20scRixtD/Crks6nL3BeK7xFBaGU8zTM6bdWDggLHh1PKqXJcKSX/EKIDHLEYR2/r5d4sE/FZAhV3ANfnxSZnlVt0202USiBpg29NrJVlRlWiY5PWtZ3bWIY78EDDQdGlQrytpsRR04R7xhGzC8pUUOl0giepINJmWcsoXLjtfb0y/wCUos7hO7reLBPKUaGdWIgN1m0cQniW/aoa1oB0w5tsWhtr72Oot0w3bEz7fQ1URPecRMAnQ+fAC1KMgSRS7QZZT+j1OjddB1xIWd/m1O/fPBRyzmwEUE1xwB0sChd58qerSxt307xTJ3CrLKeqN8wbhUsPbCxOESlhq/FSPLg0YbDrvkFpUtgiIRKBREUGv97uvCcjd/qTSycV0qier77xaIVoaEdXFndhjgiQ4YrjYxQyLBpEIXGhmhOUxIQQQGxe5xIb/rxYB9euVttGnqDB7XQ+r09iIXz6hQ5v0TdcCGck7g9nd2yV4kp9EnRG1NBlmQxT34hxDv8FL1HGl4au7W3SLdMbrxWlT05g3QU6NAWG6JSw9fy6kibweUXQs3u90Fr/mM287DK3AuvpvTRh9WJdbDfKtAB5I9o875KBW68VgVR0tejG69FahM7ERSUKKVYRB48inQ4MDIoNHQawtDqHhi5PY88gXRP/o6XQL+vV5n6HZyzIbZlpWI9VLqBuewpvcMJkR1W1Snb8UxoN1HQlh0QXj+CV41VuY5HxOj4U00Eo4mCKadnFeelWERMn1OEy2C/FUvJBx/F3zVBpM0dm8xYCzkuXNVJJ3B2rwrKNXDPpCX+xIlTLL54N51PX2jytpl77GhTxFABCE3AyKCA6CnjF4sNE81yN/VDR+wcMVYMsqCWXVGtK6Lm3BxeuVvrnlTt3Lblag4F07NwvpkDLIE4c4eT4TIjIxQybB7iCK+72MRVEGahPehom2u2rKtVDg32ubVCCKtWIc81IjPmidYdrz7FV0bUZlyYXeLUC8ts6d8FNBQWBQ0TTHOildV6w0zztpuROiqh0GaETM+qE/lgf6M8YMvdM5a9jLbvN0t+7wOADo1sXS5rMYJJE5+bw5+ZJ3jkCejrtZtyrO/7fb3aWqMfzs0pd79B0AgF3ddrlTYNh8UbGyE6Pknttr3WH4CsVMARaTRp+YdV29fGlwA4LqoffNRuovFyBYwo4bab4cgp9UylQmQtACr4WvGwMLtkXTS7LH6/t8eKmvy+XuXeuq+X+tw8Iqg0WPda3GJO335vj+IAFMfhxCkl7+/porK9RH6xRn5RncwH7tEEYFhVhMfIAPFyxZq2un1iRSOOL414uaLMS417akfx0lqeGGuToUHib327MTGDgLqxutEEhbE+cS0e/N4eYi2ykWQchQxXHhmhkGFTIXrKxDeM42slsFArfflDg0rxbLCPGKi+4jl0PnyiybcAaCdFTkjqYHbZKi+KsEp4/Qj5hRDKHZx4RZmxj54FoD6g7Ov9MKLa38X2u86qsMmzVbqAub29dPZ3ERUE4UgvaKKieGQaqU/j0cQgXrnDhgiuD5RAOwXy5peIBnrUyfXpCyzu66d4pk4QFKiXikT7dxIXPIonF4m+9W1yY6PKsVFYJb5hnCjwqTpKjaWwyuLNw/jhEMWTi0ohTsey8BaWiYt5ckBczFuWdlzugIXlpngQSpQxDGGds3tL9KMIJaEtCWw8BMDXlgugTq6z+/usxQdg/SQYXQpDOImgAJqbAkosoRRR+5BArb+L/EJoxwvU6dpwLOIeFWJ5Zn+Joc9MWtGELHfjGxb/LXsVJ0QTIfHOUUS1Tg7lc8IoNVb7u8gXRgn7O6wi5NL2gDgv6J1d4sIeFXmx88AUcU+XSqcVF0WlphxU6bnkG+6SdqAkZuaRc/OIvt4mx1jwv9l799hIkjy/75Ovyqwq1ovNKrK7yWazn9Pz3tbszu7NrfduT6s9nQ4nATIknSwJtgXbsGTYxgkCbMMQbMGwBMnwA7JgW3/Ylg1L0OmkO51O99Ltrlar2ZvdaczO3ExPb7+mX2w2m2ST9WCx8lGZ4T8iI5mVXXxNPzh7l1+AKLIqMiIyIlkR8ft9f9/fdoitEsfSThyFTl/2O4ZKYz0kthDFoksGcsNs1Em0KZRQl3bt7U/xX5Yjx5MhJzPmODRU9SPirZmff4wYlibiZVP9ZpEmN6oyI2S2FPkuHSufLqMsF3vlf0i3od5PEybH5ZbYC1krSbaPO+UIyMbdZ/M5pPucJlnuJ29FViMgq0mQJR4qpEP5steNaztLUhwnW7xb6mYVGptYOcY8K+PGaNwY7JWXYS/sNVfp3/crvT0O2VwP5191xP/2q/MHruenFq7lZMYc+0bu3MpxaNBMI9kQqC/NaOAm5tdx0QfpvATGudMyHr/oPBbJoGRyNcdJvqCjgdQPMOq17cVjzCYhnX8hi2yeB5AL0GPZAlN5CtI5EsyZ6cQ0btRrGI16EkFgNOqJG8acmUafn8WcmU6uyfbtMd2B9NjE9Y2QB+OxVGOQHjNzZvqxMVR9U2OYnQujUU/6p+ZOuSPM+bnE/aHqT49HeiOXzcuQFcZS96/GL33PSqNAza2aF822H5vHtKhW8hqPkWojm6dB/Z7OZzEur4VedB57z5yZHtlIGjOtx3JHpO9L9d+cn5PjdO508iwkeTdyZcYch4Dc9ZDj0CAC6ddPwgcV2767iXhrAT2OEgDQU6I9Iwz4EzJVrzk/hw5JXobww+uJz1i1kQ4pTBIRuY+fmkVMIANGwtYAtJhcqcU5EZRJ34hNxFqnj+k4I6Q9WlMJmS/ZlMQ5EcLZJsw2cat2LNHchBv3kjTMqv9KHEpFfUSthhSqqk4kpvB0Tgli4pze6TM8fTRJs711YUa6ZxZX2Xr9BMVP1iVRM+ZdaDHJEuLU1nFUg9GTdanUx9r5BYQbJJEAJhCcli4N7fwC4u6DxJUAPBatojQxBMixdLaFrbROX7ob4siKcLaJHo9HVCtLF0urIcclzuXg/eSr6H6E87F0PTg3VyQ5sBNbjeJw1ejMHMZqh2GGJAkkz0s6/DYdOWPEPJJ0anDhulJ4qjqBuHYzyV8iOt2YNBpbD6oThPHnWVVPvegkeg2qTwlXpzUleSrVCfSVNbQgP9vleP7In7ochwatYOFdPJN8MWuenyxa5uVbkhG+vLItPNPubKsVxpsKfWUDzba33Q/x4ppkC1TKhchFWlkpojNz8qRcq6K/+oJsP/6S1+IFIJxtyuvrte0244Xbm31c3ljv9HFPt5JFPmo15GJw7aZc2OJoDu2Nlxk2K1J1MiY8OjdXKF1ZTgSVvNk4+iD+UeS+rddPyNDIeDHXPF+y57sD3NOtJNqDOBdD2KwR2oZsr1bG6gV4U0WwC9hrAyk+9caFpN+iYEqOQK2Md/EMIDkG/lRZ9qNWlWMUbxJ0TwoPCdeV4ZqLq/HC7xA2a3Lu7IIMsZxt4r44i6hOJJoF7rEK0Z1F3GOVZBzd0/EGY2VN1hsLagm7ICMS3pxPkjUlmgS2hvNxHA3jhbKvdx9IEuv8rNzQxBEeUa38eCbHuI/DO/fkRuyNC9IFFhMTjZkW4WxTjlerIe8rFaa5eeEIgz/+BRmZMntEbmBrZbnZOL8gOQ7nTo8+v3YhyQGh3X0go0Xi50vEURCa58uf7qa8Rh+1KAihEQr9wD85chwEOUchx6Ghqk2KLzo/M2JC30k7P429fLvj/MI7fb7fMnu9r/q/mz896x/PXrOffu3Ul7Tg0H77tZP/fKeUyZ+Ge7HXvaTzbGQ5Fp/Gh/+ssJ/+HOQ52q08jOdrwOMchXOvFMXf/dWT+7+RGH/k1A9zjkKOfSN3PeQ4NGiWmTDyh3F+Bftbv5eo8ilTsDITK/dEWthHZYhUJvCw4qBdurJtBYARZTzhWImrIgkdTCUMSnIpqNTISo8gpcuvNjQj6oqxa8ScmU7SO6tXkC4OtZgPY9GkqFYGN8CMcylo3hARS0snHAs1Vv6Q7vka1asdwopDb96h/lFbugvcgMGpSYqfrCPiiInCWh8RR4LofoThhYko0vpXF6jccdG8IUZs0RCOBQVThnkWtr8WRCxRLAomRpyxUVMpsuN02sNmBXO1J6M+kLLWmj9EQ1p8gtNHMTJhpErAaWibiVtEuWeC00cRcT3EabdFnBtDpbgWdiFRU1TSz+lwVJVTQ3ODpN0kD4VyDcV6F0BCoB2xEGUIsWozk7VGpBN5ZUmp6dwOysWVVsJM5/og5WrKqkKq9NTaB/+aLCJy3kKOZ4t8o5Dj0CCGoTT5brSxbj7AdF2pC2AXRqSAVWRDIrcbfzGb83NEdxYl6e+yjMG3alVCYtXBWJOA2ISsIhy0ek3yGO7ck4RItXhAoteg4tuTMLUYyr+sojOiWhnd86W6XpzKWXMD+eWvFlTkQrT1+glKV5aTUDiVKlnzCtvphmOOgbHaGblnAOfRMMkZULJbI/kLip+sE1WLmKs9DMdKXBPFG/eSRdC7eAZ7EZkS2i4Q1cpJLoHQNmSaZNdFxJsUY7WDHks6qzwEomBKAabqRKIhYPRctO6mVI9cXoFXzsoyrkt04miSUyOdz0PvSPVD3XUlb2BxcztrZa+xXWamBZ0+4StnYXFVClDFGzz9DjDTSsJTlQaF5jho3raYl35jLdnQqQU5zS8Btsc6fp7U5lJnO1QxitVCg9kjSY4Prbu5TaKMFTCVWqM5H4t+xVoPav6NeEMU1cp0zx+j/v2lRDZabVJVWKTSllDjRxiRI8fzRr5RyHFo0HTpK1VZBDUkacY93Uq0FIRdIGhWsDxfLvytqe0vZrsgF+yY9KWEf5TiYsIB6G6OpFBWZEBttkkEaE5M4KtOYMax8iBPpcP45Ku0BVTqYe8nX8VeGyQnZOG6iFaD/kKV0v0touYC2tvvo7/6AiI+qRc/Wd9WhewO0GpVBscqlGJZZ2UpURoMRrwBAWk5Kaz1ZTZGx8Hwwu1cAjGxMmpWMLqbCKeRnLyjgSsXptaUvD4WTVIKk/qNe1iOg1mdSMiP6mQezB7BXO0hqhNJf43VDqI6weDUJCXPJ6wWpfyzytjYqLM1VaS0GOc+qDiYsRVI65LoTSgrQjRwt8WqVJ+UnHQqP4KhTtuKfPjKWfTugDCVxGvri+eS5E5JArB44R9euymVOW/cI2x3EG+9Li0WMaLZI2g9qX6pLa4mCorB6ZbkPrSm0JF6ElYsHkXRgVSODv3GPck1ULkoYpnn4Vf/EMZ7NyhdWR4hT+orG9RjZUYjVnPU3AA8n0FMOtVj0qviKgh7NJtpjhzPAzlHIcehoaofEV+0/2jyZaj4CUqTQEnXplXrYDvJUToZEDDiNsgmTUqbjtMJjbKJoNLM97RQ0fCOzPiXTuAj3no9cRPosZQyMGpCjjcAw+WHibtDnWajM3NSzTCbECtm5qeTQsG2OXpEFTAmxyU5HFKsfeCxkMe0rLPW3RwJDVUbqZEQwfMLcnMSt5skZIo3ZmlLTTbxkTqlJ6d3JeOcmpf03CV9VNLSKSXIkWRacW4FVTbtGhjXhgrbDK/dTN5Lki+lklWpukfSkacSial5TpQu05Et8diKt17HuvkgScut+jJ8aQHz8q2RRGDpCB61kVXPfaLiyWjEzu92/xmd4Wriazj7SlH8L796+rHx3At/7NTlnKOQY9/I6a85cuTIkSNHjh2RWxRyHBpqhZb40sTPbfuP49OcOrVmiWNp0hiMEsfSyoMK41QO05+niWZZwlpSJhOJkVUfTPclrWhoNOo79lchG7EAo1EL6VTLWSJc0r+UYFSaZKn6kVWqVPcNJCf2NB8k3Qd1Qk+LSY0TwVLlVX+zqaNH1DZTehgixQNJ50jIqkia83PJ6TqtxriT2uPIGMaiS+OsMekU4WktjbRlJRsNMi46JD2/2TLZ/mSjXLLPQjrqIfu78Dy+r/+rjEWhJP7Hf3aGg+LnTn+YWxRy7Bv5RiHHoSEbHqnwpKFxnzaU7fcDnjSMcbdysHPY3rg6n/YYP0m45mcV40JXd7u3bHhkvlHI8TyQux5yHB40bewX4n4W+XFyutnrs5+NO8E9Cca1Pa6t/dSz33oPWvfTuC4LJcOsNgOJvDCj1pHspiLbl6xk8zhp5PTvqr29xmunetL930/Z/Y7Xk8zHOH2L3w8boBy/v5BvFHIcHoQY+ZJO5zRQ7437XXjeyJdpNr9CevFRf2e/zNOfZ+vPYlw/lIojMOIeGdf2uH6kX5V5Pf25yh2gcgCoxXncYpbOJ6FyOWQX4XReiXTuAFU+XVe6zaSeRj0pGw22wwoTl01cN4zmgFB1GI36SN0g5zFxA6TGLMlzEec8yLqM1HWqv/r8bEJKVPdpzLRGNiDpecomolLPUpb4OW4Ox/2903u7va/a3qvMXhBAhH7gnxw5DoI8PDLH4SFOcKMWrHQWSYU0RyAdrQDbJ8xshkLgMR5Btt7sSW43U/lO76kcEIqLoPqa9nOPu4d0ewpKvyFJjqXaGCPmk01MFaa4DnIstu89iq+LBq5MiWzbSZ3bJ9oUNyOeh3Sbo/3ojHAG1Ngrn34ESTsjY5W06Y5YItKCRslYLD+ETJKtdF1pc30EcGcx+VzdTxpGvUbENsdl3FyPW6zHuVmSPqX6nI7UySpN7kcBdLfPH/ssTwqV4xCQbxRyHBo0XZeaB46FtrKBOeMkyocqJFFr1CFO6qN1N2UypPj6dHiaEsNJ4tRjcpyWIuolddqpFNMxoTFRYNxJATId0hfXFS6vxJkVt8PsjFSK7HQSJCMj+KPCBUUsMqX6oxYElZAoG+qo+phOVDUStpipKx0GCmyHaWbIo+FGOxG2ypIr0/UIz5OaFzvUnSymKv4/HidVRrgu3lsv43y8mIQChhvt0Y1VOuOlXcCMCZUqRFarVTFS950QMcekFFfXKHKp6rca9/TYAslzptqG0RBXZUWKamUMthUdIZ0hc1tNUd1/+r7SG7VkvtT/RGYjmSXqjksKFYp885Dj2SInM+Y4NFT1I+JNvjr2sywh7lkR5HIcPsZZSp42dsvD8aOELJnxzCsl8bd+5fyB6/mTZ97PyYw59o3cWZXj8JDiKGSRlkqGnReRtC9+Lz9x2s+/n/JZzsO4a9On73HchP2Q5fbj834Swtxude1GDsz2fRyPRCF779nxzY5Xto6siyFbLltndt73ugdlacjO5bh7TfM61Gt2rrL9yz4Tu9Wd7W+2XJpzkh73HDkOC7nrIcfhQdOkiV2p+qXM4cp0DrE52POluV1pAMCIKqBw3cT8rMzB6Xj7xGztOOhsKzUSKwdGxOS5awAAIABJREFUrQbR7/0Q7Y2XpSRxRkJYKf5pJ6Tcs64STnk+RmtKJh5aXMWc2VYGHL5xATPO4YDn4744i/X2RxgzLdzTLQwvTBIuaUBQtbEXpfk9qhYR9va/p1+xEsno/oIkElq9EKvr4U0VKV1ZJmzW2Dpeku+//RHRGxfQey79hSpWLySoSKdN6f4WRnfAsFnBr1g4Sz3WL8r8ClZ/2yBf+2CNqFpkcLyEs+ZjrvZwZ+tEhRM4S70kNbS9NsCr2rhHTAxf4Kz56Ks9ti4cwW0YlJelVLKz1KNzvkZ5yUMAQcVC9yPcIyblJQ9ztQfA4NSkTBu95ifJpHoLZQq9CHfSoHZtk95CmerVDpsLVdmeN2QYp+gurMl8Ev5UOUmOpfsyT0ZU0NH9iPaZAtP/aoXOa3Iey0seQTzGnYVycv/ipQU826B3okB5eYjuy/HR1/poZ+YIqjZWV3Iz1O8PL1ao3h1ir0kp7Mg2sRYfEcwewbMNrG6cAj1+f+vCDKUry2xdmMFZ6iEA7e4DKf3shVg3HyCqE/ivn4DvfHfkX0igEebnvRzPGLnrIcehQUk4K2T9seNEjrLZ+DRbRh8kWQBjLkCa2Z71DSentZTvOxF6ipMLqQyDaT+7qit9zYiUMttSxIqPoDY/ojqR5B0QjoUea/zr87NJBkvFlYBRYaD0ve4mrJS8H8sVqwya0Z3FJANjdgz1+VmZ/2F5JdlQZeWRFdR4ZYWY1PircVL1KM6BmltIbdDifo/MXUp+WW3y0temN4Vp0aI0/yBNEs0KPqm6aU0xODWJvTZIcniouRYnjsqMn7GEsqpfbSTV85OWelZ9U0iEpFRGyPjZU5vVrKgWMPIsZe85TeDMuh5Ov1IWf/NXXuCg+FNn3stdDzn2jXyjkOPQUDOb4k3r64+x3hXSrPdx7Pj0wpBeQLILRhbjRHvSBLiDYCcm+27CQDvxLPZi4o/7bC/eRnpzkVZQHKcauVOEyE5RAuPCFtOsf2BkoU4vkslmLbUJS9ejv/qCtPCk6lf1qM1KerOk2lLIbkDSOSx2GqdxSp7ZMqof2XLjFBfHKUdmI192Q5ZXodk277i//thG4b//5Rd3rWcc/szZS/lGIce+kbsechwaRBgiou3wvsc+90Y/y5ZTX7TZMML0+7u2nwkzVEZ3c34uMQe7p1tYb3+UpHuO4myFmhvItMatKXl6P3ea8NrNZBHInh7T4XOKEZ8No0wvONnFRPmqd5L23YuspxZRzbZHTvo7jcVun6f/zr6v+pDui5y3zthyWkoeW0Gz7eT0Lh6b/9H6d3p2VPimxOOby/Tfqp0wNZ67ikXVqiP9Hjf26XnKtjlu4zBuzMfVmSPHYSDfKOQ4NGhFB3N6TmZ8jM29wi4kWQnTWQKJ0/ACcoGGkYyDUa0sTeuvnEW/cQ/v4hmcjxeT1Ml4PuFsU/IPkCmUrZsPRrgRwnWh6CDsAsV3rkGtKlMMN+qEcay+CrPE82WK4e6mNDN3N5Nsl8NmBePmA7RaFTOVgVCZrEW7Q8R2VsC06FAUh4KqTcdjuQpSfUhzOmA7r4FyGWRN+cr9YTTqhLNN9Bv3ECeOot19sG3Wj03wyRw5jkzJfffBSGim6nvaZK6dX0jmkVRaaJUBVIUeijj9snb3AdGZOcx4TkYyaELSTz68Dq+cxVhcHQnHHJm7TJ36jXvb7iMYaT8d9pjcqwp5bdYwF1dH3B/KPYPnE7UasLIxknU0GriPZTeNWg30lY1t91XsHtFffSHJxgls83PsgnRJdfrb45AJ0R0uP0Qr5Gmmczx/5K6HHIeGqjYp3tR+6rC78SOL3VwOnwU8jf591u/xeSPLUTj1Sln8d7/88oHr+XfOfj93PeTYN3K6bI4fOYwLh9up3H7ey342LqztIG3sVfe463Z7f6eyu/EwnibGhQ7u1N80nsYCP+4en8c9Z3EYbebI8VlB7nrI8SOH/S5A+5VjhtGT60EWuIP2Zac29np/p/f2cz9PirRPPS1bvFv7TxP7GZPn3YfPCgRarsyY45kj3yjkODSIaomNP/klpr67wsYbTcKChuEL6h+1cY9V8Cs6lVt9Hn6xyvQ7XTrnJqjccWmfLQJQXh7iV3ScR0MML6R/LM7zYGmEBY3y8pDuCfmI9xagfF/Dq0NkQfWWwNkIWf6iQWRtu9/K93X6xyMiC0pLOsMSHP3dgPYZ6RvunI3QA1lOD6B3MmLqxTXWPp6K2waj6XKkvsnK9SlaZ9dYuT7Fn/3K2/zO0nm6Ww5uv0DtXSepSw805v6lz8PP22wdiyi0dYblCD3QKF6IiYffbjBoCYbHPAq3Hcr3Bb0FGB7zMJdsCm2N/skhRl+nclvH2hR4f6KN/St1vIZG99yQk2cecvvGNPXLJp3Pu5hLNsOSwNySC42YHyCWHMKypHWWb5v4dYF5tod7fwJzS0P3NcwtRvoZliPsFRP9pS6D1RJmzcf+oITxpQ36N2qYfR27DfaGYPXNEM3XmfqBRuvfvc2Nby/E4y7vB8A82yO6LPknxVXwfqKL/m4Vw4dBSxDUQ6rXTIKyHG8A77hP8XYBPZDtdH9iwB87/xEThsf/d+lNinWX6HKVYTlCO+byuRP3WB1M8LAjtSAGbYfpY20eLkn+g2ZFFG47RAWB2ddwmxHOqs7g+BDN1ykt6fRPDtFKQyq1AYMrdepXwWto2BuCrWltpL/1yyZeHRpXQzqnpJ6F24xovge1a5tc+/MTnPlFl4dfKFF6KMe/tBzQPlOg/DAkKOtsTeuEf/+dp/XvlyPHvpFzFHIcGnaTcM7iaZ6QsxoN6ZBKZVrPhllm286Gw+0VevcHQX76ad/fp63vIOOtdAyyOgxPSzZ8v6GQO91DFlmOwsIrE+Kv/9ODcxT+wrnv5RyFHPtGblHIcXgQAvZpNX2aJvaRkLuMKT0dkrabeX1cub3ae16bhMPakDztNj9tfQcZ793Cap/GvD3pPewHedroHM8a+UYhx480ntbilNbST7IYKsXBVIbAtPDTuPh5tUgnao+xCmI6nG6ccNRe97OXqFL62p2EfvZT12cJ+xWm+jT1qhDLqCWlq/WVjW31xDiMFB5X9VTXp1VEnyZ+VOYmxx8s5BuFHIcGzbYxj84l2gkKUa0s48nTce6tKYbNCtbNB9vSvnGeBiCJl1dx8sIuyPKLjwibtUQ/QaWQVjLKKv5eiS2JginTWNsFqc3QrMGH19HOxw70gslgqkjxk3U0z8fMxMyrtNcAvHIW0R0kEsD6yoZMQ12deCxNMmzLQ4PMbxHdWXxM+nhEunimlWgZpEWXssqLetFJxIRgNJJAeN52eulM2mi1sVF1KMnlJE12rYqwC4TXbibSz+mNVTqNt7o/JUKV1R1It6u0GdIKj7Ct4pjO6aH6OZIyW+llpHQeRtJdp3J4iIKZtGnOS00P7e6DRFpb1aW/+gLi6q3RDcbVW9spu1NyzUqnIZg9kuSvUM/miA5E+rn1fMJmDT3OwWH0XPlMxeOcpBX3RpNn5cjxPJBvFHIcGoTnITrdsYvgMKuMd2cR7ZpHmJJ1VvkMooGLiBfGkcXwGoh6DZZXQC3WsXCOFi92w9NHk4Q91uIjKXwTL/j6SqzT73kQ50kQnkdRLV4qUdTdBwggSi342AU0f5gs9trdB4RKHbHVQGPbYqEW6BHFxJU1eZ9x8ikzbsuop6wayyvwylnYaCdiTkadEQVIhXR+AuK2QSoYqj4oP/1OMBr1EVnkdE4N4bpoxH0jzrnR7iQLXNjujChVjshtx69phUpSG6SEK/CYNaaTOoHHSo0bbcTyQ8LYaqDuM2zWCE630BfbyYZTQJLrgXjx1lc2EHF+DGOmhbhxT87bsiyWcBni5y3JmZHtq22j3blHlOK+DNVznppnkRpzceceIaBdk4JTSXouNT7tDpoejMyJEBCK3PWQ49kiJzPmODR81gWXDmoGzpqkd8sDADvnnNiLQLfffinLwl517kS4G5drYCf546fR372u+7QulMMiWe4lq/1p3ENZMuPJlyfEX/unrx+o/wB/8fzbOZkxx76RWxRy5NgBn4Ykmc49sBtBcqd29kOg22+/lPthrzp3en+vXAP70XPY67PdsJd+wpPoaTwJ9lvfXgnGdhu//fdZI9ovIzhHjk+J3GaVI0eOHDly5NgR+UYhR45njN2kpNNkvWfd5n7LpiWbs7LWT7vtZ1nHftt50rYOev3TlAbPkeN5IN8o5Dg8aONNps/6SzK7CKbzF6jfzZlpjHotCZs06rXkb6NeG/myN2emMWemH8sPYdRrmPNz6POzSb3qWuXXHxcmudP9p/u3U+4F9XfWdJ2uM33NfrgF6jUdLbFT3art3eZwpzrUGI/r/27XZ8d9v1CcEkWOVdk30/1Q9WbHWZVVUM+A+n23+0y3uVOf9+1WQZIZD/qTI8dBkHMUchwedhBcetZx5FmffVp0SXEMtsMLO5kF/XG/czoUMY2w3YGMn3o3vkJWDTBbRvUvHf6YRB2M4UMAI4v8Tn3IbhZ2I9WNI99l+ztu85Etn35PXbuXTz/b53Rde20sduKGpDklwzv3Htu8JeOaaWd4595ImWEq6ibLDcnee3iAvua6Cjk+C8i3ljkOFelTdPakrqDeT5cbV3anU2X6xLmTWT39msVukQK73dNeGFcuvaAkYXaZ+0q0Fuq1PReR9GI17uSvXvdz7+lxGreY6UVnbJ92mqN0++ra9Fzvdn128zOu3LgxUMi2s1Pkx7j6xv2dbStd7iDRINm5SH++k5sqRD/wT44cB0H+xOTIkSNHjhw5dkTueshxqNiPSTZrCt6p3E6nud3CAseZxA/S751OhQepYyfsZXbeKynVQe5tP33eaxx3cx3s1Y/9XLvT9ePq3isMda/Qz92u3U/5/ZR70nDVHDmeF3KLQo5DRZqElzazKzN0Qi6cn3vM5ZAlDqq/zZnphGyWJRaqV1UuXbd6P23izZp7s31SbahrYZTcmCY5Zt0l49wg5vxcco1edMaSI7N9Vgt1moA5In2cuqeElKmuH9PP9L2mxzQ7Dtn30/1Lkz+zpv8sUTA9ftn5T38+bj7S9WbHKttOmoiaHqe0GyJNSsySGNNkxSzpNTsm6fLZ+R/X/+wznx13o17DOHcarWCNXCvQiMTBf/YDTdN+WtO0q5qm3dA07b8Y8/kvaJr2saZpv6dp2jc0TZtPfRZqmvZ+/POr+2owx2cWuUUhx6FBs8xE7jirw6/FUsuiOoEZ5xTQHEdKI584Kq93A4RjwdVbaI6DHssdC5ASzPOzSQ6JqFYGV8rfBrNH0Js1xI17kn3u+UneAKWsqHIX4PmYM06i369yRWgDF2EXtiWC4/5HrQbi7gPEiaOQykmB6lMsD5wssHEbSf6BOHeFPj8rcxHEi2x6gTTnZX4M1R/NtpN+aJDkE9ABcX4B7e4DojNzmKvVJP+B4cj8B0qSOX3vxrnTcsyU/HSca0BtXkBKOBtKVjrOS6Fg1Gsy94Eal3pNjpnnJ+2Z83MjuRjw/ORezZlpmWNhcVXO6coaotNN7tsAojNzaP4wyYcQsZ1LQsk/a7UqRjze+vysHOdUfol0LovEKhFLSytVxUjdT1w+eS5cV1pR4jlWuSv0onxW1Hxkc1robEszq/5qcf4PzfMZ3rkn24jVPUXcDq0pmUckGPI8oGmaAfxd4GvAIvCupmm/KoT4OFXsB8AbQogtTdP+Y+BvAX86/mwghDi4ZGSOzyRyCecch4b9Sjj/fmR+p+9pLyLdfuvZb5lse/txXey3rf3iac9pdjyf1K3zNK4ZV36/dahy2fJZCecTL1fFX/mlL+y7Twr/+YVv7CrhrGnal4D/Rgjx9fjv/xJACPE3dij/OeB/FUK8Ff+9KYSYOHDHcnwmkbsechw69ooSeNqbhKx5/WnVtd8oCnjcn76X9sB+6hnXr504FHv589X746IU9ovdIgV22phkXT971X/QaIXd2k+Xz7phstfsZ64+7SYhfe0hbpCPA/dSfy/G7+2Evwj8RupvR9O0S5qmvaNp2p94Fh3M8fyQux5yHBpEpYR47XU2j9mUlzyCioXuR6y/aGNtCurXB5irPQanJgHwKzqGL3DWpDuhN+9Q/6hN++U6/oSGsxFR6EXYawMi26R/zCYoy2usfoThCfoz8pEvLw+xegGDioU7adCb0zF80AOILAgLYPXBq0Pw4hafOyG/M3/h2G/z89/8jwAo1l14v0pxRdD9iQH2ByWiz3fh/SpuM6JyW8erQ3h2i3DVoTLfoXenhihEVI/2GFypEzQDqpcL9F53KX3sEFngNiPMLY2Zd0LWXpH9jSwwt+TrxKK0Am5Na/h1ge5r6AFJm+oeBi1B872Ipa+HlK8XsDcEnXOC6e+JZFwevaJRaGsYPvSPRzirOqWHsn7DF4QFeXit3PW597UCM++EuA2DUHo+qN/wWX/RxlmXBnWrL197cyZeHaYvBeh+/N6JAoYv0AOB29DpH5d1N65G6IHsE0AwodH8wRaLP1liYlEQFuDI5QFBxaJ7wsRraFTuRVj9iN6cie7L/jobEZuzBke/02Xj5QpeQ0vGovQwYmtap388IrJAFCK00pDK+9JNEZTBr0fogezTuS/d5l67TnCpweCkj9Y3cVZ1Tv3hW6xtleluOfi3Jyi0dYIXtyi9WyIoQ3FFsPGSoLSk49cFw2MeTtmn+NsVNl4STP1AY2t6myNgb8jy5pZG+b6Gsx6xcV6nfF/gNTS2jsmxKy3pTP5wSPiv33ni/7sYU5qmXUr9/feEEH8v9fc4IsNY87OmaX8OeAP4SurtE0KIJU3TTgHf1DTtQyHEzSfudY5DQe56yHFoqOpHxJt89anVt5O5dqdy+6lrv2XSJ9vdTPZPyw2wWz8+zUl2v2O3F8aNCewu4pR+P132oON4ULdAtl/PAk/yHKU/V+9lXQ9zL1fFL/zjLx64X7/w4r98Kq4HTdP+MPB3gK8IIVZ2qOv/Bn5NCPFLB+5ojs8EcotCjsPDDsqMWez3S/15hALup/xuoXR7hdkdNGRur/r3ujZb5kkXzv26NPbz/pOM40H6+Sxx0Gft087fM8C7wFlN0xaA+8CfAf5sukDMS/g/gJ9ObxI0TWsAW0IIT9O0KeAtJNExx48oco5CjsPDDrkessj61D8Nsn7vncLUdsJuPuuDcgs+DRfhaeDTtrvXdQcdyycp+2mwH87ITtc8aZtPUm5/dWiEn+JnLwghhsB/AvwWcAX4RSHEZU3T/rqmaT8XF/vbwATwjzNhkBeAS5qmfQB8C/ibmWiJHD9iyC0KOQ4N3oki1/7aGxDo/KUvf4N/8L9/nfZLQ8ya5CCIJQezr+O1hlhtA7Ov4TYjCm25vw3PSt+wVwf/pIsIdIy2iXbMxbhewq9HzL/4gPuXjhFZgrA+xL5fwGsNwYooXy8w8ZUVNr/dYuIrK7TfbREVBJElMPuyDb8ejfR56gcam7MakSV96+6kTues7JPdlryAYUlQuy6v75yNaFzW8Boa/bM+miXrc647WH0ofm2FletTTP1AY/XHA4y2SaGt4zYj+d6bIQDN7xnSZ/35LYadAvXL0jc/aGlYfei+5FO+XsCvC4J6SPG+SXFF0FuA8n2N3smIqOlz9Ncslr4e8vkXbvH+d84R1EOm59fpfrfF9Ffuc/tOE60vvxb0AKKmz5997V1+6Z99Ge+4z/SxNivXp3jxtTv88NI85TMdgqHB8HoF82wPywzxPmjwC3/qV/gbb/8M1ak+56dWqJge37p6Dqcs5/blmQf84O4c4apD6+waL00u882PXgDALA2xCkP+yMIP+bVvvUH5TIc3Zu7xravnaDW7bH67xck/eotP1o7wpdnbfOdbr/Azf+Rd/oMj3+FP/v2/gnfcpzrVZ7K8xXq/xOBKneKFNt21MgQ6xeYWg9USWBHWqtQlGB7zMJdsgmaA1jfRAwjrQya/byWciOWvDjHaJtPfEyx9PaT+foH+8W3XrdnXKK4I+sc1/Lrki/RORhhNlzDQmT/2iPuXjiHmBwCS1/BWl8A30e4Uk2eUQKd826R/csj0/Dorq1VEoGOtWoj/8ztP+b9wZwghfh349cx7fy31+x/e4brvAq88297leJ7IOQo5Dg3p8Mhx/udEPKdRJ9xoJ++pWH6lVKdi3rMw6rUkTl5pBIzza4/zEetFh7DdSRIw7eQ7zvZZ9UW97tfPnm03i3EciGzdu43DuCyVWStNuu9AMl7ZttN9TI/PXn1TdRqNOsPlhyP9yvIZxv29W3/HqVSORLeMaTPbL3Vf48ZrnEVrP+XUM5gdG5BzrTlO8myn61H3nW7HnJnm7eV/SDd6lOIo1MR/9ik4Cn/1xd/elaOQI0cauUUhx6EhqpdY+9NfAqB6d4g7adA5JU/mXh0aV0M6pwxmv9Gl89UFKndcNs4WE2a94QvWXzCxN+Rmt7ApcNZDVl+zsDfkabpyCwYtjakPh3ROyZOitSnYmtawNwSGPODKaIr1kPYZC90XVO8OKb1/l3C2if/6iaTP/RmTyl0fe7HNw59oUb07JLQ11l8wGZbkKVwPoPRQJFEJZl9jWBYUVzS6L/kUbxew2zD5sce9rxWoX5VRFr0F0H2NIx+FbJw3mPpwmEQdGL6gN2dSvxHQPmPhrEtrxqAJR383SPoVFXT8io7b0EeiAzqnTEoPo5GoBGtTRhSoMbD6EasXdZrvbVtRIktja1onKIPdhsq9Ib05k8q9YTL265+bx+jrTH9P4Dwacv8rNsXV7XFW0SO1T2Tkgb0hCCZO0/zBFv1jNm5DRpw4G9J6YniC9hmLQXM7IqLQi2ifkaf/yr0hzprP5lSB/rTBxkvSgqP7gvLDkKCs8/BNqNyWbW3OakxfCrDXmjz4YhWvLu+l9DDEbejJ86f7EVFB/q0iNaKCzuprFqWHgmBCS8Z79TULtxlx9v+RUTf1j9os/1uTWJuC7oKcw9oHa2y80UyiPAYtjaPf9TA8eZ9az+XhFxsYvoz0qNwb4jYMJj/qsf5yBcMXlJYDujMWlTsu6/MO0b8ojvwPCSDK00bneMbINwo5Dg3C0KjeHdKfMXn4hsX0pSAJc6zfiLB6AWBz96erTH04pH9MnrTKS/Kk5U4VmPyhVKrrzZnoQYRf2Q7vm3knxPAEzfcGeFNFJhZDykseoW3gNWyOXB7QPltkc1bj6Hfl4l/8BDqvTeFOGvhfPhmX1yjfkoqC6xcmcTYM3NemKGwKQlsu5PaGwN6A8sOQsKBRvdqBiw2aHwzpnjCJChpBGeb+uU5YCNmaNpI+Oms+/WM2Ry579OYdgrJO7ZOI0v0tvCm5MPgVnfoNuSHoHxdU7kWUlgPcIyahLV0b5WUdZ6mHPlWmvBSy+rlSMtaTVwIZXuoJuifMZLF1pwpYvZAHP2ZT+0SjfpUkTHHquytJaCqQbFoUZr/RZet4ifJvgtvQcBsa5aUw2bhY/Qirb1B6GFJ6KDc7E4uCyNIIfQhtg/KSh/PIoHeikNQflOWi33pPLvpBWafQiyg9lAtsf9ogKDvUrm0SFsrMflPgrLn0j9l0TsnNy/xvDLHXNln8qSpHv+uxNWNh9Uyc9Qjd1yg/DJMND4A7aVC7NqBzTmoEOetys2D1Amqf6EmfqrfkXEy/K5/B7vkaVj/CPVYhsuRmx9mA8q0uw2aFxqVVNt5oUtgUSShpUJbjV3pYxNmIMHxB5W6Ie0Ru9rypIuXlIbf/bcHcP5ehu3pg46yHBBP74/XkyPE0kbsechwa9qvMCJ8ubPBZYC8XxLgyWdP9Tp+Nq28cgfJJ7vkgYZDj+jrOhZPt805tKuzklhlXfr9ldnItpfufxjg3zW7uk93GbSeXz17jsN/30s/AO+6vj4RHzr5cE3/5F9/as+0s/quXfiN3PeTYN3KLQo7PJPa7GO6nzNPcTOwWvqbaedKwvmcZLneQMMhxfQ0zC9h+6st+phbVnRbeg4RYquvHZRTdaYOR7sO48uPuKfteut9PktVxP/N7SOGROXIkyDcKOT6TeFpfls/T4vAH7Qv9adzv09RteB7tPUk9f9Cejxy/f5CzYHL8vsKT6vPDaHrl7HWfNj7+sLQTflTwvDQOPq1uwWdJFyINITQioR/4J0eOgyC3KOQ4NESNMsOLfwjDC9E9SSrzpoqUriyz+pOzVO5KOr7hhUnOB3fSoHJHhjxai49k+mggrMiQye68fJ18+z7B7BFC2yAqSJKf5gZE1SKaP6R7vobhCwxPYK8N0PwhYcWhH+edCG1JNmyfKWD4UL8uY9+N1R5RtZjkkqhe7RBWHMzVHpsXjlC6v0VkmwhAv3SF9Z+/mNxHUDEo3d9i63gJZ80nqFj0Z0yOvLdB93yN6tUO7rEKuh/h3FxB2AWi6jbLvbdQliRJQHMDhs0KoW1QWOsTVhyMnkv3fI1CL8JZ6iGu3iJ462W2Ziwal1bRPJ/1t45T/6iNP1XG6npo/jBpU9XjTslEDuVbXUTBTMamNy8JhJFtElQsnKUe/YUqVi/E6np4U0WKn6wzODWJ1QvQvaEkO97q4k+V6Z0o4GyECUnT6gVYi48QdoFhszLSbve8DFssL3no3hDNH6K5AZ3Xpqjc6jM4XqJ0fwuAreOlhEDaX5DprSeuPEI4Fu2X65SWA6yuR1C1iQo6Vi/AXO3hzdYJKnKe1byEBU1GG8R97M+Y1K8PEMDDL5SYvCJTlTtLvWQMg6qNc3OF9heOEZR1ystDHr5hceI3uxirHcJmDW+qmBBfrZ4kZVpdj865CeoftXl0scHUd1cYNivJc+Ueq+As9Ubmh+tvP+m/XY4cB0ZOZsxxaNhJRyGL501YfBp4Gn1+UtIiHI65+7Dn62mQPfdT337beZrjkc31cPyluvhLv/jjB67nv375X+Rkxhz7Rm5RyHFo0IoOg69/QZ5cr95Cf/UF9E6fYPYIQGJlMFY7BLPHVlEzAAAgAElEQVRHsBYf4Z5uyZNVDFEwMRZXWf/qAo1Lq/I9x8KfKmMvttG6m4jqxMjJ3FjtENXKRL/3QwZ//AtU3n9AVCujd/q4p1s4Hy/KgnYB0eniXTwzcvI0FlfBLoDn4744i9X1iGxzpM96V1ogWFlDnDiK5gZJ+2lLgL6ygahOIBwruff+MZv695dkn+LrvNk6zseLRK2GrGtlDe/iGdnNxXZyf+r0b958QNRqYKxs4L44i/PxIu6Ls8mJWsGKy+mdPlGtjD9VTrQE1Ik/mD2CfukKRqM+0tetCzOU3r+bXI/ng11I5khZObS7D6A1Je/h5spj5QC0uw+S+3FuriRt6vOzRNVicmpX84Tn03tznokrj9C6m4SzzWTMNc9H2AU0zwfPR7gumuPQe3M+mev0fKjxtd+7Ia9v1JP6VB0AwemjGD03aV9UJ0bm07m5QtisJc+CtfhIPo92AVbWGHzxHKUry4kVTFy9hT4/i9bdJGo1EuuN3ukn/e+9fpTS/S3Zl+4m2orx2P9RmLsScjxj5BuFHIcGYWhU3n8gv3SLDtx9gGhNYa725Bc0yC9Vz8fouYTLKzhAuCzzzxiNuqzILlD7Jz+AooNWq6J1N4mzIEvVwI22LD/Tgvh63Z7FnJ+T7QP6ygbhRhvbLiQLX7i8gj4vF1nble6OaOAiig6aLVtQC58R90N0umi1KsIuIBwLrTWVuDyMVek2sG4+wIwXL4Vk4b2yTLVXTjZL1sqGvMVFENWJZIGLzsxhdT3EpY/QZqbRHAt9ZQPsgmwvXniiVkNufOwC9ns30BxHLpw1aaIPZ5sYi6sEp4/K+4k3I6pPeD7m5VtojTrB6aOYl2+h16rg+dhrg+257HSJzswR2WbiNjGQLhLNcQirRezFdrJJEHF/xImj6CsbRCeOyrGM59zouWjzswybFczVHk68OdNXNhCuC60pKt+7IzdOXgHNHyYbmLBZk5s5kJ/flXNcvtWVGxBvKOd7tol+Q6YPt0H2c7aJsdpB84ewskZ4Zg4+vI7RqMtxqFXlHDuO3JB0uljdTfSNNsy0MBZX0asTaN1NuZkEWFkjGrjJeIlC/LX7ylmEP0Q48XjfuDcyP6LTZeKK3GQAhGfmEMujkuI5cjwP5BuFHIcGzR/Gp7sC0Wxz5P1hs5L4ppOFa36WsFokUhaH1R6A9InPHmFrqiAXfruAe6xCaGuUUpwExT2ILswA8sQc2gb2YhvvdAvnY4gca/u0+cpZ6A7kxiFesLUTRxnGnISoKf3oxmon2RhQK6OtbCBqZUTBTHzmakPSe/0ozpqPudojSJ1E1SYBpIhP5VYfb6qIHo9LULUTrkZULSY8B2t+Dvd0C8MLCStysbcW5SlbWjtIrBDexTPSymIXaH/hGNWrHckr6E4klpD2l09SuSVP+cHsEYyeS3+hSuX9B4S2gdmaIojnprdQpr64Kn31hTk5Fj13hFuhuQHhbJPINomaFazuJlGtjHusAqcmY0XJshQbumUm8//oYiNRmoQK7oUjWL2QqKAT2hqGJyh+Au6xCnbBlAt+ayoZX706wbBZAaD/tReSe1LcE+/1E9hrA6Izc0mbasFWmwn3i+ekVWWmlVgBBscqOEtlcAM2LxzBWZNjxGwTN56j0DZwPpb3GVYc9Jij4Cz1HrOIqbkGcL94TnI84r55F2ZwJw0mv7lJcPoooW2gORmyLhDtJwVrjhxPgHyjkOPwEPNjwms30V99gf5CNXFDmLFJVlQnElMyK2sYXhU9PqkJx0K7+4BSbH2AI4Tx4m2vDRJTtHAs6t+5LTcQrx+lfKubLPxmfHqz3v4IYgvFsFnBuvkAvTtIFuVKR36Z6ysb6Cty8TUWV+XpNrZiaJ60KAQvLSRm88riKqI6QdisJf1RFhNztYfV3QSg+M413ItncG6uSALfjXuUVqvJUBmr0oStdTfxTk1S+d6dpN7EVdD1EreKKMj3jbh9rbsprRKOheb5lJc8RMGk9P5dtl4/Qen9uwSnj1Je8pLTePDiLNZin8r3pKVCWQoUAbH+nVXC2abcfHi+vMfYMqIImQDi0k3Mc6flPMbmemeph97pU/xEzqsN24u2G9D81iJ4frJJs26yvWGL5z9cXqGkTu61KmJljbJjSRN+PL4A1dj9odWq6F3Zntmakif11tTIIxlWHKzFR7LumZa0Xs20EFdvYTTqlGLLk96oM3El5ea4+wCnViWqlbFubiSWDH3gYsy0KMXz4h4xcW7KZ0l0utRit0x0Z5FinMPEiTerpdUORbsgLSmXrmDOz0KUc8pyPH/kZMYch4aDKDPuB9mkO/slkB2k/G4qfLsledqLEHcQwtuTXPMs8GkUFp8V2XO3vqSTWe3nWckmphqXfGq/z85ufVWJqcYliMqWzZIZj71UF//hP/rKrm2Pw3/7yq/mZMYc+0ZuUchxaNCKDoZTS/yy6mRlxKZe5Y9WX6BKpldxE4bLDzFnpuW1kPh11e/h8oosaxeki+PugySb5Lj3zfk5eX3cD9UebC8E2YyVRr0GrSlpFSk6aOoUynZ2QKO+vQgYjTrCdZP7EK6LFvdFdLqIE0eT06vI8BiGyw/RX31B+txjPgbEnIvM2GAXGN65N5K9UH/1BcTVW0l9SYbM+bmRsVJWGeUzB5IxBnkvif/d8+V9xe3ocb+UBYjidv8jJE8kXF5JXtP9TrfhXTyTcCrS9z0ybuq5YTsrpbJYsLK2PXbKAtXpjmzgiOcnfX/pxXpc9ktzZjqZx/QYa2rc43lKMj6qZwrQZlrSLXNnMXkGo1aDKD3f5xckgTXd/7h/WqOO9shiFFpOZszxzJFvFHIcGsTABYftBXRlTX4Bez6aK7/co4GLDqOLtvpSt21J2rt6C73oSEKd2gjUts32wzv3MOfnoFbFiDcQwnXRAH3FR7SmMGJimjJFb/30a1S+dwfOzI2Q/azFR3Ih7Q4wFfGsu4k5Pyf92HcfoM/Pyv7FZnENSURko51EIOip+xCuC/Hv+soGxAsIADERT6tV5WJ89ZbUaJifRUBC+lRpiNUmRC86yaKmFx20Rh1x94G8NjWWxrnTiJU1KYMcz4NyPYjWFCIm0qkFW7NtdCCK66U1ha4W7XYH5meTa6Izc1L/4O6DZFMlOl25QVleQTu/QPh7P5TvVycST3s420wiECBepGPXgeE4smxMiCRu24gX1ejOonyG0otsTD6kNUXUrKBfuiLneWVte5xjdM7XqH9/KSGyKq4MKgICJHdlcZWoVsacmZZ1uIGMvthoy3GfbaIxh+gOZNTL3Qeyv2yTakESRkP1nL60IAmTjgOpTZDmxJupWhWMx6MecuR41sg3CjkOD5om/caQLELECxhq8+B5aI369iKVMh8D6HcfEHkeigtuxKc2PB/hecl1yanOcRBxeXUOC2PLRDRwIbYkVOJFXoVC6peuyLIgNxWuiwBoTTG8dlOeKuONihHzDoTrEqr7ihdWxYVQCzVsn+zVqTXcaCf3P1Sm7kzCI2XxUAuiOTP92PAK102sGmEc+QEkrhAgYdQnsAuJRUTEJ2NVV2J6L26PIfHpWM1beO0m5vwcwzv30D50iTwv7lsnmTdzZlou7CsbiLgf0Z3FbTfFRhsSl01qnIijTlIn9pFnJoaa87TVQrVhOAtoRRmxgOOgxVwVFe5acwMZsTHTkhvXOJpERkPIUEljtSMtQFdvIeZnE74L8XUgCa7h8op8zpRVZWVtxOql+q+dXyC8egv9Ultu6FKWFVpT0N3cnnt/NKxTppnOyYw5ni3yjUKOQ4Pm2JIZPnsEd6og48Vv3EtIbeLGPYxzp9k6NYm91kxiyc352OTerNFZKEuiIpLsFiHJcFGtjHjrdUCqKapYe80forca9BeqTFx5RFQtovtHEW4gyXtdD7oDgjgsbxgz4LdelxaF/rSBsxFtR1AUdBzHYnOhmkQz9C4cwfAEfkWncquP3h0wODWJX9GpfbBGWC0mbal7Em8tMKhYFN+5hnZ+AX+qjFfQKX6ybUoX5xfkuBRMIttEv3wLUZ1Ar07IBSOO8IgqDloc7y86XYLTR7Fukrh3EitEs5ac+NXCGtXKGN62+wJIohj07gAtXpTVxkSR9pSZPGo1YGVDWglOHEUDwqu35EbKcSR73xtuaxQA4sRRKJiJRUEpUOonjiIKZlI2qpWTcl4cYTC0DTmON+7JegAj1iFwZ+sYs0cI4sgSXjmLAMSZOUn6bDUSRU+j5+IekyRM94jJ5qzB1AeeJB9OSRKie7HCkcsDgopF8ZN1grdexj1iAlPUv7+EezreJMRKo6tfn6X1zgZerE2hlBnLt2QExebXXqC85NE/ZlNzZ+Ucx9YSBbGyhnvxDIVWAzp9hJ11PeTI8eyRbxRyHBpCx8CfKhNUDMKCxtbxElZViu4EFQOreiaRPQ6qNhYQNSsEFfllafUC3IYuzfk3V0ZC6tzJbRNtBei90UQPJHG3cquP2zBwYtngsKBRXvLYmrFwCjr+gvwir3jDJJxOye6WgaCsY672MJGLs76yQRm2BZvWpO6DVXHkgg4UP1mn5PkEs0cIKhbdEyYzvyWFhdwLR+hPG5Qfhmz8zAWsfsTElUcMTk2y8YYKG23irIc8fMNi6sOhLD91Xt7HRsjaKyZ6AM0PAronTIblEnowSWRB72TE0X9zEreh4zXkYjX5wyGLX9WZ/42Qhz83ybAsMPsafj2i+Z7cKPTmdKw+9I8LKrcgKlTR/Rb1G3KB750osDmroQeTAJQeCsIC9I9P0rgaoQcC59GQBz/3h7DbULk3xG0YWP2I8pJJb97B6h9NNl+FnrQLdU4ZFHoV+jNmXF+VE7+9lUg8q3t2j5gUehGaP2TtT7yIsxESlHX8iQbDsoa9Iajc9WmfKVCnlZRvn7HQ/QqDlsbR78qT+uJPTmL1ofbJML6XCKsrnwnDC3EbhWST0D1h4lemiCyN2rVNto6XWH/rOJU7LkHFoneiIO/xYUhYcXBurrD89VmcjYitaYP+tHR3GD705h3cSZ3Vf69F/arcaGxNyznaOhZRuT2HvSEIXrQJypP4/2/uesjx/JFvFHLkyJHjRxhhntsvxzNGvlHIcWjQQsHWjIU7qVO5NyQo69KyMG0waIIemEx9OGTxp6pM/nBI70SFYEKj9FCe7vszRfrHNeo34Oa/P0fjasTDz0uf9+QPZX29OZ2wUCSY0LA2BYYvWH+5Qnl5SG/eSU7NkeVg9aNYhElaGXoLZQxfWiGUhHPnlEntkyG3/9Q0Ux/GfX65guEL/IkGvQUormjoQSk5QQefK9E7GTH5kUZYgM45weRHcOvPz3HiN7v05kr0jwtAWhUWv6oz700S2hpb03IRGLQERz40mFgUdE6ZTF4JePAli8bViPUXTPx6hNnXuf8Vk+KKxqAl0H1pITC3NEDQWwAQFFc0enMmtetw+49HFO9DZAn8uqB8X+fRK8ryIpL7GbTAbkP/uMagtR02qAfyZAyw/rJg7ndCDN9k47xOcRVWL+o03wsxfEFvTn7dhAWdzdkSx76xzs2fb1C/Cm5DT8Z68odD/IrO+suCym2d8n1BaBt0TpnYG4KtaQ2rr7F6UWfuX0pxpvLykPYZi+l3uqxerGBvCFbfDAkLBaKCxtaMhT+hEZR1nPWI0nJA/Ya0igBMX5K+f6sX4E4VcB4NCao2tWub6N0Bhl8kqFgyOdOmoHKrT2SbrL9coXLXl/NcsQhtTT5rfakEGVYcaWXaiIgsDWc9SpKauVMFDE+gBwLdl8mkVEI0wxfMfmOToGrTPlNA9wXNG0Pu9fJw9hzPH7mOQo5DQ63QEm++/pcT1TpRMCVRzPNHRICMnou+ssHW6yewekHielCiPcIujGRuVCqDkW0mevtK+VDp/CsxJyCRVxZ2AW+2LnMwxAJLqrw3K83x9mI7IaWpfATRGxcSxUSQKn9pgpsir21+5fx2rghgK1bgM1Y7Sd4EgN6b84mrIy1rrCAKJlvHS4BcjNJZMdUYKl6ByroIUkhK5SpwT7ewF9tSgClRGfRH7kPdixLCUtkSVfZI3Y/N88dLiavEXhskn6sMkqpfqpxwLPoLVblI+hH2YpvOa1PUPpDEStUnJajlXTyT8BBoTdF5bdvsr+pW4lh6d5DMleGFSd4MJYn96KUiRy4PkmdKRbOo/qrxCZs1gqpNYa2fZOq0Fh8luT+SvBC1KutvHae0HMiysYBSOneHGXNkxuUFUf11Pl5MFCz7x2xqH6wlypJBxcKdNHDWQ37w7f+Zbn8pYS/OvDQp/sI/OLgWyd9+/ZdyHYUc+0a+UchxaChNz4mLP/afytPYhEb/uKB+FTZnNez2aNn+cXkSBpJUv35FZ/WiPHEf//YQd1JyHax+ROVWn7s/XaX2ifSVr17UmXlH+rABwoKG19ASwlqavKa+pJW8s0oyBSQqiECyadH9SPrBY9/91oyF1Y+SdgxfYPVC2mfk6Vadete/EHD2/xrSP2azcd5g6sMhYUFjc9ZAD8Crk4yD7gvKsSVl/QW50NQ+CXEbOoVN+T+8Na0TlOXpOLQ1rF7Igx+zKa7IazunTMy+oH9co/XeMPbna3TOCZxVnciC2icRvTl5j24zotDWmfpwyNKXdZxVHcMHsy/YeElQaOu03hvSmzNpvzSkek3WPyxreHXwWkPql01KD0O2pqVFJrLk9YYvffHKGjH1gcf9r0hLhd2WlorSw5DIklYVPQBrU6R4CPLasCAtGlY/YuO8Qe2TCKsfsfaKidWHicWQRy8bRAWRzL8eCCJLw5/QcDbkPNW/v5TwDPrHbJxHQ3onCtSvD5JNxKOXikQFLZkLZ83HnSpg9UK2Ziwqd1x68w56ICj0IvyKTmTJZ9adlOPr1aEo94nUb2w/x1vTBr2TEZXbstzEYkjnlIHVh0ETqrcE7fOw9D/8T2yt3ss3CjmeK/KNQo5Dw27KjFlVv7TCYRpKE2CcUmFaRwAYUdWDndX40ip82bLqc1W3+ix7XfpVCQOlQyLHqRTupvY3ThFSjYvSTVCv6XLpurL1Zus8SDrlncYl3d+0WNVuyox71bXTfI3rV3besmqM++nPbvecVWgch3Q7Schrqg96WoRqzLO72/x/j2/SjR7lG4UczxU5RyHHoSE8UubWX/0SzfciVi/qlO9rRBb0j8uT7OCkT/l6gcq9iM4pHfesS+Ntm/7x0bhxcwu2XnSZ/q0Caz/rYn9QYlgCvx6hB2D2daKC9NnbbSh+bYXNb0uG+bAEUUFQvNCm+6DC51+5yXvvfA7tmMv5Yw/5+IN5RHmI0Zb/KmZfR3+pS3S5SvWWYPXHA6qXC3h10F/qMvFrFTZn5X3YbXmCHJYjIguMpsuwU6B438RuQ+dsxNQPNDZnNYIXt7A/KGH4EJRV3zXK9+W96r60BPgnXWrvOvSPCwpt2Y7Vlydrvy5PzesvmPGpVLD+sjz5F1dEEvGg+tY7KfvlrOoEL26h3SkmkQ8Kzqoes+91fvLPfZ/f/uUvYPUheKvLYLVE8b7J4KSP1pdRF2E5QvOl9cGvS17G6o8HlK8X2HrRxbnuEFlQ//wK7XdbMe8hSqwVAHxlA77doPuST/F2gWFZMCwJ9AC0Yy7Gdel2Ka7KcVn/XMjMd3RWL8rLJz+SPIHNH9tCLDmYfZ1Xf+oqH//z83ivbSXzWpnvEP6ujECIPt/FvS9dUXosVRBZ8nf1qh1zKb1bon9czs2wJKhd1+mcleMTFmSkQmlpe8zsje2DWPs86L5G9ZayAGn0Tw6x2gaFtvy9fNvEr8sIFBlxElG+Ly0qui/wfut3H/s/inIyY45njPwJy3FoiEzizYFG/apcVEEuxlYf7PsF3KbcJEQWFG47DFrbmwRzC+zXNjB8KH3ssPzlCLEkFyLvuI8eyEXDr0eU72sMyxG9kxEP70zS/CBg60UXPYCgHjK4UsdqG7z3zlkqt3Wsj0vc/o0FjKZL+XoBPdDQg3jRfreKuSUXZ2vVove6y5GPQqy3q4RxCHz1lmDQisl5H2lUbuuU3pULa3FFMGjC0X8jiXl2G0rvlmLT/5BhWVC7Jsek9DCk9DCkc05QvSWY/q0CQRlm3gnZetFlYjEmHt6T97j8RQN7Qy6qwYSWbBI65wTDEtgbgsiSmxSzH5v0+xAGOkEzkCS8+zrl+zqV2/LrwVmVLo3f+cUvEFmSWDnxaxWMvpyX4u0CRtMlsuCrn/sYUR4SvLhF1PRpn4fq5QJbxyL01UI8F4Lud1uYW9B73UUPNLaORfSPyx/z1+sEb0lex8Si3CQA6IGGcb3EsBzhtYYMmjAsa1htI3H11K5prH1O4NVBLDnxvQiu/hO5SdDuFLn9Gws0Lmt0H1SILLkR8G9PyE3llkZYH1K5rVO7rhPWhxz9N5JUKZacZE6PfCg3YJEFUz/QCMrSBVJa0vHrgsZlSVztLshNSzChxSGm2xsH40sblG+bmH2N2ichxftyk1C/KucEoNDW6b7ko/uC6t0hDHNxpRzPH7lFIcehQR/KhdDwBXqgYfWNEb989Zb0ZZeWY42D9RB7bcDqxTh98HEN63caOOtRzE0wY0a7R3ulQPO9Hg++XKV2PeY2fKQlba1fMGm8bRIVYPqS4MGXZJniikbvZMSpX3a5/bNFjv6jAkE5gnuyT5U7A27/bJHyfclxqNwSDFcc3Iag9kkcabGgFmnonxwSrJrJid/sa/QWoH5VEJTlyXP2mxFuw0APNMKCXFAUb8DqS99+7ZpaLAWlhwK3YTD/DwW679NdsDH70nfefC9K+ADKt231I4b3Dcy+ICpomFtQXNXpH5djYfYFjbeludtrbC9Sui/ovx5gtE2mvyfYOC+5E0c+inAbOtPfE/z/7L15kCTZfd/3ycyqyqrurqrunq4+Zrpntue+9sBiuAtgSeMgSK4AgRQPiRJNm7rCsmQ5QqHwEbYVtkKSQ1dIpihRDFMSTNK0KFsSJRMyCIYsADS55IJYLHaxx+zMzrEz03NV90zX0dVdV2b6j5fv1avsrKvnqAHwvhETXZX58p059X7vd3x/2wui3MJrSWqLFu/97hlmZ2xSW+Knpboi+Ax25oXgk970SFY9GjMuE3cDCm863D0nxpy7LpxQ159Nkv/1KTLhBpt/X0SsSN8TZ71M9bklnEaL9WeTFF73qS045C9CetNn4WsW9VlI1sSJvnQCUiVw35wgWROalIP/Zp2d+QXFo1A6mmLyrofTCKgcTFI+7lN4HRa/nKA+Y7FTEO+PgEV1xWLmgk991mbjkw2W/l2S1qRNa8rCaVqktvwuHwoQvjeH/3WFC39GaERyvz1DMtQUpO+1yV+xsFsB2wuO0kQs/U6V+2fF++65llobiSAAzzAzGjxiGB8Fg7EhZ80GLz31JxUXv8w1oNM1S0hbru4bAN30x3ryKPkMiLwIOlWxns0xsbjQkx4adtu8ga7nZJmu9mSypbCM/lflXojQKkev6fbtaL/1+3F+C3of9TZAJCKSSY8G+QYAKn+EngwrmihLbzsuW6blul3rOrDNMElV1O+iX3bOuDmQCara1250rVdcWb1P9jMn8b/1Hs7xI13U0pKaWp8DfV4BNbdy7RrPHyX97ppaf39+Bv9b73XNl+6nIOsKclMqeZTet2j2yIXTs8FP/fMf3DWuQfjZD/2fxkfBYGgYQcFgbHjYaabHiX5pkx9liufvRAyar72k2f5OgREUDMYBY3owGBusZALanVOqfqqSkKczebKMg36Sl+mG9dOjSmwUpnCW9coTItCVrlo/uTuL8wTlSpfXuuynfoqU96T2Qk+HHBxcggtX1XNSexDkpvAuXt51OpbjjY5Df7ZXymrZ9640yMeP4IWJq+R8OYvz6nSstxmNEpDtRbUB8tQvv8t5lqmv9ZN3V7bKcD6jayY/qzUN/8ZFu9iZdCcJmKZ1idYZd1rX+xt9HtiV0lyWj4tiiUZX6Guma0W8Uhn7mZMqbXpUO6P3U76LEvLdUnNT2m1mMEmhDB41jKBgMD74QpulfoDDjRe0DICRjSC6kTkz0yqroNwAvTvFXRsgABeudm++jWZ3xkY6P8jyR1uSJUXD3KIbntyorcqWSBEs+5hOi9TQ2mbl79QJSmUsmZJ4s6Tq0+Ftlro3yEPLQh0dbki6mUIisbigMiHSaIrshOFfOX9SwJGbXmKxW/Bwjh8R/by2FppQ0iJNdzhn3mZJCQmyH1KgkPf1TdDS5oNGs9ucMDNNUCp3CR5yTLLPcp3leHVTg0+3oNL1PqXT4t2gWyDRTSRRoUi+G15EuPB36h1TTiTMVTfx6NlKHS0TZHDhKu2I9kMKB1Lo0fsQDbOV/bESJteDweOHERQMxobWTJrNz32U7PUmN7/HZeHrDZEMqurhHFmimU1SW0zQmrLY/4UbVJ9bUgmBANIbTdbPZMhdbyvyo8yV+2y//Kyof9Jm+u0SLS3xlKDRFYyI9ZzYCLYXBdOjl7LIXm8qWumFVyv4QGMug7uxA8DVHz/NvrcCqis2y/+hwvWXc4qYqD0pfvJn37bYWj4SkgYJKuFkyREOkKGzZuk54eE2/YYIrfSTIoIj8cXT3H9BxOdNvp/qcl7bKcDMhQLVFZvasSaLX15l84SIXFj+yjb3zmTYmRdRFNOXWtRnRTSAoLJeYeHrwil0e8Emf6VNfWZZzOOmR23hsEhiFBJEASSXp0X2xHtttS4i4dYq+Ytb3P6+HLPnW6RvzeCnxE+J7ybw3GWchkf1UJrZV25SemE/k7eWqM+lqM84ysFPrmOyukwzZcOpRUA4M2ZvCAfV9KanaL2zN9pMXq3glGus/diKSuAk34WG29lErUqD6uqkoGwOHSidhseVH01z+N/UuX9M0Hpnb7TVuyJJnJI14ay5M2+pqBIvBamtoEOgFc4roJKNpao+dtNXc+ylYOHrDaoHU0zeaVM5mGDhq0Ut0Rek73usP5vEaRvUH08AACAASURBVArSKT9lU1tMkKyJJFn1WYfmlMXkXY+Jm9t473911P9mBgYPDCMoGIwNli9+lEtHU6z85n3q+7NUVxJM3LWYvOVx/1SSqTUPsFn7sRWm1jz2vb7Jnf8ozFZ4c5vF31qj9MJ+klWxwcy6+xQ1sKQVtpsiqmDf65sEqQStnNu9idR8nEZA+laV0tlptZG2QkGitpjAc4WneuF1sYm4mwHO2joLr2VoZm1akwGNGZuFP9jGcx2StQTZq2KXz153aWXFZlY9lCZ/cYvsjQkmbm5z/2yS5JbYNCe+4ABVpi+JFMr1ORunITYhd2OH7QMTIn9Aaob9v9umlbV46gsie2Ftv0tqKwhzX7TIXLlP+pYQgCon8iIsMiVyaSz9jtBc1GdEnoJkpcHk1Tals9MqAyJAaqOGn8rirpUofWKehfP3aBey3D+VJFmbIH9FCGjNuUlSGzVBpdxoYzfagpb7vkfphf2k77VJvHOVqfk56h+bZ+GrRfxchurqpMqZ4KdsklUhIO3/3Rae61A9mFKZONP3wlTN2TTNuUnm3tTMB2FaZ6dapxam+66uTpKqis02c+U+Gx+bJ1kTkQylY4KieuHVCtUwU6jdCshd96gcTJC93iZ7VVBTpzeaXP/BCWYuCMFl+v0dlV68tiCYHdP32iQrDVo5l1bWIXutzsxrVYJ0ktJZob2xmz7Tl5psndqn+i1ZIMXaWKTfXaN+epns9SapjRo3/pAI403fh4nzdwRleLvbpyzAwg9MlLvBo4VxZjQYG/Kp+eCjUz8sVNYgVPehjdvPTyp/Amlv9/OTWNdvd8rnprAaTWUPl/CPrqicEf78DMGFq112a+bnsBpNAjclOPwv36Z1ZInEelXkcZB26kPLqpyEzuHvVOv433qv498Q1gtQPzJPstIQuQguXBUmkUIeZ72sVOzRiA05B8zPqVwUev6IaI4KKzQvyHmT0SMqv8T8nCoXlCtqbmk0wU3hFfLw1vvCBn/8CFZlC39+RuWpkP4VMpeCGn9xUzx/p4h9aFnlZACh9k8cWulqT5pUgoNLWNdv4x9d6eTkeOt9nMV5aDSV2l+aT7w7RawTq2LNZV1hDgsA+9INrHwO706x48tydEXlhPCvrQmTTrh+ej+Dg0s05yZF7g5QZVWbYX4Mq7LV5QcCKDONfEei7wzFjY6viDSFhZEMci2Azlq5KWGyknMaRmtAx9dDjvNrwX+gXL+tnBLmT+8LfvJXXx7wP203/tGH/7lxZjQYGkZQMBgb4qIeHrUnez9q3icBD6svg+iYH6SdxzlfT8raREMzB/XpUfU7GvUwf3pf8BO/+odGrucXPvx/GEHBYGgYnZXB2GA5Dpbrkji0Ihy1QmcuZzpPYnFB/AvvAaqMM50XpywZmRB+lv+k17h0wEssLqg6nZlp9Xzi0EqnrOZpnlhc6KpLd2qTmotoH7rGFfZR75+sR7ap91NeB9T45X3Zjt63XnMhy+mblCyvIj/Ck3dchMnA9YrJQSD70ats3LVB7faLUIjWEa1L70/088NCvzDYaJkHbfdh9tvAYK8wGgWDsUHXKDwpJ8e94GHF9e/l+WHaHoaXAHpvgHvpzyjtj1Jvr/rh4fR/r/16XDAaBYNxwGgUDMaOYX9se50ehzl19Su711NbdIPqdUqPa1u/Jk/K0VNonCZD/65rLGTbUW2GvsFG64xyE+wVg+Z20Ol6GA1DXHZNiaDRiBUe4sY6ijZjmOujvrfRuep3bxgECB6FUf8ZGIwCIygYjA+WpTY5ZRrQ1Oe6ml1CNwtITgC5yelq+OgPcNBoCIcynSpXmhFmprvMH/K+biKwnzmJ/czJvpszCH4Fve867Ex61+a8ixciSgCk9Uc3MehkQPpn+V0XXvoJGRL+Tn2XCSdO8ND7JedbX4NdfQ4dAPWNUV/juPqi62dn0l3vgrM43zWmuPqifZXlZD91k5Y+J5IXIa5Off7tZ07u6oM+hmjb8q+dSXcJNtLUJPumz2Pi0EpXfZbrYjmGR8Hg8cOERxqMDZZtY+VzWBqBjU6SFNTryuO7fe2Gin5QJ1Qtf4DOCmiD+Bx69wdlwYcQ1DvkPYTfdQ/7LgbB6bzi5w/qdRUJQOihL5+V5DhWOo3l1gnKlS7SHMlqKDe6QM9ZELYnhR4JRyOeUoQ9B5ewyzU1NidkB7Qkw2IYtSDJlqSHPQCNpiIeArqJkEKPftkfHZKcShIWyfv6895mSfQpJFXSWTZl//U8HADMz5GQURpyTTWyKevEqogmCUmY/J06Npp/RRjd4UyjSJOUMHD8CFajqSINoDtKQRecdIZH9d6BWi9nGrU+QaOBFz5r5XNQb4k+HJ9TTJz2IcFL4V28rPJESCItfa7VuxCurZwvSa4k3ysVARG24+cyBK/9ZvR/kQmPNHjkMIKCwVgRlCtqk4oy73mScY9QK1Cv44esf0AXrTCgkv/4O3WIUuLqwkjYjqJnDuuRTH5eqYy1OI8D6sdd/RTX64JtMbwm25ebkL75y3440/ldlL/yvuyj3IzF2LsTIAFYO3W8sIzOCEnYlqRo9iVbYxhqKIWQKAU1mfSu+euif9bmVxegALVpQmedLLfeZYqRAoMUKvTQRy9MdhSEz+n1yrHK9VSJr0JtjOpjuptpUbUZ1m1r75Okq9YhN2E1v2HdznQer9HomcDKK5Vx6Lyjli58hAJD4tAKXphMSgpAkr1SZwbVBcSu91in7ZYClhSyjE+ZwRhgnBkNxoa9hkdGf8ANDL5bEHVmLJyeC370Vz47cj3/5Ht+xTgzGgwNo1EwGBusTJqtz71I7kJZkQlJYiWAIJXAarbVZ0n6I0+NiUMrBG6KxvI06ctFYWoAWkeWcKp1rHoL/9oa/rlTJNarNJanSVYanXpC4h5nvcz2qUWS1ZYiXZKkR9UXD5GseqQ2BMuil03jVOsEqQS+K/772K+dV+RMreV9og4EwU8QUhtbzTZeVpwe7UZbfa/PpZi8WuliN3TW1vHnZ7DqLXYOCxbKzJX7qj69//r8bB+YIPvGbUVK5KyXBZlPqIrn6WM462VFZlX94efIv7lB+dk50vfapC8XRf/fEURXXqmMde6saq9dyIp5f+cqWx8/QfZr1xRhEKBMHXJNJOGUdf22IFuSJEYh6ZB/dEXNgyRfAmi9dJb0u2v48zNivkKzjz8/I0iSXr8kCJVyGezKDu1CFqdaV/Mgx2jVW11zVN+fJXPlPhQ3aDx/VPVPrmtivaoItvxcBmdtneqLh5i4uS2Is8K5D9JJVTegyKO2Dwi2Tcno6a6VoLhB+8wqTrVO6ew0M6+td713kvTLqXbMW4r8K1xj+9INNj9zitlXbmLd3e106mOcEw0eLYxxy2BsCCxI32tjFzfZOrUPb7mgfuDtco1WzqU5N4mXTdOYy9AuZGksT8PTx+DpY9SPzKu6Wssdaly5aVDcwDqxit1o0y5kaWUdnPWyqqcxJ36w60fmcTd2SK7dw89l2PnIccrPzuHPz5DeaJK+XBT+AWUhLNjlmto8k5dvCxNGOkn1uSWSl2/TWJ6mXchS359VmwYI6mCnWsd3E9z6/lmSa/dwGgHNuUmSlQbNuUkacxm2nztIfb/oo7uxg7shNkO50fq5DEE6SSvnEqQS1FZzguGwEUBD0AT7boLATRGkBR2zfWhZbHZuivr+LP65U0z/zge0C1lyF8qkLxfxCnlBv/z8URrPH8U6dxar2cbPZcSG1RCbauP5oySrnmCIbDTFZtxoCgGkXMHPZUhfLtKYy2AXN9n4I6eF0NdoYlW2qB+ZFxk1QQlPIEwEzuK8oK8+vYxVF/TQ3nJBCQ3uWkmwRaaTbB+YwGo0Sa7dw7p+W9UVuCns4ibtQpbtAxPY5Rr1/Vnspi+EUdneeiig1ls41To7h2fxCnklEPnzM2TfuI196Yai/pb3ZD1yfe1LN3AagaJxTlYagtXx4BKe6xCkEsx++SrtQlZQVrsJWsv7sCpbtLJJKifyYj5DoWvn8CyN5WnBMDo/x+wrN9k+tagSqRkYPE4Y04PB2JB3F4KP7f+PxUb9+iVhj10WCXOctfUOvW24CUn6XZ2auLW8T/D8h6dIL5smefm20kzY5ZqgU37lbUXnKzUXUriQpzeKG4qy2Flbp3VkSeQuqOwILQPCkVAKMxQ3Ot9DamlJu6yfPHcOzzJx/g4ApRf2qxwQznpZUUHb5Zrob0iPHGgbBohcD3KMsqw8qcuTrtzEWtkkmVcvqs3YqreE1uXdtU6WTEm9XG8pTUBreR/Jy7e7ykg0lqdJbQhhSadWlnPiFfKKUrl+ZF6ULW52qLArW6Lep4+pscuxSEhNUhRBKkHw2tsELz0ntDkhJbZae6mBuX6b9plVtWZyM9cpr9V8FzcFXXXYvlfI08q5pN8N/SckLXYobMlyamzlmnqXgnpdaQ1UvcVNvOUCdmWnQzkdCpeNZeEDkn53TTidapo0qV2RY5K5KxLvXIX5OX7/+q9Q3r6lVAhzp+aCz/3K52LnrR9+6YVfMqYHg6FhBAWDsSGXPRB8LCnIYmSuA9CcDbWoBqCTyjhEkJvqMhPIZ5W3+3JBbF7hBi6dzfT8AdIjvX3nrkivHAoEgPJktypbbD93EIDMqxeVZzrQzc8fcvfLKARVV5h3QDnPRfIQyM1G94zXPfblXKj00XKcYR4BvV69Lj1qQ82xjIoI24FOqmQ1r5o3vnSElKmU7UPLeBcvkzi0QvvajVguBt2LX88vodJRyygWGfYXroOEnAf5WY5Vjj3aP93REuhK2a3yS0QiNVRZzXFTpfwO3zsZuSBzYUjBUOaliEbQyH63z6wKYTUyn9GxQSc3BtAVHSHnXL3jYdk/SP1uV64HIygYPA4YQcFgbMjZ+4IX+ZTybNfjz3UPfBV5oCd2gq4f1TjvfPms9FDXQ/dk+faZVZJr97o2bEBt1nJzi/ZLOlLKvsd5yEdJgmQ90bHq7ckNS/eMl+jigIgIUfo9fR6idMvyvtqgtE1P3+ijderf9fH4O3UlsOhtB42GCm+M1hWlZdYjMmQdsh9xZE1KsJGhr5pAo3NMQEdo0MvI90oXGGS98nl5Xxc6opEfvXgbokKexK73N0z0pIeqKsEo8u6ppFCt36LcXjeCgsFjhREUDMaGuKiHJwnDRGA8rrbH2ZfvNHw7z2U06mHu1Fzw2V/+kZHr+ZUXP28EBYOhYZwZDQwMDAwMDHrCCAoG33aI48Mf9H0vGCaR0l4Rl4egX9uP4gQc1+6gfn0n4EETd+l/9/r8g9ShI2D0PA8m14PBqDA8CgZjg5VKYj17tivCgLfeVw5vNJrKM11FGkC3l/7aPSD0mJccA8WNjuMedMXsy+gE3BTbpxbJXLmvHAulN7//rfcEf8ClG/g7dRqffEbE38t+N5pUn1si+8ZtYWMOHR4l94GKJqhsdbzaoeOMGP71lgu0cq7gBdCcIb1CXsTmh/wMIEIifTfRzRewti4+a3TNMnJAet+rOatsiTDDkPtBRlrIudGjTHSHTmtmWvFSAAQXroqQ0zA6Q9JFS0c/Gf3gH13ZFXkg+RPkOGVkBwjOCZ0vwS7XlNOlPi96ZII/PyOiXLR3oKt/CIdWZ73ceenC+dejNAC1ju1CVkUdBPU6zM+pvklnTvl+6X1Tzpjzc4qLQY5ddypVzp2gOBRk/+W7Cqj3Va41iKgJ69JXMTB43DA+CgZjQ86aDT6S/oz6HpcBUKcfBroc/eR3SZ+sO9rJ+qKfeznH6W1JR0O9XQnd+S6anClaf69r0fsScVTLMhqhi9a3h409bvz6dd3xslcWxri6uyiSIw6GcfXqz8X1o1e/46Dfk5EWcn2ijqvQcSDsomdOp3vOX9wcRB0aYyMrNGdI6TQb1yfdKVVSSSuH1IgTqB6RIYXlqCPlq/Uvdvko7DtVCD7zS6P7KPzqR/6Z8VEwGBpGo2AwNlipZPePMd0hkPJE54AKKZRJhgiv0Wh2neid8KQr8z5Eww6tc2fVSRzoOg3TaJI41Ekm5WinST0W3yEMuytudhIi5aZU2KDOVBiUK93JlkINgZ7ASZ5wg2abRD4niHheO09icYH6aVHeDedCaimAzslWntZluyFnQeLQiuKQkCF4su92hCVRhYrKZFqguCackLHQz0/ihPwB8lm50UmBRq1lqKXwlgs4GqOmCpkMtQVyXWUEhlqXcONtn1nFfu28EAQazU60g5vCkgyJ19a6whX9+RmRtEkmh8rnVKihGq8WDQGoUFXv4mXxXdv89e/6/DiLgvBLj1ywQgZK/9qaeIdkRM/MtGg3FBgAaDQ70Sthf/R7gZvCP7pC8NrbatzWjd3ZIw0zo8GjhhEUDMYHyw7paqcoPzvH9B/cws9P0g4Z9pJr96gvT0NI9uPMTLP93EFlBpD0zMm1e1RfPET2jdtqE7GfOUlQb2GFJgZ3I9ys3ASWRo+crLZIVrbwCpFUzOtlKG5g53PilBcSQW0f2Ef2a038VIL66WWhBg8pf+1nTkJxk0AjTmqfWQXAcx2chifYH/OTbJ0S1MDOelmR+ASphCCfWiux88lnAHC/8i0Atl5+lmTVw12jo65Op5V5QZpRtk7tY/JqEmt+Boqbgto6JCfyXIfUxqQgaAo3/NbyPuxCXghP83MEmtmB3BStbBL7tbVOZsRwnqxmW5hY8qv4F67ihCp1/9wprNBM4c/PKJMGhCfo0HwA4DQ8SscyzBU3FM8CiOyRXjZNK5skfauKdWgZLyQtkm1b9ZYaB08fw5Jr1mgSpBJ42bSY8+V9EBIwSRNT4/mjpDZqWG6KRkholb5VxS7XaH/qwzhrJQIgmJ9RApX8Tr1F48i8WPdGk+3nDuIW8lDZwU8nOzTN507hrN0TJpjmEj4omm5fjSQkWFouwNq6IM8CRWTlLxcoH59ipnIEL6TkJmF+sg0eP4zpwWBskDwK0nygQ5HeaGpgPQMhdE6vUXW6HssPdF0DutTl+n2djyHKzaBzIOjPSCjSJkkiJFMwa+3qdUn+Aala1m3d0Th+QJ3AVfvnzsJb73epyuWpVicP0s0ZuoZFncA10qaoej2O/0GvR2Vb1Mw1cVwD0fmU0NdI51yAjlpeETdpnBm6CUR/F+Qc66RIceYWPY23bj7Q58t+5qSghe7xHuh8HPra6u+vrs2KfSYkr9K5MXQOBelrIU1riUMr/N7NX6XcLCoVwuypQvBD/9uPMir+xUf/iTE9GAwNIygYjA3SR2GYbJFRkh7o9iGI8wnodW+QLf9hY6/1DvJ52Gv9j4NHoNccy3vyWq/7cYRWUb+Cva5bv7kcFb18UIYpP8wz0ftRHgUjKBg8Dhg9lsFYMcwPdbRMnJOhLBNXX/Rer7KjOtoNi2E2+37P6Z/jNqVR+/c4yIaGWY9h7su17vfMXsf/MOZh0Fj6lR/mmW9XYiiD7ywYHgWD73r0i2d/mD/UD7pBRSM1HuT5b3c8yFhGeTbKm/AkzqEf2CP/MzAYBeaNMXgi8Ch/gAf9yPcKlYvWEUf09DD6NeiaRC+NR6/NrFddlusq800058Qo/elVNo5UaFA9vQizBq1Z3DPKT6TPs3r90XWNE8hG0QTt9T2Je+5JFEwMvvtgTA8GTwQepYp10ElebgD9+vAo+jdI7T5qHcOaVoJGAy/8HGfG2Wt/4todVovSr6+jth9nrhimr3F96eXfMkw/RsXDeB8MDB4FjEbBYGywnE5M+KATpX7aSiwudKVF7nX6jDs1ytO0/lcvH70fvddzLJGTaa+T+qATfL++j4JhT6a9TtL92t6LGr7fekbXYVA9gzQWcWsaHU+/enSNRD/ha9h1ia75oDGMNL97oG82FM4Go8JoFAzGh1SS9sc+TH1fgtyFMqQSgtJ4rSTIcgp5tg9MMPXbFwRJULmGd6fYISHSiIfa507RzCbJXLlPY3ma9LtrXdTGkg7aun6b8g+cJP/mBpvnCiRrPlPn76lyklbXcx3ctRKJfE5dAzp0uyFRUumF/eQulLHqLRoh34MiMzq6QmMuQ7LaonoozcSdFs5aiY0/dprpS01aWYfJqxVF+yypehtzGTJX7rNzeBbPFT/qrUmb7DURZlefS5GseiQrDZz1MqUX9pO9WsNZL7N9ahHPtZi8WoFUQszf+XuUn50jd6FMc25SPCf5DST1c0iH7FTrivZ55/AsE29cFwRGYV1OIyB9q9pNlx1SNzvrZUW17Uveg7feh6ePAeCElM7ecoHGXIaJ83doLe+D9SqOJKBCUHMn1qtsndrH1Pl7gqMiJG0SPBEVWiEnQZBK0JzLqH7W92cFJ4LWB99NYDfa+G6CVjbJxPk7goiq0sAOaZLr+7PqemqjhiUpqEPio53Ds2RevajGCuCsrePPz1A9kWf6dz4Q8xTW5bkWU+fviTk8fwfr6ArOelkRWIHgw0isVwnSSRr7s9RnHZpTFou/JTga6qeX8VO2eqedhgevv/KA/+kMDEaHERQMxob0U3Ve/rmvAvB0eo2/8P/8KVIlm8b8Pn7hB36Z//IP/gR//cP/kr/21mfZKaU5c7TMhfPP8qkPvQvAVy4c54fPCkKiS9W7tFoplrL3uFJtc6+VJZNs8cG1BRITbfZNb/Hp/e8A8IUPKvy9v/1/8ee+9dN8cuV9bu3k2W6n+NtP/Tp/5Pf+PAATE9u02hlyExbF9RxOUtDkuG+uMPXxImdmN7lSTeO17rEJzE1sc+X8PhL5NJ89cYkD7ibvbS3x+2tPkZuo8+n93+CV9cN8cultbjZmOD1xC4Cyl+G9rSWuVPfxmaW3+XrpKb5n+gMAfuEbH+cLH/95AP7i+3+cv7z6Jb5UfhqAWzt59mfKfOXGMf6LE1/g3e39vJx/i8/f+V4+ve88v7b2PRzO3uNuXQg4P7PwBa439vGHc2/wp1//GT66XONKNc3hbI0r1X28VHiHP5x7gz/3rZ+msiE2vE+dPc//d+UoP3n6G1zcmufcVJHb9Txf/uZpPvWhd/nK187iFLJ4LZtgO0GmAAv5KvdrE2RSQqjZaR6m1YZkwqPVzpBMpPjkynv83998jsx0nh9cfZtX7z5F8f1VnIJ4Jplq0/ygwH/z2d/g81c/xqf3v8n3Tl3kr178HJXtbZz8Dv/t6r/h83e+l+uVGX725C/zl977Se7emuJTZ8/zYv4Kf+sPXubckWv8WOF1fn39ebbbKS7cWsBbdwh+ZImFQ/f58YPf5Be+8XEADu0vcv5WgfRkg4X8DoXMFm/8znESx8SmvpAvcny2xm/87inOffh9AL7+3iq/8In/nb/8xh8l9Z+lAfFcfWeH/371S/zVi5/jxw9+ma+XnmK73eZodp1qa5PX7giWzFa7zdnFEj9WeJ2fvfz93CtN8dkTb3PppwrcKM2SSZX5V2d/iZ94+0/y/z7z8/yVu9/Llf+021QUYJgZDR49DI+CwdiQTy8FH5v9cZW4xwsZAiW1L6BOhVazTXNuEvf1SwQHlwBUUiMrPPXrJ8jEelUkNwopgu1MWj0XXLjK9svPCiZHUJTEQTopmP4QDIS2dgK2L90Q/UinVZIkmXjJLtfYPrXIxPk7qj/yeVlvkErQmMvgbuzgrJcFBXFIJ9w+s6pOll42TfJy2K/cFEE6KdqVDIHhd8msaFW2qL4oWB6tZpsg1Mooxsj8JLXVHFO/fUHMaagBkCdqmTBJ9kclrQpRPzJP+nJRJaqSGhVJke3PzwhSoDDBVfKVtwWltqQgzmVE8qWQltsLGS4li2LryJJiq/RCRs5ESBkttRRyTrdPLZJ59aLo78ElglRC9OnybbFGoQZAH0/gptS86knH/KMrXUm2LEn5rLUpKbNlMqjG8jTuWgk/l8FqtrHLtU5yMC2Rl6SRlonBgJCBtPNOqvfiwlVBABXOuZ8PmTPDscj3SiZAe6X4L6jUbinJYObkfPCpz//E8P/pQvz6S79geBQMhoYRFAzGhvT+lWD/f/WXsPbXSaba1G9OkV638ZMwc8GnPmvTmIadp5pMvp8ie8OnuiLuA9SP1cm+kab1UgXeyJGsgZeC2lNtDv9Lj+rBFFvLFu3JgOMf/YAPfnOV5nSA3bTwUwGzz67T+rcFNl8SdufUB2KjslviX3sCJm8GNGYstvcLjUJi26I17TH7TYfy8YD0uk3tWJPkepJUyaLw6Zvcr03Qem2G3MeK7Pz7eSpnxH0/GeAXmqQnmyRfybHyI1d55/wKTs3G2l/HawmXocQtl+DQDif23+XdNw8B4BTEHH10+QO+/M3TuEWhDGxO+9gt8KaFCt0pJfCm21g1cT+9bsNzFZKv5KicaZKbq9F6bYbW6W2hCWjZ0LJZ+RI4f/Eud3/7ADtPdXIuWKEmJT3ZpNVM4K2nSa/bNKd9vOk2k++ncDcDagcsmtM+wWSb3Dspqk/5TNyyKXz6Jrd/7wBuSaxNewL8lPjNaU8EJLYt7KZFYhua0+J6q9CCls30Own8pHjOaYo12SmA++wm1XKGiXfT1J5qYzVt7BakSjat09skU23a72exmxbtST/sb0B7fwNKKYLJtlqv2lNi3la+BIv/9WXe/cIJnI9u4v3+DLPvtSkfTrDyI1fZ2J7k/psF/GTA5E2b6lM+qZKYhyDlM/mB6KvdgmQNDvzEVW7/86fwUxa1A513bemnPuDi7z8l3rNmRxOw9LGbXLu1j/RkE97Iqfew8ew2+6a3qGyn8d/Jce0X/z6NGzeMoGDwWGEEBYOxIWfNBi9a37/rehxbn7z+oF7gcZS+D9Oz/GHWF8fiJzFsmJ4sGzene+mrTn09qL/D9Guv/RgFev29PkfHpb8fel+H6W+v97dfv4a5DvA1vkzFv9clKHzin/3Rvu3E4d9+7z82goLB0DBRDwZPHB5kc4wi6nEeDZ3Tcw/I9qLRD7KeuGgJGX1hua7IgRATox8dh/49znM+LjLCckWOAtlfvY/6M3r/o2OL9kPfqjBRQQAAIABJREFUJKPjlv9k1kn5nJ7PIM4rP9oPfSz6ZzuTVmX0OdPr1ue6V4RBlDMhbl7198aZme6s4+K8iqCx0mnxV5s7Zzrf9WxicWHXtbh3oleobbT/cfXEjbHrmjnYGYwBxpnRYGxoHpjk5n/yMZrTAdMXoLJqKbV/czogU7TwUuAnxT+3BO5mwPqLHgC5pSo756fJFMVzrUlRbmotYHvBYvt0HUopJm4JeTh7w+fe0xaf+cGv8+++co4//ulX+PVLKzQ/OIU33SbzQQq7JepI1kQ/sjfaVFcS7AjTOpl12YbH1rKDuxngNFcpH7bJX/GprhwhWYOJux71GZv7L7SYfD9F/oqHn7Sorti0J0Tdhz99lZv/alWpsfNXfLYXhLmlMd9m9psOO/Pi8CjNMQB3XxQmhWQNqs/VOfRrDh/8RMDsHyQpHw9I1Gz8VMC+twLWn4dEzaZxoIl7M8XMBZ/yj23BGznyV3w2T9hqzv2kMOdQEvbymXcsGjMW7uYytQPCXJMpWtQOiP4CZIoB919oKVW+n4T8FZ87n2qz+OUE1RWbeiE024T9yhQtWpNinTY+2WDuK2IjbE2JsbqfKVL6+jzNp+rMvOKyeUaYKAD2vRUok1SmKEwesu+N+TaZmwncEtjNgM0zYlOd+6ZFetOj+HyCyZsBfspi9t0Ga9/jkr8i3qX6jI0TWlzSmx71GYf0pkd1JcH0pRalo8LeldwSdSZrPq1Jm2TNZ2vZofqUT/59m+yNNl7Kwk9alA/bLLzWopm1qc/Y+CkZwSLacZrCrJK/4rG94NCa7Ji7yseFiWNnPqDwus+tH/JIridp/tyrXf+HAjDhjgaPHMb0YDA25BOF4CNn/3Os67dFxj/Au1Psyu6Hm+q6Fs0yKSEzMcqsjTrUKTy8p+oP65ZZF4N6XfUjKFe6MhXGIWiIjH7tazfUtTiV9TCqaL2doNHY1W5cPfK7njUymhUzShYky0czIUbHFTeeXup33ZwTN0f6+KKZPfX+Su1MUK/HlullNojWr5sQ9KyW0TmMzrlENDum/mzcHPQyZ/UzX8RBajL0udTXyiuVd5kepk/OBx//p3+sb71x+I3v+3ljejAYGkZQMBgbpI/Cw/BJGPbHuN/zgxj5ZP2JxQWVpnmU/j1Olr1R/AX2Wm7UMT3sOejnL7GXNqP16SnOFSKCqxRqJB6l34Xlurxa/2JX9kgjKBg8DhjTg8HY8TA296hvwF6okAcx8Um079zt2++4k+/jpuIdZlPvpX2IqyfuZDzIoe9BnEWHeS4qJMQ9M8wpXpaL1ie/y/XWoV/bS7t7Qa86jenB4FHDODMajA+WtYuKWTrRQef0rt8fBtENT3eGi3MY053q+tUZVfnvGk6MVmOvm+SDIjrOOMEhzrQhxxk33lHGEidMxAkqvfo+Ch5EmzSKEDfse9PPUXUveBh1GBg8CIxGwWBssFIp4TNw/Aj+tTWcmWmCel0QI5XK2M+chHKNxOKCIj3ynz6GFdLuShIiCMmSipvgpgSBUnEDH2i9dFZQQkuK4EaTIDclKHmv3AcElW7pWIa53ysqWl1JjBOkk4Kw6Py9TseLG1iL84AgJEp8+RsqOiDQyIok2Y4/P9MhB1q7p0iAdNT3Z3E3dhTJU+vIEp7rkL5cBOjypfCWC11zIImFJJkSCBrk5OXbXbTIdqONfemGIHhau9chXQrpnINyhfa5U4KYCBRhVLuQxanWqe/Pkqy2SF6+TRDSZ0dJqlRd2hibc5M4DU/MK+BdvIz9zEn8VAJe0/wT5Nw1msrfwj+6Iki4clP4uYwg03rnqri+3tEAyPnxd+pYJ1YFCdRmScxZPieopa/fxg+pmSluiPkLiaBwUx2SrUZTEEodWlEU19LEIP0XrHxOmCAW5zumCI0SO8hNKaIvmYDLOX6k8x5CF+mWlc8psqugXBGEUheuinU4tIx38bKIjNiOaHwwuRsMHj2Mj4LB2NCLR0GH9AfohUGagEep+o6il81cd4h7UMQ59vWCPnf9HAF7mR0k+sX6D2NisFwR2hnXF71MXHu95jQ6Hvlc1MFwr3hQ08mo9Q17/WvBf+jyUcifXAi+9xd/cuT+fPHj/9D4KBgMDaNRMBgfrO6TUNyPf1RIiG4oXSe2mE3UzqTxtfL6D7YeDaGfkAFx+kSc5uTpU5Wtd0cJ+Dt1UQ5ISKri8DQLiNPiTn2XB73snxdqT+zipjpJy3rjPPujnAHRTV9e0x0u4yIponOu90fecxbnVVRHdO78SJu96gwaDXEKj4naGBRREfWhkGvcq8+q7nQay+2MVdJKK4pmN6VO/BJybqRmIrG4IDReehZRGV1y/IioL9RkyL4O8vHoNc5eQtwu4cEy2gODxw+jUTAYG4bRKDypeNAoC4PHh8cdcfIoEadR+Ngv/vGR6/nSx3/OaBQMhobRKBgY7AHfKRvPdwPMWhkYPBhM1IPB2BGNUOhXbi8e4MM8F3e/1zW9vl5936un+jDPDZqjftdHnYd+czBMfePGsP17HOPoFeUxEqKmh0CER476z8BgFBhBwcDAwMDAwKAnjOnBYKwY6LylYa8q5GGeiyszzLVefd8rY+Ne+zro3jAkScPW96A8EY8Tw/bvcYzjQaIwFIxPmcEYYDQKBuODZY20oY6iHh7FDPAwTAZ7Rb+QwgftyyAzRNz3vZIPxV1/mPM6jNp+GLOVLDOKGWDQOKLXHhaR1DDPyKRQxvRg8ChhBAWD8WGE09GoNMjRU280HXFcWWc6r9If94JMBywZI+NSUUvItMWy3VH8BEYZa6/Na5B2odf3YTBM3Q9T8zDMaTwaSirXyTp3VpAwZdIqtXQ0rbSO6FrF0VfLe9G003F91RkcdaZR/V6/99PAYNwwpgeDsSMuvhx2Zx6MkgLpMf3RZD7yu/wclyUwimGIjGS93mYJy3W72o1uEJLHINruMDH10Q1KH2M0R0MUKpmRNm+SE6AXSdGgudHrjfanFylWlCchypMxjPDQq5+96pZ/5bjbd+7CnbsokbSHwBHHaaAjek2ugTfEGPS+R+dJ8UXE8CnEfScmkanREBg8ahhBwWDs6HfCtVy3i3gormz0x1onFRqUnnhQXx5VuUGn+uh49THqAklc/UqY0e712qD69bFXvYPqjtYbt3Z7mb+4z4P+Doth10liVH+DB+3Pk+4LYvCdDWN6MHiiMarJQT7T67v5wTV4UmDMDAbfLjAaBQODb0N8J7ENfrfiYayfSQpl8DhgNAoGY4V05JLOXFHnwKhjmX4t6lgYV2c/D3+9ji4+/4jTYfTeMJ7v+vdejmp6/6L1Rj3nE4sLu5wl9TkbVGd03L3GHO2fXmdc/3o5BOpjHrQGsnx0fPqzejv9ohDi+tlvHnq9e/r9xKEV8fn4kYH9HBQNErcO0b5G+9ZVp8n1YDAGGI2CwVgRNBoquRB0/Auko2DUSc3THMN0x8JonXFOZvopXKULTqchbFNea59ZxanWCS5cFddyUyrZk0x37FR2xN8wBXI01bNXyONcugHzc1iVLRKLYeKp4oZwNFycFymvtURCMs22vyP65Uyj0iDLZFFeqawcE9X4NXu5v1NXCZvkvEWfk46IXhgNohIdhc6KMsmRTEDllcq7sjHKpEt6Rkh9rXRnSn3+JWS7MulSXHZN5az6zEna33pv1xrKOZNOmtFNWq6nTM8t19ufnwFQackB7INLcP22mjvlrJlJ490pdsaQzxGUK2puZAIp2V77zl3Vrr4e0aRV0c+6Y6wcR5wDr4HBOGAEBYOxwXJdnIm82gxxU9Boih/bQyt4d4piQwXa127sOmUHJ1bxv/Ve1wYLdGdtbDTVRu7dKYo2Z6YB8UPsyLbn56DRxHJTJN65Kvq0OC82f73PjSbOehMAZ21LbAi5KYJyRWwiYTm7sqO+e8sFnPUyVmWLYH4Ochn8Zhsvuw97uYCztk7ryBLO5dv4R1dEBetlyE1BI2zr+BGCdBJnfg4vl4HlAs25DJlXL+IfXcGu7BCkk9jFTeqnRSZLd61EkE7iX7hK8NJzsHYPnj6GtbauBBc/l8FqtkmEc996/iiJL38DQAlJILJq2geXqK3mmPjSmwT1uph3KSSVKwQHl3DKNfz8pNiEAevgEkEqQSLM2AhgVbbwlgtYzTbBnbtYM9NY4bMKjWZns00llNYoyE1hVbZUMW+5gBO+O4GbUn2xZqbBTWGFz3jX1sQ85nPY5RpBuQLpjhBgl9NCwNOyQcp30D93CrvRhsqOaCOdxp6fwwrXxoaOIHLuLKytq/cLEPMyP0e7kCV5+bYalxSUpCCj3uvwXdYzdyrho1smFuWN6cHgEcNkjzQYG/Tskb3CBeXGHtTrPcMX+4VXxoVP9oJ+stdP8HHl+hEl7ZWVcRQM8+ygfsLe7OR7CXOMQ6/5HabeXvf7vR9RjRJuSggMoLQqckOW71q/0Nth+/gw/Umi2SOzJxaDD//jnx65nt/+9N8z2SMNhobxUTB4ItArflzGwktVdi/o9t7oJhZHgBNnd5cRFpL/wNPMAsNAtjcM61+UqKeXrT3qj6H3dVDfBoWBRgmKou32e3ZUQSOuvn7C2yDiK32No/PSq6zUFIA4tXt3ivg74vQuhYT2nbux3Bhy/nXT2KA1iONeiOvzoPmWZXrBxxr5n4HBKDCmB4MnCv3i2XuR2wxDkKND1xhY6TT108u0sg5T5+91/A7qdWXnj62jh10d2HXijDtRRjfJ6P3oSdZr7D7Bx2lgop+HRT9CKl0AirO17/IbCMvFlR+2b7qQ1u+Zfusj/RFqqznWfqzN3FdckjUfP2mRvu9hN338lDgrTbxxXT2rzBz1OtbivDBZpdMEMfwVveYrWqbX3Onf9zJOA4PHASMoGHzXQTrgiR/uMok7d0kAnrw/4PleQssg0qRR0Ou0PcxGspf2hiGhGrZPcU6We+lbdP5GEYDk2lqbJTLfanD8S/2f1ddcd9CUjq69SKX69Xt3f0Z/zsDgSYARFAwM+uBh2Jcfpo36OwV7mZMHEYAetvAkMe61DQJD4Wzw6GEEBYPxwbJ2qcxluJuEbge2M2mYn8OXHuxhWWlKiIarSZu0VIPLz7JNGS4o6wKUI1vi0Ao0mnibJeX9Luv0d+o0PvkM6VtVggtX4eljnaiDck1FKnQ5y4Ve+N6douq33ldZt/R+7xXyJ00ScX4Q0vNezpEck+5Zr4ft6fMn+xadC1lOr0fOoROq5eU66eGVMoIAUOWkU6r09gctTDUMO5Tj6Jq78J6MYpF908ejRyzofZbvRdQEpPJhhFE1MmrDun6b4OASzblJ3NcvKSfH5svfg7uxg9VsYxc3qb54iMmrFazrt7HCOgA1TtwU9SPzpDZqIsrCTan31j4kolKsylZXFIeck+h7K+fLCJsG44KJejAYG/Soh17QN38VBRH+MOsbgw65ackfeQnddq42NI0fQYZQArH16vUP4xMwrMNfP1+GXo56vRw3h6lzWESTPQ0baSH7FXX4Gzb6pFc9vcr0K5c4FIabhgKGEozoCIUQn/Cq15zqCbbi3oN+/Rp1PaLrHI16mDq+GDz78z8zdH0Sv/eDf8dEPRgMDaNRMBgbrGSCxFznRKlzKAAqhlzGrfu5DLz1vorHl5u5fWgZ/9qa+i6f9+4Uu8Ld/J16Jz20PI1KnoTiBsH8HPahZYJ0knY2jd1oY1+6IU6uIZ8AsOsEqAsuUrshEefkF/3xjz6jOw/qToa9TsbyZN1FshQSOsl+6h7/OgmQM51XpFBBbgrv4mXVP6lNCcoVvFJZCFZyk9X4E+TJXNcIyDlXJ/dQexENP3S007h8Xq+DQ8u7BDj5rnibJdWuJO2SYY9+flJoe0BxaQTpZBfnAhqRFm4KR9N0OMePCPKskEsjSCexrt8Wc1yvdwmjcq70MF65jrpDZvR90K9FSZrkOiryK/ZmPjEweBgwgoLB2BC02uoHVm4Elut2NpzwhzKo16Fex6mkCTLpzkYtow6KG+pHWtVdrojNcLOEfWhZbBAh5Abjb5ZwQs94GwiKG7TPrJJYr2KnEjhr62x/5DgApaNJAJJbATBP9nqTqz9zgKO/6LM9l6L4fILm9AEmbtn4ySP4SXBLUDvgk6jZ+KmAVMnC3QzwUxY7BZi8GZC73ubms0nyV54ifa/N/dMuC69WaOdc7I2aIiFqLe8jsXaP7VOLTLxxXZE4eYU8dmUHclM0Ds+SvlXFLm6KjTKVx2q2seZnoN4Sc9powtEVqOwoNkKKG5DPsXN4lglpNoFu1f+ZVdpAYr0qyr1xXQgnR1fw3YRgMwz74ocmmPbzRwkaHk5VCDEsF/Cbbax6i0TIXuk328JcgyAmAghS4mfJWS/TKmRJrFfxz53CqdaxNNNO45PP4G7sYLspnFDQCcIxWvUWAQiCJIRwZ1U6zJpSANTV/VY6DU8fg8qOeMfSaepH5nFfv4SdTkM6TfUHTpK9WsNiBWttHX9+hubcJKmNGSjXaB8RY7AbbVo5l2SlgdVs42XTONU6TrnWZZJpLe/DbrTxQBFvJd65qgQkSTxlH1oWYyjqb7KBweOBMT0YjA1R08PjdgwbhbQn7r5+8pdmjmFJjqJq6ui1YUwqvZ6Naz9KbqRrN/aqOh/UZvT+oLaiYx12HaJjGeU96mUe6mV26NWHx4Xdpoel4Ol/NLrp4dUf+tvG9GAwNIxGwWDskD+2DzO6oJ8DW68ffN2JrB+invRik+rNQxB9Lq6O6OdejJAy7G+Y+nRE6+sV069fi9tER2kzen9QPXH8A3GIvi8y70Jc3b2Eh2HfuUF+JsYcYPDdACMoGIwPltWVSEePCpAe97otPertb+VzALG2cehEUUgPeiudFlSkh5ZVcibLdYUXenGD4OCS8FAPk0LZxU285YJQ7Rc3utpon1nFfu28OPkfXcFZL9O+dqMrQgK6T8ZRhzkJXXiRG1PUGVM60CUOrXTnvZD+BRGfgF1OfeHzeoSDPrfyGd2B0c6kQfqBhKr5qPe9YhvM51S/oomlgK6IBz1CRY8wUTZ62D1fh5a7/CdkP/WEV2rOw+RbQLfz6jMnsYubBLkpNs8VmLjT6pqj9OUi9SPzpN9dw5+fwQnX3wlzNwCx0RjyvdAjaOQcxtFU6xE4cs11zUj0mp60i0124VHlerAs62XgHwAO8E+DIPhbkft/GfizCBqKdeBPB0FwLbz3M8BfCYv+jSAIfvmRdNLgscAICgZjhdwclDNYo9GlwvfpnKQt1+3ahKSTHWEZmYlRFyqCel3YqMOQOwvhi2Cl0xAmU7IaTfyDS5TOTjPzWotWNkly7Z5IfLS23uUpLzfKxHoVryGIlxJrnc1POmDqP/oyI6HuyKh720fR2Wg0ZsawXSmEKIc3TZjqaBx2b1Ayi6KgLu7OY6HPoe5Uubu/ZeWgJzcx2RdJTKTa1PpkZ/Tok44mw5qZxplGOSbqwpJcayUwhKGF+nzIti3XVd+DRgNL+6wSW+UyeG4CL7tEbb+L3QpIbdSwrt8WZQ8uQaNJ+t01cFPYxU0hwNIJE5VrqeZFczR1plGfdQEmmhFSzRfdGjBnOi8EX03TE9UgDRsx8jBgWZYD/DzwA8Aa8HXLsn4jCIJ3tWLfBM4FQbBtWdafB/4O8JOWZc0C/xNwDgiAb4TPxog5Bt8OMD4KBmPDMOGRjxv9wgwloqf1aDrlUcIAHxcehy3928XH5FG2/ajr+RpfpuLf6/JROPsP/+TI7X7t5b/V10fBsqyPAn81CIIfCr//dwBBEPzNHuU/BPyjIAhesizrTwCfCILgz4X3/lfgq0EQ/NrIHTV4ImA0CgbjQ2h6iBLN6GpwYFfYmH4KlxoGPQQPOicyW1OdyzIyVC64cLWLiEjdDz8HjUaX+l2HPKnKEEFpvlBDizE3ACp1sK7u14URPbVwVDjR1fq6IKKX08cbNdVEVfr6nOi5L/ToEX1eg0ajK1yyKyeCfC6G5ErXAnWFTGpjBbrKy7BHqd7v0sCE5hY1NzFpm3WKbT30MGpqUaYT7R3Q3x85pzr5EW6K9rUbar2CckX0KYxS0EMloyRXsm79HYlba0VEpT0fS4nNnpkZ5yzLek37/otBEPyi9v0AcEP7vga82Ke+PwP8Zp9nD+ylkwZPBoygYDA+BEGXvVraueWPpPyh1NW+lmb/TSwuwE69y8wgNyRZztNsv2ojCtXY0rThpNPKf0HvjxQQ4rzzvc0Sdr1OQLj50M36KBH1F5AbY5dZQHPe0zfO6ElTmQpiNhrlWNmlsu6fn0HWo29EllvfJbDJObFct8v/osvXQGOaDCJ9iPZZtX+nGGvD100s0pwkx+qVyliRDbcT9dARfqxzZ0X46J1ilyDhTId/tQ1f1EFX4qdYU4HmK6BMC3eKygSkb/odQqbd/iJRllB93Prciro682m5LtQfmgZ4Y0DUQ5z0Edu4ZVk/jTAzfHzUZw2+PWAEBYOxwUomcKbECVHG5ld+6iPkL27hrJdFvHxIiGSdWMUqboo485D8aPvwLJkrHQpcqSmwyzVxGj13VjkiOseP0C5kqR5Kk77v4bkWyaqHn7JFLH5lh81PrZK9VsdZr4o63RQ2YpPrsiVLMqOwb8GZVVivYh1dEbwFoOLmAaon8qTvtXHXSoq4Z+cjx8lcuQ9AY3lazYmfsknfqgoegHSS5twkAO5aiXYh2zV/bdfp1BlekxTS/vyMmLd6S2XEBMT167exnzmp2rDKNeyDS3jZNHa1TjvbcbRMrFexGk2qzy2R3mhiN9rw1vtCs+Cm8HMZ2m4Cz3VwGh6tbJKJ83cE78M7V/GPrtCYy6hMje7GDlsHJlSmTh9o547ivn6JjT9yGoDZX3sd68QqdrlG/cg8rayD0wiwm77iJVC0yLkMQbONFfqblJ+dI//mBm03QfWF/cB+7p112Pe2R+5CWXE0bB+YIPvGbUXO5ecn4fptgpeew37tPDx9TPEf2I02zqUbeMsF9YPpz8+QSKcpfd9T5C6Useot2pLzIZcR7y8hj0Nli/rpZZKVBr6bIAjfC2d+jiCdVOsEKHIppZGQ9NWhYEOxszaiAZHv4RFgDVjRvi8Dt6KFLMv6NPA/AB8PgqChPfuJyLNffSS9NHgsMD4KBmOD7qPwuO3bOgaFwMWVj1P/94q718vrXvpxvAtxHAb65zhzRrS8XmaYUMHo2PqFR/Yab797o3AvSMSxUvabk0GIaoT0qBMgdk12RdjoTJchG6isK2pW6HL0JN7cMKi/uoZGIsqjMHlsKTj9c39qYH1RvPaZvznIRyEBXAS+H7gJfB34qSAI3tHKfAj4V8DLQRC8r12fBb4BPB9eeh34cBAE90fuqMETAaNRMHgiME4hoVfbcWpx6Fbb69f0+qI8AZJiWNYnVcvRtgd91+voNZao2j9aV78NthfXQb9ycX0YVOegjTPOHDFqH+NMM9B7XfU1ic6hFdmwvYuXO59j5nPUNOFx5eJSmT8uBEHQtizrLwK/hQiP/HwQBO9YlvXXgNeCIPgN4O8CU8C/tCwL4HoQBD8cBMF9y7L+OkK4APhrRkj49oYRFAwMDAy+jeHHugQ8OIIg+CLwxci1/1H7/Ok+z34e+Pwj6ZjBY4cRFAzGBstxcHIdVbzuVCejCnT1LnRIliQk4Y2eMlheV+mGQ6c13Wtd91TvKhvC2yypGH09j0Q0IRFabgRZr3SglOWlw5uMGIj2V3nQa+1LR07pB9G+dgPrxCpOuUb72g3hYxCmRLau3+44goZtWDPT+PMzKrJDzXk+pxImJRYXRJ6LkDNAnx9gV2po3JTyzfDuFDsJmSIkUlYk/beeKpmnj3WcDPtoJaCbpEm+C3r0hCS3klEZ1olV/G+9181hEc4T0JmrdBood69H6OMg/Tm85QKJtfXYVOEq5bX2/jE/J0i8jq6IPBLafelnoEd/QDdBmExC1cUdESnvlcpYEZOJgcHjgBEUDMaHVFJsmNN54Yg4P4OXTQsyo2trKpFT12alOxGGP9LBwSWc4qba/IN0ErvRxJHMefU6zvEjBOkkjblJQbRTrmA1mpRe2E/uwiR2vSXYAcMf9u2XnyX7tWvC+U9L9tPKCuez9K0ZSifypKo+6VtVggtXsU6sEhTy2M0lyify1GdsctfbuIU8drMt6jmzit1o47sJtudSOI2AjNyYcxl8NyEc4pYL+KGTIMD2SwfIX9zCK+Rx3JRIjpTPUT6RJ19v4eUyNE8t4ly5T+P5o7hrJexyje1PPkPmyn12Ds+SuXKf6ql9OI2AZPYULdch/e6achD1cxkx36HjoxRk/DABVf2I+J6sNLDdFNuHZ/HcJbJv3Ka1vA8rdNJrZ9Mk1qdEQqfclHBUPX9HrGNlR7AfAtXnlkhWPdKXi8rpD4SjoJdNQ6ONXdnBy2W4fzZLodFUSZQCd5XtbJIJCBNlAeUadij8BGdWscP+BAeXCMIkXwEIJ9VnTkK5prI/StiVHYJ6XTg7rossk1Y6rZI1WWF9firB9oEJps6HmSXrLdpnVkmu3cM7uiLayk3hhw6udqOJI+tZr4rGGk0sRMQFxQ2sfE5kNY0IRVLQcI4fgUtffYD/cAYGe4NxZjQYG/LuQvCi/QPqtK2y6smTW7h5qB/p8DSssg1qpzX9np+fFCmBNa4AoKMB0NIQ61oBXWugwt7iWAhDxCVuinNA66IrjmhOos59euy+3p7OvxCNrdfD7aLUztI5T45TT/EsoZ/8dfg7dSH8hFoJqQVRKZ8jtMrRfkfnTWpMpNDnLRfgrfd3ta9zLMi+Sw2GHEM0MZbOoaFDPtPFbRCub9y66e3K91I+Hx2b0jZpmi/o+CHoa63WJ9QcyHr0OYw6akq6bkBpP35/6zcoN4vK1jBxbCk4+Q/+zK5xD8I3P/s/m6RQBkPDaBQMxgfPx9kXUiMX8nCniH1omfbFy50f1HxOCAnptDhN67z70NnkQ9rdIDeM79dNAAAgAElEQVSFXdyEMFY+ugG2jixROpbBaQZw9kNM3GnhrpW4+4l5UlsBdiugNWnjpZbZ984OAVDb74ryQPaN22Kzyk3RLmTFCbKQVyF7gNJk+OHJcvu5g6S+9HUVimchTs0OdKn0dRW/1JbYh5YB8NPJzsbjpvAlAZJGeiQ3NWlOANQ8yhA7KSQ4i/MEoSaDylbHZKGdsG1E8LvcYJ2ZaRFGWDiGfekGQTrZxVEhN2BnZppACi2hhscCKG6KMMFX3sZJp0UIYbjR2vMzQkuC4E7w85Nq3QI3JdJMX74d0jFPCRpuV0vktVzAzolQWZnrofwDJ9k84ZC/4mO3ApxmQLLqUT2Ywkst0560mFrzAJi8JWi5qWxhnTuL74Y/jZdvg5sSY5+fwaq3sIsbWDpZVHGjS2jcZa4KBTvLdYXwFppFEosLBMUNJSTL9ZXz2b52A+f4Efxra521qZiDncHjh9EoGIwNOWs2+Ej6M92n/ggzovzx1BMT6fkIJLNjFwd/CP3UB538APqpWGcHjDIW6iFwUXIf+VlPBqT3F7q1D9GQRX1jjSPk6ZU9Mi5iYVCoot7/XhhULpqXII5cSi8Xl+BolJDKYe/HhV72+/ygbcaFxvZ6bq8hv/36+2r9i13hkRPH9gfHf3Z0jcKbf/hvGI2CwdAwGgWDsUGdCOfnsEJyIefdNcGSqGVFlN/bhSxOtY61XABQ9muWC3BJnL6sRlOYFVIJ7Gab5twkLQRhkTU/oxzbrBOr2MVN6kfmuf+5FbI32ngpi3tnHewW5K/45C9usf3ysySrHu6aEAasRlP4ToSOkK3lfThVYVO/dyZD7nqbZLVFbb/L5K2G8jGQxEikErRzLs5aSZxeT6xi11tYlS1xYg3JmNyNHZz1sjr1twtZEmv3ukwnVvgcbor7Lx0g/6+/qYiCrHpL2LkPLau6g1RCJcGS/hx+LiO0IaE2xg/9JAAx15IIKKzDllqBSrgJI3wapO1djpFLNzrsiIU8TmWHdiGLHfod7ByexXMtsl+7BggNy/3nBUnU3O8VsSpbInNj6BuRrDSwQwKk5No9YZZqNAnclCItKp2dZvrtEs25STaedclfaQMIoqjXznP7L3yY5V+/QemF/dRnbFJbAen7QqNQn3XIX9zi9vflcDfF4anwpSsds1dE8yMJp2TWUTm3QTpJkEqQWBdakdbcJOnLYSKv8L2UWjFJAa60SVIjI51yQ5MH0DHbbE08jP96BgYjwWgUDMaGJy0p1LAn9XGSQxkMxiDNS6/7UZIn/dqwRE+P+t2IEi4ZjYLB44DRKBiMHdI80IupMM7ZD+IZ8fRn5Oeog2FcQiaVqKgHo6HeJtCV/CjqUKdMC5rDnTSp6KmXoZPISPkbaKGJypku/C7biDPNyLoA5ZcRx94o5ypuzns9ozvxxTlrRudI9hM66cM7uQ92mzjirukOmjqkqSnaX90cEL2nvwNdJpSoA+T8nPA/0CIPAKX1kZEJUgOg5wJxjh/Bu3hZ5QjR16KfUKH3vZ+gqkw51m7OBHPWM3jUMBoFg7Ghn0ZhWDvvoz7BfTtoD3r5NOwFj3O8TyJtd68kTU8K4jQKx/6X0TUK3/qc0SgYDA+jUTAYGyzHwUp2Ngvd61tekymD5Ukymko67mQa1TTop2dZTtYTWza0EevJeLyCOOE6a+td6Yj19qLOj3pEgO7YF3W8jHPS7HXK1vsqCZO4flvlKYiespXHfSRXgQwb7IoKCUmDpLYEulNEq76FdUlCJ70tmQcBUARCuvOo9A3RQxy7EjOBIkWS660TPSmCI7pDR+UpX0+brb9TwcElFebplcodkqY4bZGsHxF1YumkWnq+h4imRU+9rRNOyfWMaoDks7q2SS8b5zRqOQ5RBHtLM21gMDSMoGAwPji2YOq7dENsUpUtlQoYOiyM1tEVPMAOQwPVD/TTxwDh1KiT9VBv4VS28DZLHaezRrM7BNBNCcFgcZ5ASwjkzEzjFfLYl250pS4OZHpozWwAoXAxMw07deHYJn/gGw21kekmDfldF15EroDO5tElYETMJbJNxTkgmQjDTU+lUNYgiark5iYZFQEVq2+5bkftrkVtKLZIyWuhbZp2uUYghZHclCAz2izhXbys+ufMTAuyIMmVoLFAypBBKQTIkM6ATuIlEQaZIqjXaZxexn290t230FQjHS3t8Fm51krYqLcUq6EUOoEuNk89xbdCcQMvYmqJ8lYoDobpfJepQTdrqPcicg3oEjyV0KaZSqwTqwThOrNlhAKDxw9jejAYG/KJQvCC/4lY/4NR1L5Rn4RoHaNk7ItzdtN9Cnr5LzyJauq94kkZ0zAmlbi11TVTUR+V6Noqqu0hNDrDhFyO0s+9hLXGmR6O/v0/O3Q/JN764b9uTA8GQ8NoFAzGhsDzwNqdUTCKQRuXfj0qcPR6Lm7D0M0BUYGjVya/R7GZjjva4mG2sVehw3J3Z8CM26jj6pXOjrJdL/J+6H87bfTOVhl3rZdpYBT0e2bY+oLAmB4MHj3scXfAwGAQem0IUeib0qDyvTYM+ewwdejCRFQ4eRAMIxA9LET7vddx9Hpu2D7HCXf9BL5BURePErIt/Z0ZhEFCcL/rj3NsBgZxMIKCwRODYX8QLdeN3eCG/TF+GD+8/dTQcfXv5YdfjvNB+jvo2eicjSIcDfPcsH0fdIIf5fk4IWOv/erX1sN4j+L6Gn2fuuYhJjzSD6yR/xkYjAIjKBg8MVDcAtoGGd0sdZVz1DwQTWqkl7dct5M7QPuhjzM1DMKgZ3pterrGY5j2htFs9OrLKBvlMGV7zW2/Z6LjHXR67rXeDyLojSpUjtJOP26EUTCSsGZ8ygzGAOOjYPDEIKrK7Werj7vWy6atvNBj6tXvD4tRT+Fx5R6WGaGXf8eDjCfuvhfTzrA29jhn1biy/Zz9omsWdXTsdQp/EE3FKGaTfhqVB13rx+WbYmDQC0ajYDBW9DtlDvsjP6hsr010kBPlw0Cv0/ComoC9aD6gty2/1/VR6nem87Gaiei1uHnuJexFNRHRccj7UQbJYTUEw/gEjIp+wtOovhRx9wcKcsHo/wwMRoERFAzGigdx3Ot3Eh2EQX4Ew2Av/gODhJNB1/cSPdCv/qg5ZhQfBZ0Yq1cbvYSDXs/pppZem2acOWaY9Yw+Z7kuicUFRZIUh6jZxTl+pKvuUU0jcfMxaF4MDMYNIygYPDEYxfHtQZzneqnCh/Ud0OsY1I9+9+M2mEHt65vWsH4O/eoelfp5WHNDXP9G3QRH8QHoJ7D02siDRoP2nbtd/AlxZfQ58i5eVtfj/GUGaZDi+vegzpFBYI38z8BgFBhBwWDsGLSpjoJRNu9R7NfRjXYYu/4w/Yyevge1r29awzg5Dqp7r06PowgpDxN70ajEmQOizpnD+Hj0E3z0d2pYX4kojDbB4EmFERQMxo5H8QO5F1tvP/TbxOPa7ueLEBU6FN1xRFugq8Rl2850vut6vxP2IO1DP2fRfn4C0fqjm24//4O4670wjBAzTGRCXLm9JNF62O/pg/hFGBg8TpioB4OxwXJd7JMnac5N0so6TP32BbY+foL0RpP6XAqnIbyu7KaPu1aisTyN0/BwqsKRrb4/S7LaIrl2Dz8/iZdN08omuX8qCcDEXZ9kzSe90cRzHdKXi3h3iiJ5Uy7D9oEJ7p9MkKyB3QzIXW9z7Q85BCkft5ggsQ3JGmRvtJm4uQ2A7yZIrFexKlsEuSkay9P4KSFv3z2XJFmDuTcbOA2P+lyK1qRNfdZm9t0GNz/usu9tj1TVx276pC+LREl+fpLmR45jN31SGzVKZ6eZ/fJVqi8eIr2xpOZrZ07kNUhvNKm/eIjJqxXq+7M0szbZqzVaOZdkpYHVbGOXa9Bo4hyfA2Dr1D6cRoDd9GllHbyURf7fv8fWy8+S3miSWK/SLmSpz6XUWC3AWS9TPzJP+t01qmGblRN5/KTF9NslKp85Rf7iFoG7iuc6tLIO9RmH6fd3qM+lSG80Sa7dwyvk2T4wofrfyiZJVls461WVP2L9kyKZ1OSdtlpzP5ehujpJ+l5bja2+P0v6VpXaao5k1aO+L0HxRxvsm95i4905/CQs/W5A+bBD9oYPQPZanfUPTTBx19tVl1w7ALsF+SserUmb7PUmTsOjtt8ld6GMXa7hFfJdicFsLaW0THQV1Ov4R1fw3QSe64hxXFvblXQqOLgEF66KXA4XrqpkWlajqXJx6GnILdeFRKa7DowpweDRw+R6MBgbctZs8JH0Z2JD4CQGhYZFQyD7oZfpQD89P6xQtLh6BoX0jZIu+v9n792D48iy887fzayqrEKhqgASAAF2gWjw2ey32j2jeXg8HnlnR2tLWnnlkCW/LTvslSXL613JsuywJMvrtVexDq9jbW+ELT/WG9Z6I/wI2QppLHlGMx6Pdqan1e6Zfg3ZJDEg0QQJgASqCo/Kqsq8+8d91K1EFh5sNkHS+UUwUFWZefPmzWTec8/5znfSUgfvte8i6Fe0HLYdBr0aydoJw65pWJ8Pcp77MT7Je34vY5U21oe9rnt9ppJjkqz1UDz7hHzy5//0odu99H0/k9V6yHBgZB6FDA8N0l7Ge72g3e0HmZwOkmlwv9zLae0kJ7nkPodxh99rHHxYW8NqWaS169bEOEhs/yDbDtLWvYzPsDYPY8zs93y8X77K+z02W+pl+KCRGQoZjg5CDDUEDkI83G81m1w9uitnsyr2p6don5kiWFLlfzcvHmfkvW1Ep2dLOLuVBU2/TDu56RPI6qgKRWjXM2Bd06ZMc7S+gT89RXRrxR4P2JLXgCrjrNuRp2bwVtaR1VF1MStrQL+8sikZbfaz5YufO4d89U3b74F+BAVVellfP1MTiLBDXCsjLy3YvppzymIe0e6q8y4uqZLMpsy0Lt3tfjalns1fggLRrRV7nCkdbc7pNbZU2e9atV/+W6N367YtFR3vtPHm6kSXr9rfQJd5Pn/Glhg3YywbTTUujS02PnyS5d8umPlPEr8j8UNJ6dpd4moJf2nVjr1BXCvj67BNtL5B+KnnKV27S2+yYkMootNDtLsD5zX31C0FnvRqmFLbaZ4T97vrOUl6MxiUj8iQ4YEgCz1kODJUxTH57eJ3HXU3HmkcJGPk/WSVHPbY/dz0HyTuZ/aMae9hy0RICz3M3UPo4XIWeshwCGQehQwZHmF80Gl3hz32gwjj3Mu5H8b2PhBkZaYzPABk6ZEZMmTIkCFDhqHIPAoZjg4pJXPvqZl7ZLA/CCQzKsznZH+GZTEYuBwLk5ZnYOLiXqkIUxOKT2D4Bm21TdSq9BZvDMT0DQ/A8gd02/70FIDiUzx3Du/Kjf7vel+Xe+H2xaTzuf005EfzmwxDctMnbNpfGgzHwrTlEhndbea6kzH9YXH+ve6P277p5373KK29e82uyJDhYUVmKGQ4MgjPw6+mpwwe5uV8mBfy+31pH2Qi2Ctrwx+rEaf0Z6+MD+gT3Ex2Qpw4HlDb9Fga0pxtd6etlB0vXx0Qgeot3rCfbfVOTRb0SkWiV98k0u27+7qyx+71ePSzKEybxkhw+2vJlw6McFO00dB9afSvyxlbd1tyu3TOmxzP/TIabHtDslMOElZJ7vtAjISMZpbhA0YWeshwZJBRZD+7lQjTVtSw+6Xrj9V2HSeCYJdSYLLKodnX/DXbRRDgPf/UwHfTlvl+kIlgr99MISXz7yDHmuOS+w1b0Zq/u4wU7SlIO5c73v2JelB7woyL8QgA5KZPqOwL5/rSxireUdkX7pgmBYjcfcx+yXuX9Ma423Nzs+oY7e1IGgbJ87kKl2nqkjZbwXkG0v4mjxu2LQ3D9jPnP2g7GTJ8kMiyHjIcGbKsh4cPwyblgx57vzMe7kXg6F73fRSwK+vhzBNy9m/+8KHbufL9fyXLeshwYGShhwxHimEpbQd9we+Vc77f8a5L3MTgTX5/t34cgPZEgdZsjrErSk8gCoSVhM43Q8KJEp2KR7fskd+KqSxs2fbjIIcX9hCdHlvzVUbe28Zr7rBz+hhRIBh5b5tuNejLNn/5PdpnpogLHvlWl9xqi8YLSoK5fDOkW8kTrO3grzaIa2XaJyuUrt1l5/QxgrUdvOaOOm9Vy/y+8S48d85KOkeTujaDlmWOCx7Fmy1kIaeOXVlD1Kq0XpxR51xoWj0EGRSIqyVEp6fuVyGn9ASuL6uxrFWRQQFW1pCnZpCFHFJfv7/aQAYFZDE/0J5obhLVJ1X/tP4CgNfYspLc/mpLaR6s6jCEI6EsikVkdbS/PexYTobRiLj78ScYf3WVzYvHKa518Ftttuar9vpkQb0CvSs3CF86S/HqCjIoWGnufKuLF/bYfmKEfCsieO3KAN/DXJOsjqrxc7gTRjcjTR8EGOBv7BXOMs+4P1aDjccvw0EIEQEflVK+krLttwGvSCn9B9+zDAaZoZDhyNA9UWb7oy9QXmiyPV/FDyWdikfxTo/t6TzFuxFb0zm2TwhGbktVt+FOj25FvTP8UBIFgm7Zo3g3olPxWL/gU7sW0xkV+B3wOxKvq8R2tk74FNdjbn4mIjfSQ94sEk92kF0PfyPH7AvL3P7iMdrnRii+W2R0SbJZF/TKkvym+q9y7M0W20+M4IeScKJEFAja4x5jVzrc/lAAlG3/O6OCuCDIb0qiAmydqOB3KnRHBV5HsvJSlanXetx9+hgjtyNufaZOcT0mzgu2pnN0v23EGih3nilRXI/Jt3KsfqbO2BUldhTWxyjebKk6F87ktnUyoMI54iCH3+khgwLLn6hy4pVtRK1s6z2gax0wUaL98iS1y5u2xkZnokz7Qo1Cq89CUNerx78jiV4at2PcLXtEhSl7DVFBkN+KKQc57jxTorAp8bo1yjdDVr9thPzmFOVbPfKtLs0LT9IeV5HQwuaYPTaeK6rn4NkKfkcy9uYG7afrLH8sYOY3Q25/KODE10Juf2SW4t2Y4t2Ixf/Gp/aux84knP3kAm99xxM8OXebK2/P8MO/60v8n5/7NIUNj/C7R6GrzilGzsBGnpGbs2yf1PUh5hp0Xx2n+/Q2YtGnsJGj8+mnyW0Jgo1ZvI6kuB7DhRrdsgeo64mCOQBVM2OyhtfpEVWUQdrTtR8Adk4fI9/q0tN1SOJaGa/dJa6WyGnDqH1mCv+1K8iPv0gc9hBffyxf2XtZPz4ZC+PIkYUeMhwZHpbQw7CV3C5VPN4fOS3ZnpsFcJD9D0ruHNZG8je3D3td237XPuwcBsO2HWQs9+v/Xud1z58c7zT+y161JO7lWfggwh5poYf63zh86OHq7z/60IMQwkMZCV3gY0DSo1ACfhz4YSnl9APuXgYHj6V5muHRgPB9iNlzwjKpapCQPUal/rl1B9IKGw1kG6S0n0b+M9gvm8KdMIal+5nzmiqDJhvBzQJIS/czfR04x9yscnk7stK56RN9dzsol3tzc1dfrGSzkZoeH7Pue8NoFlr+eOAaa1Ul1RwUBs49INfc0OEWJ83SyEczNQEra33Xue6jLOahkIM33rXkQzvuThVGUav2N7hpnGacwKZtJuWqQaV4es8/hby0MCB/nQbz7Liu/mFFvJIGnysLbu5hso2kgZGWypk8z67j7lNK8VFDCPEzwE/rrxL48h67//0PvkcZ9kJmKGQ4MsgoAqE08AcmO/ovS3dytw7whOFgEO+0d1U2BPDPn7G1Ekzbtg97GANmYothUDdgrm7LBptzmv6bl75p050sRNAeOLdh+JttZoIz9SDcLAXZaKq6CU5b0NdJsBPUyho9J/PAthF2kCtrSOhPvu22vR5W1mi9OEPldVVzArB6C4YHkNP1HFwfpLeybveRtTKeqRMBiKBAT6djGr0GAJqbwKiql6DrH/jnzxAvLqnrdgwHw2Ww90TH/f3xMaL6pKrXANZg8Y0BpWtCeKUi8aWFvjehne7BcZ8BM5bu5J00Bs19MNoVOX1e11gQQWDvsduGm1rqPgewWxPCHOeP1VQaaMIDLHlklRm/oP8KlMHwj4ClxD4h8Dbwyw+uWxnSkBkKGY4OQqgXtF4Jmhep+S6CoG9EOKvspIHg/mbFiBzBH9HcHJjczKrSn56i9eIM5YUmXFpAXJgfKGbkYoCgpo0E97yiWASd3mfPoyeNZL/Nb2blbSYf16MA7OrDsNWwOTewixzXW7yxaxIS+tx2Qgs7RDttRr94CYpFGzB2vR/eClCr4q2s298j+qvjHBAvbiAZLJhlDABTHMoWidKGmzFqXEMuWt+A584p0uLKGmjvgjtxR+sbsL6BLBWJ1zfwGkUiM6ZBoDwJumiW7xTNMtecFmZw00jN8e4xrpfGjHO00QDHq2XajML08FDSSMAZw6SR6W47TOXMRwFSyi8CXwQQQkjgH0opbx5trzIMQ2YoZDgyiJxP+Knn2ZrOMfkbS4pZX8zTmShTWFPu7N43von8+Iu0Jwq28l9Y7684/TDCX23ZSod+c5P203WKV1cIP3LestYButWA1qkCY+/usHHuNNsnBLO/epeF7ztG+b1xtp4QeN1jnPpsk9aHTxLnBa1ZjxNfC21/tk9WiF6cUUQ1sJkGrYvHGXlv0mY6eM0dm7HQHvdozUNlAaa+ss72fJWooEiQxfUYvyPJtyL8MFIkRJ05EQc58kt3ALWy3j59jHxrhtxqy66y46lxwoky+eakGo8rNxC1KnGtjGh32Tl9zFY/FK02OR02ECvrcHZWVckEmDxHL8jht9p0JsoA5CdrdKtqAsw3Q7rVQBNJ5xh95w6ymKd1oUb1UgPZ7tJ9uo4fRsoD02pDY4ud08fovDBB9VKD1nwVP5ymeLNF54zydBhi6sh722w/MWI/e80d2k/XyTdD4iBHFPj4odLdiDQhsDdZoRv4FNa29BiEbD4xQlQQFO/0uP2hgPrnmtz6ntP0yoKtJ2ImX4POqGBnSnDi1S7LH80DUFqFnUnIbUPtWsT2iVnym5LuqKB4N8brSkukdbMlfH3/TQaHfS51ZopnKlHWJ/GaO8oo09knotODQg5/aZX203X8pQ1yJpNjcUkZSzpLpvSVy8oTtLLbSH7UIaX8q0fdhwx7IyMzZjgyPCxkxgyD2CtlNe33g7R3mGMOQp68l348DkiSGYPTT8j6//Ijh27n2g/+5SMnM7oQQnwS+EHgFJC0hqSUMntRHCEyZcYMR4phynOuOuJ+xyb3S1NiTO6f/Gv4COZvbvrEUJU993zvV4Evrf8H2T+pSGlUDJNIjoW5rjS1weQ5k8caV3xSMdE9rwgCFXIYq1nlQ5cvMuxa3X+u6qRpz+1PcrvbXto9ddvOTZ+w7bm/32+83zYP8zw86hBC/GngN4DvA8ZQvAX3XzZPHTGy0EOGI4Mo5PHm6oiwY1nr8tQMQueSG6KaLWzkCOwA8Ma7u3gMgI1LA4rwttpANpr0npknf1UJBLmxflObAPrxaBOHN9tdDGQTOHwHS7JziiKB4jXIRnOAZ2Fg+RZTKkwhmptWvCfWcXo7BlpEiLCj9llcGiDPubwOQxBkZQ2eO0dutUF0a2Xg99zcrBoLQ5404+j2ZaOB9/xT6p44xaYICvg6+ySeGlcu83ab+OwssRZQAmWYyOroADFShJ1dAkzQrzEhdBaDQfvpOv6ZGVhtqRnD8BuemUeCDc8YxLUy8tKCIhk6WROy0bTkTaHvv+UHOGRKc1/s/dPjaQ0j5x7b7AyngJW5F4b8aO5/kqtiM0F0Zoh9DrTwlctR8UpFNS7fYhceA6fw/wT8IvBDUsrOfjtnePDIQg8ZjgxZ6OHxxv0KEeylm/A44SDXlxZ6eOKvHz70sPAHHp7QgxBiC/geKeXnjrovGdKReRQyHBmE7yPy/Tz0NFEbg2FyuMnV3jBRnaSWgvltPyTT2WwhITdPP7H6BHZpHMQ7bZtWmfQ6uH02q31RLNpzAHZF6k6Y7mrdrRY5EIbRXoJoo2FTBt2S0SbDw3d0Few5E/oMAymh01O7ylabYwY0E9AeAhQh06za3cwIK3+sV/+y0dyVmuiP1aymg81Aca7NP39GeVvA6j24ugluhomBm4roZtsk900+O8nS2W7mSm5u1j6ne5WrNu3sp+2wS1PBfyyVjH8LOA1khsJDisxQyHB08D37ovVNIsNcHWAg9BCtbxDXyvj0NQEANZGGnX4s2nH/ygvzyEsLeHN1ostX+xP82Vn8pVWVd9/u2knWnWhM7r5st5VbPSiwfVEJw3m6NoLo9JCFnNKX1fn6vWfm8XQGRk73T+i6Bn5zk7ioQi1RtYRnxIR2lKvfdanHO+1dWhHy1AxcWhgQW7J1Dpqb1s3tild5c3V6l68qTsH5M0q/YGoC3wn10HaMBhgIE5gQBKgUSqtdoOsq+GM11Wc9wdtaEk0lqCSuL8PUBNHiEvHLF8mtttTkrsMPJgNDFnL4zSJtnQlRWCvj6RCUeRa4cmMg1dPoQwig853nKd5s2bCMePlZxNIqfq2qJJDDGUSrTVzI4TlGE2EH/7y6RglQHcXXYZG4mMerjrJz+hgj79xCBgU8JyRgjC5j0Ll6FeYaAXDkmM12G0qrVfFQoRscTQjXeNt+8RQj79zqh5uufXH3/6NH3yn8Y8A/F0JcklL+x6PuTIbdyEIPGY4MJvRgJj9QL015aWFg5ZwmogTsynMfKPDkCCQlYVai7n7uvkkBKFGr7lIsdD0BfiKmblew+jh3hW1Wom4fkqqNLoaJAyWv3b02wLaddt3uca68cbK9tLE3HpykEqWZeJNxenf/Ae+Ko4WRvLdpKp1uH10VRLMaT1M4NN6gtPF274U5p3v9rtqjHXdtJBhDwPWwuIJMlreS8Ha5Y2rOb64tef3W29Ie1OH4zfV/vTv08D/fQ+jhDz5UoYcbQBUYBbaB9cQuUko598A7lsEi8yhkODKIIMB/8gybF49TeX2Zbv04Xtij+/FniQuK6Bys7SA7PVssJ5wokW+plYxAlMUAACAASURBVOb2RMHqGZgqjGa1b1Qc4zMzRIHP9nSeymKb1lyRkVtdtqfz5LdiRt+5Y1eNZtUrgfXvmOfY5xeIp8ZZe2mcyc9eA/oqheFEieLNFt2JMtsVn5H3tomDHLnVFne/8zTF9UhpDZyaoffSWby1LUS7S++ls/hhxPZEgcrry8TPzONfXaZ36zbe80/ZKo9xkCP31gLxc+fUdei242oJr7lDb7Kivk+qok5bJwPGXrlpPR/Fmy0az44xcqtLsLSBLOaJ9Ng0L9SofX3NyiibazFVJDcvqsqZI+9tQ3NngHIeF/PkgoIuYNRWss9BgXZ9jOLbKvd/R7cnQJ2zPkmkj/eaO4S6GFJ+6Q5xrUx3okywtGE9OtsXpyldu6u9Jepa/dWWrQAJIFttfF210auO0pusEGp9BRF2VHXNiTKB9gqYwlm51ZY6vpjHOzVjizXFoDwezU26Z5QHwlvpwNQEt3/nFOXbEcW1DltaX+PYl98jfvmikpIOe4osOlmD+iTbEyVGXlckzPjFU/Zao8kaudUGdz/+BAC1y5sD2grmvnpvLSBefhbZ3IHqKFRLxEGObuAjXxlJ/i96VJUZXXyOx8Ev8hgj8yhkODI8ymTG/Yhnye1mdeuucpPYq9jTXqvte+nvXgWQDtrG+93vQeJh7NNeGNbf3WTGujz51w7vUfjWH/pLD41HIcPDjyw/NcNDhYPki7uaAWm5/AdtJ7lv2jHJXHyD/Sad5HZDiDR/jRaA+2+vts0+0UZj1/7udST1CobpSexVJXHY94NOtHtVdLyfegD7tXXYvu+lI5GmO5F2zGGvb5gmRhqp93HWUsjwcCMLPWQ4Moh8jtwTs7TPTBG8doX47KyVRDbuWPnqmwOVD+OpcdAkt5zmAJiqh+LlZ60rN66V8bV8rskeMKENI68LWMKjOadl1WuXP1duID/+Ijmjv1CfxLtyo5+VYEiAhpyo49qiVrWkyI1PPEnxTo/i1ZWB/eOzs/jaZW2kn0Wnh7i+3M8AMAWawg7tM1MU316ylRtNUaR4ahyAjnbhy2Ier7FFt35chSecTAtfhwpEcxM00dLoGrCypnQszP3RZE+jb2HvmyYpxtUS20+MUPnqIrI6SuOFCWpfX+u70q/cGKhm6c3VkcU8fmPLjr85B8DGJ54EsG0Y6eM4yJG/uoxst+k9M4/faiPaXUVSnZulWz++S0vB3HfZaCJPzdjxyF9dthLf0NduiM/OEk6UGHn9upK4NloeJqTQ3CGnpbHDkxVK1+7a6/T1M9dbvAHPnUNq6e3ti9MEazv2mTTnd59Hf7VFqMM2huQZ18r2XEaPontmBn+1hVjI7/6P9Ig7hYUQf2S/faSU/+xB9CVDOrLQQ4YjQy04IT/04R8biBsbpntYH8MPIyKt5W8mT9loDrDxzaRo0hRFrapewK22jbnb/XRZ5K35KqPv3CGultTE7JzT1BAw9SFEp2d5A6A0/MHJjNAv9+2L0zbObwSewpfO2hoR7sSOjvEbESMjOrXx4ZNULzWIKkU78RnOwcjr15HVUcL62EC9Abe2hMvh8MIe/tKqrTEA0HhhgrFXbtr+m4mwfWZqoJ+GsW/2d8fcFUkyx7mGTTRZU9cfFFQthkqekdev28nZGD7x4pLNFDBja2CuBRgcr+vLVpCrN1nBb7XZmq8y8tmvE798UR2rDcFosobo9AaNJ31tO6ePUfjs15TIkj5PHOToVvJ4ndj2c/PicVUwTI+LqT3ha/Eqt6hYZ6KMH0aqDodTz8HU6zD9MbUfDLpnZqwRJGyWhmJ0mLob5nu3kuf1z/0tGuHtwdDDz91D6OEPPzyhByFEPGSTnZyklI9lXuijgsxQyHBkqHrH5cfGfi+AZf2bfPlkLrqBy5Z3meGmjaRiHgxmRSRz8V242QeQLhjkMttdzQCrg5DobzJLwEVSE8I9JkooBw7ThBhWljj52c1ucJn/ySwAl7tg9k9mBwxkFszNqpX0kPO712DaHpbF4maqJI9JG7/kWA4LNbhVGd3xc6/DZt4EBXs9SR2EZHVH8+wlsxfcz8lzJ59fd99k/9xzm/2+Ev4qzfhO31CYr8uZn/vRoeMyDIt/5KceJkMhLaPhOPBdwB8A/pCU8tUH26sMLrLQQ4Yjg/AURUbUqvblDNgVl0m5wxWtcdIZRdAemKxluz/ppYkwAbvKLkPfSBFGdMiZUJNiOMaYMQaJO2HjpMoBdj8RBKlpgwPQE5S5ZldaGOhLILfbSm56agJvZa0v22zCL0ZK2aRvkjAWpqesRgMwkMoHDUStilm6mbaSokg+StfBW1knurWixkt7RWSjSaRLNRtXe1SfVJUSry/3hZN22la7wly3CQMMiCTVqrDRQGq9B5NuOiDdrcWg3DFNpocaHY0BKeaxmg2pRN/4ptLyaLcHNBJ8/Wy6HAJzr41ORk6HmVhZs8+nvU84RkiiX1ZiG6z8uLmfVmOBvmZEdGvF/p95nCClXEz5eRF4TQghgP8RZTBkOCJkhkKGI4OMY7WqclTu4p02Uk/85gXtTni2VgEgb922L2NgF0HPTJBm8o4T20yboI5Ly3l3VRlhcGXvrordVaO7n7tSdPcxxoeXMC4IO4MeDT2RREldgeam/c3k/CcNLjE+hkz0y1VhBKxxFa1vqFW7U1/AHCs3Ggg9cdvVNkCt2vcwrKwRJbwEeZ32KdY3EK7XwoyfU1thUHWz32d3kibsIIpFctNaCdFoHKysKYJne1A3YuD+O1oWprZHbm6W6BvfVNejt5l97XU79zFyPAT+WG2gRoYIO0j6z1DSY5P0EAFWCMw+C3N1Vb9jfAzCTt/Q0R4wGYZIGfFfGL6EMhQyHCEyQyHDkUEUCvhPnhmQ73VXmr4mwsnqKKKYx9ccA6EJXv5YzfIAxMo6uem+NyE3fWIgtk2paIl1poCUKBaJ6pOEEyUWfzBCbucIVnKEUz3K38qxda4DXQ8x0sNbVbH1iafXuL14jGcu3uBEscWXfuMlcuda5HMRpUKXU9V1XvvKt1E+26C1WEMWYvIbPnFeUtjwqF2L2T7h0S3D6JLk+Gvrqjxeu8vmxeP4oaRTedLqHIiG4g5wdlbxKQCvsaXUHvX10diyAkBm9Rpp7QLfeBfm6gNeCRPeMat2XxfcYn0DcWFejW9jyxazMmEd8fKzqhhXsWgnM+uh0eeQ1VHQxFNhvAntrtWrIOzgucWPJmvwxrt21d89M4P/lirq1PnIeaulgSY+RvVJPFOASutLiLOz0Nxh5/QxRTRsbuKfn7DkQO/6MjsfOY/XiQd1JTSXIKyqayisbdG6UKN8M8RvtVn5yDjl2xEj721z99kK+a2Y4p0ezek8UUFQXI/YOuFTvd6jU1Gr/eKdHt2KbzU6vI4yUS2HQd+HqD5J3OnZMTfPtTF4/PExSzj12m3i584hvvGfdv9Heryjxx8BNvfdK8MHioyjkOHIUBXH5EeKv9t+T1OySyrmDUsLdDFsnzRlR9cL4e6TjEsn9xmGZJza7U9SadLtb1r/kip+bphj2Hik6SNYV7vrFndi7Wl/h42jyxlw60u453GR1l5yHNI4A/v1aa9xTrYxDMPuw16f3e8H7cuw53MYp8Hl2rheK69U5Dc3/s1ujsJfvQeOwh99qDgKP53ycwF4Fvg9wN+VUv75B9urDC4yj0KGI4d5WSZJfzIMB+L+/liNofRod2JPeRGnTYhRqIowRZev7jZOtBGRDCkkJw33mGTRpmEEu72EjpKTkNnXGAzGuDGTnDsxucTO5PUbuKGUYROgC0NWNMWOTLuGe2HO67brEiYjPQ7+WA3h8D3MffZKRfu76/43RqPpkykK5l6T6VvapOwSU125Z1dO2pXWTspdu9cSOc+QP1azz4bhSbh9T5aHToPxnBgeg2skmHtkwlnu2MY7bUTusST//2zKbyGKp/DXgb/xQHuTYRcyQyFDhgwZHmk82hLOUsrHj6H5mCEzFDIcHYTY5V63WQV6Je2u9NJW4skVsNk/uZpOehcsVtasW9fkse9UfFtToFvJ06l4FO8oXQVTIyLfiuz3zqjg+Fs7bJwrERXA78DYuzs2z3/rhM/xt3aIAp98M8QzsfSvXB4oZ+yfP0O8uNRfRTsrcDfF065IEytOQ/TMmeqSjsuaqQl6l6/uGg83/OIS9QCiMLRkQsNnSEsFNOe3pao1Y99t0/bPhBva/dROwy2xmQE6y8EluLopmKYN42EwMFkR8Y7mZdDPLJBhaAmbbuaBOafJMLChLud5crMkTOVJX3MsZHUUXws7WdKkUyo8rTiX631xvVwuqTXpaTHbpOyRIcODRmYoZDgyyNES4qlnVdGnxhaeTrkD8MdQZZtbbSXoMz6mFAkNuQ8G1P2MSFK3GlC8umKVGbv140r0551bVpmxNV9m7JWbSmVvokxhbYtepUjurQVgivJCE29lne6ZGUrX7lJCiTEBjL25wdZ8lbjgEaztMAKMrW3RvFCjfKtHvtXFb7VpXqjhd1TRqvKCLkmtBXSKqw1V2GpqgnZ9DD+coVvJK8PhwjxxpYgIe2zMlym0BoMtXie2BbO8Th1vbQvfKXy0c7KC1xkjr0mapa9cRp6aoTNRhvpvA7DiStvzVUbe26YzoUh+PSD/5TfZ/OQFAPKtiLjg2SJcotVGPjNvDR6piYRm7LcnSgRrO4hOj7YjQOV1ZpBg1Qa356uatOlRvhkSt9p0n67jLemwhBZzMn1tXahR+/Vv0ntmnk1d/Kr70lnigsfI69fpnplh62RA7etrhC+dJd8MCZ2+yLOzdCbOEwUCP5REgWD0i5cIP/4sHT2WG2fzjF3p2uek7RQcE50e7ZMVe2+lJp7m62MU1raIqyVi/ZwFazuE1YCuLmAVBSpUYJQXAVv8yjy/3vVlGp9+ivJNZSSYAl8bHz7J2Je+ZdNL40oR8bXHk8wohBgBfgj4JHAMuAN8AfinUsrtI+xaBjIyY4YjRLIolLu6cssHJ7cnMYyUB4Mr2mHEu73Iaea7IQIOWw3uRVAzK+O9+nGQ63SxV1GnYd6UYUS9+w035p4mBnXYdtLG2d2+1/EGafckbUyG3aeDtAmDBMm0Z2PYGKQJLKVhV1Go+bqc+dk/u+cxaVj8Y3/xYSIzTqOMgvMoXsItYBqYAy4Bv1NKeXtoAxk+cGQehQxHByEGyGfWBe7k+SdZ4CaX3cAlOoLSDhiYzItFRJDQIEicM82YcM/hqjW6E4ErDGSEcXqLNwbCAWZ/NyTiijOZfqVNSnuy8k/NWP0JM15uRoR7HfLUDFxa6Csw6pADYIl57li7fbekPS364woeuaqNuxQfwbrpB7QdEhoDyfvg3lN38o4Tz4VB5O7jjOcAWVKni/pLqwPHmvBMsl8Dn51zJvvrhm/cUMXAPdQkTPd6TOjI1t7QYYu0MQJHECwIIJ1z+ajj54Fx4BNSyi+bH4UQHwP+FfC/An/saLqWATKPQoYjhPEoHHRleNBVeNIQ2GuFvZcnIK3ttDQ+g2HHp13P+1nJv9/j7+U8+3lzkr8BuyZh1yBJpkWmSUdDusyxq5qZZsAd5D7u1de9vA9JT0laG4cdr+S2tPEyn1M9Cj9zDx6FP/5QeRRWgZ+UUv7jlG1/AvibUsrJB9+zDAaZRyHD0UGIgRf8MJe1XRUar0LKCzTNjZxMI3T3cQlqyVx1oF+R0sjzashinpxeoZqqgNCvTLmrYqJpTxe0ijYaA56IZArcQeBONAd1Wbv7pxlP7vgn4a7qkwZWmnGWXFWbVNS0azD3JhlGGeb+d70P7pil1UVIjhPgqHEO9sO9BrN/vNPeVWsi+dwka2GAUw8kkZY57HzJMJsZr6TR4pWKiOZjmR45Ctwcsm1Jb89whMgMhQxHirQJIVkESu2j9oucyX4vISSXSW6+u9vs+RO/W+qg6UMitCF32kRo+WjnOsTiDSQQAcKZtOzE5FynK6ZjalS415AUWUqOk2ssDeMApE0y0UZjgMVvkGasmbE3/U+OU3LfvcY72bekoZfsz0HaT2pIJA2c5Mp8L+0K91ymTbfOR9KQcyfxpAEEfR6L2eYem8YtGWYkJscrClMknCUgH+30SBQP4Q8Dn03Z9oeAbz7Y7mRIIjMUMhwZhOfhV9WLcy/SmItkFUHzwk56IpIr7bT23InKdXV7zz9ly0KLTo/Gs2O0jyl2/MjtiDvP+pRWIc5Dtww7T/QQIz0qrxdpPtPh2Ct57n64S341D0B3sktupEf1CyXufrjL5H/K43ckUUFQvtVj42ye4l1lopjUy7jgsfpCnhNf0wZHwcPrxLSPq/+y3bI3kGUhCzm61UDJWbe7ttSxW9rYH0OVi9b1I8T4mJLHbm7i0TdMRIK4mQyvGF6EWWEnC2cZLknaRD9gpO3j2Uh6BJIVIA8SGnG3DSMdJvdzBZHc/ZmasIWvTFolYGWWjby0KV1uskHcLBuxso73/AwA7ZMVlemi+R9AvwR1UFCftUy319hi++I04vMpWQ+PPv434J8JIU4Avwgso8iMPwD8VygjIsMRIuMoZDgyJLMeDA46AaThMC7199NmcttejPZhse79znNQqWd3+0HaTE64++F+cSIO2s69nu9eOQgHacMd87Rww173NY0/cS/XIcOQr/L5QQnnJ+ty5md+bN82k1j8oZ98aDgKAEKIPwX8HOBYTdwGflpK+Q+PplcZDDKPQoajw0iR3NSsWmm1u7CyRnx21rLTjXiPie2bQk8uZ8AWlAo7anWsiwCZVbX9rDkD4sI8XmOL6NYK4aeep3izZZsy+5nSxaysqb8obgKAvLQAz52DN95V1f5W1hDTU8S1MvLSgu2jrdKoc+d7kxW8Vhuv3UUW8/iNLXVMIYe/2kA2mqp0s94OyqscnqwAWA2AfKtLt5K3noT2yQrFmy1Eu0tYH8MPI+thAKy4U77VJbfaIl5cIjc3y8aHT9rCUx2tJWE0Ksz4Gv6FDAoDXAzTjj89ZVfSbrlnr1REnppBXlqwrH67zfHWeM2dfpllsIXBolsru+L73vNP2WJYtpjUrRVbiCqeGkdcX7aiSfLUjLrPuuBUmrfJLZSFFk3CLUTW3Ow/b1pACT02vnOt1rug77u4MI+3st5/foMCfthRRbQSWiDRrRV8/fwYDRHzHLveBVOyW9zZ/cp+HNZ6Usp/IIT4BeACSkfhLnBJSjlMtT3DA0RmKGQ4OnhCvQCX7qiXYrGoJg/0yxItSlMrI87OEr3xLjx3Dn9VqzbWynBqBtHYshOPDApElSJeIYe/2lFiTfpF7k9PqUqLQQF/fIx8q4tod4mrJSvURFBATo2r303FxnbXdtmfniLu9BDaSOg9M4/36juI2ny/381NvLk627paYvvMFMFrV4jPzlrDwIQFwokS+SCnRIacSV8W88hCjtK1uwB24pDVUXKr2MnMXENvsoIfRkSBT+6tZTovncUPIzwgWFNjGtbHCACam1QWtlQFxUqRwtqWMizCDu2n6+SbajXbrY5RfHtpwDjLrbZUX547R7saECxtqNTD1QZxMU/88kX8pTvQ7sKFeWKgfXGa0rW7xC9fxAt71j0vi3nk2Vl134r5vm7Q5Dlo7iCKeWJg8xOqmiZhh52L03j1MYKlDXjuHGK1oe79lRvEZ2cB6AVK3MoKGpWKhC+dpXh1he2L04y8fh0PZfyJpjplt36cPBAX8/QmZ7RIV8caVExNsPHCBOWbIfmlOzRemKCoDbPcWwv2WfGZstU8e2dmyF9dRtbKyGKerfkZygtNZbyAqqo5eY5ukCO/dMcaCLKYt2EL0emp6qf143TPzMDGY0lmBEAbBe8cdT8y7EYWeshwZKiNnJQf1dUj4522zTk3csqyod7iQpdAji5fHShOZPPxHS+EWRkaL0NUn1QrSqdyojmf20b40lmC167sylgwRoaNwT93TmU2MEh4MzLJBmF9TMk1X7nRlyY2K0XUStJMnLzxrl2dR5ev4j3/VN+7Ue0TvmUxr1bV5vqgHy/Xq9n45YvkVltsXjzOyHvbdhI2q3HjCTCr26S3RVxfttdhPQom+0Pn+5vjXc+L6Y9bQMpcE2D3MdfoSinHL18kf3W5/2A4HqO0FTphRxV3mpu1fXK1GUz/7LiZCVh7RuwzluAZmD4bboB5/gzsfdTX7d4ft4S3PKUVRrWBZcbcjol5rrVSpfF+mfO6/XCvmaDAb9785zTC2wOhh+m/cvjQw/U/+fCEHoQQfxuYkFLu4iIIIf5v4LaU8scffM8yGGTFODIcGWRbx4qLReUubjStkQAod7We0I2RAGpV709PKTGlWhV/aVW9oNtt+xKWjaaqJ6AndVkdpXfrthU/8qen8MfHVBvFIvkvv0nvmXml32+yEEwdBjfU8ca71oXtlYrEU+P9dsKOCp8sLpH7/G9ZIyGeGreHR7dWrMs899YC/qpOl9TGT276hPKC6IlHhB0VQllcQl5aUBOnCbU4BoOZGPNLdxBhh9F37uBduaFWze2uGpeVNTtRGcMnunzVGjry0oLKJmhuqknQEOrQ4YdisS8gpKsvxotLNgwgg4IlAnqlopJhXlkbCC+wsoZ4+dn+fZ+rk1+6M0CGtNCeC9Huqsm+WEQGBWRbZYvEtbIinzpGmtu/gfumx9I8Y0xNqJRE/dyY8TfHmusVRbWvMcZku60+62uKLl9V96bdJqpPKqNFe7jMOU1oQYYhMijQe2ae3jPzysj5xjfVM9doWgKj+b8gq6MqhNNoKmJp2IHosfTEfw/wa0O2/Xvgex9gXzKkIAs9ZDgyCM+zxXusC//CPGjXe/tkhRG9EsyBVT00k4pXKoJZcZnVLX03fbS+gT8+1i9QdP4McbWkDAvDCdBxYW+ujr90h55WE2SnbQv+2BUeDKxUCQrEhZxdVcbVEl5QwNcxe3lqBq4v25h0b7JCbkXrKjQ3QU+w4sI8Xrut+h0U+rUAHZe/9YhUR1VGnGbCm1WnMX7sdTW2uPu7L1L7V/8Z+dw5PLSnZLKm+hh2YGUdcf6MXWXbCc0JtcjqKLEOLZj+GGNOmLDBypoKOVxdtmMRbTRUeMDxstDcpPfMvOI4GG+Gvr+u6qLQE6b1phiuSFAgrI9RNLyCdlcZHVduKGNKh6Hily8So4ymAe/EZE1dd1CgO1khHzq8OVfVslYFx0Mg6IeUjPEoLswjTF0SbZzwxruIC/PI68sw2Vf2jG6t4DOFN30CubLWf+lOTZDT3jLR3LSGn0B5sEQxr57PYpHcnPYqFPI8hngCuDFk25LenuEIkRkKGY4OnpoSRa2qXM/jY0SXFhClIl6xSOn6Mj2HXW5lmi8oPoAwE6V2v0uzyjMeg+kpNTksrSLBpgGaKovxN76pJkqzgtYrVTMZsrKGREsHO2EQG5YICoqIqN3Lxp1t+BViZZ3eRkMXu+rgt3QGw9QENDct4RE9GYAmEmpSHStrytgAosuqz5Y4eGpGufEXb+A9/xT+yjqEHTXRrKwTT41z7PMLMD6GvHLDhkmM9yXS3+0qe65OtLgEt8BLGEXeyhqY656rK2JprQpvvGt1J7xX30Fqwy3eaauwAH2XvDHucm+1bV8s3JU62NW9r88d77RBu++D164QawMvunxVPRt6BS4aTeTUhHqWgoINg1hDSBtV0a3b5B1D0j5T15cHvDtufQ9fj5kJcchLamxNf00mhOdwYox0dW76xIBhaoK9JiQhdBhIXlrAr1UhKCii7PVl0M+TLObxVjrQS6ke+ejrKKwDZ1H1HpI4C7RSfs/wAJEZChmODp6PuDBPpAl+ca0M9Um4ckOt1uuT5JaKNpec68tqwjFu8+fOqQqJ1+6qSUmvHr2pif4kd+UGsZ5sDXHNP39GvXiffwraXctEF/Q5DCYGbfPZzcpYu4YNL8LEv725unLzr6wT1scorCmiYK46ql74taoiKwKensi96ijoOLfxoHidmGLYgeYm7ZfO2kqP/vkz9CYr5MMOUocyZDFPbvqEmqxNPw334PqynVBFrYpfq1oSnb+0iq85ByIo2FCGNXT0OPbqx/Fefcdmb3jttgpfjNXU/nP1Ae+N0RnwpiaU0QHWze9VR4mrJYQ+dzRZU8qWzU3l5WkW7dh7c3V1f6slFZpxQhtMTSii6dQ4vh5721bYIS7mkcVxvJV1vOefQpqJ+7lzsNqA6ij+1ARyZQ1xYZ5uRU3q+aU7oMfE5ciIWlUZRaDGLChY48X0oTdZgVffGajh4LXbyOefUpwPFAfGDyPE9TaxDkt4c3XlHTLhIfpZJbKYx3PGyWtsKTLjnUfeKEjDfwD+shDi37nFn7Suwl8Cfv3IepYByMiMGY4QtcKU/NjE9w/8liQbQr8YkHBc9aAmXDcM4Uo2DxTVSRDxeos3bAEkwx8Q15d3CfC40tG2fyl6CIepJTFMv2AvbYXkedP2T9uWVpPgILUPXPGpw2ga7He+NAwbK3PNaWOwX4XHtHOY4920S8OzOCiMQmOyPsX90pk4CHbVeniyLmf+8p87dDuLf+ovPExkxieBrwEB8Mv0ww3fBYTAt0spF46qfxkyj0KGI4Ts9nZVPXR17w0z3oQKaG4iwxBPr9IkDKz+zIqOnfZgtoJT7ZGwM9huwjBxJxNXOtqtEZGmze9OkkaZMG1iM9vRK22j9SALOXJaT8FUC3QrWEqdkeBWMzSVH01IwlQjBCxLPler0lu80a8V4GR/JPUnZFBQGg6ao2CO9c+f6esmJLIsXMlpUSzijyWyA0x2gZNFYPocLy6p+6xJqm42gGw0bcVIm8mix91UpTShG+MRMiEDc6+ThoAxDn09vt7zT1lpbRfDjDlLANXH7CeidFDDzLRha2qY51VnPrjG8ONY60FK+S0hxIdQgkufBo4Da8C/AX5GSrl4lP3LkHkUMhwhqt5x+e18x74v1LTvcPBqjXu14bYzrH3o8yMOu2L+oHEQtUc4mCKg217y82HaPazif0l+xAAAIABJREFUYfJzUslwmGfGlZN25aaTJaf36sNBrimtPsNR4XH0KGR4+JGlR2Y4OmgjNa2gDwx/cSfrAOxVzyG5j9nPtJE2caT9bgoL7WVgpEEEwcAx/lhtVz9db8V+xw8roDRQk2CfazHtJPd120l+Tttv2PaDTMZp5zLXmqz9kbafe91uUSUZhvb4wxgJaddk+vpBGgl7PbNp92cX5D3+y5DhEMhCDxmOFNYl7nABXHd2lHBNJ3kEgF1Rmpd8UpQpyVkAiJ87x6U/MUKwkmPqtR75VkSwtEFcLdGaL+N3JI3TOXJbkrEr/ZTIfDOkVw1YeyFg5ktNwokS7WM+6xc8qgtSH+cx8UaPxukcrSdjTnwVOqNqEVi93qN5Ksfxt3bwwh5xkMNrtdmer/bP0Yrww4itkwGFlsorKF27y87pY0pyupAjnChZxcVuNcAPowFp5zsvjXP8tXU6E2X8MOLOMyXGrnSICx5RIBh9545tTxZyqh+hYtRvPzGixjWUlK7dZe1jU1Sud+z4GHGr1e88TXdUcPLf3UA2mux85DwAI+/csmW3TVaIEW+Ka2Uo5FQbQYHti9MEazvEQY5e4NsxNtfna6VOK9OslTR9TYRsP123hbB6kxXyV5eVGNP0CRuSiGtltuartMd9Ni5A+T1BtwydMcnka2p8t0/4xHmY+VKTbjVg42yB8u3I3o/ljwWMLkkq1zu0j+eoXmrQmSjTPp6jfDPk5m8foT0Zk9vyGL8UU7wb0al4NE77zP2LG5aUGNb72R6FtS3aJyvkW12iwCffDO19MOqduaWiJafKUzOIy1/e779Uhgz3HVnoIcORoRackN/ufRpgwH0M7CIlurr/rqfBEMxcl7NbtGcv8p+Bu3+ST3BQDCsHndZvE3c3MXaTdmhEfGz6oCsYZNL5HDJmGq/CxOzlpUHuV3J8jR7FgFHmcAdMu+baRLFoUxjNcXuROv2x2gCJ1O1j8v4MjAuDVSvNPXbj9Ka9JGkzzVsxzINxmOJhbpnpJEfFGKVJAqh7TrcaZVoFTPdzMvySfH5fyX2RRmelH3qYu8fQw5/OQg8ZDo7Mo5DhyCA7XfwZ9dJNTg7mJRnTf4m6k63Z10ymMgyJ9Es1SkweyZdtbm6Wbv04S58aYXRJGcp+R+J1Je1xj/VnJBP/WbD+X+8w8jW1uq5dU6vt9rhPVICxKx26FR8/lKo+gybTec8/ZYshueQ6Q6AUhiA4VrOEO396SokW6UnUig85ZDzTd6sgmLg2q2Cp00fdScj87k7M7mRvCm6JoG0JhgPndEidLrkzyeFwDaxoo4GPVl/U98RkCrjHu+24hgxoo0D/btqPnOsypNF4p50apnL3i3fa5KZPcPc75tn+/gbh11W2S/iE8nQce0UJGfXKgpOfu0vzQo3KwhbhRInNike3fJrjr60TVYqIVpvwxVOUvnKZW5+pM3ZFEUgLa1t0PnKeYG2HbjUgeO0KUgsw7SKzgtWgcCWnzTPuGhTGUPLHasiNiEGIx0FHIcNDjsyjkOHI4JaZTq6m3Ep/+5VFHha3N0hOYsnVWrIdmZyMXNEnp7ZDso9u7QFLtHPrIjBY0wKwWgQmm8BNxXSrT4rmpp1EXA9Fkt3vejJcJj2wy+hIjpvrvTHfXYGpZNgnjWjobnO9Hslxc1MNTd9cHQJ31W72cT0T+/FF9iPAmvtm4GbeuOPn7uue003HNf132zP7pnnBXBhvTTIF1/WiuPhK+1cGyYxzs3LmL92DR+G//4nMo5DhwMgMhQxHBtdQ2A8fRIbBXpOc626G9KwHF8n93WNcd3vatmGGzf265rTVuxtmOUxmxEGyLO41fHOQ8w77ftBj73VM00I9affooBkbZrvbx7Tfkt9TDYWfugdD4YcfTkNBCDGKSo+8KaXs7rd/hgeDLPSQ4ZHA/TYSkm0m209O+vtNfMn9k8dEifb3as9su59GQrI9N1RzmPOktZXcnrzWZD/26+de5x32fS8cNJNjr74k79ewe5TcL81ASevDQX77IP4PPCwQQnwXSkfhBVRexoeB14QQvwB8Xkr5i0fZv//SkRkKGY4MIp9D+MEukSDDko9rZRXvHx8jqk8iOoonYGRxmZqwJZRNTQfjrjUu/+6ZGXJvLfQlebX4j5E6BiyTvlsNiAse+VbXyuhGlSL5pTuKrQ+2fHD7zBTFqyvEtbItLAXYtrtnZiwD38blTblgsIx8I5dsrtcUetp+8RQjr18fKDNtSjW3z0wNlsR2xsb0D6B9Zop8M0QAcZAjt9oaEHjijXdV2ezmjipYtdqyfQEGCkxFkzVEp2cLXHXrx8kv3bH9j6ulgZLW5n66lThN8SNgVzlme//1NrfIVfjSWYpXlYSzOd6Msy2o5JZjdu6FDAr9olL0syc2nh1j7M0Ne+/aT9f753BKUgMDn93n1HBNYNBrNCxMMQzD9nPbsdvE48dHEEJ8L/CvgM8BPwn8vLN5AfijQGYoHCGy0EOGI8NhQg/vB8kVYm5ulrhW5sI/ucJrP/cS+VbE3acDumU48bWQbsWnvNCkM6GMg27Fp1tWkiOVxbZNZQOVStgte7SPeWw9ISmtCPjkOnxxnHAMeuWYY28Kyrd6LH80T/k9SWsezv6TFd77PSomH6xLiusRWyd8xq6o9Lva19dYf3mS9jF13un/eBepa2KYmg3hRInizZaqA6BrBDReUBNi+WbI1smA9rhHcT3G70j8UJJvddk6GVBZ2EJ0erRPVmyapb+0Suvb5/BD9U4YeeeWNZDMuY16o0mpzK22VA2HTo/ORFmlKl5fJtaVJc3EHFWKRDr90Rg5JrvC8jSMwbCyZtUdW98+R+Wri30jw9S0MGqNuv6Ce4ysjlqjSg2UrrB5dpY4yLH0qRHyW3Dyc3dpn6wAKv1UFvNsPDtG8W7UH5PVBtsXp2kf86kstmlPFKi8vkz7zBTt4zmKd3osfywgzqt7XT7boLlcofRejl5ZktsSTLzRo7jWIQp8bn8oIK/tqOLdwZLR+a2YqCDYrPuceGWbrZMB2yfUmI3cjije6fHqK3+XVnNpMPTwF+8h9PBnHp7QgxDiPwO/JaX8k0KIHNABXpZSviaE+G+Bvy+lzCpIHiEyQyHDkcEYCvcjFn+Q2Lm73TLJdWnlrfkqjdM5umXgxSY7qyrbofSecrqZ7IjyrZ71OIT1Mfwwsnnv7mo2nhqnM1Gm+PZSv6gVTkEox5sgdTlhuzqujtq2Dczq3a529SrarLwJO1bq2pAjXUIjMEBITHOJu2RCd580ZcJh5NPc3KytmpiMz6cRFJOkRBfu/u79SyoxphEZXWJmMv218emnWP6uLmwUKGwoQyx8osPY6wXCMYjzMH4ppjWrtrUnY6JyzORXVcZL+XZEt+xRu7xpPTmykKNbDSi+vTSg32C9X+a5cCpnuummhuCa5CS4RFR/rMZvrv/r3RyFR99QaAPfLaX8dSGED3TpGwq/A/g1KWVx71YyfJDIQg8ZMmTI8Cjj0V/rNYGJIdueBFYfXFcypCEzFDIcHUaKdD75IfKtLt1KXinxafd2b7KiVtGNJmvf+zSTv7FE+8wUccGzbmFQqoTB0oYqWnT+DHG1RG5plY1PPMnYl75F++k6ccGjeLNFXCnSC3zigkevE1NYG4fGFlGlSHmhSemXvol4+VnEv+0hL32d1ve8SGVBFSrytEKg69IOXruicvgvzNtwgHflBkxNWJf2zd93hjgPo0sRhVZMNF+luNahM1G2Komt2RzH3lbfvc6YLS3dnijYMECk+Qat+QmKd3r4YcVujwJB5fVl1v/YRzn+2jq3f+cUfgfCccHI7ZjxV1fZOX2M5qkc1es9tqZzHHuzxfInqozcViqCI+/cYuPDJ+mWPcbeVdd655kShU3JyK0uccGjdO0u6y9P2u8AW9M5iusR+VZEt+Jz96kcJ742hR9GSGD120Y49rYK5xTXOrTm5hm51aU5nad2eZP1Z5+muK5W6MW7yoPidWJ7n2//vjMcezsk3wzpTJQAKN5s0XnxFJ2Kh9+RRAVBnBdEBRXiiQJh+1NeaNLTpaR3JgrkWxFjr9ykeqmMaPe9JLbUc1HpKYjryxzTvBbD09i+OE3p2l0rjGVDG0B0a4VAl8f2Glu2hDdTE/1nJuzY8t4Dxz93DtncsemwIuxYDozhhshn5mG1hdgeLvn8COPXgZ8SQvwq0NK/SSFEAPwo8KtH1rMMQBZ6yHCEqFaekB8980O0T1bwOipeW1hTE3e3ol7YxigI9SThdWK6FS3124rIN0O6VfXyNJNRt5Knfczn2JffI5qs0a0GVmoXYOtkQLfssfZtkqdfWOTKF+cZvxSzfcKjdq1He9zn2JstFWPX5D+hKyqamLspcW3cyIZQaIh/BiaOb+SSOxNl8s3QGkTQJwIarQQjzrQLmpC3efE4pV96ZVctAFfzwLq0x8cG9rHluidrqg96InQnyajS9/Lml+4o4uLVZQgKbHz4JGNf+pYScLowjyzkbN9ldVQZbKbio0NKtdLLq2pyNm0a0qesjhJXS/a81gDUx7hjasiX+avL1s3frR8HwG+1LZnSvW9xtWSlqfOtiMXfnefYm4LKdRUu8sPIkjnNfTaKmfHiUl8C3OFWQEJPYWrChoxMP4xqY1KbAhjQlTBKliZsk0yzNL/9f81fotFbHQw9/OQ9hB5+5KEKPTwJvILyjfwK8EeAfwk8D9RQYYibR9W/DJmhkOF9QAhxDfi9Usqvp2x7Fvi3UsrTw46vBSfkx07+QfVFE87kqRmrbGh+izYaeM8/ZTMCBjIBgOjy1YGaEd0zM3ivvtNvw2Hbm0keGGDk20lVT3Bm0gonSpSu3WXzopqIKl9dZPvFU5Su3R2YBKPLV+0E7woTCV0eGvpx5oES2PQnD1eYx04o2phwGfaiVrUTUFLox1yPvTaTCaBZ+lYEykCPcZL4Z9oxsMJPYUfJSdcn8a7cGJB0NvwEU5sjurWijAlHqdKc2xWYsiJMznGuVLW5DkNedMtbG6EmayDp7ZYHYIiNekySssjGAHCzMmS7bTNqDDHTX23Yey2LeeSlhYE+mPYs30Nfiyu9bTkshpvSaBKfVfv5qw3aZ6YsGdT019xf0+9XvC8MGgqnZuXMT/4PHBaLP/rjD42hACCEqAN/FfgMMAXcAT4L/LSU8sZR9i1DZihkeB8QQsTAR6SUr6Rsexn4qpTSH3a8W2Y6TQ3PtmVUEfXksZ840jDxozRxIbdegKhVbbpjVJ+EN94dnFTBpjC6K3ERdlJT5dJqMbhqiQepR/FBiUwdRIRoLwVHY9jsVYJ5r7FOpv0lCYjuuYapaA5ksji1K9LUKZNI/m4ncmcSD186q8ioGq5hB301SWPgJQ0QV0nS1spIhCvc/Vy1SncM3Ov8Kp+nGd957AyFDA83Mo5ChveLYZbmy8BuDdoEbMGc6ii+1gSIgxy5txZskSKgnz/vwBZOCju2HbNyzs3NKs+AdoXL6ijGYnE1FWS7bTX3jRESX5hXLvLpqb6LXk8gxkgAkJcW8BKufVGr2trtSX0I31mh927dRn78RfzVVj/mbbbrazL6/tA3PgxciWDoT2ImIyBZSMnWmNDaBO7k7K7szblMW2Z1zcrawKp/YLUfBCrFUbvr3ewEt/iVbLcRun/GWIifO4d4Q/M8vvFN+0yYfeSpGXwd5hm4926mx1gN2dbj43gIDB/A9luPqWtM2DE3XhKjBYGqYmkyVoyeh7k39hpcye2Uold20jcTf8KjYcdaX4MpMjWsZkXa/yjxiK/1hBA/KKX8f/bY/n9IKf/sg+xThkFkhkKGQ0EI8eeBP6+/SuDfCSE6id1KwDHgX+zXnokDm0nGB3wg2mmrF/Hlq8qlbdLhXn7Wljm2x4KdBLxS0U4KNJrIMFQTp25ThiE5k2+vV3hyo0FMv+JhdGkB9ERkjASb859Y4Ro3vU0tvLWCN1dX7mmwfAuvE5NvhjZOHhWepHwzZOf0MfKTFbqVPKVrd+lNVlR8e6VD/PJFvLecKpA6Pu5PT5FzQwXVUTApdpM1vClF0jSpn71KkdxqSxldYYfeM/O2T3HBo/SVywOTZvzMPAD+1eW+UFGtijg7SzfIEQU+RS1YJdpdhL5WWRzHa7dhrk7jhQlqv/5N5NQ4TCqyXqyNwLy+HH8MxGqD6Llz0OlZI6RbP45Xn0SsNogLOQgKiAvzdhi8lXXLcfCefwqhU0sBGzqQ7TYiKCivz9lZpOabGEPJDc8YGM6Gp8fWu3IDOTWBuL6M53iWZHUUUZ9EdnrIb3xzl2ckWffDGknFwQw/EwZz02LRfbQhHD3OhnchNoc66B5l/FMhxKqU8j8kNwgh/g7wJ4HMUDhCZKGHDIeCFkD5Xv31j6LIR8n0pRB4G/gFKeX2sLYOK7h0r674/Vzr+x0Lhy9RfJB9HiT2Ovf97tf7uU+w/1jfj3PdD9yPsNFh+/9V+blBHYVTs/LkXzh86OFbf/bhCT0IIf4K8BPAp6SUv+X8/reBPwN8v5Tyl46qfxkyj0KGQ0L/h/0lAKHkZH9OSrmw50FDIAp5cidnrWveyDAb9rxxmRs1QEtmdFaCdmWo5YxtPx11PtloIhx+gyWwaaKfW63Qn54aEDSSp2aIKkVyemVveAlhfYz28RyFVkzzVI7pf7+kVvNXbhCfnaVxfpTxV1cJ62NsT+fJb8WMvLdNZ6JEFAhG3tseSLmMz84iOj2ELklsSIe2yqT2ZJjVqcuid8cC2LV6NStXI1kN9LM2tNfBN1LKjrS157j83VWxS5Q0xEOXYChPzfRX2iZrwPEamfaAAU6Aid/vIjFqcqklFF5ftvfbhI788TG6Z2a0N2Z9UJ3RKDM6stD2d+2JkMW8VZZsn6wQ/MY34Llz6p60uwMCV/a5bDRxtRX982f6ctKaHGk8UQNEWf2buDBv1T8Bq8hpQlFWnMmEb6anEDdSPAqP+FpPSvnXhBAzwK8IIT4upbwihPhbwI8AP5AZCUePzFDIcM+QUv7x99kAoOL1ublZ5KtvEgUBXnV0IK7ullPeFas3rHkdojATqwlfGL6A4RXYCdeJcZtsBa9UtJOUeffG3/gm+blZIhNjvrSAmKuT+/xvMYpaEU7rvsnFGzBWgzfe5diqar+wlidY6to8/ZJOJbS1CvSka9zeTE2Q09ftsvcBPAZVE42bu78q7fMWXH6CcVsbfkW804bpKTVut1bgFvQctcRYcwWEWzZZh3kiN/2x0VTn0mMOmuBXq9pjLUdkZU2FkxzjR1ZH7X0TxeKAoqMxGty2ZamIvLWCBLyVNST9st29xRt46xsq3OPcf5lQfrTnNjUZHNJroPscXFJGoc3qqE+yffE4la8uWp6JHUf6xppwuAumVoe4MG9VGr2VdQRKshpANLYINBlWBgWKV/ukWMOxAPoKno0mMh6UfX6M8CPACeDXtJ7CnwJ+UEr5r4+2WxkgCz1kOCSEED+NCinc1J/3gpRS/rVhG03oIcmcd7MW9nLpHoTB7+6zV1nlvUIFe0kYu6mJw5j8bvqcHZgE636vbA93/+R+e2UduPsMyyhJO+e9hFUOi2Sf9ruHkF6W2f192G/7ZXfs1Ud3bN9vOOF+jFtq6OEn7iH08GMPT+jBQAhRAH4N+Bjwh6WU/+8RdymDRuZRyHBY/Cwqv/mm/rwXJDDUUBCFPLnjJyAo4OlKgmYlbL0ITv6+ce2LRMqiW4ExmeImalVVMEmL86x9/9PsTAlVz2GjyJP/UhCs7SBffRPQE5jObfeu3Bhg6cOgex/tTnerSZoVq9EUEONjwO7Sw/tNyGmTlFcqEiUMDLOqTRpNyfYPajwl6ygkjR7jDndDCK73wk0NdbUw3P5aL8lOgkzo1H8w53e9F8zV+5UgV9asYqKB9SY5YSS3Wqcs5Fj87irBBkx8PaT49lJqeXDbXkKjYVe/wGbpbJwrUVyPqHx10YYK3HF3x9wQM906EG7VSXd/FyIIIEWH64OCEOI7gb+DctD8gpTybya2/w7gf0cJI/2AlPJfOtsi4A399bqU8nsSx/7HIaetAJvAjwghfkT/JqWUn3y/15Ph3pF5FDIcGarimPzY+H83kDOeVggoiWEr8TR9gmGrwmET6r0ibfK11+ToBuy1uk1bObvpkcNS5tI8GQclabrnS3pJkgWbBnL+neJPgGX5u7wFl2sAfT6Jq8Fgrs3sn+wbMBB+SWoZmPO5fUyWepZhaItlpSkfutdmzucWrzL93Q9pnpu0e5rEXs9ictuD8ijo4kyXgU8DS8DXUKGAt519ngSqwI+jxNVcQ2FTSjmojDbY/hc4BLtCSvmpg+6b4f4jMxQyHBk+iDLTR8mCf1RwkMnrfp/vg8q4+C/tfqcZCk/8+OENhYU/t6+h8FHgZ6WUn9HffwpASvk3Uvb9p8AvH8ZQyPBowdt/lwwZ9ocQYkoIcSr570DHBoH9l/z9sEiLVw9rZ6/fD3Luvfa5l77fz+P3ggzDBzq57uUVOoznw70v/ljtwON/0Pv5oPCw9WcIngBc6eQl/dtBURRCvCqE+IoQ4nv33z3Dw4yMo5DhniGEqKJimL8fGPbm21Mhxo19J13ge5EW3d9hbwJk0pVvYs+y3SZyjnfVCQ0XwbjIk4V83NS1ZMqeSfX0Oj1VVyIocOszdcaudMg3Q+IgR3uiQOX1ZVsp02+1bR0BtwCVvQa3DoHpX1Cg9eIMo+/cUcx5zcT3SsV+/N6kALqpojp1j5W1AXe7PZc+h1tnwBUqMuNgrt+V1XZd+O74u/fHtjlEVjv5XKSFX5IFk8wx7jlN+/aeOnyH+OwsXnNnQEjLTf0093cvSeVkKMlyI/TfZDGoNNKp9/xTNiU2KUOdRtQV3bT0SLH7t/0xIYR41fn+D6SU/8D5ntboYdzPpzTh+TTweSHEG1LKq7ZxxW94TUq5qT/vCSnlME5DhgeAzFDI8H7w94DvA/4Rirh0qGWqyKvHz6Y86px79yVvSYSG2JiY3FwpXVcO2t3PzTAQtSqdj5wn984taLfti9iSKBMyy2Bi9f22Ih3zjrTWg7y1QhyGCJNj78g9mxf/5P/V1/UXYUgJ6JlxuAzJpDd/rGaVJAFI1BMANbGUfukVYjNJuZPupQXQ4yNM0aaiKb5UVZoGTi0ES06cniI2n3VFRL+5aVM13cnejH1yIjX72TF3/sowtPuaidPKSg/JXnAJnJbk6mhJWKPPtDdWs+Ppj9UIXzrL9nSeymKb/NIdZTC9+iaxM55RGJKbHjRYB4xER5rZ7Ztr1Jprts+N2+9ikc53nqd07a4tOJZbWkVqIwHoF9cyxcXoGyVu6u99wto+WQ9LwKzzvY4iMB8IptqjlPKa5iN8G3DV2eULwEdQVSO/wHAjROhtj6Uk5aOCzFDI8H7wGeAnpJR/714Olr0I2Qv7dQmMOI3JIx/rryJF0MZzJgPoE9tcJr4MQzsxGrgkvd7iDYJbK/ScScmdaMzfpGvYFgIyK1pt0EThoOciCkPYaMDiDWsIDGw7INJWn8mMBFdTwSXbmWPNbyZbQrb1Kl4XI3Jhxks2mgNFj4wege2Dkbl2Ji0zkZoJ3JzHVmQMO7vqF4Ca/OJaGXQ1T2voaSPAPAOudLVsNJUh2B48n2nPECo9sFoMwWtXCHQb0hijus6G61GQ7X4RJ1DPlanTIMOQmMGQSXK1745j0ivWu3WbwmdvEzn79hLj4e6bhCFhShnt2vYB4WvAOSHEPPAe8APAHzjIgUKIcWBbShkKISaAjwM/n9jtUyj1VvM5w0OMzFDI8H4ggEv3fHDOhx673LTuCt4rFQdW20kWvpl8h2VK2Jc+DLiBTZvDJtnkCz85cR8mtj7M7Zzcb1gWRFo/k30050jrl7lud7WcTLN093VTNF2vjK2S6BhSsRY1AnaVye7dug1uuCExFmbyM/fC3HNzPnNPSexvvrteHsB6dJL7mW0yDK2BJ778Ou6U6xpxafcqjTQ5LLyV9t1tI23bXlode0LygSgzSil7QogfBf49ajX/j6WUbwkhfg54VUr5b4UQHwL+Df8/e28eJEeW3/d9XmZVZfVRVd2NPjF9sAcYYDDHLnY42hlpJB5Lk5QYXjMU4UNXWJTCknXYuqjLtqTgyg4FZYXCtmTasqVQOCzRDku2bEsKekVRKy6pXc2uhsuZncFiMAMMFkAP0OhuoLuq+sisqsznP16+V69eZ/WFowBsfiMQ3V2V+fK9l4l8v/c7vl8YB74ohPiSlPJl4ALwP6Xqsh7ws3a1RNr+V7N+z/FkIq96yHFiCCH+JpBIKf/4Sc5/FFUPOXJk4WGXww4K+6oeFhbkcz/9Jw86JRPX/+RPP4mES1XgFVTS5KfAB1LKxmB7lQNyj0KOB8MvAv+tEKKCEoe67x4gpfzKY+/VCfG0LyI5+sOEVh7h/c2fn5MjZXn9aVDM6OnHTSHEX5NS/leD61kOyA2FHA8GLdayDPyU9bnkCU1Cctnv4NEuIo9r8XgW+AgOCsP0O7ZfFcxh5z6KsZ7k2m5452QXPtlpTwqEEF8C/iLwd1DS9HdRug+/E/iSEKIgpfyZwfUwR24o5HgQfIEHeU0JgX/uTFcpslzOLA/TsFn3gMyqBptNzy4ltGmETVb52QW8q7egTw7BwyAmOuq5x128+rE8uoyN9mdZ5aZ2P/uVK9olklpt00541EmIOrlSX18nPbo00fpeu1TRGna/7dJZ3e8eWmVnHFklhnoMwL7SzccN9x4fptPxPYI/APx1KeWfsT67hCqrrKMEon5mEB3LoZAbCjlODCnlLz/I+cLzYG2jqyhoJdLpn1kLyL52NAmPJV1sL1D+WDcDPqmNkJQKfPeLVaa/1aGyUu5Z4HR7toZBT9Lfqy/QXB5hd8Zn6td3iQMfP4rxog6i1VFlifTXczh0TtLFURs3/YwhG/ZiqGWZRdTCp5ucWFhaMIu83ZbLVeBlnMEmAAAgAElEQVQurvbCqisXRBCYSpPCUtVobWBxCNhqkAyVlTGhOQz2QvxyuWuwOYu3mYNUCtpPDcge3Yd0bHYZrVycg7VNY0DopFX9XCTT47RTKWm/vtNTidHPeHL7Ze7F66/QXB5h87xPUoShdajc6ihOi1RO+3F5eMRT7lEAaqikySx8GfjDj7EvOTKQGwo5TgwhxGH5B1JK2T9b0VOhSC1XLMMwFVGiS+Rj7UoLSwtmEQQQi3NmYTYXDEOil+YpaoEgXQefikWJm3dgcY7nvqpEgbJe6FkVBmbM73/M6DsRmptW/wfSyef2C/4kC0W3jHK/ZkPWoqaNgHh1TRkX6SIqUZ4UD1VVoMsGzTjOLyOvXDfHaKElcX4ZXwstRS286Uk132cXEK0OXkosBRDOj1H4yq8ZI0DfQ392GhmU8KbHu8JH2nhbmsfXMtuAnB5XAembd9RCD/hrm8gwpD1/Cu+dyySvX6CwPqpkpatDeEGp20bUojCryKe4eUdJiy/NI84uIFbWkVt1Q1bl1XcIbt7pkS/vF37qx5xojnvnA0bfAZej+GEVL54kpPIU4xvAbwB+KeO735B+n2OAyKsecpwYfYRdTgHngXXgIynlF/qd/6BVD98DL9BDcZiE9MMInzyOeT6p9+V77f5nVT3M/8njVz188tNPTtWDEOIVVJnl/wz8Q7o5Cv8+Kizxk8CH+ngppctPluMRI/co5DgxpJQ/lPW5EOIM8P8Af+WwNmwOAE3zaySaM2LMWcx4+nc3Mcw9/7gqiw+aN2DjUSVKZskSu14NlyHRpRY2zJi6XYemOd7c6plbmxFT5xroPAUb9jE6p8CW6TZhkdQjoSWhbRplWyVShzI07TFguBn65aRo2mqmJ4nmxyhfU54mVwb6ceCRGTZP/17v2+nPn03/2RB05apBjTZftx4zco9CjkcCIcTvBv60lPJz/Y55VDwK34s7TXj44z5IW+NhtHfU4/txIDxsQ+9pQKZH4U+cwKPwp58oj8LPcDzJ6S89ut7kyEJumeV4VFgHzh33pIfxcs9KQntSSxQPCg0ctjD28yIc1qcsFsAsZF3rKNfsN66D7stBzIf9cj4OShh9Fo2EvnjK93p56eOTj1xmOsdDhxBiAvhT9IrA5MiRI8eRIISYEEJ8vxDiidfj/l5A7lHIcWIIIa6zfz9TQiUigVKWPKgBAFO6Z+SNLS4Eu2YfeuPWWizIrq3XpXAyDE2s2m7HnK+z/Mvd8khbdEn3K6mN7K+s6LOT1X/buRauGNK+MsHZaTo3bvXkUOjPTPzehq4WSKsYZL1hNB50Wacd7ycoIYMSSXUIf2VdzUetqpQkrZLDpDai5K1TOWpASWU39oyENbpkEUyppS5x1LLWulRSNLaVeBP0CDoBpuzRlDqmVRSyXAToymOnfTXy1ta4enIe9Bi1qJiuoEl5HzTCl+bxoxi/GeKtbRLPTykeDSwly4xcGHj0HorDyjNNnkmWzPRTDiHEXwBGpJT/Wfr3DwD/FBgBPhVC/IiU8uNB9vF7HXmOQo4TQwjxv7DfUAiBG8A/tPXns+DmKBzmyj7IhX4cF/5Rv3sScaz6+oxjH1Tz4ChzaSeMut/DyRII3XBJvzCMu+DaSa4uCdXTdN813ByF8vyCnP/jx89RuPZnn6gchQ9RhEt/O/37baCNUpz8S8A1KeXvGGAXv+eRexRynBhSyp96qO0d8OLO+s6tgDjo3H4Lw1Hi7SfFoBej487nw2qzywXxcK4J+3f4x8ln0Oe6kuAPgkHf22cMzwEfAwghplDcCT8ipfxlIUQJ+BuD7FyOPEchxxOCfgQ3DwuDyI4/zs7/Ybf5qM6Hg/v7qO6jTY70JOBhV5cc/WCx/zMpjv/vyUKMClkC/ADKK/m19O91YGIQncrRRe5RyDEwiFIRf/mMyRUARbMrwjayXETcvKPyDKqjqgb+Oysm5wBQMfC1DZKzCyr+Xh01cW7dhre2adgX5VsXKa7c68bK03baZ+ZM3NrOAZCLc8hSAd7/uJv7UB1FRC06N24ppsg01wAwnAN2LoSmF9YMk1ovQV/HjqFnfabj/CJqKVbKxjYyDOm8vExx5Z5hOxSNbdpn5iisNxV7YWNP/bx6C1Euk0yPmxwCe17E+WVE2EZELZLaCABxRc1L4dJ1k8uBZmgE0w83F4KohayOKu2OpXnij66ZHAtZHTX9MWNbnMNb2zRj1PdOXrlu2B1FYxvA5Hy0509RXLln5jCeqsH7H+MtzZt5ImrRWb1L67f+BobfvUn7zBzeO5fxlubN2Durd/E+86LJP0lev0Bx5Z7i73j9FbzGXjdnIp0rfQ2dx6HzInT+hX4O7edEBqWe4/X9A5Vvk7x+Af/SdeT5ZfW816oktRE1LzpHIyjRmaqo8X3jq/3/Qz29uAT8HiHE14HfD3xVStlOv1sA1gbWsxxAnqOQY4CoFabkG8Uf72o9gHoZr230iBC5xoFePGyhJ7OgpdAJc/Yx+wiDUkEqAF59Ae/qLeTiHMm3PzRJeq6glE0YZBb/8TGzMMRTNUV1nL7o5eKcWogb28TzU/jrdWOEGGOmvtPVLzi7YI7R7Wu4pEiatMgVTsoSz9KGjpscai94QM+9MNoKKW22/qmNE7MApn23keyFiPPLeKmmgoY996atPoRJhhTKupYmXToo2VVGUffevvqCMfTi+SnkOx+YebGhx+ESdrnGnk6sNKJUTt6ErRHiJifa3+n7qZ8n1+gyz5XznH1t9X+nkdzrzVH4Y39q33gOw7U/96eepByFH0cp0RZRuQk/LqX8avrdzwPDUsrfPsAufs8j9yjkGCj0AqZ3xTI1Eryhcm8lRLrIdqYqFLXWQ/pytbPXexb2oISwKgxsoaHC7Aw0tvGGympnu7IO5TJJqYB/7gw0tpXxEbUQQYn2/CnVz3cup4vpXQqW0UAYEr52luLXPsDTi/JW3RxDUFKGCGpREukCqiscCksLaj7SHam9OABGaMn2eOj5S6bHlQaDnsMw7KmW8O1F+PwypKyGei7iG7d6Fu59bvW1DWRaYaL7I6JWbxarVUUiw5D2W68oFsSo1bMTl2GorpX20zA/lrsVFbqSQ3tsTLtBqTuu9J4Ur9GtuljbNAJSImqp+72yjlyaR6ZGpBaP0kaa9ijo6/vpHOu5T6bHjbiWWJyD2giEbXytM7FUNZ4YAHnzjjLczi4g3v/YGF62AWbyYnSFinU/QVER8uoLJK0O4uadruhWUEIUM17ZT/leT0r5z4QQF4DXgHedJOhfAd4bTM9yaOQehRwDQ1VMyDfLPwFkJxxm/a2Pzfr7qMjKjD9INfCg87POdXeRtqv5oHE+zFwJN+vfvr57nEtpfZR5zaKDPko1xKMY58NuM6v9o8BWsrTLeG2vz1Hkvw+6bmbVw396Ao/Cn39yPAo5nnzkyYw5Bgbh+32Z+/TiVpidUS7d9G/3ePvFmulSDgLlIaD3xVyYnek5v8cdby30+vrud/aLXJ+bNZZ4c4t4q068VVc7XGcxyEpk6/eZ/tztk56vfsZOvFXvkXJ250nv3vvB1Yrwx2rIKMJbmt9nJNj9dPvsLuj+WM30W/+0/9ljymrXNWzc+bHbsOfM/k7/c8epz3ON0n7HQjcspe+1NghkFBmuC1dS22hZ2MZlOr+Z98Dfz6Mg5PH/5chxHOSGQo6BQSaJ2dFmLQ6Aienq3Zi9CGg3tD9WMy9ce8EpLC2oF/ZHvXQOIgiMkJF5AacveX92GqBn4fSW5inMzlCYncEfHzPX0uebvi0t9Lj8vaEy/viY6Y8rviSjyLSn49vmPGcedFv+WM2QQtmLnT023VdvqGyMpJ6FPHXx67n3x2p0btwy8+vPTqt/ziKq+6kFvJIbK3hDZfO5njNvqKwSBaOoa0SFoRmjHpstTKX7qM+xF1V73nU/9HmuwSSCABmGpl960e6s3u2d3/Exkr3QGHF6vsx9T0mgzDyn91E/Y7pfdj+1eJb9POnj/bGaads2epK9MNPA1XCNQhk/LCHrHDmOjjxHIcfAIEqlbiZ62CaaH6PYiPBX1rn9755h7hfvsn3hFJV3VUy9PX8KvxnC/BSgaqo6L82zV/Epb6SMfYFPsRHhNfaIq0PU33oOry0ZuR3hNUN2l6sUmzHtis/wp7uI6XHakyN4GzuI6XHuvzJGXJpn8utryLcuEkcdvMYeuxcXAQg29mhXA8JTBSrXd/DTzPsESAL138lvjrO7XMWPJOGET/l+jNdK8KOYduBT2tghrpTxmyHh5AhJyaPYbNMOfHhpHhnFaTshSVqBEOlxXb2FfOsirUqR4XdvqvyMxh71z04ycjuiXSkSB4JiMyZY2VJzWn3FzHm7GuCtbCFef4V2NSApecSBYPTyPRWzB1qTKubuR2mFwVm1wO1NDhEHgsq7d7j/1nOMfbDF9nLVzH0CxGemKV9bQwLb/94bVK7vANBJ5yaqFAk29vAae6aaIqkO0a4GFBspB0Krgzi7oI4BmhdOUd5o0a4UCSd8xj7Y4u4PTHD6n9xi9wfPE5eEGXuwsYdYrxOemaa0sUPrzXPEgWD4013CakBycZHhy6uEZ6aBebbOqvh/9WaH+xeK1D7pEJdO47ck5akKWy8MMfbxHu3Ap3xN5UXYnwVpEqvOU+hUyhTWm+w+P0EcLDF6+Z6pEGnPnwL9DFvzHKxsQXXIPD/104F6tlbWab6xxOjlUTpTFbyog/hAVw3myPH4kOco5BgYqt4p+Wbw23rDB2lyWxbD32GxczfnIOtcDdelDPTE6qGbX+C6i/Wxh7H9uXkCdvy6Xy6GngMZhn2Fm/TxWWyF/cZmu/uz5LbtecvKAcmiNs7KDzjsHHccWQyOWXOZ9Vm/3Af9U9N627/rSgPtldG7fJ3EmTWHblUJdKs3jpJ/IYLAlIsCxutkV0fo4+zKCJPoao3jm94vU++s9+QoLPzR4+coXP3P8xyFHEdH7lHIMThYRqp+wdrlY5DNyNdvYXNzBLKY+NwXeU8bTq6BrfvgLiCJdQ29+GblWNgLsXbb2+1lLdZ2aCFrATb5DwcYCVnzY5+TNT/9jCn3Wu737sKY1T+7n/Z5ifNd1rUPm4d+17fvn/49AaR1D3S5pXudnraccJFuL6u/3lC555kwz7UV/rL75V7Lvve6b/bxeeghxyCQGwo5BgY7mTFrgesHd9HIesFDtpyyfpFnGRgHSS8ftHAle2HfBTnrb3snnRzQ/36Jnv3654/VesbWr92shfco18hqz14QDzqu3zWOMkb3PvV7NlwvwEHGjf49a/yH3Uv3GPt3QxdtGWQH9de+V/bn/TxT+xt5dpIThRCzwCJQdr+TUv7K4+9RDo3cUMgxOJSKEIL3mReNYqAm+AHF1OfdvKNYCK+pPAWbfdGr75DURogrZcUiSJr0mNbtJ9Uh/KtdBkCgp46/fWYOL+rgr9chahn2Qls1MUxj7q4ao2hsdxPkdJ27Rsr/kOg4+9pGb818ytbX+cL3E6xskVSHKKTMkqKxbfphjgWj4NjTpqWoaFj8Xl7GX2/2kCHZiXVaKZJSwYxR99lwE6zc6xmOTbjksj2KtU28z8x12RQdVcvC7AzJ9Lgag0UwBUqd0l9ZNyEBuTin7qvDSugyG8bzU4j3P+6ySja2e9rQypB+Y9LMnYbOJbCZKUGxQXqfedEc56ckWEadMv1dP3/e2qZhEQUMCVgyPY4sFfBX1tX3N+/0JEYChhhMpNwKWlFUP2M2qZjOQTFjuPHE0S8/MIQQzwF/H0XfvO9rFFPEsyeb+RQhz1HIMTC46pE2DstHsI877JgHxVF25v3Og/4cEVn8BXZ+hZ3L4O5gbf4CfQ1XTbNfjL9frD+r30cd60mQNQdHOee4z8RR8h2Oe42Drg37S30P8lYd9boiCHg7/IVeHoXnFuTiCXIUPv4vnpwcBSHEPwZ+I/CzwPvAvknQTI05BoPco5DjicRRX9QPY/E67AWdleRmf34UN3uWy13nCLiudTd/IKutLHXGw9Q0D4vpH+Xc4+KwubVd9Aedr38epR8POp4Heaayzj2KkXCU6/b9/unf6/0W4I9JKf/eoDuSIxu5oZBjYBClIoVTM8a1m5xdQL7zgaHuNa5nMDX7QE/9vdExSF23ndW7yLcuIr72rspoj1pdQR+tIZHy/msXOrBPZ0CLIBmBnlS4SAseyXKR5Nsfqj4NldXxluCPbkuPDU2BnOpXmMz2VCcCIP7omhIksuio7Qx4UNn5yesXKF670+ueh2654Y0VZBQpLoNSQc3p7Ixxaevx6bHo8j3jXtdzkfItJLURRXX86gskQUEJT6V0znputWu8PX9q3/eaHnqfmFQaBjGhgnW1oHZu3OpSLd+8g7DmyNA5p2PprN7t6jBYIk263/rexR9dM/oPRkAqDVnoZ0mUy91+6DCAoyeS3FhRGhZWKEuHxkyI5eadrlZJiqQ20qMhYp6RdI5twTCT0JvqVOj+AYjtZ/KVvUcu/PREIw895BgYasGMfOOzf8QsEEQt2mfSOHWaO5DURnriwHZcOKkOmVgwgEzj7kl1SLVx9RZ7b55j+PJqT9t+M0RYvA2AEXJKpse7KpLpYhaemcZPuQ2KK/eIp2q0qwHla2vdHIn1pulTEhTwoo752dO2lYuxe2GW8u0mcaWsFn5LWAroHUtjj85UhcKl63ReXlZql6ka5N7zE0YlUc9dEhTwmyGyVCCaHDLXKVy6TvTaWYKVLTpTFcLJEuWNFoX1pmrn8uo+FUl9Lf25CNsk1SFEq2P63j4zp5Q50zwGwNwbr75jDIhofoyk5DH87k2TE1FYb9KZqhh+AVkqIFqdnmfFzQUATI4JYDghhi+vducvFflqTY5Q2tgx/QBoV4qUbzdNu52pirmHbh6Fvg9aobRHyVMbMGkbxZV7tOdP4aX8G3Y+TfPiHMOf7hp+CK2Ias+dLBdpTY4QfOsqe2+eI5zwqdwI2TkdUHtvg6/d/vs0Gyu9oYc/coLQw194okIPXwLOSCl/z6D7kiMbuaGQY2A4KEfhceFx5Dg8qzisuiLHw8c+rYfnFuTiHz6BofAXnyhD4Q8Cfx74LvALwH33GCnl333M3cph4Zn0Y+V4OpCMjyDOvsLKj1SZek/t7BqLBZKSoHKrw86MTzQu8FsQbEpGVju0Kl3W8e15H68NXksydrVFUvIIJ3yKOwkbrxYIttR30bhg4sN05zniUX/eo/ZJQmtUUNqWNBc8pt5r01gs4LegParew8Vtid+SFHcS6s+r/yoz39xl53RAqZnQqngkRUHlRsjdzw9T2JF0RgTDdxU7QHEnMWOo3Eoo34/N+MauqusBnLq0x/rnhgGo3OrgR5L1zxaZeq9NONFN9i7fj4kDQVwS+C1JOO4zstohnPBpLnhUbiUUdxLCcZ/YKsQYu9qiuVhie17QGkuY+ECkx3lE44KkCHNfj7j+k0VKWx4jn6rNw+bLktrHHpVbau5ufTFh6l8VaY+q+xOO+z1ztT2vfp95p83W2SLFbUl7VDB8Nzb91YhLql+7s0VaaRszv6y8zzd/+wytMcnIp6pvtU86jFxv0Joc4dMfDBhah5m3G9TPjdIaFYzcjbn/YoGJDzvEJUE47pGU1LnRGIx8Kiltq/vYXCgQjcH4lZi7bwhqH6lrj9yNaS4U0mcEJj5U98FrJZQ2drj9IxNMXG6b589vSYrNmK2zJU5d2jPPRDjhK6bIVTVnd35jkcVf3MWLOtx9s2rmAmBnxjf3Rt/HcMJj5u0G91+pMLLaYeiT+9z5sRnK99W95RefSWbGv5X+/D7ghzK+l0BuKAwQuUchx8BQC2bkbzr9u7tx7dRtb7u6RdhWLt1rd5T8b+oKBky8O15dwxsqE2mZ56V5OlMVladgx+Z12ZkucYxaNC/OMXK9ocrsUpeyLseLp2rGfa1j0qYPV7tEPbpkUUStnti2qFVNnBy6pZ3aBa7j2jo8oN3+uuRPnwMYFzZgQiO2vLH9mS7Jk+UiO8tVKt+4odzbaXiDtQ0zV+23XsGPYgrrTRP20FTCOsyix9a8OMfo5Xs990ncvIOoVQ1lslffMTkGydkFE1bSYRa7RDKpjajwiVVSaeYzzR/RJYzaHa9j+jp8o++9PkdLSNu5CCaUkJbAylIB3v9YJUe+dVE9S1971+RS6HsTb26pkk+d+6BzJdY21NhW1ntKXqP5MVVKm2L3wizBxl43ryMNX+gQkX6mTR5OdagnxASw9+Y5yrdVSESEbf71J3+Xemutx6Ow9IeO71H46C89UR6FpcOOkVLeeBx9yZGN3FDIMTBoCmdefQHR6qhadosFzyQqpuis3qWwtEC8ql7GmkbXJLOlyXi6pt6GTtLTCXIaWjnRTuTT9f+6nX2Kf0vzPYmAPQlxDneBTQFtcy7IekMZIJovwbq+zR/QM4ZaVY391Rfw1+tmgYXeZDhb1lrPn25XJ8vZ5ZSaYthwM1jQi2Xnxq0eNkkzdw41sj4HemmjdX9M0qCVzJmVsCmjqOe+6HuvDbGea1r5JBr23HRu3DLPjR633X89P5piW8+znk9tkOhz7QRaWW/so3c2Y4laxrCwr2VDJ5Ya4zQ1fHRyrDkG9Qx/feMfPHOGQo4nH7mhkGNgqJWm5Rv+j5kFxebAt1/Kh8W/XbpcV1chq1Zf1/BDd0HV17XhsurZjH8nrY93mQPddmwFQtsI0XCvaY8lS4vBnZ8s/YIsJkOdoe/yNdhzYl9Xz7c9T/a1XLpq3Z47R3Y7Lr9EP74ITVpkFlq61THa0MnSxnDZHrOYFF1OC/t4ewxZz5vbTtbnbh9s49SeXxEEfKP9z3q1HnJDIcdjQJ6jkGOgMGx+6W5avyA1NbI3VEb0OcY2JvSuWO/w9WKrd36FdNE15WnTk4Z/XwSB2bX5YzWzg9UiPWY3C4ZJL97c6umrKdW0dt+2qJT+2+x6oxYi6C7APTtV0l1kUDK7bOOW3wtNX+zPjCSzlklOS0VNu+kiqXfWeoerd9IJvQt0zz2yvRLp77YmR7IXUpid6RFashdmrX3A9CQ+GM+GDEOwjAhsw02XFqY7ei2DrZ8FfZ90v2QYEmtNhHRB1sfIoGTG1uMBscIdrmdGGxz6WdBy3XaZLrDPGNJzJYLQlDfax/dIgqfeEB0u0qyiorGNl85DN+xVV3Py6bPHzAgghPhx4A8B58mmcH7+sXcqh0HuUcgxMFS9U/INvmD+Pi7r3lEY+I7TLhydCfIkTIInZRXs16/jVBscV/dB4yhjPQnLoatxcNhu3f7c7dNR7slR2BkftHojy3PjtucaYwc9G1mfZVU9PO0eBSHETwD/BPgl4EeBLwPDwFvADeBXpZS/b3A9zOEdfkiOHI8IjpHq0t66QkPuMfZLVu/q9HEHLTbuguiP1QzrX9Z3/froIjMGfQA7Y7+F2e7nQWyE7rEHwR3bQUJF9r+sfrvn9zM0+i1+R2HCtK9v3/usPvXrp33vHoRt8rC51XBZJrPmXKuMHpVl8kiQJ/j3ZOEvAj8H/ET691+QUv4Q8DJK4+H/G1C/cqTIDYUcA4MoqUx+e6GzX+7aZeuP1fCGyvhjNWNA2P/0saJcNuEIHbfWx+uf7uKjQxxuH/Q5+rvC7AyF2Zme65lcAn2ulUynv3ONB9sAcg0b/bt9jh6zO2772vZcZbVnf+7+bueH2P1xjzOhHNt1nvbDntus8fbrgz7Wva47V1leBbs/9pza7bhhFHfOssbqzlthacEs+FlzqudAPxuuget6Tez76SLL0OzXr2cML6I8CgnKjCkASCk/An4GZUjkGCDyHIUcTwR0XFjvynTymM581595Q+Xe+HUKGYYmBwHAH2MfnbKHehNB9wVux6FtFT/Pup4dy9Zxch3LLqRx8s7qXWS90ZMAqHMf7CRN+9o2TDb+UHYCo52XQToOHW+XUWTGZedFmLE7i5tNeQ2YHABtkJGWFbK2YeL9Os9B/7QTLc08pddW81/rVnEEvYmjeqw6D8TOl7DhVhOYxL4oQpTLFJaqqqJhdga/pn7XOSV6LuwKGLuqQatbGsPDOtbO6YhX14zaqP5e51zYSbB+udytdEivY7ffcw/SfAhhzYWeK51DYieA6nsgggDEM5mjkAAdKaUUQqyjpKa/mX53GzgzsJ7lAHJDIUeOHDmeXkgQT14o4bi4giJbAngH+BNCiK8BHeCnUYyNOQaIPJkxx8CgKZxPmpRo/32YxLL9uV0+Cd2dq32M3gX3K388aSLcgybMHQX9kv769eEofTpqomC/30963QfBQX05aTv230dJouzXhv5Mo19ip4t9yYynF+T3/cfHT2a88jNPVDLjHwWWpJR/Vgjx/aikxpRZixj4XVLK/3NgHcyRexRyDB7uSzJr8dffQfZCeJiRYJ+vj3W5C9yYtltzb461SIKyEg77JfqdZKE6yuLh4rBFx13cjtL2UYwnN+vfbTfruln9fFDDpV//7T4e1IbL35E1jqzP7fvucndkPR/6GH+spoLzh8yBP1aDzazBHTTyJx9Syp+zfv81IcSrwG8DhoBfklJ+Z2CdywHkhkKOAUL4PoUFFZPVi68tDZ3shci3Lho6W6Hj0Ba3gKH01X9bTH09lM0WTbCJ/dJbs++lbHjJ9LiSVYYuG6Cm2a2NEE6OUPjKXRNX17H55KziMPBX1gFM3oOp27dyKzRjn2blA7qskanEdQ+0XLYdu9bzmMou63Z0Pb4sFw0Lpc1IqemHk+lxxM07yMVUddJSTASlWGnYGtM5jLfqeJ950VAv2/LaolZF7Fk5Cq5MeCpHbeecaIpkIz+djhUgnp8y/dDy0UZNdG0DeX5ZUUhr2em0bf23LBfxNUW0poOuVSmklNOFr/ya4UfQEuQyisz8xR9dM/kDWrVU3xf9zJrrrG122S/pclyY8aX03nbOhKhV8bFyMV5/paukisXeubapaJ8vXUf4Xb2MZxVSym6AUMIAACAASURBVBXgbw+6Hzm6yA2FHAODTFQKnklOpEt4o5Mbi9fuEGuWOtKdVvoS1sfbL16ilnmJuy91faxN8uSXyz3tUS4r8hu927XaAGAVyvVp4jRRUe1O02S8dz5QO1ad3JdWQojzy4i1zR4dCKqjPYu3KJdJrlxHAt7aBtIyIKDXoPE1lTMgzi+TXLkOKdUyUQu/XIbGNjBqSInE2iaxRQgUb27hByU13rVNdi8uMlzfIZ6qGYnnpDqE3yj3GFri7ALeyro6f3yM3ecnGL7cQk6PIwGfaaOpQKoDoaGNgeTsArz/sepHqi3hW9LOWnbZaClELbUrD0pGWyLeC+HKdYROVEwXdbk4h1jb7BIj1apdQ2pzyxglpY0dZBCQ3FhRz9ZQ2SRkAsQ3Vrr0ztVRo6VhnqHxMaOfIdLHR1jPkk62NM9nrQpByRhLQNdoTZNHxXrdzJ3WBxE376gygPWmmsudZ7NQTQghgC8CPwCcAn5GSnlDCPGDwMdSytsD7eD3OHJDIcfgIKXJtjcfRZF52cooMgsSdHUHehZc6LLn2W2EIVhZ9LZOhDc92VvpQDdzX1+joLUh0gqCHjdw1OoaG9p1HobdXXTKdKiPlVfW6ES9GgM+IOilj9beAlEuE6cLmA3bKNL98W7eQaTndW7c6jneD0M6Vua9GR8gh7qLWrxVp/Tlu8r4uXGrx5Md2yGXWlWJYdWqyCiis3qX4F9uwfgY8spaupin85GyQtoaCYbNcbUrnMT7HyPSqg09Z97qGjFpBUdqoPhjNZIbK2rcFutivLllDMhkL0R++0OkrmaxPEhoeu61DUUlkOqK2IyMqp+YudLPjV8dNfdHRhFC3693tiA1aHWFTpI+rzIMSdLxmvtdq8LaBh0r9AEYLQiNApjnXj9/3tqGMo5EhqHwlIcehBDjKHnpN4AGUAH+Jops6Q+gZKf/2MA6mCM3FHIMDmKoTGFmwbi6/fW6+r2xx97zEwy/e5PwpXmSKKa4co/2W68QlTyjpgfgp0qM3vxUt/QxWIZL182Offe3fpbKu3doz5/Cr40QTY5QvtbC+8yL7J6uMHx5VZVDnl0gmhxKVQ5LRC/NE6xs4Te2jRs8mhxCbOwp171WR4xaxPNTpv8FlHKg10rwVrZY/3eeZ/Yff0IyPc7OcpXhT3eJqgFJyaPYbCOaIbtvLDH61SuI88vIm3dIXr+gxtdMyyJLBUSrQ1IqkAQFvEjt+jup0qMXdRCgxLXSYzpgwjbJ2QU6QcEoSAqUcRO9dpZiI8JfWVdjSNULoaseqRUPE4D5U3hRBz8o0Zmq0Al82kD5O/QoKXamKshmSFIpU1hvEs2PUWxEtKuBut563SguFhuRMkCmJ9UNTAWSADa/sEzlRoi3ukb7rVcAjEJjUhuh/dI8pY0d/HQHbtQhG3tqd74XIs4vG8VOkSp2+mubhOm5AEy9gNfqkFy5bo5PaiO0Li4yfHkVXn2BBPBaczSXqwx/OoV39ZYKhdSWoVQgaXUQtWXiUsE8z0lthKRSVnNRKiBqI3hpqEeEbfaen6BV8Sjf61C+tkZ7/hRyvYlXHWXrs5OMffM26Hu3cg8+jU/4v+2Jxl8DFlBMjP8GsONuvwT8mUF0KkcXuaGQY3DodJTmQauDt7ap4sCtDiJqMfzuTeXa/doHJK9fIKmNUGyoXXR4Wi1kQ5/cB9SCpiWLk9oIhVSimLBN9NpZRq431OfrTVjboFyvGn79MmphE7Uq/nqd4TRGHE/VuosIykAAGHr7IzovL+MHJSVrPD2JII3nRy2z4A59ct9IW5+6tKcW57DN6FevkOyFlNPdolaQHL3cRpTLRJMjFK+ERoI6rqidbWG9adrzG9tdt7flptZ5CmJ6Ej9VHiR1u/sr63jVUWUMrKyrY6ujlK+tEZ6ZJjkzRxz4BFdvQWooJLURvMYe8eYWxRUlh7x94RSjl5UkdXHlHsWoRfvMnMkR0BLNRSvHQkQtZQw09iinRoeXqmOW09j97pvnCDaUfHh7/qzq+ndWGH9n3Ug8e9+6yt6b54yXwVvbpJzec52PIsJ2jyR4+61XKDZU2MJvhibXgKBE+dpa10hN80rk0rwKEwHyyhpD4bzyvGjth1qVyrtKsppa1RwL3ZCJNq70PS/Wd0yuRlwpG+NPNLYZensD77Wzxkgortwzx1av1E3ffGD34iLc6nUfCJ6J8sifBP60lPJfCyHcJIybKCMixwCRl0fmGBh0eeTDgp0pbpMRHbW0z4Wbxa+Ph4MrC+zqgINK6I6Tud+vD4e19aDXPQlOUqkB9IRmdDtHLRt8WDhqyeNx5vsk1+8Htzxy6PSC/L7/6PjlkR/+l09UeeQe8EUp5S+lhkIbeF1K+a1UB+L/kFJWBtvL7208m5kxOZ462BS1J6WqtV+wndW7Ryr/y2JJ1H1xufv173a7/coPs3j/D+qvC5e6t18fDoNtXBxk2ByEw+iDbVrlw8pFD2on3qr3sBkexUh42LTGWaWbWdey+5NFvZx1jntPs573ozwTzyCuAD/W57sfBN5/jH3JkYE89JDjiYC7ED4I+hHi9NutHYVr4HHjOBwHRznuMGPJRtbi7M5H1tz041c47r09zvEP6/5kjeewvzU0ZfRh5xzGy3AY+h739DuFfw74OSFEHfjf0s/GhBC/D/hPgD84sJ7lAHJDIccAIXwfUex1L+tMb5PRbvPcg6kMgAM0E9I2bA0BnehoszPa1QxGMCitdoitz21dA3cn6XIbmDLGtGZe99luw9Ue0P20FxwdvtBwyaDcBVsfb/fD/uku4lkEUlonwXBMsJ84yD7XzJmlhaH76d43e9x67Hb/7fG7xE6uboI9fptAyT93xpQ72t/vE4eyqwlsPg2HjMkeg55L3Ve74sbW1nANKlsTwn6uXbj30J1r89yH+0596iGl/NtCiDPAl4C/nH78z1GP4H8tpfz5gXUuB5AbCjkGCU/sc/XqxaKwVDXJYz7dEsjEOj3LeIAu0ZEIwp7FxxYM0sfrz/WCr4WKbHpnjz5eh1C90LVRoX/aZYqmbM9a6OwFUPdDLx7a+NDHZRlC7t+GnVJ/l5bxkXIDZAlEuWEaPfdZC6uZY6cP5noOg6WMop77pM+x2Qddw8PdlcdW/+z+uOfb38UfXduX1+Au/ECPwWYv8LGzyNvho9iZry6cUkcLdviq+xx2jQBtHGlmRre/9v8Ndz67E/JMJDMipfzzQoj/ERWCmALuAf9cSvnJYHuWA3JDIccAIdsdRDmbStgstmYR2p8vAN2XsRte0C/g2Go7y0VsL1L2sfbCgCWDbF9DK0Rm9cu9jntNO4/B/k4nYGadn7UY2boVeh5cimo7z+Gwfrq01XabrjcGsj0HWW1n5Vm447Nhz6t7jL3z7xdayjKoYnf+DwhDHTUc0C9Mk9WGOwe2QXhQPwYZAnuckFLeIGdkfCKRJzPmGByE6Fk8bdgkTAch6wXq7ib1Z5kLbUrm5PahK1fdDVHYL207gc0eg+2NOKjP/RbW4y4Itiw39Lr3bY9Lv+S8w5JI/bGaMQ50G/FW3fRTG0v6GvpYb6hsfh41mdG9R7ot/Z3+u58GR5ZRlXVt935l3bN+iYxue+413cRO+58djtDz2e8a7nlH/f/wNEMIsSCE+E1CiC+4/wbdt+915OWROQaGh10eeVK43gL9+4O096A7wadlF/kw5uth4mmZt5NiX3nk3IJc/v3HL4+8/FeeqPLI54GfBz6vP0p/yvR3KaV89kUunmDkoYccA4WdzKeTvTR0kpidQwCYY0x4wUm2014AN4mwZ2dmaSnoHaqdpGbohFPXemFJcb7EFv2wnfNgL5h2PL8n18FJDNT5CHp8tnHhDZWJo8hcl6hlrmW3qfvgJoPqcISdaKjPcRM4XW+EOx9ajEvH1O14vxFbsj6zr1GYnTEaCXbCnr5OVpt2X+3EQw070dFOKNWIo+zkTpsK3KZ4dq8lUi0Newz2s6ifETvR0dCIW2GZHupx5zz9zGjRKJ2EaXu43GuKchmx9kyul38HWAT+BPAhvcyMOZ4A5B6FHAPDw/IoHLarzdplHvWzk/bHXszcxL0H8TZktXWSY497/aMc/7B381n39aBruHP7MPtznHl/lHhGPQpN4KeklP/XoPuSIxu5RyHHwKDLI4Ge3ai7yOrvs3ZqPbLL6c7O3omBojY2aoJYSoxWCaPZtVleAvf6+lxwyiSXFoy4lYnfp7F5u9TQHG9nuzs7ZcB4MLSSJnQFoZK9sEfVUDS2TZWHFr4iavV4Z8xO1smt0Dt57d3QlNJaYtsbKhvPi1ycQ377QzMnPfdjdprOjVvGC2Iv8Lq81PYKuBLZGvpeJK9foHDpujkP61o93pr0Xul518+Anm+tBmmExYKSoe62Jb0B410y5bGpR0bfDzss1a+E19wD2wORikbp+XCNDPsZsA0RVyjMiKHVe70u6sT9Hz1lWCH3IjzRyJMZcwwUxlW/11VpFLUqIgi6C2IUIRfn9p3bU3OevvDjzS2YnjRKifHmltEKiLfqyt0cRcq1HHYXH2McBCWTiFaYncFbmu9Z2LylefzxMQqzMz2LrggCU4tvI9lLF53xMbVwWpLaolxW7aWf6TEWZmeQ9UbPsTKKugt/dVQt6uWiWgRTZUbvMy/2yBzr44zUdBB0M+03t/DPnVFKmbMzypjaC0m+/aGRXJaLc2oBnZ7EW9vcl4Sn5cBBcRiYss/xMfXPMhLMd+nx+n7re6TvBXSFrIy7vVbtGodOO/5YDaYnVQgiZXaMt+rq++lJJe2cPguy3kDcvKOMirVNRK1KcmNFuf3T56ezelfJj6cLuBanKiwt9FSm6P55S/M9xo5/7owKxZTLRtpcP+O6DZ2kWFhaMM+Gvu/6mbN5GoDufY3aPIP4K8CfE0KMDLojObKRexRyDAwyUXtDl2Cmc+OW2nmF1uc37+CluyybsEbvGjtWDb3eHQJmR2d2nqtr3fJGqy9moa9Ve2PjDjmOl8oUMz1JcmPF9BesmL7jhWBILZbGS5AuDJ3VuxSCUtcb8e0P1UKspa2dsjnD2/DRNbUIpxLT+loSHTdP501zQpTLvTvkzS21wDW2uzkZOs6/NG/mT165jgR8y2uh8xEA47nQ82UbSWYx1bkEaa6FrDeU8eCQTMVW/ogxGINAqXqmfdPS3qDKZ/1zZ4hX7yI0EVLqTems3lXKkZYst27Xn51GpAaKnbOiJax75j81KP2xmnkmzTNXLkNQQqbyz9oI89L51LkO2ssRb9URe91nQM+ffs6NMRNF+JZHw553D8AzUYfus/uUexSklH9PCPEi8F0hxNvA5v5D5O8dQNdypMhzFHIMDFXvlHyD41U+HScu/7BwnDYfR5z+YfXhuDkAD+u6zyqy8hjccs4HRVaOwvM/dfwche/87BOVo/BTwN8FYmCN/WEIKaV8/nH3K0cXeeghxxMJt5Yc+nMr2LXtum7/oPPdWnf9M+v6cPginXX9fuNxj3fH5Y7R5ibo18cs/oGs67iwyYwOGqvbfr8xuG0dt/bfnSOXs6Df8VnfZfEiHHQPFJNnb1tuG/bfbjtueyZMkUFGZffF5ls4EsR+j8IzgC8B/zcwJaV8Tkq57PzLjYQBIw895BgcRsrIixfxmyFbr4xRuRFSXLlHe/4UXjMkrpQJJ0uMXG9AqcDe5BDhhE/lhnLvhpMl/Egy9Ml9ti+cotiM6QDFRkQSFCisNwGI5scoX1tTbukvnMWPYgrrTeqfncRvScJxn8rNFuVrayS1Eby1TXYvLlJstvGiDgDtqnqRl6+tsXthlvLtJuHpCuXbTUTYpjNVoXjtDgQldn/wPKNfvUL02lnK19ZoXpxj5HqD8HTF9LXy7h2S2gityRH8lS3ky8v4zZCkVMBvTCLLRUTYRpaLAIj6DtGb51QfbjeJK2U6gU+wskX9s5OMffM2st4gObvA+msVpr6lxl5YrxOemSZY2SKaH6PYiGhXA/woxm+Gpu8S8KIO/nqd3Quz5jqtSRU2Lm3sEJ2uUGy2CSdLlDdaxIFPaWMHcfMOnZeXKVy6jlycIzxdwWsltEoecSCovHuHeKpm7omIWsRTNbzGHgCdqQpe1EG01FxTKuCvrNM+M2eOl0EJgL3nJwg29lRbK/fY+vxpau9tmPlPpsfZWa5SefcOndfOEp4qULm+g2h18Oo7JLURkkrZjFffV3XlecrX1gjPTJvPgpU0x2V2mqQ2gj89SWeqQmHlHvFUDX9lnfClefwoVmMAdp8bZuR6A6++Q3v+FP56E1ku0pocIVjZMqGdzsvLiGYIpYKZm6Q6RLsasDtbpPbRNqLVQYRtRGOb9pk5xDd/Zf//o6ffKXwK+B+klPtFMHI8EchDDzkGBh16sMvZsoR44GAq46yytaxyQH2szbPg6gi4wkBZmepuP/W5blmk28Zh17DH4opW2cjyHrhjdNvWWfTuOfZ1skIHB81jFuzjdWzdbjsrwdGdA3s+s8Zp993WzYD9bJxueweRah10vax5cPkosp4Htx1by8M+3z3Xvob9/dvhL+wPPfzeE4Qe/uoTFXr4MvBPpZT//aD7kiMbuUchx8AgigWEF5iSN3vx1eVsfq1KPFVDvP+xOc8mpYFu4pxOXDTkNk5Jpf2ZLmG0iXD0d1kqgnbio10OR7rTBZWoZ4iOrJJAu1zOuOXPnSH+6JopKbRL/ewKEF1ZkUWqZEh+zp2BtQ2VoW8RM7lz5Fnjc9UlTRlh2nf7HByDzS4D1IaA95kXVbkh3TJMGXYJofQ41fx0y0xNMiHdSgadHNqTiAg9Ro+sjqr7Y5FOFWZnTNu60kCTKtk6Dz3PYIYxYT+P0CWVspMv3fvlj48hgi45mL3IQ7fst9+1exIlLZIpnWRrEmXbDuGS5FnwKPxx4B8IITaBL7M/mREpZV9drByPHrmhkGNgkO0OBN0Xu15g4s2tXi4Dqw4dyOQ5kFFkFhj9Atef64x0+8XdUwHgei5SnQK9EBs1xvR6RpAooyqiu/uzVAnTa+jrxFt1cMWWdPWBtbvX1zBtawZHsxtPxaB0xYcjy6xhj8/+XRs1yV4I1j3wLTvMZhzUfXWNBBEEyCvXSaxcCpct0Vbr1NUHnRu3erxHbvVID0Nk+rupDrAYMU3/rP6Y/qWcFCJDEbNHLjplY3Qlt/W86usYr1FqVGnoaxv1U8s47GGstO6LnnubrVMZNL0cIrrdI+cxPH24nP78X/t8L8nXqoEin/wcA4MoB/gz0z1ldvHmVpdXoN4whD96t6x3ktAtaSssLagYdlrzr+lwRblMYamKDErEH11Tx1mUvSbhzHEPdxfZuvN3r0s6K5vdVqCErvtY71DdXWYPAdIXzhKsbClPw9I8slwkSnMEgm9dBbq7bnF2wcTxiyv3kEEJEaXJ4lGLwpKar3h+CrGyrso+ayPIK9d7iKhEYxtf8wAEJVO+CCrTWe+kQUl/x6tryoMRteDVF/Cv3upSIadGiDi/jLh5x0h0++fOqLyEdCHurN4lXl0zpYJ6fmzvSWFpoWtMWZ4OXUqoPQymLDLtr7DIuMw9ceijtdHSY3BqQyk9T39nG23Gm2EZbzbplE3v7RJ5GQPk3JnuNRvbeEDn9Qsmj0HnpcSVMoU058Kv75gcD775z/c9c88A/jLPgl/kGUaeo5BjYDgphfNRqxH0sf3ixVnHnRRufgT0ahKIIDA8AIbTQBs1r76Av7JOMj2OV9/pGjbWjheA6W6SI2sbXaKfoER7/pQyGKyFPt7cQpxfVte/eafneFlvGHZCkYZ32tWA4FtXe44jNT6S6XF1XY3UKAO6RkCqW6ARzY+pZMDqEP7KOoBhf9Rt6e+y2tfGYTw/1Z2ftU3i+SnV1jsfGD0Lff32/CmTVKnHbHs33LyPw3JM7Ht7lGekX+6C/jt2PAr29/b5bshC9/ubha9Sb611cxRmF+SZ//D4OQqX/tqTk6OQ48lHbijkGBjcZEaNB120XRyWpHccw+Nh42GP9WFgkPPxuPG0jXUfj0JuKOR4DMhDDzly5MjxNCPf6+V4xMgNhRwDh86kt+O6dvJhlgqjjSzXsB3/zmLIc93DoGLF4WTJ1P376+nxlnjUSXaeB3kNHpXnJGtOspLh+pV9um3q77Qrv5+Hpl8fTjLWfp6gw9rKGrPOFYheO0v5Oyu0z8z1cDd4qQaEHqdpy8ntsHMf+pXiHjaGHDmeNuSGQo6BQXgehek0w10r/IFJ/sLSQbCFd0xmeZqcqAWQkhsr5rPOjVt4n3kRT5fspXkBbvy5pzrgncsMRZEi37lxKyXhSfuaUVaXFc/W39mLg1sLrz9zj3Pr8d1FNqvO/ijox5VgFlErHu6qJtrlkTo50S4XzRqbPQd2SaHbH53YCL38AnZM3p5nfR3bCHTVF/Ux7lxq46bwlV+jA4jVu/sqC3X/eypgrHFlGUj2ven3nT0f/eAaWi4fha562FcemSPHY0BuKOQYGGQc9ywituyxrjgAR+jIghGP2qpD2o4usRNBQPLtD3teuP0WdXunbC9wOpmvs3q3R9ra5jEQQWgElkzFhj7HyvZnetLU/NvCStqwMaqHY7WeSgi9eLpGguZhcBdYLbNsSjitigu3usOeX30Nd7F3ZbD7JQP20zSw+2/fh56yxq16T0lrljGn+yKCwBgJ9nf6GvpcuxxT3684ino4J2JLNEouzuGtqfJ9V77bFonKuhfu7+54s753j8maU3cOZRQh2U8n8LSLQuV48pEnM+YYGE5a9fAoYBsIMgxVRUJ1CFDZ9fKtiwDEga9KFdMKBK++o6iT+7Ao5nhyYYcZdIWFJtBKaiPsLFcpNmPCUwXGvnmbpDZiSKU0bE/H4wgzZCUznv09x09m/OCv58mMOY6O3KOQ44nAceLRWS7445RK2r/bbRWWFroeCYvRMQ4CxDuKE8YDJRv80TWAjP3dw8GTENs+bjnggxzzIDhqH6A3TOAtzRvODakXfIvIafiKOrcIdNLzkowwg+29OWp/HiryvV6OR4xcPTLH4GAp4dmLtv3ZQS7ZnqaCIFMxUEOrG2YtGPoa2kiwr91ZvWt+1/+OKxt8kOpgPwzaSNB9GGQ/s67tKoC6n/eDfZ9N2OKjaz2fu8mu7vFZYYKsvhx1Tp5hpsUczxhyQyHHwCAKKjFLvP4K0Mvtr6mANeue6wGwj/PHxxQzXur+FYGi8NV5BYXZGUStqj6bnTbH2JLU9gLkGhi6PS1FbEsD6+/snANXOrgfs2PfeTnCAuL2s9/5RznmIBx30XONosOqLty5tuW0dXKiO5dZUtz2vXfbsftyFOlrnSOS5RnIatcen20I9rsPWfdO6VTsfwbdZzNHjkEgDz3kGBhkJ1a/pIJPtmCRXlxNwqKTEQ7d5DWtq2BnwNtlbFkiSdBL3WxTL2clx9ltuEmBPd9lZONr2NUHNhWwq8Pgj48ppsKbd7rsh41tkulx5JXrym2umQbplpP6s9OmrFNLTntXb+0TODJUzfo6KSOiiFpKZru+o+YiKKkkzZQJ0V+vG6ZGXV5oS0drFsXCetVINQffusr2b/0slXfvIIOSYWvU+R3xVA0ZFChcuk5yNjUKW0quWZYKPaEdv7GHLBfpVMoULl2HlOYaMJLO4mvvIiydBn0fjdfggAoF+37qY2wBLZ1wqo1D7W3qMXbSe+GyctrXs1kidbKlqWqwnnH9ewKZz5O6SeShhxyPHLmhkGNgEOWA7S++AYDfkgx/usunv6VK7ZMOxWZMu+LTHvGIS4KR1Q47swXGPt5j+7R6MVev1Km/Mma+3zpbZOrXd2kulSnfj9k6W6S4LRlZ7XD/QpHRlZikKCjfj1n/bJGkCLVPEry2ZHveZ+Jym8ZigfJmQvVKnfB0hWBjj2hyiFbFM9eUpQKi1aE1OWL6WL4fU2y2ufXDw8y80yac8Akn1DnN70uY+haEEx5eSzL99ia3f2CCsavqemNXW5Q2dtg7XWFntoDfknhtib9cNXPVXJhh9lfuc/cPfD+VWx1GrjfYWa7iR2qV2Jl9nsrNFuGpAsm5UTbPL/D8z9/l09/3MsGmpHKzxfWfLFL5rsfcrzbYvThHc6Fg+jfxgaC4k9Ae8WiPTgAQjUFxZ4a4BJVbCZWgwNYLQzSWVcgo2ILaJx3aS1PEJUF5M6a5UMBrVWguQ3uqTfFHX2LkU4EfzbIzWyAugb84TWNZEGxNMLoSszvjk3z+ZUZXlOG4/prH2BWISxCNC2qfpMcUq0Rj6rre514mKULjXIeJX/fZm54gfCFk+Df/JobvSsY+nsNrhtRfGWN3xmPicpvy7SZbr4xRvh8TbOzhXb1lym5lddQYO+0zc4iow95zw4TjPpNfVxoOjZ+4wMRXrpNMj5MAe28sUd5oGZ2G1uQINCKYnyKqBuzOFinuJBSbMX4U01wqU/tom/qy0u9Iimoexz7YQsxP0a4G+FGsEmZX0mqR1HjbXq4yevke8vbww/5vmCPHocirHnIMDLrq4SBSpay/bfRLIHO9EPY1jGRvuczuxUW8VsInv0tQndyhWR+icDsgKUq8tmDowhZ8dZw4lTCY/xcNvvvFKuNXEnZnlCHQHlEGx903YPn/bROeKlBqJgQbe0rjICiZ3bm+rlZH1OWNpoTP/izVhtBwPQ/GNa9VLunlRNDzY1d02GWIWYqJNleAPXe2bLa9a7Y/17LO0CvEpNtw++UqLNrjc7kk7DaYnkQ0ts28Akp7Iv0u/ujavuvpvkLXKGhenCMcV+Gv3RnB7kshlXfLNF5uMfZuifYITL3XJg4E4bjPxAdNpYexskVnqkK7UmT48mpXkCutmtBzqn/X43W9AifJ79hX9TCzIM/+7hNUPfw3edVDjqMj9yjkGBhEqYi/rNT0/NTF3pmq4L1zGW+orFj0rq0RnpmmfG3NuMWT2ohpwwvbiKilxIDWmwDsPT+hdoytDiJsq6S1xTkKhBS/0gAAIABJREFU5TLJ9DisbbL5ExcYXm3Tqnhsni9SXJdwaRz5covCjiApCkY+lXTWxpl8r/tCb1cDFn9xlzjwaY2W2HlOMH4lobiTUNoqsHVWLVxqV1wh+i1V4hIUd2DsqupXc3mE2nsbeItzyLBNcmYO0QwRYZvOa2cRjQgxPU5cKqDpdZoX5wxjpGx18Nc2Dc+DrI4iLOEkgKRSxos6+I09M69cu0PnC99PIZ3TYiPCC0rItQ149QXCakBpQ6kVAoRnpmlXfOWxuR3hN0OSShl/5Z4Sm7p5h/CleYKVLUSqdFna2EGEbaIf/gytisfI7YjCepOkOqTUDwG/GRKdrlB496YyLM4uQGMP0nLUqKqMwWIjQgYFOoGPH8Vw6bpRE5XTk+Y+i1YHFpUIVFIdQr51kc2lMpUbIXc/P0xcgtP/ahcv6lA/N2o8UO2RborWzL+JKP6LFl6jzvw/anH/reeYeXubJChQbEJ5A9P/aF7lvnithNUfn+fUpT3jxWosFqjenCXY2GP3uWGGP60RTQ4x9Ml96p+dpHJ9By+9J3vPTzD87k3VgaCkwkYr6yps9uoLKoQUlEhurJh8G1a7CcAAIv2XI8ejRG4o5BgY4pGSWeTblSJxIIhLgtIPf4bhy6tsnS0xs6IW3nhKvXDjtLZdo9iIiCYn8FoJ4YVT+JEk2NhL3bgF4skRtn7oN6ZHj+O3YHt+gvZLu8TrZQq7glPvq0j47oxg6l8VGVltm774d6Vy56duYq8t2Z0JmPr1Xaa+1eTUpQI7pwMq37jByHUV7+9MVTh1CYrX7tA+M4ffDAlPVyjfbtKaHGHsV79rlCK1gZNUh4grZZqLJSY+iBBhWxk5U2pnPHr5HuGZafwoxm91ICiR1EaIK6eIA59iI4KgZJQld370RUrNIsPrdeKpGuFkCS+aotiI2Pr8aSrXd/DX64qe+OwCSVAgKXnsLFeJS+qa1St1yt/ZpPnGkhp7fYed5SrtyixbZ4vMvF3Aj2I2X5+iuJNw/8UCM/8GkpJHsdnGa/nEgc/6j80wdrWN11LzvPXCOMWdBC4u0qp46dyqBRygcrNFsRGx+9ww7RGP1qjg1KU96j/6ItvzPqMrk5SaCTuzBcq3O3j1HbY+f5qRSpniyj1EbYTW6BDNpTLN70sobXmsf24YryXxW7D+m9u8+sqHvP+3XmV7Xi+zJRrLAUPrVSq3Oox9sEVrcoTytTXWf3ieys0WfhRTbEQmL0OWi1RLytiofbStFvlgCa+V4K+sM9JSapdDDeXBqF6pKyMqNTSCjb2usReU8K7eglpVkXalBoO3NN+TsyKK+Ss7x+NH/tTlGBj8MCY+W8NvhhRX7qkXZuqajze3KG+eJqkOmXjtcLqwtSaVR6G0oXa+wcYeSVBQO9uUCbGcun69qRrVm+pl3qp4hOMerbGEwsfDTF5JuPuGZOPfDhkejojeGyfYxOQ2xCUobyZsnveZeUcl/MWBYOI7EeufG6Z8XxsYHqWLixSbbXbO18yCsHtxkfLtJt7aJsNp4l5pY8fIJcswxJuqwdoG3hr4tSqTl1QSomhsI6uj7D6nYtKV9Trla2smFBGniYreXgivX+iVap6epPaecsXLegNW1xjmBbWTXdvAf+68WZQAvMYeftSimN6X3QuzAMpQmZ+i2IwpXLpOfHaBYlMtlrO3lffGA4o7CZV37zB6ucTe86nRNlkysfnZX7mvDKXUkzH59TU6UxWK1+4wDIQvzZOUPBqLva+j0cv3TLKiCNtUmyEjt5WnxGvsEWwMIUvqnLFf/S6g5LDvvTZO/Zxk4bN3GP6l55j4sEP9+QLtEcHUv/Up2199jn9ZPMf8Zkx7VJ0/stph6l+uGrlugHLqvRr7eE95Z9IwkheUVDLm2iZDKQGTfmYr31ChDVkdNf3x6juKBbKuQh8meLa2gUzP1bLhmqVTV17EH11T4bbNLbzxMWhkMHfk0eMcjxi5oZBjoPAae+w9P8FQ2IZ6A7k4h1jbxFuaZ+ybt1V2frqgEbXw1loEaZa+jkt7tSp+mnHP+ysmPizrDZiqmTjyEFCeH2Pml7fYvnCKyjduMPG1Urqrb7F9oaOS05ohslTAa+zRmaowchuzeMigRGeqwsR3IvwoprDepJy6wP31OrV19X08OcLw5VWgWyHgr6wbD0M8P2Vc0Fq/IKmNIFfX8FfWTRy98q5aiMw8pPF5f72uFpnzy6piYHFOJVmmC9fem+eUW7tWRSzOIa7eUufXqpQ3WkSvnaXYiIyBoVkogR53OAwp4+bsAl5jjyKYRE6A8rU1KqmLfPvCKSrv3iGpjVDaSKsWggIiVImE6vMdFQZJEb40jx/FBCtbFJvq83CyRDFNzdA78PJ3VkiqUxQuXVe5FVM1vKu36Ly8jA80dWJhM2Tqy59w6lvjyFKF04EKOYxeVnO9eWuO73vnLrJcJK6UGf50t/swphUd8VSNJCgQBz6ljR1T1dF8Y4nKN24YV78MQ/W83ryjjL4hVVGS3FjBGyoj03wOGaY032n7el3X+R4EJZLNLbzpSQTgn5uEqJVZQYGXBxpyPH7khkKOwWJtg+E0EUxOT6qFzkqIM6VktRHETbV6JFo/4PwyImyrF29Qgvc/NsfHq2v4s9MkQYF26rIHFarYe36C8obKbi9eu4PfDNWi/I0bKpkv7VoCFNZUkp0OdsgowrsRUExjxsn0OENvf4RcnFNjqI1QuHQdf3HOLGZFMKWDxWt3lBEQthGNbUS5iD87o4ygOqBj0Xq3mc6FWRxT40J7FsTNO4hymeTKdXj1BVNOOfTJfROekKUCYnqy6+KOOqofYQjlMrJUMPFwkeY8gCrJBIwGAkEJ0Soibt6hvKbyPfQ5yY0VRtc2jKeD6Ul13uaWKsO8sWUlFCo3ugTK31kxgl7FaDqd5VPw/seI2WlkUDJhFa+xh1ycI7lyHVEbQdSqFK/dgaDE8Jff60lY9Oo7ak6tsSTT40x87VOT41JYbxpjUydlFi5dV/O7VacAeGliqTdUpvJu2r2oBakYmajvQFpyqp9TH5WE6s+q8QhApnkVnamKuYafji/+6Bri9VeQrQ6shVAdJV5dQ5xXRhBBCbEXKsOkbUuV5cjxeJAbCjkGBhlGiJkqMvUkyHSx81fW6cyfotgYU4tWYxt5ZU25XoMSnuYWSN357WpA8K2rXYGf6iheGBKvrlGoNxApSY92D2vXr9mxVUdZ/fF5qjc7NBafp7QtGf+Fy0YxUSeWQZdbAFAv8JTrQBs44uYdtVv/2gdqN6nPiVp4V28pIyTlT6BWRV65buiB9e7TrSCAtIrgxi3E0oIJz6g5DM1Clrz/McKSQvaW5s2CKcMQSVq7f35ZzZ+uekjnTBsnGp2tOl6aHAnKOPGiFqTnMT9l5Je9oTJycU55TV5eNqEKnYyp6ZJFKr6kr9M+M0dhvak4INIKgUK9QQJGW8FvlI1Qk2hAkvZf3wNZb6i5q44S31jpCmeN1SD1zMhQJYtuff404bjH2NUWW2dLnLqkvBjFlXsIXZ0StfDp6j9o0S+dOKppn9EeAboeH639EW/VzdhJPQU0tvFurBhuCC9NzPTHaureLc2r+5J6HpJvf4h0Kj6Ev189MheFyvGokZdH5hgY+olCPQk6Bw8KXcZpl/3pv7XB4pYEilrV0EgXlhaUF8IijjKZ77CvjNFuK6ss1P2pSzCzJJLtvrtlijZ7pumLVdpqj1PDloy2v9P90GRDtkKnexzQU96ZVT75uPA4r+dSjr8d/kJPeeTwzIJ84Xcevzzy2/9dXh6Z4+jIPQo5BgZRKlI4NdMj5wtdhkboxu/1rljXyUOXaldnh+tadt2O5heweQTsxVEvTB1LCAjo3cGlLmnT53SRN3kQDj8CsO93F/H8FD70cBfo3at/TpWLyjS5TcPecXtD5Z5dc7KnrufrvmkOgbS/fmpfaK9KYVaNSbfhDZV72Az155oREADt1k938Db3gfeZF01uhKhVFbeB1X/dL08zKaaVGf65M+p+vXUR/9J1477XXiVQoR1/erIb33/rImLlHkKHONL7bu5D6nnQ+QNA1+uTtkHUMmWkNgxDZRqmaE2O9LBIGk9Bei9co8mml9beGv08QTYN+UEiZT19O4i+Od/r5XjEyD0KOQaGqpiQb5Z/osflDvQkb2XRN2ftfg/aWR5G2pQFdzet4VL62rv5rH4etNs/Ctzx6d/t72wKYLfv9vH2XBy0aNlj7ddOVv/ca+jf3aQ8e07czzT6PQtZ1+rXN/deHTanR/VQ6L7abdr03FnHH+fzg+ASLg3PLMgXfscJPAp/I/co5Dg6clGoHIODEHhDatcfb9W7O9mUAx+67me9y896sWap+rnGQNaC6KpC2v90H9zr6cVBu8398THTd1uh0v5pyxDbngy3f65wkfaY2P12FzcZRcZVb74vl3v+zpqrrL9dsaIsFkG7n9AbDtFiTLbYloyUAqe9sOr5NdoWlvdI/7O1KdzxagGlwuxM97gMASZ9PX2NLDEmu037XPtYfT17zMleiH/ujBEEE7WqeQZc4Sh7ftz509fNUhg96PccOR4n8tBDjsEh9WYVrMxymyLYP3dGJcDpF+T0pMr+thY3N+RgUwrbVM3J9DgCiFNSHk3y1FgscOrSHuufG2bq13fZOR1Qe2/DuLGN6FCa+W9CCUvzJGVVAaBDI7sXFwEU2VBa6w8oN3xataCFlXrCKSlEuazKJ6/dobCkXNdemuCW3FjpurzT5DotEgUqp8F2hxvaZcsVb4cy9FhETSWTMj2p5vr8smFmTGojkCYruuEUvVDKtGpA3ys374KM3bwxLoISvm6zj+fCztGwEz6hK95kPBFDZTMOPb+gEibvfm6YvSmIpjsMfVowGh+abyKcH6P8ne7cJNPjhKcrqnokaqmyRU29rfND1jaIU4NH1hv4586YsJg/VtsnQJWVy6HHoOfM9cZ4Q2Uj6pUpCgV56CHHI0ceesgxMFS9U/LN4LcBvXkBtrvbDkv4Vka/+x3Q487WP9329HluXgIoo0MT3OgdcJZGgT7PPkbnLmi4bn19XTtRz15AC0sLJvZv+mMtDrYOQ89YUj0I7fa29RP6KRu6822fa/IvUrghDXc+7WvY7e+r4LDyRYxBODtN58atfSEOd57tfAx7nm2NClvrwg0J6HvkLrRZi68dRtLnu2O2514bZ/uUQq38l8LsjKkq0bkoQE/f3eRT6Bp/dt++vvmP9oce/oMThB7+Zh56yHF05IZCjoGhX9VDFtwFQH/m5gbYi05WbPo4OQJZxx8l7m9/Zh+jzyssLZjqhqxr2u27C9VxcjEOat8dg1tJ4I7LPj5rbMe97nHa6NfnrDBCv7YOy3HJat89pt/z5B533LnJerb74Rt85f9n721j40i3M7Gnqrq7qkn2B6nuFqlpkpdDSRyNRjOTWfnOXc/a42tvvNfeJEaQIFgnAdZI8jPA5vtHEGSBIAvkZ4JsEGSTONhgsetgd+OsF3D8kbV3fT13Z2x5ru58aTQjDq+kHpFqkmJ/sNlV3V315sd5z6m3ik2JnHtHtJM6ACGyuz7ej1K95z3nOc+DXrQfOwqNZXX1KzgKP/ibmaOQ2ektSz1k9mfCpr1IpwHtzDx4eMLCcVoA2TTsw2kxEulFKxFON3aJJ11LjjX6Pe0+Tzv3LMeY4/as+037+1kLYvqYZ13zNN+d5fOzOifTrheeYhzMaz+tjaad1kmgC2Ybu8yev2Vgxsz+VNo0ENc0MNdZXvSndRCedr+z2mnveRY7S7uedey076eB/p72OZDkTTjL/b5ugN60SIb590nnnHbcpj0rp42OnObzsx6TWWZfh2URhczO1dIh7zQmAIhBcUByV5d+cZpkRsBxPAHXtpsleZwnN3Pn5rVNgJrZZiDmVJjW7mllfUCcu08D3aYdByDBLcHH2kVPzk/n1JmUiH9Xvi9jl8ZymO3h79P4jTQGga+XJm9KczCYmAueF+X7iTExx8hE/U8bt3S7eczN8sd0O4RjwrgXj106/5+es/QYp8dH5tEs7Uw9f+Y10u1hOykK8axUTcKyIENmX7NljkJm52eWJaVr/ALlBchc5M2FMB2+NvO7YRDAqcYvVjPsHwYBoF/qZqiXnQTg+AJlFz1xEswXN7fHuVqDmsIUCGiyI9dNgBABPJUN0fzcBOcBSeBcOr2SRtHzedPuZSLszePZTEAmI+75XJMVkcfLcl25hrnAmRgMyxiDdIULH2+2aVrOXgUBoImmuKKAz5Hx8JOAU9OJCI3PLNcV2udE/3VZZxqLYDpY0lcN1DzurCVBj+bYp/ki+NlPgC8N/QcZCxOv0slEoTJ7/pY5Cpmdm1n5HHDjCqzdLikc+mORic4tXgTcQlwOqEsgo8Y8oKWF7XsPYXke7FeXRMoXjZpw7DNLYFQuJkSP/PUGaTHol7LVO0R40KFFrFmnc0cTWN0BcgYbIV8z3GnDuvkKcO8hnKvrsIKRHCfGLIAAiVchWWLJOg5hnRwBuzckPQF9L0bHs0CTau/F7dWshFyuGDbryO12xZFQK0uwugPKK3JKYLUJtPdIBVIrSapuT3bXzKbI6pQA6T843CZmW6yUYRkaB1FjHg73qzwn8tGmM6DKc7Aa81AffEr90UyUdqMG5eUxqs3C22wnxsy5WhMpZx4zVsRUvk9sjrt9BM0q3PfvxYv5qy+JvkXUmIfVPoBztSZzbG2sISx5UO/cpnusE3tjvrWPo2uLopyZW9UMkwApa374ubBcHr69gbk7+7ABKC9PwlBDH9bNV2D3hojKRVgArNYubJCjxNLi/EwDQHTzGuzdPnK6fNduH4hglVOtiACWMJA267A+MJ4xfr6yiEJmX7NlGIXMMssss8wyy+xEyxyFzM7PwogUFVmFsb1HpEQ6/6vcAu2QNekR3AKiDz6NT+d8st5BOouNWGNAyyoDEOXH6H4LqtuD90lLJIBN/IEqz8EaEVGSursV57CDETEEet6xa7LOAGsHRJVZknYuz9FOvDwHu31Aiok6OhBd1vnxYITIzdFu1dAhkLbrCIgVjGJiJH1vtbJE4Xzfh9PaJXnjxQZJYpc8GlODYMkKRphcX4N97yGiy8ukzFgpU2h7p60lrz1E5SImO48x2XkM5eWpX8FI5kDkk90CKXl2BxJJsXqHyLf2SWHx5jXagS82iBzqg09pl+zlhfvBCkaw/DFFE9LW3pMduCrPAY0a7fbdAtCoiVSz9wkpOTqLDZojrTkx2Xks0YiEdLZPZFi5xYsIP9tEfnObpKqDEWbu7MhzAC2dDQD48HNiY2zMw/I8lN67H3+nzS56NJftPTi73fiZG/o0TtyXbo9UPVebyG9uS9uYOMvyx6Q50ajB7g5IH8P35dlEFCKzzJ63ZTwKmZ2bmYRLtg6NA8mcMIA4TL/Tfipw0Mz/8nlM6BMNfWE0NIl/0myDnGc3SZvSADW2NMWxeX8G1wGQcDPjDKyNNVkYTF4F6+YrULc+OpbHN80kWErfy9RTkL855aAJjgAk0ihmuN8ktgI0JkEzLgI4xtDI9zPnR9rJxxoODpMumaRQiXHW12HcyLS5ZlwBj5nZT04vmOOSFvfiNhy7rh7XNNbkGI22QfA1jWPCnAdznMy+mJYgytKS2AASyqHOYkNYPP957x+hO9lN8Chs/Otn51G4/T8+m0fBsqzvAPjvADgA/hel1H+T+v6nAfy3AF4F8FeUUv/A+O6vAvgv9J//tVLqb5+5kZn9qbEsopDZ+ZlSybK6Ro12ofPVBNd/uNOW/Duz81meR3/PV2lnfHVdXs6spsi0ugA5ItH9lixUvPsGEOMAgoCOv3GFcugGWt8ueok2qZUlOn6+Cnu1SRoHmm4ZiCsOlO/TLrLoxeqP3QEtpPp+4U6bFiftJDCq3gS58f1Vt0f3D0hDggFxrAbJUQIG3UX3W7EzZGAt0KjJ7+FBR6ICdtGTdjvVCu2QdVsBWnxFnXNjja6lcSXOYgMqCOQaAOLFt1KmcXz1JYQHHXFc1MpSHN3R83wMAKjnAqCFOrd4UZwEwYW094jpcLFBOArPo0Wb9SMOOtRnPwbN8jiqIKAIggYncnsAcpZ4PDiawd+nj2UAKaAdAD92QqSM0ks6snweMzciGEF1e4lnjucpGvpQUYTnYZZlOQD+BwC/AOBlAL9sWdbLqcMeAPgVAH83de4CgL8O4E0A3wTw1y3LOi7XmdmfGcvAjJmdqwm97v3WCeVfcSVCvHCa7HjJKABHCwTNzpUMKZpiE8kPo1KAd88c4FVTSvVUpyvnKN8HOBphVkikNCm4AmKy81giI5brCmW0/K0XGrP6gMcpPSZAsvKB0fxpumHuL/fNrObgKhEzWpOO1LBMtTgfQz8xBtwes4IkHQnhKoic52HCY6+jPZNUhUO6asCsoIgQ727SlNB20UvsxNmx5PbwWJvjIhUvRkmtGYVSQSxgZfaP54s/S1fnANDz4ieiCeazl6jC4XJT4/tkBcZxCmkZo68nKPxNAPeUUl8AgGVZvwbglwCIIoZS6of6u7T38pcA/K5S6on+/ncBfAfA3/taWprZ126Zo5DZudtpmOlOqjc3SyWfttdKOAZfoR3PYjR81rFmyWOaAOppzI6nJWxKswee1AbzGLP95g5evpvy2dPaxA7PSYyYCQcudf+Trj+N/TBMfR8m+nW8/ae5drpMMc2IOW1cTzNH08b1pPZMG+d0X58jM+MLAEye8RYoQvBVz33hx9SuzM7BMkchs/Mzi1KtTGrEu24Aonpo7hrVCpVBiundo+R4fR8W55qDWNI5nQ/ne5j5bAAJLIJKnW/mz03xpHQ+mq8LQMLS5k7UJFKSvLkuuUyLKpkCTSZ+4Fju3/jdjCbITluLXQFaWIlLIztdwSAwVsIUpuLcOJcVcgmqtbEG68H2scgF8y7w73wfGXO3AASjBNeDqfaZuE5KDMv8ziRvMiMg5nOQFnbicYjut+Rfvh5gYBVSEZXEdwZGg8sZeY7kGdNYCUnPGCRf/L2JxTGFxYQEzMBhJMYPALbx47KaZVm3jL//llLqbxl/TyNsOK2X8qOcm9mfQsschczOzSzbRq5xUWSXOTcLANFBB7hxBY7BGoi7WzAx34xRCJt1qHsPgUYN4f0WnPkqnGoSwGZpbgFrZQmhlk62NtZgtQ8S4DYVBFSLrzkdkK44MKSVVXkODjTC/tUlRB98isnP/jl4n5CzwHl707EQB2FlCQogUGNKGZMXKDPXz39zHp6dD1lAGjWq+DA+C5t1WKOJ1OKHzTpwjzZ6zAnA8tVRZRboDpKLku6j7fuwugPBWljtA4RaxjsRStfzwQ4B38fWVRxRZRZ2l/AbUWNersl9Y2cMwQiq001IRfP4sEPG7bcqZVgrS1LhIGOlnQEec7voUWXHxhrwYFucHb6eo2XAmfsgGvqYXF9D7mMts60rIXgFtB5sQyHpTNhFj6oYTEdOV+MotwDcbxHgchhjPKzuANbQF6wJAJLfrlaocqVSpjSWdpytQj75n0jhqy7Be88AM7YALBt/NwE8OuW1WwB+JnXuPz1L4zL702UZmDGz8zObXrvKLUi5Hpu1QaV8aNSIQEgD55zFhoC8rEqZdna9YXzJ1SaVm60s0WLEILrugMB8d7foxe37VErnFmgXurJEv68uw+4OaFfY7cVldRpAGX62Sb9vrMWLws1XABBtsfv+PXqp6/aawLQEIRMgpXy8MNurTQHjiYPjxQBNNGoCipSdvAYohp9tCuhPQJS3PqISO+1gMElTuNOmSI0GjgLksHCJpSrPQZXn6D7BiECTlVkC+1XKCafHLnpwrq7Tog6dg9eLv3ILBFzk3Xv7QCIU/DsDWC2PSjqVLoe0XJfOb9alNJH/FaDkyhJhK+5uUYTBlPn28rR714ut5XnkUN7domfq7pYADpXvC9ERQM6HvdpEbrcPNGo4en0F0f0WHcN9Gvrk7OnnhgGwXJbKpFkMZg0/20w4gHbRQ/TBp1QCvNoUUK7leYLJsHqHCOuVGMhZngPC5wNmBPDHAK5YlrVmWVYBwF8B8BunPPe3Afy8ZVnzGsT48/qzzP6MWlYemdm5Wdm+oN7Ez8rfT+Wzn2Lp0rRnXeMk2uSTfp92/dNch+2ZHP2n6N90YNtxyuente9H+Zz7cZr2TTv2aWOVtmmS2ifZjzL3p52TH/W4k56pp1F3m31L9w8A/sj+p8nyyPqyeulfO3t55Pf/p1OVR/4iqPzRAfCrSqm/YVnWfwXgllLqNyzL+gkAvw5gHoAPYEcpdV2f++8A+M/1pf6GUup/O3MjM/tTY1nqIbNzM6tQgPUq7cat0QQAYPtj+luXiaFRAwCh6jUpho9eX0Hx3c+AoofgjcvI97Ro0mgCyx/TrrI7gL/eQGFvIJ+FJQ9O34d/qYTiF08QNKtwghBOn8iKcq19inD4Y0TlInKtXYkGjJsX4Oz25dr8We7jLcFQKCNyEJWLcHpDWDr0bvljBM2qkAyF9Yr0fbBWRr4fSj8AwNHRkkm9BHu3D3tlCaqQI0KfYES7ZDcHO5gITfXBzToqnx0KnbD5L1MmA4ATUCLH+XgL1mID/deXMHdnX8iVOq9UMX9rV2r7w3oFkZtDbrcvc9B/cxXe3ggKoB24njsAQpmNYAT/5SYKewMM1soo3d4mUirdDx4D3rLYK0syRzxnAOBfKsEeRcj3Ahy9MIPS7W2KQDDVs45M2e0DhM067N4QQbOKfC+QqJPy8nTf3hDDFxeEZCmqzCIsebBv3YEzX8V4fQkO99MtEL3znR0cXVtEvj9GfnMb4/UlhK6Dwt6AaKx1RIQpwxGMMF5fQr61L/ew/DEm9RJgjlfvUFIL/stNuK1Oop1MO17YGwCfvXP8P9LXtNdTSv0mgN9MffZfGr//MSitMO3cXwXwq19PyzJ73palHjI7P1MRnN0uLRKFHC2eN1DOAAAgAElEQVSyXl5epGjUhJnQ22yL08Ch8ZnbDyR07b5/j/QZRhOEJU8AYwAtiGGJwre9jQryrX1YD7ZhjyiMW9gbYFzKw/LH9PLWjIHywjcW/vzmNpSXR+cVnccPRnD6fgJoafUO6ScYkYaDXizt7gBRuShsgsot0OKt+166vQ1vsw27NyR2v9YuLRheHk5fA+zaB7DvPYS/rtMnownl0Vu7sjAv/N4WjWswih2wew/JWegO4G224bY6yH28RYu+ZpzM95OsfwvvfCkpGIAYIUPXkcUzasxj7p/dhR1MaEx1n9lRUl5eFktvsw3/UgkzXx7RGPljmvduD05rl9gk724RI2bJQ35zm8brfgt2d4BRbRbu3hDeJy3YvaE4CTyncAvov74E68E2jl5fAUDOldvqSFu4/9ZoAuXlMXNnB/56A/46gU7HJUpX+C/rtEN7T1JPM7cfAMEI3qO+PIN2MImvX56DcguY1Etwdrvw1xsYry+JM4BgRJgIUwMkGCH8bJOwJBoA6W225dnluQOIgdLyx1BOJgqV2fO3LPWQ2bmZyczIlg7LpmWU+fP0saf9btp1+PiTQunp86apG55U435SCuOsIedpx6fbcZr0xLEqBQN5n+6D2fZp152mmjmtfenjn9W206QIzGvzOenPpl3LubpO5ExPKYV9VprAHGsgKQH+rDn8UdNH76l/gp56It7CbH1ZvfSvnj318P7//OzUQ2aZsWWph8zOzSzbjulpNTNdhGQJIRtXRXAlA4BjvAnmS1hK4lIv8zSlLy8s5kvbpABWb70O69adRHkjE/WkSy/ZzIWA28H0zYm2BsRiCN3uRFmgLh2Uax504muxLHelLIRSgF7Y56uwXKPfwImLmDVfJeIkg/EyXapojhmzRkr7DCXJND8CExDxuOZWlxMgzESZ6Ann89ik22VWfaTlqtP9cKoVqob5bJO+6x1iYpQjmvdLlNlypYMRmeLxZAruxDOVots2nSz+GzhO+33s/nqczPnizyf3H8JyHGSW2fO2LKKQ2blZ2VpQb1o/95XPf9qO7LTn/n/Vzgpc/LNs59mnZwE+f9yWRRQyOw/LMAqZnZtZeQpo8c6bfwdo9+pUK/LD35k/5vFOtZL4Lrd4Ua7LnzlX148J8yS+r1akzC99j2fdO7e6fOx489psudXlRBvM79L95M+cakX6I+00/rZcV9rN55j0xaYltDWMNpjjnFtdTlzPbOO0MU633YxATBurk6550hilx4XHlcdhWrv4PLNv5vncPrPf5r3Mv9PzmE7fpMeUjzefJXNsTnqepj3rJz0rCVNf4SezzM5gmaOQ2bmZmoTH8rbCZqhD0Szqw2aSAZlmCvyw5oMKAgnpO/NVhJ9txiJKOswcdrpyXtjpEvOifsGnUxH8GS/C3NZoSLXywm6YCjPL8dVKQrfA/C69CNhFT8L30dBP0D+HnS6RPBW9uL+G5oA5Zrxo8qLIbTIXIb4mH6e6PahuT84VMSxj587cDPy5SRjE9+Dvc4sXj1EZmziGtPEYySLNolZBkBBhYrEncxz4vmZqgceQj+G2TnYey3c8/qbiZG7xImlE6GckPQbcb24rj7/0X6cQzDHjdpif8fl8rzT+wXwmMsvsPCxzFDI7V2OVRF6UeIFK77LkRW6Q6ghRkfGyTe9cgSQ9L1MAW64rNLnpCIQoLIIcl3Qum1UbTYlmPsakawaSXP/mS5/bKkqX+jgeh5PAkqbsMffDXOjMMeOF1HJdIgrqdGXMnPmqnGe/+pL0y8QKmBgRc6ebEGEy5kIopoOTNRDSEQE+LnEtw+FgWWieI1M9k3EiPC6JBd1wLvhHMB5m34uGCqnhaFmuK/3nZ4SP436I49KoHdOGMBVQzfngdkuUwTtOIW3+bRdJBZOdFqY9T4ypUmf+ySyzs1iGUcjs3Kwyc0l96+q/K+VwAIT+N2rMQxVyGJddeJ+0iH4YoDJAZkvkUrz2HibX12AHkwRLI5dZ5je3ocpziMpFqb/n2v2w5CGveRMA4jKY+fJIuAek1K1EIDIu7+P6f9vgOWAuBQBSjplv7dMOfSWmeM73AkRuDtY7t5FbXY5r81v7UuLIdfOqQOmZoFZM1PxbmmKa22DyJDAHAfMUKLcAq3dILJbdgYBHo3IRkZuD0/cxWCtjdqsHVchJWZ4q5OSaAIi2eGUJo9osooIN71Ff2jcuu3CCELndvowbUTYPMG5eQL61L2Pe26ig+t0fylyLzLdxH2ZSHJddeJvtBHMi39Np7QqXgcmt0H99CaX37qP/5irm/tldYvY02g5A2srPiPns8BjmW/sYNy/ArxWQ74fCxTGpl2R8zRJG5uzg6wNA6DrwNtvS91FtVngyzHNHtVl4n7Tgv9yU85kbY9y8IMf98R//TXT97QRG4dov/Yc4q/3J//ofZxiFzE5tmaOQ2blZJVdX34x+5jhSXQs7MaUz/87CSWlLiAZNEd1Jo+ZPKmt7Wkli2k4qmzOrLVhkyqwc4HuyToLZFq6i4AiLuaPna5m7+USEQusJMMeBKZXMFReib1Ap0wLN91pdJormDz5NVDakIyPpihGZE60VYbcP5Jo8FnwMYIgqVcrJ9qXm1BRU4qiNKb5ljou0RxMWwS3I/VhILPrg02Pzy+kloUueAkqU6NQUsS5zTMxqjHCnLc+gKfbE42GmNjiaYD4jPF7pZ4Tn/73wd9AdtTNHIbPnall5ZGbnZiqKjNp3X8LArJhn67I2+9WXYHUHCbVGQL9o3ULipRqVi8B9X8LEqjxH2C3fT5aZGWFrdiJM5UE+1+od0j1XaadnqjAmwu+phTsa+lCcb371JVhatMjRYkEsRJVeZGRBdgsIjTSAU9Vh9I014O7WsXNYoVCBBLXS7VNBAJsVH43F2XJdOtdtyhhKGshYkLkUNRr6gL4u4zLCnTacIHZyZCHUjl5CXbNRA3qHUgaogkCErkQNk0tXDeeGyznTSpLR0CcRJ34ufMOJatRgtw+k7bzwm5gOSfWwI2BwMQh2Rj9jlusmHAYeH342EIySaqQGXiEBdNXjYjq+8jmLSJkCabqPdtEDDpG0DJyY2XOwzFHI7NzMyjkUFjaiCAD0C36P1P+urpNaoRYiMo9Tvg8LGixXngOadRKSMl7WrCAIz4N1cxlo7UptPfQOFD7J/6r2HqxKGY52QNDeE4VAZtSTOnvPA3QOPdT35YWbuSEA0CLzYBuqUROJY8vzkFvViyggSoP2alNYHFW3R3gJTmXoXbHlj2FrQJ9yC8eUHq3eobRL2sd1+Z6H3KIBQtTHAOQAWTdfgW2IK7Eyp7PbpTEBYGsKbVWeo7HlsQxGUI155BgboB00KxiJUqbdHcDSMtOTn/1z8Mwxcgux0+SR4JcNxEqVOurhAIkUCs+VrZ8bnifHI6cJbgH2qy+RGJgxVk6VRKXADpyeu+jyMpwezZVVKcPRfWMly6gxD8sfI7zfInXT1i71XadRLM9D5OWBlSXYWvSLeSLCFE8CgISUOKdhlJeH5RbiZ1c/62jUgEHGzJjZ87fMUcjs3ExNQuLlB5JkRO29eHfe3hOCHNplPk6EiS1XH6cXt9BkzkNy54cPP4dabdJO3WDws4seovstijhwaNsgYwKOo35ZOXGy8xjWQQcwdtiyM9YOQDT0Af3Sn2jin8gIXzNpksULpQbbASANAQA2R0x0OxNt55SK72OS6tfEGC8gDnNzH2R8ih6iDz9PEF6FBx0aVzMlAqpIySEmuHIAhENfogoAAJbT9n0oHe2A/tupVpD7pBWnUkypaqONlutKVIajFnzvREienx1DVjrsdAHu+87xuYuGPtQHn8Ji0KvxjLCjaaYAJFrCypVBQBog+ji76CFkAiYjEmBGDJz5aqLqhdMhPEd8bmSCe/24YsMa+lDjGNcg18kiCpl9zZY5Cpmdu6Xz9ACF6FmSGIjTDLxjFdMyy5I3N3bz4UEnscA781VEXl5ywZyntzwP1sqSLMoAaHdqLtyNeWprdyALgyzQBi7Ccl3JmfP7O7p5DfatO8fYB/m8RKojGMn10/l4yfEbkYtECV7Ro/JMtwBlOFsmcyKXF/KYmQuuUymTWJMW5rIZ16GjLpyacK6uA71DOseAF4j8tO4HjUeBohY6ghOzVvrHwvQcwp/USyTOlGKzVL4v1QhmZIkxEkqnZKgaJE5BMHXz5LNNkRQ3xccAwiowvTNHWuyiB6w2EWnRqdxq7PhxZCBRraFxIuY1uN22vo7DkQE2/dxwm6L7LalS4X7h7paMvWVnhWqZPX/LHIXMzs2sQoFU+rTgUVTyYJuKen68gI714mEuymjUCO3vFihV25jHpOSJEI8DiIqg8vKw2gekMlgpw19vIP/OR7LgsKATh5bR3otTASAxJoBC6rhxBWo0gdM+kHC/0m2J3Fzch2AEVMqkHjhfJdxBvYJAI/nRO4QCMH7rFTiftDCpl5Df3Ka8vFZAdHZ12V0wogW7PEch7o01oH1AdMKFHHK6AsC+dQfRzWvItfdgbaxJGx3fp919Yx7Wg21Mrq9Ru25cAe49lMXdbh8I8r7g5eF0B1RZ0e2Rs9Ssw9JqmuPmBXSuFFH/rS8QXV9DfnNb1A9FjTGYYMzqnT3QYgzIYjpeX4orXji9s9tHBMBfb8A1Fl6ufLG4koPxHlp8ySp6kpaIbl6Ds7kNa2UJFoCgNot8+RUoLcJlaUdB7rm6DL9Zhas/kzngKIWeZ6tSBi4vA7tdSld5eXI62nsiUnX49gZK792HtbGG8O4WXcsfk5N5eZnSFQDN1/0WHVfyYBdyMp8hqCrC8sfAxhrGJQ/AEvDe7/xo/+kyy+wrWOaeZnZupkYj2MFEXtr51j7JMZeL9GLWUQSrd0iSwxtr9N3KEv14eVpI23sImlV6GQcTROUiLdJugULJ7FiwqmG3Rwv1jSu04HgeLWzNOiH3vXxccaGli5VeaINmFeOyTn1wWZ/OKx+9MIOclqC2eoeIKrPw1zXgUKsLAnHpnPJ9TK6vkXw2QDLXBx1yWtwCKT5WZuX+Yb1CEQhdYQC3ALt9QAuPW5BdODtelj+W8bMqZQLFdQewPJJTRjCC09pFdHk5sdC579+D+/49kcy27z1E2OliVJul8lTfJ3xE30ft//qEFudbd+jcVkccjsEll/pQsEkV8qAjyprR5WWo8hxC16FSWN/HuHkB4+YFWMEIzjzJQ1vBiHgKGH8CKg+d1EtSDWMHupxzhSS4EYzI2WjM03zqckpW8jx6YYbaUC7KsxhVZuFtttF9rSalmKo8R86AESHx1xuCSwCoVJNxGFYwgtU7xMyXR3Rud0AA3e5A2muW745LeeDGFVEtHZdd+b9g33uIsOSRE1ogGXHu5/H/SF/hJ7PMzmCZo5DZuZmEUXkhZznm3hDR/VbiWHV3C9aDbTitXZJa5uhAMIJVKcN9/x7t7u49pJcxX2u1SQtk+yCBqgfoZcwOhbq7JQuR3R3IYmEFI7p3pUzgtiCEt9mmBaJ3GKcc/DFKt7cpEtEdwH+5CVXIwW1RxYTVO6SQ+r2H5Ey4BaiVJeJwuGzQL89X6d66X9LPRo04EfRiGB50ENYrCJv1eOFebFC9vi6BjMpFuk95DlFlFsG3XyVnwy0gunmNbsgOyeVl4hRwC4guL1ObtMQ3GjXkFi/C+6QlKRiA+A6ioU/zstigaIwGYgJA5Xc/heV58B71KbrBQkvQu+VgRLLR3QHdY7dPY9PtxU6eboPT2qXFeDSB3T4gp1KXEtr3Hsq42xwd6VF5gPJ92L0hCnsDcbLm7uyLRDeb3T6AcguofveH5HC2D0TiHNAOY2NeJMKh+S7kWdPPr/J9kvjuHSYIufKtfXru2nvUN7eA4rufyTPGUurR/RYiNyfPhirPwWntxpGlKFvlM3v+ljkKmZ2bqWIh3tECtGBrxT4B2emXL25coVCzXmgAvZPXoXg0arIb43r6qDFP5D96EYsuL8tLWrkFTK6vAdD56cWGRDD4BW/1DmnRunGFFuV6RRYyazShBVgvsEGzKqh3BCO4LY2tCEZQXp52mMFEdp6Teol27N0e7R51NAOgRYsX5KgxT78bDok1mpBD4RIhEkc/xs0LtNvVOXBrNJHohuWPEboWfeYWiITK94m8yfPoWsEEYb1CC1NrF2GzThGN++QgqPIcVCFHzkEwIgdstSlVD/6lkkRowKkBn6IY3CdZwO9uxekUPU5RuUi7/Abt6p3FhjhBkU6ZWP4YyvfRf52qQZzFhmAxVLeH6PIyjTmDDnXkyXqwLc9IdL9FURUduYFbkOPDZl3mS+lUEZfE8vGqPAfV7WHcvIBJvRRXYbgFaXvYrFObGQuj76FWlhDutAl7oZ0/dgzDegX2apMchLtbNDe6woQd6GlmqbP/ZJbZWSzDKGR2bmYFY6gX5min3O0BngfocDKz+smu7MPPgfkqIgNAFh10MH7rFeTfaUHEd42qBdvY0dntkZDx8A7fvt+iXLDrCkhNAIMPtqm8r1KmyINejKPKLGzPg6XD8vjwc+SKHuyhTzgEtvYe1GddqGoFlkQylgQLkd/cpsWUSZlufQQwPbOOcKiiZ5zryXWtRo0W4Ft3EIFAkdH9Fuz7gNIYDtWo0eIIUNVIeQ6l29uJflqVMqK7W8BiA7mPt2JyJAaU6l1stLEm7bbv7cXy3jeuwNKpiHDoY+Y2fax8H9Dlk3bRk7I/uzsQwKO92hRwYXjQoYiDgcdQ3jzhD66vETalSCWT6B0iWiHmRXb4GMhped4xpkTur7pxRfpk8nGwk+oEIyrhZJZLPb/ObhfQpZFCaKWf0dxuXyIoygQoAojcHHL3HtI8QDuv+rkB61Xocy3tLHFqBHpOFSDpk/E6RRgyy+w8LGNmzOzcbLa2rF79ub+G8ayN0oMR/As5lLYG6K/NwtufwAlChK4DJwjh1wqY3eqh80oV9pie2ShvwXtC+f6ZOzvY/XYTCx9RrndccuDPOyg9GGHvNRczjyOEBQu177UxqZewf72I2cehtMWfdzC7M4G/4GBmhyITbquDL/6ti2i8P8GTl8inXvh0gvGsjdGchcKhwtFFG3OtEFHewvytXez9ZAPOSOFgw0ZxF+h/I0L9faB030foOtj+SRduB/CeRPAXbMw8DnF00cGlf/wQj/7lZZQeTuDPO/AOqG3enl44ggmOXpjBeNbGwYaNb/zjHrpX5zCaszD7OIQTKOT7YzkOgBy79g+fCDX1k1dKGM9ZWPgkQGFvIJTGT1524T2JULrvU+4cgD2K5LvSwwmcQGGwmENYAGYfhwgLFsazNhY+6qN7lSI93pMQoWsh3w8xLjkICxa8fVq8xyUHc3f2cXCzjupHHey/QVGT0oMRooKNwaKmq5634B4oOCOF6kcdDNbK6C/nUP/+EQaXXDgjhXw/hH8hhyhvofpRB2HJQ+dKEc5IwR4rzD4KMC7lUfziCYJmFf6FHLz9CQp7A+y/MS/HFfrUx3x/jHEpj9C14O2N0Pr2DJa+F2BccjCepcDrwYaNxvsTzN3Zl2tGeQtHF21UvqDxsUcR3FYHX/7li1i4M4a/4CA/iOAECp3LeSz+wROJfB3crOPooo2ZxxG6L9ootpX0vfHuAR7+wgJmHiscNi3kB8DCnTH+5N3/HodPHsbMjLVldf1fOjsz4x//7YyZMbPTWxZRyCyzzDL7s2zZXi+zr9myiEJm52aVXF39+fIvJcL6LN7DwkCcw2ZRHc41A5D8rSkOldaHUG6BQI5GeaPy8gJYlNy1kaZgUSFTrMi/ROJB3qM+Ad+0qBIQh+hNfQqu63fmqxI2NtMewjngxwqJTOyjVpZEN4GNP+OyRA57m0yQnMcHs0AWPembOT4sUqXubsVskrp8E4Cke/yXm1KRIXTZ3R6Nf3tPdBScaoUYDXXZH+NMgJh0itvB4yI03HqOmJHSNKk2MHgxhFsAkHngUlpo1kjA0IswdCnMZ4JxLCY5ljk/ifON/kSXlyVFYFIwJ+bTuBeAhB6G5Y9F/IrTG/Ica+EuAJI24rHmNn5v++8lRaFqy+r6X/4KEYX/PYsoZHZ6yyIKmZ2fOXa8kACItFAQAC2MZOg+mGyHTFIDwilYG2u0iGqWPgG4sXhSpwulmfGs3iHCzx7DXrwIuz0iRkG9uDC508xvtRGCeBiU78P2PMxoR2OyQ+eivQcnKAt1L6AJozTmwEED0cYaIgC5j7eASlkWdFWeEypi68E2wmad2B21WQ+2Ca8BCIUzYybg+8jphdeUwwYgHBHh/RaRPGk+BxFJWm0KURIebAMba5h88CnsV18SKuMEUv+djwiPcOMKIjcnOXJL8z9QpYAWTtrtxo5Gey9etHX1BvTiawcjwl7wOHkeZNUzHBWm5xZCKMMBiz74lMbGdYWRM0GbzXOhq0C4nJH1N0TTw2CEzFXKxK6omTPFcdDPGBNViXqprqiBfnbMsVXdHj2/eg6dxYZoS1hFD7ZJGqaxOVJdwVTTfEwwArQjiU4XsFMlkhk4MbPnYFnVQ2bnZmo8kYVErSyJop/1YDsW0eEFYujL72yWfrnb3YEwD9pFjxaH+SrR3lbKcKqVmJHQ94n739A0kAUKVJ5oFz2iYi7P0Y5OI+PhFgR8B4DazrtPrbsg3P3BiEooWTK5XpGSTdlBapEmAfHpPkVDH5OdxxJF4PLIsNOlaMHQj8l/blxJaF+wZkTu4y0pu2OBLNZZ4F2v3R3AuboukQq5hq4msVeb5IT1hsh9TCh8Zmq0KuW4YoGdGmbJrJRl15y28KAjERR7tSljGe60KdLBTiOPQRBQ9EN/TgyJyzSn81UijOIxMBwFZ75Kz4F2YFR5jp6VV1+ScXbmq3QdQ82RlUxZnAkwRJ94jjRjKEcvzL4xNwY/y1y5k1u8GFeIaIsa87GC5E6bgIurTYzXl4RbgitDnKvrcs3MMnvelkUUMjs3s/I5UVFUO3oXr3eG7MGaNL28KxPTu0bmz1flOdJxuEVIdadaiXe0Bl1zdHcL2FiD7Y/juv9GDXZ5LklNbITqZTE09RH0whgNfaKc5sVWI/6hNSDgFuKwPLdBM/6xOJSEsA0FSVacBHRbpshdO61dhEMf1kpcUaGYQtigwOadMctIi6YF4sgM79w5YgMAFpDQGkioPFbK4lCZ1QDhTht2l7QPuG+qPEc7c53icK6uizIo2geJ1Mfk/kMRYVK+D2i+BlaaZB0Iu1EDPvycKKo7XThXjZSU75O2hyHLzboU4DYa9Mvm8yP6Ifq5C++3Ynrmbg/hzmM4V9eFJtuZr9L8aDZHLj1FowZLV9rIMUY0Qd3dArgCY7WJ6O4WVdp8FpC2h1ZQ5TSSAimuZpbZ87bMUcjs/MyyRZvA4VpzgHasOhefb+2TEmC3h9zqMsbNCwhdKob0Ntuisji5voYomMj1xvUS8tCOhs51R5eXoW59RLLP7CRo4iNA6zg060kshHYcxut0DIffVWMelmY5dCpljJsXYAcTWoh6hxT6DyaYaH4CfPg5cOMKkRs15skpMUrujl5fgbs3pM/be1S29+HnQoyU39wGhj5xDdy8Bqe1L7l9Z7EBGNwLlltAWC5SP3R5XdSYF3lqiqiMifpYl0VG19fgbBp5cSChWcDUywoQDIm/3kChMit009ZoQvNXp7JJx/P0zniM4YsL8Lw8/NosCnsD2N0BcosXMS55sLvkIDD2wKlW9O+zxErYGwLlInK7Xc1l0RUWSaayzq0uI/LysPwxxutLCF2HSJb8MalQ9g4plVWeQ1guAvUKJkY6hdkuuZ9RuQj73kPCg+jxDGpF5Osl5Fv76LxWw+yjEkLXgbU3kEoG/+Um8r2AIhkakxE1r2HsOvS8aswMgFgJ06d5PfrOaxjP2pjZGcN5/57MM0c2AMDyjzuLGZgxs6/bMjBjZudmZWtBvfWNX5GdI+/OTPEky3VF3If/TUgr6/NMYSkAsus01QQ5xMzH8e6YQ+Hm93xM+p4i92vsDoUESu/Ew06XnBGdWuB2MI8DAElTyO5Y73jN/gKxYBaLKTlX1wUMycqG3PZYcMlNAOsEo2CKbxmCS5Iy0Z8J0FBHHeTexvgIxkBHgKaB+dhMFU6zv+b4pttnjod5jjkWbJIuABLjwtEbjpyY9zHbJNdJiVDx2JhA0/TzkQaDcnTLbK/5TAIQZUhWjTQFwLhd1saaMF+a/fle59fRi/ZjMOOFZfXKL54dzPhHfycDM2Z2esschczOzcrWgnrT+rnEZ+aCwn9P+/1Zf6ev8zRj3MFpjj3JnnY/c7FLH2MuVqe5v1OtyOLxo1q6XU9rQ3qsz3KPk679tHEBIM5PekE/6bj02JzmGXja8/ZV7GnP62mubzp86XMs18W7/m+ip55kjkJmz9Wy1ENm52ZWIY/cpViu19zxWXqHpro9hJyzT+1Uo6Evi4PgBgxEPRAvrEAsA8wld8wIqHQpmglqm+w8TkgJm6VuZm6baYwZ62BxO4zcMu92eefPWWYuXxSkvcZbCCo/teglduH6/MSYnbB7BriKhHayArjUxjtbHgMTj8HREXV3S44x+yS7bC7jM6It5g7czM2HRoUHtyn9OUc5eA4Yi8IRFYkA6XG2XJcAiiydrRkqE/O22ozH2ohAyNxzHwx56nRkgp8107HkCI5Ieevrhwcd+X1axGxahCbsdKXPbDzf08xCVvWQ2ddvmaOQ2flZGBHGYLFBueCPtyQ/rtp7BBqrViiMrwWgosvLcZXA0JcFkc2qlAUMx06BMtIOZo08ABFQ4msxtbDluvKy5rJHAAJYM1/8QsWrQZPMKcAOhoT49SIHBgfOV4HeIbWVQZu8eDRqsPWixX9bwYhkk7sDWCtLlH/nFIgu05xcXyOZbS2qxQsll3qqlSXY5TkC4mn64pymQhZjrQsAuUUPaB8gBGTxVboNJh8D2CnqHQL6nhYoB68KOcJm6PFlHAY7fiYHAxA7dId/nrsAACAASURBVA7i0s5wp01OhU5T5RYvCr0xh/+JF6NHC6tuDzt2THMt0SO9azedJ5vner5KYNqilwCDWpUygVZBEQj11uuE8dCOgOloqvIc7FQahtspERLtmERDH7i8HM9Rt5fkwNB6I85uF7gvwYTMMntuljkKmZ2f5XJAowa/SZLC0eVljMsuqeitLBEyvzyHUAPepNxNL2QmLwFfw9ntQr31OtAiml33/XsCgsy39jFeXyLJ3t4QlpcHHmzjyVsvYOH3RlSWBsDxXqLSxtEEqpDDuOzC2Yx3eP7LTfgXcqj+0SMhgkJllrgFugA+/BxjDWZ0drtJYGO5iEADF8dujuSz/THUyhImJY8WbYCUHDVwDgAiL0+Ln9ukhQREQoUyOU5hvSJljJbnxTluVsFk0iMN4oTWReDSSOXloQo5kawGSCCJeQMcDehzgjKs7oDGU+sj8CKm3AKiRFkk3TuoFWGXL5NQFkcbGjWM6yU4lVkaX8RliAoxmZbjFkjaOQhhawnvUBNOjWqziC6VMCrZqH53BOWPgUYNk3qJnCUAlpdHpAGRoq7ZmIfNxEe6UmT81ivwNinqMK6XSP58NJHjgtostSGYYFx2UajMYuQ6cFaW5PoAgSAjN4fcbp90KoIJxusNksweTeCggd1vUz8XPuoD5WVYowl6a7Oo7nbR/alvoHyXnJhRbRb5XoDxuuZw2AVUKZbGFsvSx5l9zZZhFDI7NyvbF9Sb+Fn528zFnjVP/Cz8wkmf/TjtPO75/wc7zdx+1Wudpz2rLdO+f0/9kwRGYe7CsnrlO//Bme/93t/9TzKMQmantoxwKbPzs5STmgbWmXlz00ySHCG2Mc5Nv2CdauUYIM5y3cTx5n2mHc/3NM8zzzWdHPMYu+hRDjvVB/Pcp7Upfb+TznvasWa/pl0jff7T7jntvKcdc5Z2nnRdc1z572dd/6Tvpj1j09oDGJgVPYbT5udp7TCvz+fnFi/Ks5TuV/pcqT4x72VlqYfMnr9lqYfMzs0sx0FueVkob52r60RUhLgSIQFGZBS8mXfv9hKAOACAWxCqX87/TyuJE5Ifg5iIFwcmPQIICJguEYz4fG1yvkEAZbmugAgnO48FFMjXl3EwnArz+MRYGSWU3A4Tn2H+nQY+Ssmd58FyfQEjMiAwDbYTnQMNvJNxCIIEsG4a0FJ+1/1h3AYDDE0thsgYZwZNApAxMuecjeczXXIp3zMQVM8PAxHNZ8ksi+W+mqWYJpiUn0OeF9Z94O/SpbfpZ5WfB+4rX5eN75coLzXaB3STzs0UHykDM2b2dVvmKGR2flbICyuiw1UCq00oL0+L0UGHqIYBqSbILV5MAu8aNVqImNMfIDZGX7P/lYuxQ7G6LEJQVqWcEKGyUzXyQpcbjJBbLUuuH5zb5gWfz7txBfZoAmgiIWiAIPdl8nIT3ictgDUJtIOSFrVifAUviJPra9QeLQKlrq/h8JKL6nd/SAj/Zj0B7jRxG/3XaihtDZBrEWGU/XEsAmWtLMHR9+ZKCwx9jDUJEwDALcB+9SUML5VQ/OKJYEac3qFgPazRhHAPvcMEO6RoXmigpbWxpnmBiHPCcguwAaiNNcAfw2nUYDGzZNFDdOMKXbt9QIyLuqJCgamWSaDJGk2Au1vy3KA7wGR9iQiqNHEXAHFSmLyLAaD8fc6gBxe66KIWhGrWiexppw27PCckVLy4O1cJF+H0fTiGYJj1oU8VG7qigp0k2xA1YzyIkCr5PpGKrTfgtjqwNJEVk2ZZnxrPfmaZPSfLHIXMztUYpX9ws45KuYiDq3OofHZIgDGsAd0BDn7xGrwnIdy9IY5emIET6C3UiwsIXQtzdwjw57/chBOEyO32iQnwUR9BrYiZXdJIGNdL8GsF5Guz6K8U4IwUFroDHK6VUWofYLy+hMElF85IoXSbgID+pUXM3NlBWNLldLVZuO/fQ3jzGqy+LkFsH6B7dQ6l+76AIHd+egHVe2Pk+2NaQIJQ2AvD0gXkN7dlsQWKGJddoFmFE4Tw1xuICja8R7MCyju4WcfCO18CALz9CTo/9Q04I4XZrR4637wEb38CD8Dut5tY+KgPuzdEaWtAQEG3APvWHQRvvYLC3gBRk9ge7UIOkVtCuN7A4YUcSlsDhBqgBwCTkofQdTBz+wEBRl9uwm11cPT6CnorOSz+dgthvYLeRkVYCgsAVCGHyM0hdJuwWx10X6uh8oM9BM0qsSWC9BIO396AEygUv3iCoFlFVKBMqD1qwNtsE/MjQGNfp+s/edlF9d4CgUHLLpwgB/vGFaA3JPDmyhLGpTywvgSn78PXTs7htQsIC9SOve+8iAvvk4YGM24CQOg68C/k4O0TeLK/6qH6UQd2b4iwXkFwbRHeoz6UN4+xftaCUh72KEK+R1v9nX/lRdTfpzl78stvID+I4O1PZNzcvSE5NwCAOQxfXIA9ilDYG2CwVkbpvREGl1yU73ahvDzGZRfj0gy8kofBJReTh6lXtkLGzJjZ124ZmDGzc7OKt6S+OfoLwusPxNLCZrlhmhuATbgDWGsAsRQx7xqlvE0j6tNCPuY9+V5cyw4goWsgxxthaw5Jp1UOzfYDMaPjMXljg4+AywdN9cV0302VROk3K1gaSpYyFgZbovmdKs8h/GxT+hlVZkX2mNM/IqTF3BN8rqadNtMSiTLQ+SrCZp0qSwwJZWYuNHkCRPnTZK00oiLR/RbRNIMothP6FaxNoSM3IrJl8CScNE4ifZ16HkT/QktoW64bi0LplIPMEZBI20h7TM0LXZbJ4yLMnvp6amUJlj8+xrnBFSfmcxXutPHe+LfRnezGYMaFZXXjL50dzPjur2VgxsxOb1lEIbPzs8kkzn/rRc0KRlL7ziFxfhmbL1K28KBDaYPUQshOguTRNe0xk+UAcX5cxIr0ebnVckKuWgUBSfwixgI4HuXk2ckRTABiEaWc0QbLdeEYi6ss/DoEHjImgQWZ2ntQiOmKJZ3BEsZa6hoejZNTrQDlOZIt1v2wiwbpEeMEWBzJ9xPCRup+AHXzFdj3HoqDYApUhSm8A4M0hUTIxGUcdChttNig+/s+yXkbwlcsFGVxeaZJ+WyIKKkgkNQCL7yOPk75fkyIpT8zibmE2tv3AZ1yAADwwt7ew8TAP5i0yxaTcDFFtUG0xQs/oPkVtN6HqX4pc2IIbPH4m5/xfcznJ+x0kUPS0YvHBJll9twtq3rI7NyNpZEBxGQ/lTIJ9LgFkeOVxV/LICufcvLR5WWR6WV5YYBevrnVZVrM3YIsnKbIDh/H9zGlmgHaBTJqnRchAKSAaGgDsJJi2OmSKqRBC80LkPL9uMJivkqRD70IMCIeoIVCmBVffSmWxd5pxxELnStX5Tm6JrMKApJ/j4YayNfpSv+BmIWQFzypzGjt0n11dEWORbyQibxzo0Z9YDXIaoXkn7UzYK82xXkwQZJ8vvL9GNioIzRyPSAR2eHFVebNLRCbpD4nMoi3eHxYRlqtLJEjVJ4TCW8+TyTIddvTjJu5xYsif83fsQS5s9iQz1gO2vK8ROSJ59JZbCSOT7RXO5w8RjzG7FSwoyd9t49XPVjR2X8yy+wslkUUMjs3U1EUpxOYSY/R7MEIEYeigxi97sxXMflsE4BGuHd7UDryEN7dIgZB3xfQG++Kc6vLsWgSMyPqqgTLdQlYt9OGZewaeUEzqw1yeqfOOzwzQmG5bkIkyS56wqwo7H36mrzTTlACl+dgASRxrc3WUtOqUYOjF9bc4kVMmIoYOqStmQ7DnTaUXmBFhEgDI1n1kaWkZWFkFkjEyHwgrgpheW9mC1TtPYkS4MYVkno2xJGYGdGsYgGSDgNHZbjPacEsVZ5DLiXxLXOpSwynijQZLJVwC1JBEWq2TaG05ioM49pMr8yUzMr340oNlhS/vIzcbhyxMMW+ErTRnS7UyhIcDbaVdJUGg0L3GcFI5p+fGa7MkLSbHvOw0wXyWXlkZs/fMkchs/MzpaR8jEvN+F9eoIFYI4EXZKlIABAddCTczakJSS1oJ4B3hmYZH5cgcskbLyRsdjFWR2Q6YQCJ/LhpUnLIi6peYKQcjkP3Rvif78eLk9kGiUQY/eQQPy+U0dAXemrBc7BTpNH23DenWkH0wacAyFGSKQgCcZxyi16CayHhALHToK8lZZr3HgJFCuurIEjoGHDeHUAc0XALiPR1JzuP4bDDYRinLkTLQo+dpEHM75BUZUx/J44JkLgegGNzbqo5ArpkUo+N4B4+/JycUd2exLPDaRzGrdzdQmQKRHW6sAw9C26PqXTKUSizBFTp61uuS+yTactgZpl9zZY5Cpmdm1mOI7+boVYTtGgXvWO19BzSTofFAUyt+z8mTjT0Y9Ca78PSoXMO2XN+2ZmvygubjRdoAs3Fu2RaZGLMAkc92GmI7rfkxR8aizs7FrIYsTZASlKZnSHLdY9JYsviZJR08ue8e+WSwrAT1+WbHAZpQSxzfKOhLztqMwrDoFEee16o5RzEkRTuJ4wIiolxMHEKJkCU55fHgMtl03OCRg3h/Rb1bbEhehqmdLPZbo44cBTj2GJt8CoILoXTGRzdqsbOhgoCcph4bP3YwQDilAg/u/x8skhYWnacOSnYCWJH1GrH/2cyy+x5WVb1kNm5WdlaUG8t/ZvHyIWA01MyA0nCnWkyvdOuYR5nsiqa1zOPT3/3tPuY8sinpeid1p6Tzkn3+Wlm7phNB2Fan03iJyDppDzrntPYFNP9Sl8rPb5nkYNOn/O05yU9ttP6kp4zE3B6Funtpz0XaXvWsem5A6ZQOC8sq1f/4tmrHv7538+qHjI7vWVgxszOzyxLdpZputy0mbsz0xj85lQrtAs1Wfx0iJ6/Z2Ai7y75fvwSVkGQBC8azIuMR5hGPWy2XXbJadrpq+sJumAzxM3RDJPO16QMNql/bWPXyuDHaTTAJ1FGmw6ByUJpjoMJtjPHn8/LLV48dj8VBInd7zQabB5H897T2soAQ3MM0s4gW27xogARTdCpSY8skQQ9fulxYqdgWnvT1OBmu9L9NK9jnsNzlf6MIycyrqvLibl25qvHnWPneETBUmf/ySyzs1iWesjs3EzNFRH8hVfh7g2JMEcz7UWFHJ68UkL18yEcTWrU/tY8Zh+HmN2Ky+isB9uk5PhT30ChH8HdGyKnw8nRzWvwXYcUJXs1HNysIz+IMLj4IqKCheq9MUYlG4V+hMFiDs6I3p7+go2ZxyEK/Qi9lRzKD1aQ74/hu/SCLuyR8iBfDwDGsza8JyG8R6RoWNgbINDKf7ndLjrfvITKDwg8qDSZkSrkgHsPRS55UvIAEElQWPJg7/YRabY/AEB3gMM3V+HtUVph4joICja8R/MYrJURFixEeQv5QQQnUMj3x6RgqJUQibjHgRMoeI/6CEsxFbMdTNDVRFd2b4ioTAqFk7KLqGAj3x/LNaKCDdUfA4iJikalPGbu7ODo2iJGJTsmGLp2AQDgBAoztx8gasyjs0GLfOUHe3j88xex+AdPCHgK4PFPLwAA6t8/wlhf06mU0X99CWGBNtGzjwIMS3khXOou5mGPFbz9Bgp7A0xKHpy+j+HbG8j3Q/RXCpjdmSDfHxNOIZigv0Ysm6WtAaBVHwNNfJTvBVBuDqrvY6wVI3OtfWED7b5WQ/WPHsFa0Wqfu305VwUh8vpYVrDkf49eXEDxi7lEaSRWm6Q4Wp4jVcxCDrZOvwy/dRXu3hC2lul27j2kNE4/Y2bM7PlblnrI7NyskqurP1/+JUF5h/UK7HsPE3lrAIkadpMMicl70iRDABLARuEOuLouJDd2d5AgPWJSIr6XSaDDVM9swRuXkfu9P4lz1/NVKuH0xzEpD5NB6esyCFH0FRiLMOX+jHkAIPoHabIhAMdy+wBiwh8vBhECEIpoKd8zxozHzZmvYqwZDfmeTI3NtMQi8+0WMG5eEFlrpqwGIJTUTIIEIJ5jzU/B7WHyISbZAojsSN3dSpSWyjMB0Fg/2EZ0eVlou9PzLriURk3ItICY+Ep5+aSmhK604DabPBwSCdhYE/2QNDlUGqRq4j/MKgoeCyDWeeB2mc/NMXyGns/vtf+PJOHS/LJ67ef+Gs5q3/uH/2mWesjs1JY5Cpmdm5WtBfWm9XPPzE+zfdXjTsI3PA3zIFUFxgv/LNd/WptO2490m85qvMim8+A/znE8zXnP06bl/c/antNgB6Zd72mYlmfZSc9HGlNyDKOQOQqZPQfLMAqZnbud9mV60sKezi2nSxfTeeaTrmXm2bk6gH9P4wDO2v5pYMnTmNkm4Ljk9jQz72OWYZ7U/mnnmu00sR7pY9NYBSAmcEp//rQxnPZ5+hrT8CFpS4MWn3XOtOs+a8xOmr/05yc5E886d9rv5+V4ZZYZkGEUMjtPm/FgXX8FABC5OdjBBHZvCOXlJewNgNIRl5dh94YiogMAThBiXMrD/f0PMPrOT8B71IfljzHRAkIs1OPsdhHWKxi+MIN8PyRVvmCEo2uL8BccLLzzJcbNC3QtnfvO9wJp0/ZPlVH7AV2rsDdAWPLQX/UwszPGuOQIbiIseRhrkSDvk5aE67tX5zB/a1fwAv21WRL9KeRg33sowljKy4uIEdp7mFxfQ6ixEVHBhrs3xLBWRPGLJxQi98cImhSOz/cCjMsuvM02xs0LWmwKsEYTjGqz8DbbiCqzGGtRq+jGFZkG7i/jE4YvzAAAZrd62PnpBSz+wRNSiPTyiHRePioXSd3xwTaiG1cQ1IqUUx9NMCl5sIMJJmUXThBKmb+l1SaP1soi5GWmgo6uLQIAiu9+hsO3N+DtjUQwbP7WLg5u1lH9qEP4DqPdTmuXWDW1IJd/qSR4A6e1S2JcAGzGI2jxLTuYIHLpWk7fl2eHhbhYWMzSc5vAH3y8hcn1NeQ3txE26zKWTmtX0jCcghm+uIDiu5/FKS+doonKRdj3HkKtLCEsefE1W/tEONaYT/x36bxShfX3/+DYf6MMnJjZ121Z6iGzc7OKt6S+9dK/F7MPGpLLyssnPp/US/KiZmPBIdPMvDjn48N6hRYJvShxbtqk1LVXmyJ8FFVmoQo5rU4YUh7eEHtSK0uyWAEQGWAAGBsSx9JWg1qZsQxW7zD+3ZB6TnAkGDTLXGcvQk0Gf0FCA0ODOU3GQGtjjRZ0Pl73lTEGQv9sSH0DiEWjWA5bMxQKZsPAFwAQ7EJUmaWFlcfB1KdgeW2NyeDx5PEzjRdKdXeLtD+ur8US2IixHUjJNie0JDQ+IWrMo7dRQWlrIM4oAJlHEbDSHAmM2eAx5XYCkMXeFBIDkHAE2NlN40pMXAIQY0NMwrCoMQ91dyuB6QAIq/Oe9XvoHj1KpB5e/9mzpx7e+T+z1ENmp7cs9ZBZZplllllmmZ1omaOQ2fmZikgauFkn1He5SKyG9RIAYlnkXSFHE6xgJD/9N1cRlYu0O2zvwQpGsLuDWLqZufRbu7SDH/qwuwMR6LEqZWLYW2zQdfTxlj+GNZog3wuQb+0juryMqDKLqDKL4I3LCEseof8//FzC2QCIpjiYyE7YCkbE3OfFZZFcGREedBK7aBGuevUl0mTwPArvb6zB2lhLsEuGdaqaEKEhvaNW5bm4csAQE1KFnIg42UVPIgDWO7eTIkZaeCloVik8X61ItQCnOKIKlRZalTJFf7w87dgrs1IJAUBSH/56g/pz8xUZl6gxj8n1NRrrShl2d4Dx+hImO49pzn0ScQpLHix/TAJTOiQfXV4m9sjrJD3N/0b3WxLNcBYbdI96icbDLUAVcqh+94eI3BxVPBRyGNVmYfeGsHtDBM0qjl5fofFwC8SmaYT+o8vLsNsHUIWcpMTCeoV2/ytLEhVR3Z48hzIPN67ALnoUyXFdiqq4BdJ9MDUlKmWZN1OUjM1ebQKTyZT/R1/hJ7PMzmBZ6iGzc7OyfUG9tfjLElLnkjMgSak72XkspY1pimFT9pgXTACS7++t5OAdRIjyFuZv7UpKg0vfnsYcOM3SlMdpYiI2s9pgWjWFeZx5HRP0CMQLBesQTKNfntbuaQyDAES4iMsVTcGnNBNhmqCJw+amnkK6HelqES75M9MkXOJqSlOn+83HmtficTI/ByDlity+8foS+qsevCch7FGEwt5A5txebSLU9NrmuLGlyaem2UnVIOl/p52XEBjj0kid1knTl09jr3zX/81jVQ+vf/srpB5+PUs9ZHZ6y8CMmZ2r8aJvcuCzmXwC8cs9XtTNBZ4FfAC9wHS6mOkuwx414F/IwXsSyk7aVHGUe2lHhBdQxgCkX/h8T9NBmVZKF05Brgtro9mvKQuL+btJb/0sBPy08rp021ggCkCSf0I7P+bx6TZZrptod3pMzN+ZeTDdRyZ5Muf7pH5Fxn3NSoR0n9jZ4fblynNY2NxG/81V2CMi5opWlmD7PqL7LWmLqSeRbofpmDyrmiHd/qfNT5iaW8t1oaY4gelrn+h8IAMzZvb1W+YoZHZuZhUKcL6xLhUI3qO+fMdAMOvmK1C3PqKFnM/TQkeqPCcgvATQrjvA8O0N9JdzqN4bYzxrw5+3cf8XXsDMIxuTmYuY/VJh2LBw8dYYg8UcDpsW3M5FdF4fwenkMPvlMsICcOkPiSWwc5nAb/lDBWekcHTRxtJ3e9h7pYQL7x/AerAtbHpADHBkZ8QkAYoa84BecFkC2koB2swFDEjqLzhX12UH6lQrCRAdExdZmsAKgJAkhc06LF2VkG/tY9y8gDyPox5X+9WlOGxugPKiyqyAMPk6DJC0NtaorwbgMaxXYI8mlKbp+7Sjb9Zhs9qkBoQ6u1346w2qRNHzmiBU6g2lEkHm3fcx/NZVzNzZgXILCJpVeJsUjQp32lBeHt3XvoHxrA0nUHj8b7wM7yBC4VIJo5INZ6SQ74fIfdJKhPa5XwAATboU6YoUIHayTGfSJM4y53kaeZIKgoT0tkiOb1D6xNbjyQ4MkzlNdh7HEta9TBQqs+dvmaOQ2fmZTRHU/usxmtxfb8AJQilHi9wccnq3j0YNUbmI4EWi+vUe9bHzb1/HxXd7sNt7mKwvIbfbR1ivYO7OPubu0G1mbtMCs/gbxr2N6omZ2yPUdCnj0u/QwmTfukORicvLmNncxszt+FTl+1jQLIr1Fi004dDHzO0Hckx40EGofzcVBwEgursV8zYwi6JbiBcOLbE9/NZVFN/9DABw+PYG5u7sQ11fQ+A68DZHmKwvCbWy1x1g7ycbmN2ZYFS6hNLWQCiXbV1GGNSKsEcRnCCEv95AVLABHaavftQBMIfBWhlzd2Ip41FtFl77AMAsMTMGI5qT3pCwB6DSQbtbkIhN//Ul5PshnCCHzpUi6r+/HzsXlTLCegVHL8zA2xvBdgso7A2OPRqHb29g5ssjei5u3SG6Y3Zo3AI5lcEIk+YFKg3VFRzOfBURgOp3fyiOmfv7cbqioCMJyveh2MHkx1E7JfnWPvw3LqOwN8C4lEfuY6qWaf/7P4mFT/SuvhfAATBuXsDgmzTe1mgi1N089gBgj5pxvy7k4Gm8B/SczNx+QDidy1r9c7cL3LgCtHYxXl9CTvd7cn0N0Q+ezYWRWWY/bsswCpmdm5WtBfUt7xeP5XvZnoYTAHAspz7t+3R+HIDgHMzcfJr618wjm7njdC49TYZkUvhOEzN6lqqkiQeYdtxp1QnNtMg0rMG0Pkw7blq7zLak5yCNVziJJfFZ/Zx2zkl/p20aTmJavt98NmKp8Hjc0uem+3/SuHwVm9ZH07gNaYxCqdpUr//M2TEKf/iP/rMMo5DZqS2LKGR2fjZXxNFffA1hwUL5bhf7b8zjwvtxJQCL8oSuQ7vgWoF21boG3gKEoChoVoUkSfV9jPTO7vEbJXgHEUpbAwRlF4W9AazuQBQbGZVu7XZlJ9xfKSQEn1gwCgC6L9IuMT8Ahg2F+vsRCn06tnM5j/r3j2AFE/SuzmFmh3bmUcEWkqTDf5G0Gwr9CKOSjaOLDurfP8LgkovZRwEOL7lyz/wginfVereL3T7U9TUZCwCJnfzMl0ewe0MhJ7JXlqjSAgbvRHtPdBI4XRA263B2u7Qz39T6DI15hCUPfq0gQlP51r7wTAxrRYQurVlzd/aJWOiLJ5i8cRn5XiDfO4GCPYoQFWzM3NnBuHkBQ33NwWIOpQcjIccCiHyrc6WI+m99gf6bq0KSxSRT3ddqqPxgD1G5iHHZhX8hh9LWAE5rF7vfeRGzOxO4e0MoN4fDWoGImz7eoooJPZbKy2PvjXnM7lCq4cu3cwBeRKFjIT8A+t+IMPuljd71EYo/LMCvR8gdWZj90kL+UInQ1KiUT4wLAEQffJpwkkxn0+Tr4LQJR1Se6OefibT481FtVgi81PbMV/mflllmP5JlEYXMzs3mFpbVWyu/glFNv2ALNkLXwuxWT1QY/Usl5PtjDC65KG0NELk5jEsaL9Afw68VkO+H6FwuwBkB3kGIfD/El2+7iAoKP/XtD/F7338Z5aU+bi4+xJuVL/AguIBf+3/egrdrI3jtCO4PZjC4MkJ+N4/JpQCNeg97n9Rgjy2UtoBhw4Kto/GDKyNY+QjoFFDo2LjwUYjZRwEGl1wcXXRQejgRpkbOyzu73WNCTQlRITZNWHR0bRGha2HmyyNROgQAf95G+QEtUONSHr2VHCazFmo/CLD3movBCxEWPrJwdNFC5YsQh00Hc60QzkhhdquH9rfm8eSbY3zjH1joreTgjABnpGCPCXcxnrWlMgRAgh0z0Iu+tzcStcn8IIK3N5L58Bcc5AcR/HkHszsTDBZzmN2ZwB5FePwTLi794RH6qx7ygwj5fihz7u4NcfTCDAYXKf/uaIzleM7CzOMQ/ryNwqFC6b4v4zzzmM739ifiROb7IcYlB3s3cnA7gD1ScEZAZwOYzCiUfmgjN1CJe3gHdJ2wYMm1AAgjJjM4WqOJkDMdaYZPb7ONo2uLGCzmUP18mGQDbe2SMIJL1gAAIABJREFUc6AVUZmgip0yc0xLt7cFo2P5Yygvj1FtFm6LsA3M6Gn3hnjn0d9Bv9dKRBT+hbfPHlH47m9kEYXMTm+Zo5DZuVml0FBv/PR/JLslZk4EiK62+lEHo9qs7ETDegWRm8PgEoVleVfJL+58L5AXujWayE4agID/JtfXpHSu+MWTxEt4+OICQteCP08Lnrc/kWsy50HYrFOOXgPcovst4MaVhDMw1lgJzn8LiA9JpcioMiugTQCCY+Dv2XEAIKA2joTALWBy/6GkWSzPk/soHUUw6Yh5F+uvN6Rc0ARamgDFY5wPupxx3LwgO2cGLx5eu4DSe/fhv9yE90lL2svgR753WK/QOGrng3f1vDCa1MYAxFkBiD2RmROZ8fLw2gXM3dknGuTeEN3XagJSZLpquzsgh+zGFXkuglpRy4dP0LmcR/cnaAwKP/TQeH9Cktg66gEAnStFBPMWLv7RUYIWm8fJbh8cU9wcNy/A6ftC0c2Az+iDT5OsjM26cDjkewE9QxpACiBmv9RlwXAL+N6XfwfdUTtzFDJ7rpY5Cpmdm5XtC+qt1b+aAPSZXArOYkPogo8toEAsoWzQACeod7XxZ1zaNy0/bv4rnAz6Ba18P6bvZZKk1AJuCiKZ0sImR0S6JM+8H9+HF2WJOKRohBP8AQYlMl+TkfImVTQb0x1zZYRaWSJa49+4TaRA9x7KPABIykbre3OFA9+Xxze6eU0omxP3N+SjRY5aX4tJr3gc05TN5pymMSSm7LTQNrN8NciBexrXgVm9cKyvBoW4STV9koKozKFB841GDcMXFzBz+0E87r3DY8+KifGYxs1h4mrCgw7eDf5v9KL9zFHI7LlahlHI7PxMKamBh144AKN2fqcNu6s/Y0ChcVykF5Cw0wU6XSj9Ak6TE9lFbyofAaAX9iAQR0IFAdTGGtTdrf+XvbcLjiPJ88N+WVXdVY1Gf4DobgJkA1gQ/BgOOTPcWe5xdser86580sZF2BchS3f3YsuWTpY/zn5yhC1blhXnkC2FX+wHvyhsRdh+kB8sh2MvYr17e7dze3tzN7Oi5rjzsRxyCGJJ9hBgAyDQ3QC6qrur0g+Z/+ysQjXQ4AzZs3f5i2AAqK7Kysosdv7z//H7CVbE1j5QnI6xKHLfB0vs6PV6f/08K+cdqvPXoVc6UAKdXm6nk0sly/KUpgOGi0640YS1VAe/s4ZIluOxoDc0PKjEUBo+pR98DDZTBhqb4EDM0GLSALHnakMFzYfrgOep+xCbo726rsbdnimrOD2HVjJYm4HV3FH5EboOhF0uIXr/Y9FH6vP7H4PTgrxURyjLCq2lunoOMpCsnKd0LcKCh0xQU20nlSD1JEV/RRgKUdZCe9FB7Z2doU4FoIwEVirCKRUV/4OV8xQnBDDk8VCGYteH+6CBkM7VDBfFcaEZfGSQkEFJ/VV6GP5hPofhi5Z+2MDg84IxFAwmB8aGX5IJIR7FkQAoN72tucsBqB2kjWGFAwBVl27L3SiAmIs+md0OyAWSmARb+whfuQCrsalYIWnBduZOq4WAzk+TLiZyHbtcUosnlffRosFc95C3A0As417fZdozZbHz7vqKe11fKMlYiB40hiWZxLcgDQxakCisQG3o1R8Euq5fn0VGEz8K61XYJO5Uq4A3twSlNBlN/rDfOs8AGVtEex1WS7ABOORVILKm9h7CnV3FMcEvLYM1dwSt8oOGENGSc9h/8yrc9+4JKuhaBa1LJeQfB2qumRtncKS+0Hg4P2uo983dyoH5fWRa+zFjU81BKa+8PUkiJuWJku8a5aMk+TDSqk3UuyWvYdevAh98Is6R/aV3grUN677Bi4cxFAwmBpbNDvn0H67HQgaDagEWLXitNiwZr2cY6hjwVhvB6+eR9TJgsg1WKiqyHO77CL75KnL3n6pYtl8vw5NtKP0AIhMKesD5BaCxKWLoxWnYvi+Sy779VQBAD0CmMw+nsR0LDyQ9FjqLoF0uCYNDekV0VkjmeaLyoF4Vu2wA1qvziO6siQx5uXOm5YEXp4Gd3UOEPjqxj77YDzaeCP0IQIyhHDfmeYC2iDPPg627zul+rTacVhsoFYHitFCXvPdoKB1dKiJanEeUdQBNpZM+C6slWLTYSYOE12aApg988InacQ+uLCOj52pcWgaaO2JBfv9jsHJp6EHaaA6rVn74r8DmToO7WUQPGihp8fyoNgOLqjp2dpWRZc+UtZ279ADR/JVLCKXxR6EvLt+t6MEjcNcdqnFSboqbVbkcSQ+WYsEEDhse8rgeVuFBAEZGgsZkqXIbhlMzbNd4FAyeM4yhYDA5SIEbq7mDp796GVMbfXg/a6BzYwlTnx6AXVrGwZmCygwPqyXBMih35nuXZxFmGexALoxXltEvZOA9ziOSCXA6UyJr78F9bwsDKXnM3r6FAaSLN+eJBaKUF4u45rmI3v8Y7p34TpCXSzGvAHA4Dk5I0iIPNp4MNRM0aWe123+4Dibd1QTKc2C1maHn4PwCDs5OYfr2NPrVAvzKEsIsQ/knjxFWS0omu3klh+weR/lDQY5EyaAAEGXOovDAR1DIwHvcgX+mgF7hDABRUUBVCar64rUKindayjvQuTaP/FpbMSzargMHw0z9yHVw8MuXULi1DpxfAJfMh4Mry7A7vihvfecu9s+4KG0OCZXg98GL04ikbDclkVqbHTAvg6CSh7faRO/bXwXb6oL1BoiuX4bd2MbB5TlM3XoIq9lTAkxJBkaLyJu0UkVKlrRozoIe+J1mzFMAAKFMSrTuPUKo8SyQTHikn5vQwCAab3oX1Hma54vyVADNqKP3J9IDHgYGLwbGUDCYHBwHPOuAF6dx6u1PxS5vqY7pH91RAk+5+0/FDrVUhN3YFGp9skxt+va2ir9TUhq5yC25Q7Pb0p0byGQ1ckcXp8HILfzKBQxcB1YwELtHmURHGfZ2QmwqKnggDb+9M64qq7M3O2i9VhEsfRBldFOfHqgFewBIQ6YDSBXLsJhDdP0yWMeHT7TEkpLZLhUVa6UdcLjVEvbPTsE+I9Q1p249xBSqKuPf2+ph90IOm9+sqzp/u+Oj+DAD/9SQ+jfKMExt9BFlLfinbGxfyWH2o64qUyVeiH7BFvTXp6Yx893bCF4/L0oRzxQA2Qd/xkZ+DTi4PCfpkW3kOyJrP6jk4G51MfXpALu/dAb5xwH8s1PiWbbE/bzHHaFs2ePYuS7KBqc2+oo/w1ttwn+5LvQ6tgdwADX/3M3C6kWKcbKzmEVlM4up2xuxZEo1d8Vp9F+uw33vHp78+suY/aiL7Ss5Mb49oPxJAX4li87CAk79LEAvayF0hfFFY0K8D9bWfqyEkXsZ+JU8+jeWsH/aRv6JKNP1ftYQrIu9ASApqwlUEkmcH53lPApr++hVLsK59VC8f4vzwmjyMsKAtEzoweDFw1Q9GEwMRWuW38C31N+6WqTSQKBqB5lboLtyAbFjozwH+jvm7k245PWqiaT7n6ocYtn30v0fy1GQypN6v5MsiAS9L2lsfxQr1z/Xd6GESEuUo8/0RD3aMYd6gqfsb1JtUx/rZCWJHkIhdzeNe5KFkdpWfZAVF9QH6jeNfVL5ManEmeyz3r4eTtHZFHlxWkh5a8+TVKrU76M/f1Lh054pi3CFLFnV3zt2/aoo0ZSS2lSymQw56M+hsz/qCYo6xqrMoP8Tc6fx9sY/j1c9lOr89X/tP8NJ8Uff/S9M1YPB2DCGgsHEUPLm+Ve/+tuK+a9XsFD66Ra4l8H+clGR8thBiMzquqrVf/otkax46u1PcXB5Drn7T7FzvYqZm5tCj2CzhV2Nf5/q+SlPoXvuFHoFS+xwK1lFtnP/b9gof+QgykARFRGJT2dB7GK9pxF60wzFhwP4p2wlZUwJdY2/toD6//NIZeBTvT2V/KksetJ90BYmfRdMMXQSw9q7PDsMv0gyH92I6kvdB6vdRVTMKXEjtauWCx+JKVFoIvP2hyLs4WWEZoMkFyIocabNllogiQ+B3PXUbx00D/36LKybt0VYoOOLagz6PesAH3wCa6muuASAYbKjzrNA7dPvxFxI3gWCde8RUKtg7/Ispr73U3FsqY5BtYB96f3xZx1F4uSfEjv0bhWY/9N+jMwqu8ex/QpDrslQui84FnL3n6pk0dhzS+VRJhNpiTCM+CbCu6vgb15TGiIAELx+Ht7PGsowpWcFIMpW1/YVfwRxLvzpvf8NrcGmMRQMXiiMoWAwMRStWf71i3/nEDGRTh6kL6yHPAqyNp12kaomnhL0ZHJeVMrDP1PA1K2H2P3Gl5B/HAjxKKkGGLx+PkYRTDkDVJ1A8WJASBpbr76kiHasm7fVjs8ul0R/ZWIdcQEwSrIEDqkwUjiFFl66DhhWaABQ3gcinco0tlXZniJm0giaaBEfxT2h75h1TgSlAAnEriUuAABCrVEjV6JkPvqcYv10H9oNAxBkVB+tqfJMMhwyje34yyENJ6u1j8GDR3DmTquFWVV1kBdIlhVSUmBSxwOAIMWSyaK6umMS6j3SPCw63bfygMjcEno/qFRW95bE2tSEwWIlnQnODaJ4TnJmkOrku+HvxQmXSnX++pvPYCj8f8ZQMBgfxlAwmBhK2Rq/Yf+V2BemWiTlAqV/6dOXrF7upi8Qeqlh0m2r3PxahrpObIRXLqidLO0OFb2y7AeQXt6WJrak33eUINFxBD5APBEyTaQo6eJPc2Xr11E7wOGwjB4aUfeUC1jy+QjJMEdSKjsZYqBxJT6C5HPoz0LHY6Ea2R/9ufTn1sMlaWRa+nOkhY90UigaI92QAnDouY4TqdLn4rjjaXOmh7ve5X8QF4UyhoLBC4BJZjSYHBgDu7QMDqArZZSDelkkBnZ8WM0eur/2SwBE4iIHcHBjSYkhhcUcovosQO7yehWds1Mo3Mpi9W8tILxwgLBvgfcXUP3jDLa+zHH6XeDJjSpOvwv4pyyU780pSl//4jQKD3yEsg8tSfX89HIG3do5AIDVYyiucZz6sANHJqaRsRGrf/f9YUmb3F0//jcXUP2zAzir6+ivzCttgMh1YG92VMggLHjoy8+czWHJIl+cV1wS5KFQpEtULjlTVkmY0YPGkBtChhd41gGIPrm5A3uuppLq+JVlsMY2oivCfW4FA0S9ASwpwd3VEhEpUZP3BuhKSeiN1wvIPwnhbfXgV7LwtkQ4JALQq1yE97iD1tWyoMeuz6rnJ80DEsAiumUqPbSDnpIfDwoZuFtVODK8lO1EyHT6qq3NqwVsfZmj9MkKdq8MUP7IwamfBcjK5EMAwhsCHMo10Qm9yAAI3rgIQOiKEPV3e/Ecnn45RO5TB7mm2Gh1loHZDzhOvf3p0ANDr7n0eJBhGmMOle8GaWpQiIeqdignwvJ9IOeB+Ye9IAYGzxvGo2AwMZSyNf616X9LfZEC8ZpyiuNTciN5D/RktiS9b6yUjOh+JRNgWK+iLxUkLY2MiUkmRgCIrl+Goy3aFOMnBj9vtan6miY5fJR8dNr5ii4aGLrRqyUVu9dLJNN23aQhkLxH0vNBRosaLxkiIc6DpHtcXVucjoVkdC8LL04P8x8oZEFETLqOhGR3VMmp8jpaHGlB1ENG9LvORqknKeohKQpJhHdXY+OQ9C4Ah5M+kx4Jde3SAsJqSVUi9Iuu0CRJ6GNQDkFUm1HzoM8vtT2uRwHAIa+O7mE4ROFcqvOvfP3kHoUffc94FAzGh/EoGEwOjiO+cCnxjxLXWvuilj7oCcGd2gxCSejDewPYsoY/qs0gWpkHbt5GdGUZzmYH/WpBqRnuns9g98oAuU8dLH1ngH7RhdvYRVTMCTIlQOy+/T5YzsOTX38Z1fc6GMg2pm5vABBCSv6s+K/iNrKHpIIBKE8IyRmTYWI3NpVUcqYdoF900S/Y8LZ6sDc7w0Q9KYjFmjsilj5XU5TFBFo0o1Ie/P2PBdVxcwd49SWVB0ELKi3o4UZTLEakWRAEAIV32nvgUvvB1kWlJMcAMEwejIo5YVBJsSkrGKgdf0R5E7T7bQFcLt68uQVrqY7d1yrIP56FX8kKz8EHDcFZkXWUvoLSSnCz6L4hPBBRwYO1KUooIZNRowcNgIiTJL9CprWPwbe+AgB4+rIL72kE72koEmR/IBd3EuIiga+U0I+iZpbz620PlHG59lsrsPrAqY8H6Cw4qP7ZAaJqAbZMQKRKHT3kFTuOeChH14cgI5hyH/TQk869YMojDSYB41EwmBioPHKcGC8weld+kmv1ErlxMSqOPA6e5X6fJ5JehnH7fVxbRx171rZ+UTDJvqflKHzla//pidv50ff/S+NRMBgbxqNgMDlwDntmmFGuqwUC0k2sqQ0qHQgt/gsIKly9UoD7grXw6dUC8hsDWL0I3mpTJNDVKrBkuSIQV/CjHR6JOCn3dUpVgNKlkP3TwyRJql7musArF0T+gq7SCMSv1yoXkuGNpOucQHH2o7gGjlO6TBOcovP1UEW40QS7fhX85ofDrH6t8gTAkFVQhh90ngR6ZlWlkqwMSFStUHtJXgy9ykVXG9WTETvX5oUMtaarkUyyPCocQGOv/x5LntVCGIp/QeaPpCWWUrujDM4kp0SSf0JdxxgMDF40jEfBYGIoslP8BvvLn3u7ySx34PCX9ueRsa5/lqwsOEkbf17wRfEu6Iv788Yo2u7nBeNRMJgEjEfBYGJgOQ+2N/QoqAQ7QCW3Ub09cQ/EStXcrFA2JGEnKQYV1qvY+EYR040Q/byFMAvMftRV2gLe4w6iO2uq7Mwul4bSx0CsPh/QdAAAHFxbhNUTdL6Ztz8Eu7QMu7kjdpQP1wEpvaxA3AJBD/36LOyOj7Dgwe7IHaMk5AEkSZHkVWAPpcxxiudBr7cHEMtL4G4W3MuoOLxKvkvhQ9CfKffO3WFpoJwD4iugdnTugej8giJeEnkJ++CtNrrffFVUUEiZ7rAgdRLkc2ca20DQw8G1RXiPO4JsCsNcD0DoRGS0ypBkEiF5n7Zfn0H1rYa6lnsZtC/JHXmGwXsaKgrwZFLkSUJHlDBptfZxcHkO/ikbrXMWTt/sqzwKFgxg9QaK+pu8McAwGVEvR1Xty5wF4oUYVAuwbt5Wn9F8ETsos+1DfTSiUAbPG8ZQMJgYuD10o9KiTNnwkVtABgCjhaTVRigXqoEs33M2O4p4iFdLsKSRAADzP24Pk+3kAgw3i6nWPvyVGrymTIRbmRdCQ70B+lKASM/u525WGC1yocq9c1ctNBwA7qwhBICdXVgzZXBNObFfn4Wz2VFGjyMXtExrX5XJhTu7sKjS4EEDgyCALV32AvGEOwtycZEJbzRuKvnt7mqM0hqQbn1pBDBAXRvJUI/3uBOrdKBKC2upDmjEULZWKUFkWAh6YA+FuiRfnIf71vtgOQ/WTBlo7SN6/2PlTs9o5FDuW+8jCgIwyTwZo8nGilxQ5+G+dw8hhVGICKlWAfP7qL7VEGRMMtTBgixKPxBMksBQCAyeJ9Q35bW2TJ4EgO65U2Je7z8VBpY0eHRqcJojDiD3Ths5AKfkeIqyx7qouHBdhBgaBjG+CJ06XOd8cLNDA2ZnF7a3DCaTGjmEQNZAzqldLqWqRxoYPG8YQ8FgYuCMITq/gKCSEzs/iOoBQNA2Ewuhs9kBX5xHv5JXaobAkNa4+8ZF5O4/Vax/3TcuYvd8BkARu1cGyOzaWPiBC3/WQemnW/BnHUTXFuFudbF7IYcygNC18fRlF8E3V3D6Zh+uVCRkfj8etwdg66WYlENxfgHYbCkZ7KiUF2WWclfOPA/9akFUZtRnlaQyxaDZ4jxsnTXxzWVVpgmI+vqwWgLaXUReBqw2IyoeMDRKrGAAq5QHf7iOgawCYe09JR8dVkvCCyBzOAAo70W0OC/YK29vDPMgZB/tzZZiocQrF2ChAu5lMCh4Srjp4PIcpm5voPPt14Typ+RCsEp5dKUXhwPoVWroF2xkOoIXAbKPABRdNQAE33wVmU5fqGlKkay+5F4AIKpXSnk4SwuS7TKL7rlTsHo1ZNoB1r9RxJk/EO9Uf2UedscHa+3LstchJTS9d6y9B9ZGLMcAbhbBy3VEWQu5+08R1Ms4mMug/OGu4Dm490gYU82tmBYE8VJ0zxSQk4Zq33Vgd3wxxwmWTKr4sMg4IO+P/Dxm+DnmK9vgxcO8dQYGBga/qODyn4HBc4RJZjSYGJ5XMqOOz6Mc8lnP+Sw4afsnKRMFXmyi319EPK9nP5TMWKzz62+cPJnxD39gkhkNxofxKBhMDMx14cwPSWrwygVErnglM6simY8SvMiNHu7silJDiX7RVaqDpHpoNXfgv1yH29gVZEK1itJ30FnvknoLZFRYOQ9hirAPMFxg0/QbdB0Cag8YkuborIZhvarYF3V1RACKarlXycF73BFtFDz0CxlV6tm5No9+3kLhgY/9My7sHkfh1jo61+aVymH33Cm4W13Ymy10rs0r9UkiLeq/eVWEeFwb/qyj1DZ1ULIlMTD2V+bhbHYQ1MsyhCAUPrNb+zGVzs5yHqUffAzIpMuoJOiT95eLKNxaV7kK3M2K5MXGNvr1WQAi92Tv8iymf3RHxOrleNBc25stlZjJF+cVIRSFsCgnRK9qOU5rQwcluQLDclRd+jz5LiS1LPTrdOhKnwBEfo3M+RhV9nlI/2Mn3iYDwMxmz+A5wxgKBhMDz1jii7JWAfMyaC/nkX8ciDj0yjw2vzyFM78rk8Haezi4tgh3qzoUbwLgadTMmbY0Ftws7CAUBoZUKmS1Clg3XuNOxgAlroX1KqzePHauluE9DbF7PqMY/vbnxH+V/IZYSL3HHRGDJ5pnySWg7yJpIaJFShewstpdsLkaQrnAuVtd9VxhwYOz2YELqKoAq7UPS0pMA0L7ghZgb9tGdmtfSWv3iy64l4H3uINeJQ/Wy6sF/eDsFKbvPYI9U4bV2BXG18t1FO+04J8pIHQZvC0RQ+8XMsCZAtytLvpFIevsfLQG5nnItHPIbsU1GZQc8r1HKG8WEclFHIBazAu31lX1B0lEZ1bXhTYGVVsUcyi8+wBh14fd3gP3ZpQkNi2iKpFTjn1UFfkVZIRZrXZsAdcVJglKiwNQRge/swZenBZ5HF1f5QY4c6eVkaAqP6Dxd1y/ikiOr7fVA+v4KjFSV7RE14fzkcw38DywoIfBbgt2GSrRkowEe64m8lmk0WxgMCmY0IPBxFByqvzrtd+IUdoCcbIgPbksST4TW+S1sjO9dFCXK+auSHijXSdVHugCTa2L05i5ual2pbTTI9CCo0rXgEN8DOPwLigCII3gSSc80rUv6B66iiA9f7LUL7mrpfOVFLKUK04S/+jjratBDjaegF2/KiiptV02zQu1rapDZP/1Us4kMZJORqU0JorTSqshST6kQx/rUZoIRPqkK0DGkk/lLl5f9JN0zvZcTYlOEZU3eSmU0FaSDCkx/nqfRpEw6W0l1VGTyprhbgvv4ocxrYdisc6v3/jtQ+N0HN76/b9nQg8GY8N4FAwmBh6KXa7+ZUpKiIBkQQQUrz8AWIBixeO+r3QMCDaVKJKwUK0CS5Yj8iBA9u4qmNxJ0hdyZnUdGdle8WYL0LLvqdzSlkqR3BVaD2ExB+ue8HZYr76EUFYAULgDQKqIVVSbgd3ajzEw0oIwePBIjEMpD6vlxRYcIK52SAu+zhJI5YVkINAulnbOzHVFaaMMrVBZIbWbVFNUWfk3P0So5za4WUCOuV0uxYyaqOvDQlyJUWe6pP7oht1g4wmY9nfU9VNFwOgZSEdBX3xpDFmpCLtWAdfc+UMmxuH5ztxpVb1Cz0EcHPjgE/BWG6UftGNGBrFJRucXwG9+CDZTBpeGg67JEGMU1ebPynlA4nn067j8XTcQ1DMuzsMGwNopWg/R4UMGBp8njKFgMDHo5DF8cR6Qbl9bLqDh3VVYr76EJMUMxXitm7fV7lYXQQIAnF+AjSFnACAW10G1gN0zLvKPA2QAxREAN4vByjy2r+Qw95374njQg93YFLtnIn6SpE52ew8DCi10fbAgQMZ1ESbi4RGGBslg4wmw8QR8REIhc12xs5Xtpu1OCeHd1dgCQ+eLnbHc9UIsNjptM3kmgJaq8QeGJXi6Ox1BTxkTgCRvygkRL3uuBrY4D/h92LK8kYwg3mrHlCjtcpw4CkFPcQzY5RLCIDjkZdBpnPU8AbtcEvOt0ULripfUN16rxOZeLzEMpVFkz5SHRpz05lj3HoHJd8lfqSHz9ofiXatV1HtIFNYkJa7/VAh6cdrx3ZZ6N9K8GDT/sdyJnKfOtZo7ik/CwOBFwxgKBpODxYZfsg/XgUvLYJIvn3bf7OE6OIDg9fNw37sH1CqC3Q9A+MoFRDo7YHNnSJR07xGixXnYEGyFVnMLLOjB+WgNhZvS5VwqKpc6u7SMTGMbpz9qg9cqsNpdpfpoByH8ithdewUPVjDA5usFeDtfAiBYAHvTDN5OhCgzJJEqf7iL/eUiMp0QncUsCg/Fgkt8Dt1zp7A/58DuifCff8pC9c8OxNAEA7SW8/C2RU6E29hF67UKvO2BUKmUypM868BudxHUyxhAJBWGBQ/Y7KDzWgWln27BrlXQPXdKudCjUh6sXsXB2Snk18SC7Ffy8H7WgCVZAAGgc2MJ+bU2/DNzKociKuaADz5RSZGsvaeYJdnDdcAb8kLwrDNku5QMg4LUSLjx7XIJfHEejiRyIk+MpSla8uI0ODErXlxRpEhKh6JWUd6NqDYDqzgtuAjaeyoPhbluzIOhU3uzS4K8C619lUvgSOPD+1kPIYahLPI2MNdVXAfhzq6QJpeqoUElh0ynL5g361WgsSlyHmozQylzyWHhNOLGE9ysCg9R4q4uoT4KJpnR4HnD5CgYTAxFdoq/4f1qzHVMbmX9yxxIL+cblQvgzJ0GL04rsqNk3JdyAyjmnGzruNK2NHGftD4mxYVOWi73WVQrj2uX+jVuu8+8wV1JAAAgAElEQVSqHPmiSiR1ES/yMIzK5xilz5D8W8+VGLfElkIjuiDW56EeSn1LlkcWi3X+1ev/yYnb++Fb/5XJUTAYG8ajYDBR6OWGwDDOPs7iMuoccvEz11Xt6deEQaDc+0e1Ne4iN+oc/fizLJbJaz5LH0/a7nE4apHVf08mnh51/mfheKBrlL5CYn4pF+Co9pPHKSxxkoWeB4F65yg09HnBLpcOlUcaGLwIGEPBYHJgLHWhowz9pBwygEMZ5EnPAx1X1yUWKlVdQK5uqo4AVIY+b7XB5E9KPtPj5KPUIj/P3fM4i2cyh+EoT4c+TrqXJblg69DFjPT8hXC3FavcUFn7WiUI5dfp8t92+bCcdIwGuztMLAQOl5emGRdH7diTlRVKAEyvdkgxbvTfk4mXx3madElu/XjSawZogl0ah0JalQRdn5qzaJgZDV4ATOjBYGJIMjOO2mWO2nkC6e7+o8IC+uejFpmTSAePKkc8qk+j+nYcxnWZPwtL40nDLeP29bNeexKkhReOal8vvxxXcvw4UEmpfXFFkXyNGouTvGeEQ6GHwjOGHv7QhB4MxofxKBhMDMx1Yb30kpLmjUp5UToIxJLbKHFOXad5AZTEstzN8sV5WH4f3XOn4J8Seeoz372tqg+S2fVpSLrN0/qtqhpoF3hxRan8AVClj0e1c1z7ukGU3AGP2nWqXT7iZaeW5hnRwztUdUBtpkkh0/0jIHZ92niQ8fVZ8jGSbY1iUtQrCKLuMCeAvEFhSh/Url+TcAaAvV95SbBbvvtAnKjN3yiuhZHz+uY17Cx5sPoV5B8HsDo+7OaO8kap80bktAAas6NMdFR8IodeWQ6YzZ7Bc4YxFAwmBt7rgfl9xeZnyS9EfRfmzJ1Wqnz+Sg3OD//VcCdYq4i6eU3Clz1cB1+cR+7+U0zdFgp8n/77V+Dsc7T/9S4y2QH6PQf2J1PIfyq+YKMsQ2aPI8wC+SeC2yG/1gbPOoik6t/uVfHFPfPd2yIR0s0iqJcRZS0h09zciREPHVyewxTJUy/VVXXAoFpAZ8nDzM1NqWQoqhqIpZD1BmhfKqH8k8dCIltKPrNSEZvfrCO/MYC71cXe2SlVkbF9JYfyvR76BRthlqGwto+nVwuo/EkTLVn5sHdZ0COHWQZvu67moJcVdfntRQe1d3YQVPJwG9Pq86BeVvTOB2enAACFW1n4KzVkt/YVM6O/UkOUtWD1hg5ynVqbjDcAsHqRUmSMijm0Lk7D6nMU1iQLpTQKo2IOvYpQBiUa70G1IJ5Dqkhmt/ax/foMyp900S9ksP61DKIsB1/qYtDKgvUsZHct5DaB3Ws9nPpJBtk9jqmNPrzVJiIvAwAo/+QxwmpJGQ8s6AmlzHZXVFo0d8BcH9ZSXdFFk8KoTq/NZUXKlCTwsu49UqEFMiLJEGOXlsHvrB0KxVClB/M88T5BUDXz3VaspNjA4EXBhB4MJoYiO8W/PvPXVNxap8jVk890BrzkLlux/6W4/ZMxfGIITOYY6Dtpa6mumAv1HStB79+heLe24yTCIOBwTkCMSOeIMMVxbmqdhTBJanRc2/rf+s49ibQ8gKNCHYrNUWb/A4ixPerXJO+TFiYa5UkA4jv95Fyn6Xgkc0qeBUeFC9JCWfqxo0Jnx4VqVNVDkpmxcJZ/9SvPEHr40X9tQg8GY8N4FAwmB8ZiX+46lS2x6B2ibdbEdoh1j37Xwwr05Zxc6BURUKmoWB6FK12cTzTCdG3aIkWLqv6TPgNk5juRCe22DmlA6EaPnuA22HgSMyr0ZEzdXR5KTwsREOnsjrRAhzu7isZYLxVMJtRRIqHOjKmHFmgXTImIyUWc5o/KEsOd3eFCJ9335BnSDQbdIKNnORReoTEZscjT+NP1aXOkn/tZoTxZmtaD3qfke5A0eGmcYpTlZHRqGhbJayhkJv44vLFjZq9n8JxhDAWDySHnwnKFYRCV8mClZZHA7feBenVI8APAJsEkzV3P/D6Cc6fgvvW+oLiVLuOwWgJ3lxG4Ntz37oGViohKeQSVvCIkcjaFKiPcrGJsdD5ai3VPz9Qn0CIMaIulPJ6kZKbrgWH8H0CsgoAvCsZHtPYV259uFDhLgpxHxanPL8C+p7mvS0VFcU1uc2IkDDeaYJLEysp5iKTqpi1JgFh7D/5KDd6qyAkhQSK6Z1TKw6/kBcHTR2uCeKi9F9POsAMR3uHNLdE2udE1BsawWgIam4KI6fpV4Y5v76nqE97cEiRDFD46vyBInepVOBBU3hagQjV0bwAqpGOTwiUEFXZS8AlLMtyiJRgm6aEVsZImyqQbfMDwXbAkayKbietjJA0/MpD44rwIi/mHPVC694neFfrcLpeUAid3s2BrfwQDgxcNYygYTAxsEAIuFLMfLQAs6AEfNMBmyooemBengeYWUFwYSjI3tzDV3gPmauAP1xVbXr/owm3sIiOV+YgzwQHAXReO5ilgtLu/CyAhRsSL00BxGrZWRklf9LGSOyql9IeLCJ0bS5jUQh3qnKwzNHyk1oC92VKyzEwmd+5+40so/XRLxe/ZpWVYfl/Esi8tC2ZBN4t+tQAHYmGxS0VEEJTXdscH6w2EmmRtRnZoGm5jF/5KDXYQIrO6juCbr6o8g+zWPuwghBUMEJ1fAOsNwL0Z+GcKyPl9lTewd3kWeS+jWCgz7QCsN0BQLytZ6Kg2g/7LddhBCLY4j+6ZAjIdMY+2vHb6tmDctNpdDK5fht2RHorajDLuuudOYaq1r3IVbI2pkbwjtFjrxF1cUl4LT4pMttQokoEhLTYZCAA0nQyx2EcFD34lizDLkH8coF8QKp38yjKsYIB+0cXBXAaFBz78G0uY+vQAkevACgbgNIaSoZH0OqJSXjCISm0SJVhGTJQyEdIulwCWovVgwscGzxkmR8FgYtDLI48qVQTGqxAYp2TwqPi97vY9xO0gFwxafEbda1TJ4bglkkeVb6Z9dtT90ioUdNd3Ws5DWiXIqDh60k2ut5eMzY9qZ9TYpHEp6KydafMTMwy0udY9B8fNsRLW0ozGUfkkel9HMXzqfUlTm9SRdi1dT/f4ifWHaA02YzkKv/Tl/zi1vaPwBz/++yZHwWBspJinBgYvDsx141wE5VJqslea5LBdLqUu+HQ85n7WzlMkQOQm1solDy22sj+DjScjFyn93lbOSy2vHPUcFH+mfAV9gaMFTf+M7kN9Tbal/540EgAcKo3UkVbWOKqET8/fSBsPUlqkuRhlbChxp8SzhLutmJHEg0DlPxBobmh+Ro0DPRf9nnwWdU+tLJTOSz5jLBck8d4QnLnT6t2LeSw0oir9+iTIKNLH7fPIsTAweFaY0IPB5MCY+PLWvjzTCHPonCTSlBX13WPaQqlfR/cZtXjwIDiUsJa2KKYltOnt6YvMUQRP+u/087jKhaMw6lw6lra7JWOHPh/3OZPG0ag5O7SIn6AKIdnXtJ3+cXN11GejqhlGzUeaEZE00JJsinr7yWfXx27Uu0vS7MMDADMy0wbPGcajYDA5aGEv+hJOLjjJXV+atwGIewX0a9N23UctJsf9ndano84dZ+FKO2ecc4/r13Hn6t4L/RrazY9rkDwLkt4cOqb3R9+9pyHNkDrq/HEw7rgfN9fJY8fNq4HBFxnGo2AwMTDbhlM7rbLDkyx0PAhUpj2VNIYbTeXWpfMo+UzthjV3r5IOXlpQssD2XA0IeiqUQKV61lIdIKIb7X66+1jXNdBL92KaB55WkikT7ACIRDUpH0yuf12uGBhWVSTLOuk5gGGWPFUNECmTXpFBf+tKitQ3vR3eaoNp1+nlpwQaMyp1BBArz9R39iqUoDE86nwX9LdiUZSlsLExlj9pLimMoRJNaxWVeAj9XG2Okoaj3k89bGK9+pLoOyUYatUryXOJlllvZ5TuSNo8Jt8P0nrQcyb0XAYiZAKGFRiphEvPKc+MMfZtAP8zABvA/8o5/8eJz10A/weArwDYBvAbnPOfM8a+BOA2gDvy1Hc45//hc+mkwQuBMRQMJoZoSiZ7vXkNB4UMcu/cxeDKMpzNDpiXAbIOBq4Dq5hT7H+um0UoSyYj10Ho2jgo2MiX8mB+X5T8vVyH29gdllYWp4UBUpxGtDIPa7ODYKWGTL2KyHUQAdh/7RrKP/45wvMLIku/XkVQyQGX5zB1e0NVIRwsFzH16QFYbwAHQCjbYB1fsOcBGBQ8OB+tITq/IBn8SrDuPRKleecXYNN1AOzNFg6uLSJ3f1qVHh7cWELh3QeqbQDYP+OieEeUJfbrs8gEPfTrswhdG3a1gH4hA3erC6s4De5lwPw++vK497iDaGUerOODA7BqM9h+fQaVP2licGUZdseH7WbRuTaPft7C1IaoRlDMirUZdJaLmL4tShL3Ls9i6tMDUZLY3oNVq2BQLSDT2EZYLYmKh0oeQF2wNwIIKnl4q8Jo4ovzGLx+HgMAUdaCu1VFUHTV/QDg4OwUCrfWRTXD+QX1eSArWtj1q6KCIOvg4OyU6M9mC2G1hIOzU/C2erA7Pp5K1kZsdoBiDgdnpzD9ozvgb14DAPgFwcyYKVwW1R29AZjfR3T9MjpLHkp398Ag3omwmIMdFMEW52G19sU7kXUQVHKwehHsYBgWYB0ftKSHstTXAjCoFmAFosrF3myJuWxsq7ZYbwAOIJJsj272AuzNFribFYZdM/PZ/+ONAcaYDeB/AfArABoA/iVj7Duc859pp/1tADuc8/OMsd8E8E8A/Ib8bJVzfu2FdNbgucOEHgwmhijLENVmRLmZy4BaRdH0Wq192I1NOB+tKSMBEHXzrDcQC/VmB5l2AG+rB6u5A+5lwIvT8FabYO09PL1aAOsNMKgWcHB5DkyWWgKA+949VbaWWV1H+SePEdVm0FnOI6yWYG+24G51MXV7AweX58CzDnjWQaYTinYl9TTriet7lTzCgodQls9ROWGm00e/6KL7xkVB8tTuCoPFdWC1u0LHoheBexmE9Sr2l4vIr7VFSeNmC5nVdWRW11G800L7Ugm81Ua/IM51NjvwVpvIrK5j6vYG+kVX0h7nERVzyKyuC+Ohta8Wp+j9jxEWPFTfamBQLcDuiF1tvz4Lf8bGqbc/hbfahLfaRFDJobMsDCQ74Gi9VgH3MvC2RAkqAHRuLKl2/JUagkpOjMGsg+zWPtqXSqJ8ERDG2uI8eNYR5avtAN7jDvpFF0++6gqjzR0u/IAoC7XaXURZC6w3gB2Eigo6LHjCmIMoqXz65llhCNzeVs9VeNhDv5BBUC8jqOQwfXsbe798CVYwEP96kVjkOz4Ozk4hLIjdfr+Qgfc0RGc5j37RVc/G3Sys1j42/modYcGDde8RMp2+mge/khWlkFkHcLPo3FiC3dgEC3rKSLDa3Zh2CXez6FXy6lhY8MR72enDbmyqdz8q5cH6g8/zv+BR+CUA9zjn9znnPQD/F4BfS5zzawD+d/n7/w3gLzPGGAz+3MGURxpMDEV2ir/h/WrMnZ0mfwykZ9uPKrM7qqxwnJLFNCTj3kla6VElcWn9S56nf6aX6I1TYTFqLIDDwlFp9z1qTPQSzLR+HCXxDODQs6QxXep9IIya06PKFI8b2ySOm5+THqPjOgfDqOceNQdpz6/fj7ku3vG/G1ePnD7Lb7z6Hx3qy3H4/T/9bx4A2NIO/VPO+T9V92TsrwP4Nuf8t+Tf/w6AG5zz39bO+VCe05B/rwK4AWAawEcA7gJoA/j7nPMfn7iTBl8YmNCDwcTAshnglQuwpfDOwZkC3K0quOvA6viw/D6Cehl2EKL55Smc+d1HYke3OA8A6FXywh0tBXqCSg7e4w7g98HOL6BfdOGtNhFWS+hVcsh0+nDIzatd31nOo/zjn6O/Mq88Gn4li8KtdeEaXl1HpEiKJCNkvSwIiZo7iGozYIAgIpJCR4Oii+zWvnIn+2cKmLq9odoIN5rAKxfQkztid6sLp7GpmCIBIHrQwOBbXwEAQYgk+05CTFEpDy5DNdzLiNCHvJ/V3FGhC1uqF8LNCkbD5hYG1y+Lfri26mdQyan+A0Agn6F9qYTC2j4i14FfyarQy9brMyg87ClSJiK6IqGnmZubMcbEqJRH95cvqTABd7OIZFgprA6TGm0pAkbhIoLV3MJAEhuR2569fQvs+lUxL4DyKHTPncLUrYeCgVK7PyCIvfyVGjqLWZz6sDOc194AnUsllH4q18/mFqLzC7AkUVWmHahnBIR3a/cbX1KCUpHroO/ayEi1UxKP8h53YC0KZkaiawaAzrV5TH16gM5yHqWfbg09PFnhbYoeNASxlpy7sFoCe//ZEzUT2DqGRyHNM5DcVY46Zx3AIud8mzH2FQD/L2PsCue8/Yx9NZgwjEfBYGIoZWv865VfTxURAqCSCoFhIhggaYsBlfjISkUlKAUc9jpQu4rdDsPSOsWqCCjJYdbei/WJRKf0vlH/6JieqJZMzgRwiOTIynlgpaKiG6YFjbfaQ2rfETtyXZeBEu/0hEEeBCpRUe+rPlbUd71f1Gc9kS/5XPoOH7WKokQmb5Ce4KcnQOr9oSRR/R7UB3rutHeA7kMJmrw4rfQikhTZadfSjp/uzS4tgz1cV2Okvz96QqrOsKmTPunJojSWVs4DahWRHEuJmPKeyWTTJIU0QU8o1RMimefh7Y1/HheFenaPwpGES4yxrwH4h5zzvyr//nsAwDn/H7Rzvi/P+VPGmANgA0CVJxYVxtgfAvjPOec3T9xRgy8ETI6CwcThLC3ERIqirvzylb/Tly0gv8xptyk59gcPHgm5ae0LlgwCe64WW2z1L3weBDGO/fDuKqIHDWEYyF09gfv+UILYi1cPqEUbQ2OE+z4GDx4hrFfVYmXP1QQJ0Uw5HjLwfWUksFIxRsZD5D20WDhLC0MFy51dIOiJBU+Ol5XzhrTDicUu3G0pQ4QXpwUdtdRAsMsl1Z49V4M9V1PXR13x7LqRwErFmIAWjSmgVSAEPdUf3ZCjexCsnAd7pjwkaJILsz7G1EcydgYbT4DmFuyZsuKnSBIm0d9UBUH6F/ZMGfZMeZg7QWOkl6nK+R5sPFHjzQNB+mSXS2Lx39lVfVQhM88T/Zqribm8tByrFomFGzypF3FpWVT4SEpp9RxuNvauwM2COYerHhjnJ/43Bv4lgAuMsWXGWBbAbwL4TuKc7wD4m/L3vw7gh5xzzhirymRIMMbOAbgA4P44NzX4YsJ4FAwmBp3C2cDA4Hi8y//gUI7CG6+cvPLwB+/8g2MpnBljvwrgf4Ioj/xnnPN/xBj7HQA3OeffYYx5AP5PAF8G8BTAb3LO7zPG/m0AvwNgACAE8N9yzn/3xJ00+MLA5CgYGBgY/CLjOW32OOffBfDdxLF/oP3uA/gbKdf9CwD/4rl0ymAiMKEHAwMDAwMDg5EwhoKBweeAz0IbbGBgYPBFhjEUDL4QSNNl+CLc+7jjaTXxJ733i8Q490sbj7TrPq++P8+2T3LP5GdHaU2MMz6fBWO3xyE4r0/6z8DgBDA5CgZfCExSLOekKoP68c/a7xf93OPc76SCR8+jT897XMaZ86PmeByRqM8CIx5l8EWCMRQMJgZenIJtl2IkOtwVegJEtJRpbKNfn0W/kMHUrYcxTgNFQiP5+VnQEzS3fh/cy8Bq7eNAajX067NCQ0LyGhCXgK6nkFldF7S71+YxfXsbg2oBzqYg5OGe4Ninkjri6Ce6Z2o/KuZiZDuZTl8RNoUFD6Frw23sonvulCDiae0DQU+QNvl9DKoF0RdJrtSrCJIgIo6yG5sId3YRXb+s6IBJ2wGAIjACBMGQ1dxRHA0Hl+cwdesh+ivzCF1baStY7S66507B3eoich0xDoDq0871Kk79cE1pFujUz1wSNenPQsRONBbdc6fgvvU+8MoF4INP0H9TECRlt/bVM2ca2+q90PtJ74XOmdG5Ng9vq4dMY3vICeFm0a/PSk2MliJV8lab4G5WvQ/0vhAxlXoXs4I+2tnsKKIl1huoa+zNlnqXiFwps7o+JHQKegjrVfSLLuwgRL+QQe7+U9U+C3rgbladq6O/Mq/e80xjW/UXANqSAIq199BfmQfeezt2LcPY5Y4GBs8MUx5pMDGklUd+Forl4849CR2v/jnwYnZ4J3leA4FxaJg/z/aP++zzfmeTSJZHlvJn+Bsv/90TtQEAv3fzHx5bHmlgQDA5CgZfGCS/OHWDYVQewTgLeVJ/QUfaF32Sd38cAyQJIkwa9flxn42bJ2CXSydqf5x29fE+rm3987SYPv1ul0uKCOq49o6Lzx+lizBK3yE5TuM841E5Cmn9TvbnuNwG/X1M9k1/f2LPkCYzbWDwnGFCDwaTgxSaI6Y/3mqDSUplovklmmJyMRPDoH5dWC0BH3ySKvSjzpEMjESjq9PnEjWyWtQka6B+f0KSepgooCMgRiUc7uyqvijKY0B9Rtfpoks6xa9OFaz3WxcIUlTDXf/QAqTuJ5+drtHbUZTQkooYwCFKYSvnqdy3JOVw6t/auCsWzMSiR2OkU1/rFN2oVRSNtrO0EGPP1MdGF6XSKaTD3VbsXdD7QjTO+tjT9QSi4NbnQoc+VvbFFYR3VxXdtrO0oGi5k/TbOp0zjRf1P22cqU86wyQPQxyC8QobPGcYQ8Fg4gh3W2C0aMu/bYgvzNiXrTw/ptfQ9QHi7k9zBXteTM1P0S5juKNLLnaDB49UW7qaJX1O9yZK4KSnQl+w6PhQadJX1NFqYZTPpNMV0+90TlJnQe9zmsdDGSCkcSCvoeehMdDvlRxDGht6vqSSpD6G8WeMX0f9AVqxcWKeB77bQphUh7y7qnbpOv2xPjbUH+qnei5tTNVzSGNKn99D46XRPzPXjRki+vjQ54ToQUPNHXNd1TZRXuvz4cydjj1PpLWlq0uGNN6Jd8/AYFIwhoLB5MA5wBILvPyiT8on8yBQX6AnieumSTaPCnHQPeh3/Tz6GWrXhYn2dKOD+p/mGldGiN5WQn45bQGh43RMXB8fp7Q+J++lt5/EqNDPUZn/o54x7d7Dv+Oyy6Pkp0flH+jPyo8YRwAx4yg5Z/oz6h6SpAGp9yF5/+TYAkOjSb8uaXDo7STbBqTHYYzQl/EoGDxvmBwFg8mBsUOx2Uhzo+uLH8HKeamxceVqT3zp6uemxZFJVEhvh34qd31KvgFzXThzpw/1kRYfvX9639IW3eNKMPX76u0kXfpJN/qozwlWzovF7ke1Sc9DoYvk52n/Rt131L2S19ozZdU/Z+70UOQrMT/63/p9SEyL+pzskz1TVp8njTLy4oxKVBy1yz8q6TE5DmnX6YaLClXI57defUm0YXIUDCYA41EwmBhYxgFeuQDr3iORmyDLx3irDSzVgeYW2EwZUW0G1sN1lY9gtbvDNrSyM3Z+QZUPWkt1RA8a6L95Fd7PGgAgStnaeyI2fn5Bld0BwOBbX1GldMzLgDV3YJcBvjgP+H04JG2NYdkhqftFtRnwrAPr3iPwS8uwmjvor8yLcsz2HvyX63DfuyfyMGRf6TnCu6tg16/CbmyCF6cR3l0dLgqAKnukceGL80oaOTq/ALst4vm8OI2omEPkOrA2O3BkuaAVDMSY1KtgvQHs5g78l+vwVpviOVr7YIvziAoebFkaSPen0spBtQAmSzH71QIsrUzSkmWSVmsfUSmvyg71a+2P1jC4fvlQOSHcLOxaRbRDZZCAKJENeuC1GfQqeVHG+cEnInck6AHnF8A2W7AW5xFlHdiNTaE0KstsI9fB4O1bwkuwVIdfLyPz9i74m9eQaWzDX6nBfu8egGE+il5KCQC2Nt5c3kP1XcJfqal57ddnYXd8sIfrw/yLVy7A3mypkl00t8R7Te9RMQeHSoKbW2Cep0pS0dwCXrkAJq8PCx763/4q+I/i5ZEGBi8CpjzSYGIoWrP8Br4FYHSZ23GhhpOGIsa5JhmmAEa7wAHEkuqOanvUMx317ITkdc9jXD5LW3r+hO7+P0k/xhnrZ0Xa2H+eYzTu/Y86Ns7/gUPlkVNn+BuX/s6J+/N7t37HlEcajA3jUTCYGJhjwz63EvMisPae+NDNqh0vJf4xuasPq9INTUQ8+i5VgjLqyVVOCYasVERUysOWxEkxEhy5kw13dmFfXFF9CXd21S6bPAdYqots96UFIOjBmfMUIVBUyotdv8zepzb06gI2UwYvTovfpVdEJ0sKN5rDHTQk+dHDdTCZNW9JjwtqFZV1T0RH4d3VYTUGeU4gSKYAqHHkblZVFwy+9RW4jd3h+GNIuETjw30fqFWA5ha6b1wU5EMbTbHz7Q2AO2uIzi/A6s0rjwKaW8qb0LmxhOnb24ogirX3hhUlctwBwL64Iu7/oCEWyutXBYnVA+EZsuSunLX3ENaryovELi3HCJLCakl4q2Tlh6pscLPDZFKtLUCQH1k3b8fGXrUtvUj6WNI7Rs9KXi/yctD7FXvntHngrbZIjJUeMGfutPIO4YNP1HsY1WbA76yB9U3oweDFw+QoGEwOjman1ioAgLBeFQuSxqBoz9UQnV9Qx1hvANYbiAxy3499ycPNioXvynKs3JBdWhb3CHoIC55gv2u1FQMe933067PgvqhmIHc+3CyspbpY2Py+CHvUKmBBTyw80lDhvi+y64FhaOBBA/7LdfElHwSIajOxBLnw7qpahKMHDcUUqMoy5XiE9apYeBfnwd3ssH+L8wDEwsqL02IBam7FSiPxwSfKnc48UU4ZlfJA0EP33CkxDXOn4b53D4NqQT0z3Kx6DhWeubIs+lurYOrWQ3HvuRrwwSdgD9dhLdVhtbtgD9fVYsdKRVg3bwNuFplOKI6Ra1227a8I97+V89SzsaAHa6ku4vPEPnlJzCkLegjvrgoDsTcQcybniLfaahz1UIY9Vxs+m7wXX5wX/WhuwX+5LvrY2Ia1VBfvhu8LQ2SuBub3xbvZaovxrFXASkU1TzQuUSmv3qewWgL3MtymmMYAACAASURBVOLnnTXVFzX/VVG6a8/VwNp7Yiyl8cZ6A3UcbhZhwRP3cg7v7RjnJ/5nYHASGI+CwcQQuhaCehluYxfcy4DfWUPwzVeRa1eG3gG5uAeVHFxUEVRyihrXknkNCHqK/tZfqSFbyoNtdnBwbRHe4xmEkp4309rHwbVFuG+9j+iVC+jXz8N97x76V5aB+qygNZa0zla7CzS3wGsVcC9ziEo5cgvIrK4L+t3VdYQyP4J28Va7CxRz8FZF6ab/7a9i6tZDRJeWAb+PyMtg8HIdzmoTu9/4Eop3WmIBDXpgl5bRL3iCtvr2hhgHNwuruSOMDtk+zzoIC56iiLakN0PcUOY2XFoGa+0riumgXkZ2a1/0u9NXnhvm9+F8tKa8DYAwDJzNDjo3ljD16QH6hQzClZqg1m7vqeuCb74K73EHzO9j7/IsCkEPYTEn5rhaQlSfRd+14f2sISizizlYqCCUFM9uY1cYOrUZ0efWvvJ2HFxbhLvVRb/owm3sKq+PfXEFg2oBoWsji3k1NlapCI6htwRy/hRNtHyvum9cxNSthzh44yIAINPpIyrlsb9cxPSP7oAvziu6bjWmckx0unEmqZsJkevA7vjCUO34ysDEUh0cwN7lWXiSphsAbOorBC04wQoGat55qw2rWhKG5r7xKBi8eJgcBYOJIY3C+XngRcai/6Ji3JwSg8+GtByFr138rRO38/2f/ncmR8FgbBiPgsGfe5iF6/ljFKeCwQuA2ewZPGeYHAWDiSON84D+tsulVArgJDfBOEjjz0/24aSf/aLiqLFIO2/UOB/FmXDc8ePG9bi5/Szz8os2p79o/TX48wXjUTCYGJhtg2VcVctOdesWJdEBKstecehr3P/Ex0/VBJSBHtVmVIY68e5TrFf/nZIPVSWCxsOvNCaoxl0mrVGlAskW+ys1ZLdELJv5fUTFHA7OTqHw7gOZI9HB/nIR3lZP1dkHr5+H29hVcfOwWkK/6MJbbap6fGDIYwAMeRSoRp/yB7iXEXX+MnFPl3kmfoLIdZR8sS6dbcukTACHqi5oPlipCEfmbdibLVVxwb2M4ouwbt5WFSW81Qa/tAx+Z03NC1+cR/T+x0p3Q1WqyEQ9nZcCOKynAUiDpVYRlMmyykCNCVXDaHNHyaX0k6pegGHVx+DBo1iFhS5frtrV+kq8EJnGtro2Jh8NqEqdqJRH9P7HcJYWRH7IR2vDvAfKv5H3ARDrq/5O8kVZQeL7QM4D84cU1QYGLwomR8FgYqAcBdq1pnER6LFvWoyITz+m+YDhwqJrKBDHfpI+N8l9AMS5CtIYFwmpDI8p+gtHxe3T7vN5uu3HqdsfB0lehJO2N+o5k+2mzQdwmA76qP7oQk7PMpajnuekXBDjjnvae3QcDucozPOvnf/bY19P+P4H/8jkKBiMDeNRMJgYmG3DLpaU2BAttrQgAHE1QxJ40lX17JkyuDQGACjxn9i1blZ9KZNYk74oWTkPkAyB3UoWYZZhr24jzALVn/bRXnRQfU/swp9eLSC/McD+nIOD0wyl+yEOTtuYehIiyjBk9iPsn7aRfyJU/qa+91NE1y/DksyGkawG6Bdd+LMOsp0IU7c3YiyKtNMMtedS9f0zZVVpQbtqvZxS30EnKZej2gzs5o4aO1KfJP4Haqe/IsourZu3AYjyS+IwoDGke/A3r6mqC+JG0DkNeKstGAolsyGaWwCpIy4txDw7zpKsuND4MADhxeFeRvA0SFrjcLcVU6EEEFfblJ/R2GVW19UY+GcKyN1/ikG1AL8ivBj7p21k9zh60wzlez0czGVg9TmynQj7cw4y+0JCq3inhfalEgpr+6oMk/l9tF6roPzjnwsGTAD44BNE1y8rL9Lg+mXledHfafKmxfhAIL0dCcVRHgQgxVUDgxcJ41EwmBjIozDuji0Zpx3FjnjU9aN2diRdnNZeTDJZhiSIEInc3dSubuwkPRXJPh/HEniScTnptcnPaTc+zv3SPDQnncOjPDQn9bIcx3CYPDbu5+N4Ami+rYSYGZ1HhsHn5S065FHIzfOvnf9bJ27n+x/+98ajYDA2jEfBYGJgtg1E47ledZd1zMsgjyclkJOfHwUeBIcWPv0LX/+ij0lBp8kVa9cdRxWsHzvuc0JaW2n3OU6gKPk5Pdc4oYY0FcRxMc5zJlUTx1mwj3v2k4z1cWOoH48reR4+L+24gcEvGkzVg8HEwMPw0LHjFPbC3Ra4togctQAkF5hn3dWdJD6t959cx8ct2kmkqSqO05dx+kljN+reZHClff5Z7004rpqB+nCS+46TKzFOlcXzAoXWRvXlL1rVjcEvFoyhYDBx6OWRo3aOx32RJssq034H4ouwfXFF/Z2UHCbZ4uPK+o7qO8XR087VPSRJJL0SaQZQGkb1axTSFqujnjft86S887jXJUMFyXE6yoNw1H2Oep40A4nOSY4dPZfKfTmiL3r/9efQr+VBoDxhaXOaDKONaygBAKJn+GdgcAIYQ8FgYmAZEfkaJx5Ni2ryi52uS8uO19tOJkcy10V4d1X9Pdh4EvsCT3ou9Hse5aZOLoD67lg/h36n5Dw6X782+U+/Z3JxTRsv/dy0hTq5cNKxtPEcNT80TskxSuvLUX09Lr8kbYxGjf0485TWB/0cei5KCj3KsxMLfS3OKwNBT67UDdAkkp+ljam6v0lmNJgAjKFgMDkwluqSpX+0y08u/NZSHdZSPeYNoC9ndZ3nqev0THMr5x2KZ+vXx7qXsogmFwzqY9q1eplm2g5UN16SC0rajpP6mLyOua5QsdTaH+XeJmOLfuoGmN6+XS4JASbqq/xdHwN1XmLxozFRgknadc7cadWWGqdXXzrkwbFefSnm5aHF08p5seN63+mYlfNUn2i+AagxSptXQvJZdMOJPk/OVcxzcGdtyMsh+xKbe8+LzRm9n8x1wUrFVCM4rZ+xeTWiUAbPGSaZ0WBi4P0BoK1l+i5Wryggop5woyk+l8qDUdePnUfXkXQvZefrC6IKB2jZ6FR7T0jzUiT7SMf1a6l9Z+60UA9MlvDJe1KflVqi5ymSKO774FLSmMiWACAq5hBC/IflxWnYkqyInvXg8hymgKHqpiZ5ze+siXGRhEa2JCrSSyftUhHczcKBKCEEgFCSJKlziIRKkgQBGJZVSuIiUvKktnWSJQCKDMrWKkciyDCN1gZ/uA5O80kCT7JvHEJMiZ7TWqqDN7cOEy25rvhd7vaptFZP3NTDATR/+juoZLvlc9C40fzq7wxdQ/ehc8ho4r4P7vuqJFLvDxkxOumTkvaGjBa8cgHs/T+GgcGLhvEoGBgYGBgYGIyE4VEwmBhK7mn+xuX/AFZzRxAALdUFXbJGycvk7hqA4C+olhTRDckAE/Uz8/uK0jio5BSRkZL7be/Fdm/AkHKXKHt1XgTdZa7jWasnnif0vo7KKUgeI9d42s4YGLHLHrGbpnbIg0KcDLSbJoKn5A6eaLd1zwy1pYdvwt2Wou9OHhs8eBTrdyzko1Ei621+ntwGJ8Wo8NJR59O5aTwKX//Sv3fiPnzv439seBQMxoYJPRhMDLw/AL+zhgEtGg8aYgEBVI4B7qyB0xe/78MOekOaXo2yOXr/Y9Uuc124AEIAGUAtJBTfJv4DZ+40ovcfwZo7LRYOvUpBYx8klkFAGCUqhECubum2V/3X3PU654MOMop0/gdn7jR4cRrRg0Zs4U22pWtbqPZy3rBfcgFOGgbJBMVknX8yHyRK6T8ZAETQRKETgZY4X2PXjLq+mi+dDVMPAyWNCD1nI5YM2mqL59GMGxWO0p4RmqFha3PoeJ4KfTAvg+BMAbl37oo+SeOU7hO8fh6ZdgDr3iNhQFZLilmTjkG+i/ZcDWG1hMh14Hy0pp6BwggxxkgZGgME90JawmgyVPZFNEwN/mLBeBQMJgZiZgSOZsvTd7Vpmfpp1+jtxRYlucBQDDnqihh39KABa6kOFvRiREqjsviTX/C0K6afPAjUDjitDFLfWet9THuO5HmjdsOj2kh6BZLPobNSJjUXjqtIOY6lMW3u1H1lPF9vCxiSP+nt6OOQfJ6jqh2SSaU6RXjaWI1CmjcmOTYnbWOcz5PH3sUP0Y62hx4Fb55/felvjmxzFL53958Yj4LB2DCGgsHEoBsKyQXwqEVKX3SPYhFMutX1zybpdj7pAnPcOce1lca2OO4YjNrx6mOrGwtJ1/5R85dc7NPuRW3q4Yk0AzBpPH2WcNG4Y/0s7X3Wd+9Q6MEYCgYvACb0YPCFQHIhO6ru/biae7puFH1umns3DcctGKP6d1Q7ac81ThtHnXPc9WnPl7aoprWT5tVIjq3uUUh+dtz8jRqH5O9ptNEq/DDG86V5NEb1Lw16hUQsV0JKX6e1o1fPpPXLwOAXBcZQMPgLCVosRuUQ0DnP8tlnOfc4HLcjPc51Pc41J/38s+Ik3o1n8QwogzBIp/5OIi3EoBsjFC4JgwA4wmh9lnE7uceBA8YrbPCcYcojDSYORdBTLqk4tU5iw1w3RqhEJD+0U9SPEdIodfXz03Z7zxNJV7j+d1oexKhrxglR6D+T8fvPA2n9OuoZRjFqPqtXJtmHUb/r54/jhUrDi/YAGI+DwRcRxqNgMDEw14U9VVJZ6UxWFtgXVxB5GfSuLcJ73BFlj80t4f49vwC0u+K89p4iJQrqZWS39kXFhMxgd0pFPH3zLJ7cAOyq8Bz8pXP38MM/exnVdwVlz9aXOZwDhlyTYboRoninheYbMyg+HCB3/ykG1QLsjo+wIEvyXBsHcxk8uQEUfm6hnwe6ZwdgUwM4j130q30UP8qinwfcXSAoA5UPBmidc3D6JwfwK1lMfXoAu7GJg2uL6BUs5B8H6BcyyHT6CF0bUdaC97gDnnXQPTsFACi8+wBhvQoGoLOcR/knjxFuNBF881VkOn0AQKaxDe5mRZ83O6JU9M4a+m9eFeMVhKJU9OE6+OK8KAt1s9i7PIvp29vYuzyL/FobPCu+FiLXgRUMVF/drS4Ozk4h0wnhrTbRr8/C2exg7/IswixDP29h9r0dhAUPfiULO+DIdPpoLXkof7iLsOBh/4yLbCdC7v5TrP+V05j7o6fwzxTk2IrQe36trdqY+vQArDfAxl86hfnfe4JBtQC/kkXh1rqqROieOwUA8B53sL9chB1wfPrLDpx9hnP/xhruPD4N/thD4ecWvKcRwqy4z6kPOziQ4xtmGfKPNcPCtZFpB2C9AXqVPACgX7CR6YSIshasXoSt11zkfqWJ5icVzHzEEMww9MochTUgu8cxtdGHt9qEvyIIltzGLlh7D/2VeTVfOnTpckqsTZJb4ecp/5GMR8HgOcMkMxpMDKWpM/zG1b8Lq90VzHuydI24EKx7jxQ/ApPMflEpj/1lYQhMfXoAe7OFqJRXPAkA0F+ZR6axDX+lBjsIsfllsRicfqcN1hsoBkTaZerxZ8qQV2WX5xfQujiNg9PC+ebsc1Tf6wAAWG+guBuY30frtQrKP/65Yi9UjIut/RjLHgBVepnkH9BL6ZKx9BjLI6Di44p/wvOEMdETZafs0jL4nbUYPwXxRQBQfdKP9+uzagHjbhZobiE6vwB7s6XYFXe/8SWUf/xz0Y9aBSzoIayWYG+2ROlh0ENUysM/U4D3uAOrtY+wKj08jU1EtRlleGVW18GL02BBDweX5wAAuftPwdp7iGozsfEFgEG1gMzqupij2gx41lG8GjzriHdJe1fo3vZmSz2jzrtALIk0FoMry8pIiFwHzmZHjQHrDcCzjjKccvefHlrM1VxqXCCAKIflXgbs4XqcTpxKNlttNZ/JudeTQ3+S/WO0/HUtmXGOf33h303533U0vnfvfzTJjAZjwxgKBhODXvXweWBUdj+Q7tId5cpPHneWFmKLAS2c9OXO2nuHCIMAxBYEvV86tbROLjRu6VySmnpUZYKOUVn3Ou10MmFQr05Inpcse9T7qd/vuFLGpKEExJMjk2Okl58eNSbE8zBOSaPer+TzHzU345QzJjGqnJT6MKpCgvpyuOrBGAoGzx8m9GAwMTDXhTO/oLj8/Zfr8Fabaleqc/yTtyEq5oAPPhHHXrkAu7GpPkfQA7u+oI7RztUKBti5WsBeXXy/ZvaBzjUfS2e28fMHVWQ2M7B6DO4usH82wsLvh9ifc+DthPBnRIgivyF2re1FB3YP2KuLHaPVB6ae1HBwmsHdGRrdwQxD6X6o/qbwgrvVxebVAvIbwpUfFF1kt/axe7WMwgMfViDuc3B2CmGWoXhHZvYXPNgdX4ULHGCoCyGPRcUc7MZmbKdPng24WaX7YL36EqzmDqLaDKKsA6s3jwhQOg+0ewcAFvRgLc4jyjrg7jKijo/By3VYW/uwaxVExRy468DuSCEkv4+omMPO1QK8nRBbrzhY+s5TAMDu1TK8pyH8UzbCLENmP4K3PUCUtdArDNOloswyvKchds9nMPUkRLYTweoJbeQoCGEFVTz6dhH1tw5gd3xsvz6D/MYAU7cFc+eg6KKXtQAswupFWP+6i145gtVnKKzJ+XgSorPgIJDSCrkmR/HhALvnM/CeRuhNM5Tv9eDPiq9If8aCtxMh24kQugydBQeZPY7+NMPcHz1F+1IJe3UbVh+o/tkBrGCgQjcAlNcsqs3AkloaAMAerg9/l2EHYpu052rCiyN1MZy502BbKV/ZZrNn8JxhDAWDySEKgaCHSJaaue/dA0pFxUwIANDc5Gi1YTWlQA4A694j8blcEMPdFmzfx4Coen0fbLcFuC4q9zxUahUlKIVaBYCDy81PDok3Da4so3p7A/5KTcWk3S2RF+EV8iis7aP8iYPtKznU3tkBzzroTxfVQrI/R8aEjdL9AZ6+5MCfySGYYZh64qDyJ020XqvA3QKirIXdq2WcevtT+Cs1WMEAQSWncgXal/5/9s48vq6ruvffdWdZ1pVkDbZj2Y5jx4kTJzFpICGmBGiBEMr0WigUaKHzoy20fX2d6MDrQAstpQVKZ0oLHaCUFkppAoQCISEhIU3IhB07jm0ljiXZmizpzvv9sYe779G5V/fKlmWT/ft89JHuOfuss/c+R3evvdZvraV39VZhKI8MkChWEMM/IJPS4+/tJnHgKLM3XKL5DPkupJR2bGWVzSCFMon+PmqYYkpjk5S3byR14KjmfoBOl22KRxW2D5O99wBqqE4ITUzPkZue0/yEQiM3QgxnJDk+zeC/H6Vy+Ta2/fVhd23fg1p+l3E1UCxRHRkiOTpeP2afdTZDdqLXKT4u+6VRhvr3dTsXSd+jWhm0rpH0TNG5OOTIMbY9nNNclrEJ89xB5dKsufmQy55ok2WtuQ+XiCu5YZjMRDdy5Bj5LRvdfCVKSdbfOU8tm2Lq4i6qPTkyszUuuHXaKUrzm9Y4foV1i1m3kE1JrvJrqe3Y7NwlKpvRbqKZU8g1u6k+8ChccTE88Gj9/yGUmQ5YBQTXQ8CqoTe7Xl0/8GpUfi2ndg2w5ol5AMr5rCPe2Z12crZAabBbWxysG8DsaKVUYeaSXvL7pt0OrXj1DrKjU1SGNFEuNT5LLd/FkRvz9O+rkjtR4eRlWRIlReUm7TaYOdZD30N6l9n7WI3e/ad4/GV5up9Q1AwBrueo3iGWuxOseapMLZMgPVsmUaw4ol9mYo7CBT0kSjUyE3OUBrvJTMxR7clR7knTded+1JaNFC7oaSBMFi7oodSToPf+CaRYckoB1ImF9reUKsxty7vFyPEB7EJfLKHya1G5tOsLQPbeA1Qu30ZytuD8+9WenPbFoxdQywFJFhXVrFDNCLW00PfglJM//vwRBu8YY+GidXQ9dhKVSzO1u49EWZEsKcrdCfrvGefUrgFHPEyOT1PYPkzu4BhPvmwzPUcrjrhY7kkztSMNwJrjVZIlRTUj5E5U3MJ/8gXbSM/pceQmSu49qmaTjlxZzSYpDKQ4NZIkNafITRpLRFqY+J4C6skc1e4aQ3clmV8v1PQt6d+nLRelngS1tLZ2lLsT9O4/xfymNe55p2eKlPNZsvcecMqL5TCU81nXj0Sxohd4jz+iH0DGkRtzD4+62iP+NTYldHJ0vG5JM7ka7uq6nZm5J+uuh+wGdf2mN3T8v3fzofcE10NA2wiKQsCqoTc1pJ6940eo7j8INCayceWLjTnWzwiotmjWeO2b33Jhk7ZMs/3irRw+6kzsoP3eiSsv1eQ2Iw/iiYzWVA84Ep6Fv1Bb870cOaZ35A882lCKuXL5NtKjJxw73+6YLanOLgD23n5tB0um9Isa+f2M4z/Y+bFESZua2Y7RXhfn87c7a59w6Wc9bCjEZGpS+AW8KJbcvWyf7TOxhE67qLpna+bKWhBsfgJn3fHuUevtdsXDfA6G/374KaCTO7ejcml9jbFa+DUl/HLkVo4lOfpz4RetSvb3uecdV4cjWoPDn28LSxgFTeS0c2bP2foRcVktJZvlrvItTFfGg6IQcFYRXA8BqwZVrSLFUp3MNT3jvoxr++pmYRcyZjLh+T50F2Fw5BhqeFD72Xu79ZfvkWMo9MKf2rCe6r5DsGG4qZLg6i/4xYugQbFI2S91s5DNbcvTjVYgUltH9KJXLFFbKDiTPA88ihh2veUMVA4f1bkfzGJew+SOMOOpL+b1mhCWVOkXHKpOTjXmhOjKLSLLuQyGZvGxnxNd9SqPdoFbRM7rzaOmpl22RclmNXHTplOO1JCwkRsAMjlFpVgkRWP9Bls0ShUK4C3GSW9uq5NTJGxkiulvzT4z6uRDX5m0ikBqw3qYOQVjBdTwIDzwKFVzjfT3oaamG5QSqCdRipsLS5KsTk6hvHFE52vRvNs++uTEqWnE3KviyYm+d47EGSGmqmqVgICzjaAoBKwaJJt1ftlavgsZHac6MkTiwFFKe3eTGNWLkcyccqGKiZkFiiN6kcyyncJIH9l7Z5zvubx9ozarG6uDDU0sb99I+qD28Rf2bCQ9WyUxMUetJ0f64DFqw/2wTzPdogWckv19FC4bAeDUQIre+yeYNbkD5tcngTy5iRKVoR5S47NIsaR3rMZvn+zvc+4Sy4PwyzE3LARWkTCWEedm6crVeRh9vQ07V58lb6tHupBHL7rAwVhlZGwS5VkIEmMTTqFxKJYaFCo3LqMQqUKhgSzJ9Jxe6C7Z5vz1tVKFhLEq1Hq7UZkUlXwWMS6FxPAgtVzaVeisDvWSyK+lONJH+vYHnYKocmkolOHwaIO1qNbbTbLY56whNUMWVPsOkTTzXxvuJ2nCYm1EBDRWx7TWBFUwhaN2bnecFmfh8ao/+haAqNXAWSfMfPmVQn0lr8G6s3M71f0HndIaVxZbksnIf5ECVSMgYCURFIWA1UOl4qo1SjYLG4a1XzZniI02T4BZ2JKj41SeOk76sMnu199HdrQurrr/ICm2N5DiVH6t9gsPZnjhXxzg7qkKH7rwP5mqVRhJrWXbZ3+UVzzjBJ/93EXs+c5x7vnGxajuChu+qP81xq+GoXuhd7+OvqhlEpzaNUB6tsrcjgyJkuLkpSnWHE9SzcDsti4GHhhifn2C7KSimhmm+3iV9GyVwkCKZEk5gmTXYyepmeQ7qfFZnWRqsNuQJ4eoArPPugCokxnFJJxSuTRJkyMgYfII2AgPVaog03NIb56kMdtTKLNw0TrWPPKUjg4xi6xVRgRQw4Moj/AHoHo1mS/pKRA258Ga+45ohezIMZTJaVDr7UZ6dSTG7J6NmkuQTZE+eMy5AMhmSJpgFbuoFy7ooctYiqRUoTLUo4mUJhFXLZfWXIpCWSuWmZQmYj50iMT0HPN7tpC5+W5DYi1TGerhwLufQWpeeN+rP8TP3/dq3nzpAT5423eR6i2RzgxRenwtF9ymF9nuQzOUBrspo8mQY9ddTu5kDRgid7JKdmKByZ1r6Xtwirk9Gyn0Jzm5W1FL68iXWhpy4wn691U5NZJk4229lPNZZGJO54LYspGUVSxGhgBImvGnjPJYOzzqrEoJ8wyq+w9SNTk06MpBPUo3IOCsIXAUAlYNS5WZXg7OhJx2cxr4Mf4Bp4fTqdgYLY0NzVMh2x19gyvEIHqNn0fCP2atQtYi1E6/43I4LAeL8ihk16vrL3h9x3Jufvy9gaMQ0DaCRSFg1SDJJHL1bpdZL2HCyGy64KRxRdgMebV8F+V8lvSM+fI1mfJq2ZQjDQKkTBbBwmUjmjFvsjdalr9Na2xzNgDOlB6X7Mf3Rae26jDCyuGjdXKbydpnTesuk6SxbPgkP5sR0hE3Tapey1mImpstfGKi38bCT4rULLOjb3JvVknRTwhkrQ1+OWk/k6PD8CDV/Qedi8Ka1qNQhYJzHwH1TIUmgVWtV6dKlkKZ2uHRBjmVp467+2PDXE2yK7IZUpaAaua8Ojnl8hA4IuvYpLYwee4UPzlWVGnwM3faedXzbFwR3nviEyAt4bM6OUXiykuRI8cakknFKSf+84xm6GwgRU7FhEeGzV7ACiNYFAJWDfnEgLou+5LYXXl0BxaXcTD6JevnQ/D9xlHSmfUFt4tm9/SZ9nZnaSMuomOIXh+V3Szznx9tEJfdMC7zYPR6P3rBpoJ2nAPPX25lL2LzRyMCDOHS+c0jfnfr53c8CS/tdG2h0KAcSTarXQleqWY/q6Kf2rphzkyyrYbn7GXM9PsWzW7YLjrJ6rmU7DhZzbIwtkKsRWHjDyx5XRQ3H/7jYFEIaBtBUQhYNURdD1BfqNpNa2yv8Y/FmXst4s7Z3XrUlRBNgwy4UDnLm7CEOqAxhbCxPIAmKNZ2bK5nTaROhLOwC6wf1hhN99up2Xq55u5mC+Tp3N9Hu9UibdvoOPxF2bcM+At19D3w3Q3N7uOHpvr9bKa0AosUQ4u41NzN5iGqZLRSCBcpCpn16voNr1tyPqO4+eifBEUhoG0E10PAqsLf3bqQN+8LNrqQ++1cTLznS0505fA54NEval+e/YK2UQi1hUKDuT9uBArQsQAAIABJREFUQXOhciZsL8o3t9f4JnvJZl2IHhg3gllcorL9e5yOkmD70mzXGifPzUekjX88+gzi+AH2fCuLUJzyFl2obTsbJmivj+MjuNBJz3rkn/fDSH25/r3899Bea2X61/rzZos+RefTvhf+2Js9P388/rxF5ycgYLUQFIWAVUUzc63/pWwXzOgXpp8fAOIL7sTJtG2ifv0G37pfydKETfoyXIVAEyLoJzSycf32iz+6IKlCYdGCG8cXaDCbe8pS3EIStcL4947G4kfvaz9Hn4W/MPvKmC9LcjlsrgcfcUTA6GK7aHFtUkSrWlxc5Mn2wX+G1WK8EhSnFFnlwj8e9/dSropm92kmt5XC1+yagIDVRlAUAlYVzb7UowvhUkpAqx14sy9nf3dqFZJ2du6qWNSLUmQRsQtV1FoQ5UhUY+THLRIN10R2xM2Upuj5qLXGR9xcx1kFomPwlaVmc2531M3cJ45/EclIae8V/awKBWctci4aw51wuSMiUQjNXFPRsTVr2wmaWWfi2p3uvRYLDe7jgJVFUBQCVhVxOz372194llrEW+3alrqm2eLRDtpVLE4X7cpod+zN+t3O/NrrW+22o9abuOfsK0xRsmY18vx9a4Fz0XjZFHX7QsPYTmd80bHGWUDi2vjjaXa+nWe5HKJjQMBKIbF0k4CA1UHcji+OYNjqOh/Nrl2OgrDUvTrFcnaZ7cyFhUuPHHOfqFWh2X2Wul8zDsJy0YlyZNu3+yyj/WvV33YW+ERXrunY21noW7mGogrt4g6qzn8CAjpAUBQCVh3tLv7tLAJLfeGfiQXsdNBKWekUneyYo66JTu7fjt/dwoYqxsmLpsaOXtvqWKv7NutLKzSzZHX6fvhcibh5inOtdYLAWwg4FxBcDwGriii7PM7EDa19u44Z30aMvO9fh8YIC19es8+W9Ggz87kKh7Y+w4b11Ib7HQHSD5ODeoErvwaAn98AGln/fn6CuHGfKVdJs0W32SLXrC9RsqNtK9nsomgGX0405DHqeoi2ietrXL9ajVGyWZea2uZ08PkTlvNg4R+z5aOhTraMi8yJuizi3uPgWgg41xEsCgGrCp8s55tv7aIZtSLYBTXZ14tkszpbX5tfuP4CVp2abgh7k2zW/SxagK642J0DXAlqVSjo6pem1HKyr1cv6PsOkejKkdg60qCIqGLRVaJU0zM6j78J6bQ+f7szdb75yamGssP+j99HO1/+3DQbezPTuK+sQN06kNy5PZZcKlldyCgqVxWLWhEyv5N9vQ3yfVm2v74SYY83FFrKZnXtCm98ce4UmwALcH1Mbd1MasN6khuG62MyfaocPkrl8FFSG9aT6Mq5ip6WQKmKxYZoGFeS2yiHkss1zJkbd19vQ19sn6PPIbV1c6zLpn3LwzLcDsH1ENAhgqIQEBAQEBAQ0BQhM2PAqsFmZvR38UtlZWzlFmgWktYse99ysJJm4tOR3Y41pZ35bHUuOo+20qFNOuQnsormRGiWWrtZgSYffq2DuKyJSa/0c9z5uCyJ/hj99nHnfLRjsYrWB1kqgiEu6VjUDWXn7I7JTzZmZkwPq+sHX920T81w81MfDJkZA9pG4CgErDqiYWXNlIGluATRDHq+TGBRFsXT6WuzBEDR8dhz/uIRt3hFXS6tqiHGzUe7SsJSPvRm9/T75PJFeAu8KhadPz+aLAlMLgTvOfiuFevfb6YsWr5CnJKX6Mo18AuisNc3m6NW71MzpaIV/PvFyYnrQ9y4osficm8EBJwtBNdDwDmHZoz0Zsf9z+2w9wHHb0hceSkLr3hWg2/Y9yU3Wxyi5MI4spq9XhWLDTtMf2ec7O9zigMYRclwHqKIk9sKcQt+3Bx1Oo9RtKOsNFssVbG4KJFWXIRGM9lLRXPEITqPPt+hFZoRO+PIidE2AQHnM4JFIeCcRnT33E6EAjSacGsLBbjiYoqDXXQ9dhKAylAP3PMIyWyG7kOQiJRG9hM8NZDtrrhYVyjMZpi8ZohqRhi4VxeGUpkUKVO9kAgr3mYTdP0ykRMNRaKMRcTukH3YXXZcAaFmi+RyXBHttm31HE7nXLTv7Vo7onBlvfNrKY70kTs41lD2Ow423bW9Pm6n71uHfLKiyq+ldnh0UbrudrCU+6NhfuJEB/dxwAojcBQCVg1+9cjlYinFodU17S46AcvDmeRzhBBCjUXVI9PD6vqB7+tYzs3H/yxwFALaRrAoBJyzaGdxWMqM7sP3hTvi2dYRFi5aR6knQWa2zmJIz5ZJzhao9uRIj56g1tut20/PUevtpjTYTbknSc9dhxm/8SJ6jujdanqmSGJmQReTyqRIjo5DNkOttxuVSZE4cBS1ZaMOofSsDpLLueJSFj750ucu+DknonyHaN6G6Gd/jprxH1rNZZySFWftaVY62Sc3RvspOZOsKTIP/vOL5jWIVnyM65t9zjJzahGZ0sIvH26fB9TDIVV+rT5eLC0qD27lMzaB9OYdudPvJ8Tzb5rNb3SuW/4fhM1ewAojWBQCVg3tWhSWs5ts9SV7JiwJZyKKoJ1rmiWGWm6Uw0qik/61K+d0r12OxWml0O69W5F57yx8drFFYd33dtyXm8f+PFgUAtpGsCgErB7W5Ehu3k5lqIf0wWP1REbZDJWhHpKzBWrf/JbbDYJJcmTIfmp6hoXrdrLmviNUR4ZQ9zxIcud2VC7tLAHVoV4SpQpSKOtrTNnoRFcO6e+jNtyPFMrUDo/qRDpm95+YnkNlM+6+tm+AO+92ltkM5ZEBUuOzescZgZqe0VaETIrkgaNut1ob7qfakyN18Fi9bX4tKpcmMT1HdagXZhYASPXm3bwASLGCXS1q2ZS7d3Wol3I+S3ZU73Rr+S6kVAFgblueNU/MkxwdpzoyRDmfJTMxhxTKbr5Lg93anw9Uh3p1W7PTru3YTGJmgcpQD6nxWVQujRw5BsODuiNjE1Su2UX64DHNv7hkG4mxyfrcFUv1nfnMqfpYxyapDfdTGtRWm9zBMZ210rSrTk4x+/I99N32uMuIaZ9TabCb7OiUm/epZ11A7/0Tbp4SswUShTJSLKGmZ5BcjsJlI46zYDkiDA/qLJk7NlPLptwYrIUgsXVEcx0eHnWZN1046M7tVPcfRO3dQ/rgMRciKuaZycyp+nvrzQHQ+O4XS1RHhkiOjqPya5FiiVpvN1Iou3eae7/Y7L8pIGDFECwKAauGVhaF0935LXf31onsM7E7XcrU3w6aEe/8e3QSIRHH4j/dXfly52qlLACtSKGrbXWA5m6fxRaFIXV93zIsChN/ESwKAW0jWBQCVg21/m6Sw9vdrrLBD4y3cwe9e89mmN2zkbWPnNDnD4/CFRe7nbGF3Y2f2tZNZrZG7slZbVEwPmSAwvZht3O28mvD/cxty7P2kRPakpDN6AgGu2M2OLVrgNxEidTBY5S3byQ9qvszv2sDhXVJ+u8Z1zths2u3O17Hcxib1L7vDcN6jGbsMnNKyzt4jPk9W+h67CSndg0AsPaRE469P/WsC+h+skhhMMOaJ+ZZGOwiO6EtD8XBLtKzZRLFCvOb1pCerboduuNNjE9THepleuda1jylLS3Z0SkqQz1Us0k3zszEHNWeHFKsMLNzLX0PTjkLwfyuDeSenCUxPUdh+zDlnqTrY2ZiznE5rCUHtDXHojTYTe7hUQqXjTheh7MCFCuIsQItXLQOoP4Moc4FGOpFShU3JtDWKGtZSRhrjJVbzSbJ3ntAWw2ARGmje7+qQ72kjKUFIDmzQC3fpeUWS8zv2cKaR57S95ieoXL5Nt1utqAtUqZtrbcbOXKMhet2kijVSM8UKeezboxSLFEe0c90dmuOvgenUJn613A5rxWF3MOjlLdvJDU+Sy3fRS2bQgHyjWBRCDj7CBaFgFWDtShEiXoADA9qRYD6LjdKOLOoLRQQa+amHtpoCXLW7GvDDv3j9npoJNq52hMmm6DN928XdPDy/pvshMlIiKVvJrfnbRidLQ7lSHzZDJXDR+v1CzwyHdSzHiauvJTE2KQzeVuFxsq3Zm9/t2zN4FbZUtMzLrOiVVgolpzSE81yaOVGyZJuvNmMcxVU9x9cnETKhIL6GRrteAFnund1I8YmUFs2Uvvmt+p9NDLsu+Ge/eHRhhBWv4hWoiunzf/TM+539L2xRaGsG0J685RHBrTbyrgcZOZUQ6EvwM2ZfZ4+sTSacdKOwc8w6b/v0Wdh3wMrx5+7O6b+jZnaibpFITWknt33KjrFLSf+KlgUAtpGUBQCVg2+68E3wfts/2YscFhsGo+et4iy/KOx7nHRA9FrffjpdaMMev+zVQKaLRjNohai56Ax2sEqJ/7CF42WiC4yrcYfNwe2fVw6YrsY23H5i50fsdBOXoBmORLioiT8uYw+80XVJ6emSW3d3KAc+gtzXNRFXDbMuHcq7rN/XXTsvuIZF9Xiz190fP6cqmKRrye+xHRlPCgKAWcVwfUQsGqQbBaRbH3hM7vSWr6LRGmjI4z5uzn7xQmAF1IHuJLPlpgGNBAfHZmsUF9Eazs21wmG2QyJLRuRI8fqloTIDh/QhLPxaZKe7PLe3eQeHnWlppOeReDUq6+l59AcjE/Xd+E7NpMy5vLyyACJoiYcMrNA0hIiPWJkcuegJhE+dMhZEBJbR5xLI3HkmFscAdTUtJun1NbNziQOULl8G6mHDqG2bHSuhOpTY9Su2YXMFkhs2ajHXChrd8jVO8g9PIoqFKhcvo3EQ4e0IuIR9hJbNsLYpJY9Pkvt8GjDQu0sIl05MLt062qy5E073gZrQDZDcniwHtp45aUNxFRL9FNA0ntOki3oftn2YxOuNkXKPOu6k0W/J8nhQWr5LnjgUX1/Y/VRe/eQHJ91bRsSOHkkV5XNaBfE6HhDGXIplmDHZlSpQsK8W3acVgFKbTBlyrdudu4TNT0D2QySzaBsbY3GyMuAgLOCYFEIWDWsGdqsLnvZzzF+bZXux1PU0pCdgtzJGuNXwwW31Zi+KMXg/UUO35Sm+4kEa47XmL6onnk8PQcLw4rUnLB2VFHNwNwmoWsc1hyvUu5OkJ6rMb8+ydwmRd8+qGaglhHK3dD7WJXj1wq9+4W5TcKmLxc5eVmW2Qtr9DyeYN3DRZLFKk8+Zw0A675V4eSlWr/ufaxKLS1UM8L8enH97zla4anrkmSmhPkLaqx5MsHcxSW6H80wd2GFridSLFxYou++DLmTNY6/uERiPEPvfqHSLczuKaDmU6SnkpT7qm6sl+86yo6ecT77uWdS7qvSNTQP9+WppaHUV88BkRtPsHBhiewTGWoZRWWNIjeeoDBUIzUvTmbXEym6xhRzm4TuJxSz2yA1JyQMFSBZgpmdFfL7U5S7oX9flemLkmQnFbWMMPQ/8xz6KVh7xxqG/mee0eevcfIGHqwyvz5Jz9EK0xelSM0pKt3CmuO6n/PrE8xtqrHjn09x/Lo8C0OQP6TMM60xfnWC1JzQ+1iNyUsSpOZ1n+wcAyRKiu7jVWY3p5h+ZoHM43oBtv2vdCs3nuykInNKUVorLAwLhaEa9JVIPamtAAMPKKYv0vO27utpTj6jyuabYXZzivQpxakRIT0HxT4t376ns5sTrPtWhWpG3NzkJmuUu/U72nOkxLHrs6TndB9O7lZs/azu4PFn6nsXhmp0P5EgO6nf30q3uL/nNun+rx1VjF9b5fhvv4/C6NFGi0L+lR3/790y+dfBohDQNoKiELBq6M1tVNdd+qN652p2xmrfIee/l0u2ud29NbVLLsfUd16or79fWw1qh0cp793tQv0sOdL6tqsjQ5rYNjaB5HI6JPLIsQZrA8ODmgRnkuVYc7bd1VoLhe9uAM/SYCwiNhTOJlVKbhjWYY4PPKqT8pj+Jvv7HFnN9svuPssjA5R70qy574jbddfyXZoMZzgJtd5u5rblyU3oXXhytuB25dWRIaRUcUS98siAC/djeNCF2iVnC/XwRUPm9EmldnfsxmZ3uWirRPrgsYZrHAHUmy+XSGrHZt0nwyOpTk6R2DqiOQ3X7K6PzcA+u/k9WzRR84FHNQ/FhK06AqzhFVjipCMyGitRbbhfJ7oyRELHVzDjKWzXHIXMxFz9nTCWDTtfULdeFEf6SN/+oKtYacNeAXdP0FanxAHNwYjyQ6Iy/VBRG57q/heMRc2SRu+97b1MF48HRSHgrCIoCgGrhrysU3s3/kADUc73zzv3QCT7noVVKCyidRl833VcyJvPGWi3tPXpJDqKy6gYV/46rs/+uHxyoT/maFbEKCfB50/E8QCi3I6l5qVZX6PzEH0mUV6G74uP9i+utLQv3//djAMQnX+LZvUr4jgKUUTnPjpv/vNoJr/ZmHy+hf+MIKbMdFAUAs4CAkchYPUg+vvOLtiWhW53ewACJO1u2+y87DkXaeD5iSmWSIAr2qMKhfoiAk5+Ld8Fo+P16APPl213onZH7tpDg//ZKhnK8BocgdD21XIgxqe1haQ3r8dilZ/hQd3XfBfJmcGG5E7W3+74GIBcsg2VSaFmFkia4+qSbVAokxibcIWopDePeDv42nC/9o0bC0rCWE8sJ8T676uTU67olZ3L1AY9F8npOT3fZv7sfdT0jIu+iPrl7e5Z5dIkjSXBtrHhhmp6BjG7c1c10+ONuBTJhjPgh1w2vAcmeiFh5s2+EwnPsqOmZ9wclvNZlzwJcPwNunI64ibfpfsQqeTpIlU8y4NfgldyuXrIrLHSWIsGeHwM732188Kw5qHUihXH0Ymm+Y4qc/risNkLWFkEi0LAquFMFIVqhbOZRGc56ZlXGyvRt+UmZ2qWavtcnbvVwqKiUKkh9eyeV3Qs55apvwkWhYC2kVi6SUDACkHc9109uiCbjd01Nbgc+nrr+RZaXOMvMnFhk9F7L3Us2g9736hCEu2DP7boPaLymt3L/9xMXrStPS/Z7KJ7tRpTs/v7/Y7rP7RfpKvZM4vet9lz8Nv5v6NjjruXfX9sG/t3q/lvNdet+h7t41LXtnq2Ta0JtVrnPwEBHSC4HgJWD0phCxb4vuQ4P26iK0fVLDrRdMXt7jqbtfN95fZ3s5TIUb91sxh7/15WVvT+ceOIyo7rf9RnH+UDVKemnSw3npixR8cQVXaaWQZsv1uljW4GK6eVQuH3K67f0Xb+u9HwDJvMo9/vqHx/7HF9imsb7Yu/DHdiJbF9bmYJC9aVgNVCsCgEnFPwvxT9L+toXv52d3hxiNvldfJl3O6Cvhy0e3+IX9CjCtdylCh7nT9PzSwmnSIq53TlwWJFrJUVI+7vaP+iCtJSbaPzb4/5BNG4vi01B3GWEt8KFxBwthAsCgGrh2V+6Z3uzspf6FNbN+vIiSsuBnQlRoCpi7tIljR/J1Fu5PEU+hP0HSgxtSND5pSisC5Bz9EK5e4EuZNVZrakGLp3lvGrexi+c5Kp3X1UM0I1A8N3TjJzSS89h+Yo57NMXJVl7WiVvq8/yeyejXQfmnGVL4GGdMoujbFJb+2nEZaZU7puggnd8ytbAvU6E5agaUJN/RTOjjhpwjgteVQnwKq41NGWHOoTOsUjafqpky0cKbBYcqGPNkzVJs5yYZkmdXdi60hDMiYX7moIjlxxsQtB9DNh2gRSLhrCEAJrCwVSWzdT2D5MdnSqobLm1O4+0nPaFtBz12EXllkc7CL35CzlwW5qmQTZiQVXrdMSXG29CUtYtMmhLMGyOtRbr0UxPdMQvWLnvBqjiPkREMm+3ubWlcAzC1hhBDJjwKrBkhnjwuCiOzHbBhrTJTczw/tpln3EuQai4YXNiHW+jHaxHELeahEv223bDkm0FalxqTDB5fS1k5DD5aBVP06XNNsukVOyMdUjk4Pq2d0v6+h+ALfMfjiQGQPaRrAoBKwqlvKh+wpDtE0rv3u0VoRVBmwa3/LIAI9/TxflvipDdyUpr9WZFdc9UmZuQ4rupyquYqFNhANQ7knSfUjvlOXIMZdwp5zP6sqEJsTTFvaxu+5mioffN/fZKyjU7Jo4t0PcvMYhTlmKu89Sx/25jVoU7Fz7Y7e1DOI4BZJtrCHhK4/RGhn+dX6hML/wlxvbFRejsikOfE8XAw8oeg4XSM4WnAXAtwoAnLi6n8E7xpi+apCeQ3OuqmVyfLahqmm1J0fqoUMNoZjW6hGdL19xjStt3S6PoenzDOTEgBVGsCgErBrysk5dl7tp0XHfvByXRMfCmuPtYuRbBhqqDubXUhnqYXZrjnW3P8Hsno303HWY6sgQ+38mQ899WubshTVym3Qug4XxNWTHUux98Td5+H27mX+N+YL/cj8LwzotcmYqQXG4QnYsRalPp0ceurdGLS0cvxZ6Hk+w8bYZjl+XZ26TIjMl9BytkTtZZW5DivJaIVFSrP/4w0y/8FIyszWqWXGKiC3VDLo0deGyEVdO29VGiNQaYGzC5W4ojwyQnC24Ra149Q5XAro61OvKUNcyCbru3O/yB1j3i828CNRLOZt71nq7UZkU85vWuP765ZKLg10kSjWyo1OuvHXiwFGXAdPmcLDZHAvbh8k9rF0O1ckpl4VRC2t0o8S5VWxuBVvu2Za+ThYVUzvSJEqKk88q0/V4hkQZhu4v88QNKVJzenPev6/KqZEksxfqlNsAlTX1dND9+3Q68GRJkSgr8vumOfqSdVzw1Xlmt+boOVxoKGOdHB13Y/EVIJevIuZddkqXrXjpu3aM6+aOJz7KdGmswaJwXddL6RSfm/v7YFEIaBtBUQhYNeQTA+paXgA0N7X6ioB/PIroLtvPGBi3Q29G0FuuyT8aNdHsfLPPUatC3PXQvLKmL8MfV3Tscf2MZldsFsXh74pbWTR8OX5WyDj3jt+P1Ib1QN2iEB1v3HVxcxAXxbLS7pylsFRUid/OnotmaFTFInfxxcYy00FRCDgLCK6HgNWDFx4Zt4iqYnFR2d2Gy1t89heXZqWJo6bfVqZ1H9GFK65scys2f9xYlvKfO5dKJDrBlxkXbumnerbHogqBHzUQpyRYV0E76Y+j9696/W6mgNjfvkLjZPl1NWLGYfvmXFhNIiDa5Tm0wzXwx+Fbv/y/Wykpce96nBsiGsGi/4hu7FQgMwasOIKiEHDOYakv13YQ98XbjlUi7tpWi3iUO9HOwrQSO9tOZMb1sZm/3B9fu2NqxY1Yqh9RRBWw5fTNYimrQrvvm3/OV26iVqtO3oW2n18IjwxYBQRFISAgIOB8hQJqwaIQsLIIikLAOYnT3ZE3a9MQlx7jy/bPQ6M/3iJhCgcxNoHastGVToY6EQ+oF2SypZtNcR+gZTjmmfSnSzbr8iT4LhjAFdSyxDlLtrOx/dGiTNEqke30M65NKx4BLLbsOBeDd02cjGj10aif3947rrLjuYpF8xfcDAGrgKAoBKweRFzCI5/05ofaQb2ctF0sUls3A/VKfpZJX31qrKHaXnRB8EMk7aLpm379RSVKIvOVhdpCAbX/oGaoHzlGJbIQydgk1ckpKsUiYn4nzXisrGYEy+jnaO4IWExobEYUtLBJfqLuBXv/1NbNLpzTsuyBhsqVrcpE+/MYR3y082LlWEXMz4dRLRbrUQBGtj1uXQz+/EhvHrxU1XHRMTVzfz+t9SI5S4ScLsVViL43cYpIMx6Lfa/9e8eV/G5QWpPJ2L4EBKwkgqIQsGpQa7t0ljxTxjk5Os78ni0U1iXpOVwgUaxQzmeRiTlqI7ugWCE1Xi/vO/vyPfTer5WC+V0bSJiMe5XL9Y7eZs8r57M6rPDIMcp7d5N8eJTKC76D9O0PurLDNpwwffCYWyBrO7RCUhrsIj2r4+RsyGCtJ8dCT5pST4KeQ3NIqcLU7j7W3f4EKpshYbIMApzaNcCaJ+YBSM4suJBAW57ZZhK0i4kN6awdHtWWC3SudZVLuzBAdfk2UuOz+tjYJCwUSFx5KaXBbrKjhlBnshraTIQ2D4CanuHUDZfQfWhG54kAEldeCoUySVMuGkBt2QiZFMXBLtbcd8SViC5v30hifBZ1+TaSDx0CoLh3tyvbnJyeY37XBnJPzpK0co4cc2W1T+0aoOe+Y8iWjSRsyegdmxEbUjgyhMpuc+WW7RjStz/oQg1rvd2ovXtIFCsue6L13ieOHENyOZK9ecojA1Rvv0+XET9yTCsORkbhshGy9x7QY71k26KyzrUdm0nMLOh5HJvU1pdsxoV7Jsenmd+1gczNd7uwRoolkr15qkO9JMyzro4MIePTyBZdjtyGOlaHeknaUE9wWTBTozl3LwAplihsH9bv8MNfjvlHCnkUAlYWITwyYNXQmxlW1w++xoU/2vA499lYG6J/+6Zz3/LgLA5GDqBj7b1EOHYn77sYojtRydWZ9jZlssyccp/tYu7kU89hIL15qk+Nub5Jbx5lFCExaZDtdfO7NtD12EmdjtkmDto64pQHIouIXXSSo+MuRbCannELms1PYJMI1bIp0qMn3OJW7clR7kmz5pGn6kpRfq22xtiFrVhiftcGAJdwyk91XO3JkShW3AIKuDaJmQUYm6By+TbSoyf0Qjg67lI113ZspmiUrpSXwKiwfZj0TJFyXj/XzMQcKpNy/bd99d0k1ZGhReMrmTTL/pxCJNxy6wi1w6OLIl38lNR2XoFY64d9xvad9a0wfjv/M8STdO1nX040rNe3xtxZ/K/G8MjEgLoucyOd4nPFfwzhkQFtI1gUAlYNqlLVmfquvJSk2bFRLOkvavN3oiuHmC/8RFfO1QUA3A43gTZFV4d6SY3m9MJkF68DR/WO1kt8k7jyUmRskuROXTOhvHc3uYNjOrlRoQxmoVbZDLXJKTC1B0AvNHbXLbkc1aFepFTR99uxmVo2xezeTay7/QkEvQgCzG9Ik56rUTZWh1pvN6WeBNVdA3Tn0jA2Se2aXSRHT1Ab7mdqdx99D065pEO1fBezJlugTrzUTzWTorhrA2seecpZDY4/b5gNt4zqBEYHxzi5dxN9D04xty0vJQnXAAAgAElEQVRPsqj0ItrbzdwFWfKz/ZQGu0nPFJFSxSRb6qHrsZMATjGpZVOkTBbD5GyBxNgkU995oatPseaJeZfkKAukHjpEbctG5jetoWcUSoPdJHu0lWfNI09BsaStEsUKyfFpapmES/IEuD4BlEcGSBQr9SRPQ72oex6kcpmuR5EwCk5ieo753X30HC5oBeaKi8EkiJJrdruaEGBM/kN68bXHtYJp3ivjqrELu8+FqBaLpMz7J9ksqlBoiL6Ihpw6pdYqdQsFkju36zb7DzZUm0xsHdFzPKOtSBRL2s1mE2vt2Ix889bG/yFABTJjwAojWBQCVg29uY3qWvmuRbu5yuGjpLZuRmUzepccKYzkQxUKOo3yvkN1/7/5UvYLBNkduyXwgV4QKpdvIzlbQAplpFjSWf6M6dqapqU335AhcX7PFhKlGrmDY1qZODzaQHC07Wvf/JZLGe0XSPITEFk/tW8d8V0Qbpz5tc4Ebq0LliDp2mYzbhffADNeV/zqgUedbJ+46N8L0GMxfJFo3+015e0bXQErO6e2wJP4FhHzLB3M4qemZxoKRgENO3QLa9ZvGLM3d5Y02vCMDYHT53rY7JOJA0edTH+e3GLuvUPRwlfRZ+hbGXz46aWbPlc7t7bQl9f36uQU8zdexZqb73eE1DvGPsZ0ZdxZFPKJAXVd6sV0is+X/ylYFALaRrAoBKwealWSm4ap9XZT6cmRuGcKNT3jdlFSLFEb7kcZ/71csg2MvxrQFQAnpxD0bgxwpEZn+kdbIsrbN5Kc7UcVypzaNUBuokS6WNI7ZJsqGJ0aef66nXQ9dpLMxBwL1+1kbkOKniN6QSlvy9N9aIax6/rJDVxAoT9BpXs96x4pU1iXpO/BNLVMCilVKN34TGRigdlt3eRODDvuQNK6FnZsplaqkCya6APj3wdIDA9S9SwZSUDquoael0yKBIMkxibcIpc0u3Vr2vddDCdfdzVDNz9G7ZJtqEKZ4kif4xUsXNDjXA3FEb2QZYGqcTvYmhcCyNgks9duZe2X92kXw1NjlPfuppZJkJ4doJpNkr79QbjiYscPqfbkHGckOT5NdWRI11G4fBvpg8c4+YJt9Bw2lRSzIySLVRLFirZK3HfMuWlk5hRlw8+o5rsobx9mvifJ2i/vg1yO4vOvJPfkrEsZXXnBd5AsVhGTytpyGhjcSaJUc5YLwPUncc8j2qI1PAgzpzSPBb17t++ItWKpqWmkv0+/c16Nj9pCocHlAXU3hF8PAgyRlnqCLD/B19pHTiDGwlYb6oVGXSQg4KwgWBQCVg1+9UhoLJDULKTO/m3h13ZQhUJDG5/xbs/bnV0cY7+d0Lm4dM/NKlVG0SwqIRrqZ9vEpS8GFvmx/V2uddtYS4ydA1s/oKH41M7tVPcfdH2Isx7Ytn6NAv9aO2fRHXh0N23h993yBeIiAhqInea5WutM5fDRhvnwI0midRTi5NpQUJ97YBd5f66jnIKlwkFbhXn6n6Oht63Sckc5EHdM/VsDRyEv69R1qRc17VMzfL7ysWBRCGgbwaIQsGqQdApJ1kPH3KJu/bI0huhZxKUSdiZ0byG3YZCSzTpCnSoWoSvXoBTYv61cP3wSFism/sIm2WxdWdm62ZnSGxZNYza25vhab3edk2HnYqFQJzJiQhdNP+19kxu0JYViiWQfi3atia0jVM3CW7Vj2bpZ++MfeFSPxVpa+vs0B8REA9R2bK63MfdJmv5LNusIppLVlR4blIT+Pu0usoW4jNLgOCF4PvsNw6SsQjI24frjuxrsQg51N0TiyktRR45Bwfj4TQ4Lte+QmyM7F05p6c2ToFHhqQHKIyi698e4hvwQUttmKYXSX9yj9RnsdfZv+77475V99+PCZ937a+8XNnYBq4BgUQhYNdjqke3s0vzPFkvFt/vto4l9oju/ZjvHaG6DqNXDKgf+l7y/m43ez88FYUMiLT/AX4x9S4Ebl90Jm7BKG1UBdQKezz2wXIGacWFEfer2OsutsNEdfniouufBhqRNlhMiR4417PitcmRRnZpGrtmt3RZHjrn5sPe2USL+rtqGglolxCazshaFZF+vjvA4cBTJ5erJrKyS6CtoI0Mkx6cXcUPs/Phz3exdilqKohae6PvlH7OffaXTV1z9d8nOl6+Q+tYwv020KFSwKAScDQSLQsA5gWZm3VbHmmVV9I/F5e+P/m7HzOwW/ysudjHx5cFuUg+PsmA4DcWRPh3aB67kssqmkGKFhFkwpTdPcngQNTbheBWWixAlavphmXbhc0pCfi0UCtrNMHOqvms2CoIlcqpcuk6284iOVkGQ3ryO8sjlnBXHKi6JmQUwi1R5ZIDU+Czk1+rFGW3BUAD5tShLfDQlveX2+0jMLFA7PEr1ml16DNkkuYdH63kdzFzU8l3I+LTuB2aBHh7UCkYuR8VwEhibIDk6rufXKlHZDJgQVmVKbEupoqMZevMNBNOEaeOep2fBsRYnqwj4riz7XlVjXGPuvYu8c1YZ8JUEa52x71K1WGywPkSVkGjyr2YIUQ8BK43Eancg4GkMEZL9fSR3bndfuKkN6+shZX297keyWZeR0R03JnLfbG1l2GOpDesb5NjdWXLndncuYUz8ia0jeiG+ZBuJrhyprZt1//r73OKbHB3Xi3OhTO5hvcB33bkflUvrxe/IMU12O3CU5Pg0iXseITk+raMqzGLtFnazaCU3DLskS2AiOaIpn7MpHZFhowVyaaQ3r0MYTf6F4vOvRHrzlLdvpDbcrwmh5r5qekaHiubXahdILqcTB2UzDVEgKr+W6siQTnqUS2ulwez0xRBMMUS/4kifW2gZHtT3HJsgOVsPASzv3e2iInIHxyhv36gjSWZOud1+cnScyuGjVCendEbLy7fV5YImF+bSqC0btTn+8m164R+b1PkMtmx07ZPj05qcOjyoxz9zqh5V4WXstFEG9p6W0JrautmFPTr3Uq4xAsO+L5LNNuTssIqefafs+weNBEbfzSXZbP2d9N5/Kzu1dbO7l2SzZ9X1ICI3isg+ETkgIr8ccz4rIh8z5+8SkQu9c79iju8Tkc7DMgLOKQTXQ8CqwZIZ20Wc1aGZmyFKELSmbMAl8zlxeZeTM/DQgo7XB3jgUeSSbS5MsoEHYMz3csk2l+AnUapR7klSzQiZ2Zpj0ydHxylcNkLu4dH67nTndkfgswS9KDs+2n//eKdztBQBL+76du7XTG4rU34nfem0382Q3LndJaIqjvTpSJnDo86VMr9nC6CTSyWm55zlpDLUQ7knTXZiwb0PibFJl/cDdPSDymaoDPWQNFEV5Z40uSdnKQ12k5mYc9k6/TBMa2WIJv1aas5SG9Zz+7F/ZEadbHA9dPI/ZPEF9YmWrgcRSQL7gRcCo8DdwOuUUg97bd4CXKmU+kkReS3wKqXU94vIZcA/Ac8CLgC+AOxUSlU77mjAOYGgKASsGvKJAXUtL4g912ohasU/aKdtq3ssZ2FdiuPQ7t+nszi2cpvEkeo6YfQ3G6OV06wf0WPNikFBIwlwOWNudS4uguR8xV3q1rOlKDwbeIdS6sXm868AKKV+z2tzi2nzNRFJAU8BQ8Av+239dh13NOCcQOAoBKwaZtXJU1/gE/tiTzaLNCws+fcgMNGybWfH6vJa9WfpfjX2seDJjJPRKQpNxt153+p9jMpbaj6bHbfHJo3MOHmTdI5CpJ/N+lFo0q94tH7ey8OZlLnV/zDL5C1fUJ8YXIacnIjc433+S6XUX3qfNwFHvc+jwLURGa6NUqoiItPAgDl+Z+TaTcvoY8A5gqAoBKwm9p1p5rWI3HMmZZ5peeeLzPOhjysh83zoow+lVOeFHtqDxByLmp+btWnn2oDzCIHMGBAQEBAQxSiw2fs8AjzZrI1xPfQCJ9u8NuA8QlAUAgICAgKiuBu4WES2iUgGeC3w6UibTwM/ZP7+PuCLSpPePg281kRFbAMuBr5+lvodsAIIroeA1cRfLt1k1WWeD31cCZnnQx9XQub50McVh+Ec/DRwC7rUyIeUUg+JyG8B9yilPg38DfARETmAtiS81lz7kIh8HHgYqAA/FSIezm+EqIeAgICAgICApgiuh4CAgICAgICmCIpCQMC3MUQkjoF+zskMCAg4dxEUhYCA08CZWjRNJrwzBhFZB6DOoG/Rpug9kzIj8s+oAhIUmoCAM4OgKAScszjdL3oR2SAiZzTRi4hcJiJXWLlnYtEUkRuBN58pZUFEXgr8rohsXbJx+zK/G/hPEbnpDMq8TkReLCLXw+nPpYhcJSLP8BUaETkj33Em/O+MQEQuEpEdIpI/UzIDAlYSIeoh4JyBiLwEnR8+BXxAKXX8NGS9DPhFdAa6/0BnnnvqNPt3E/A7wOPAmIi8Syl16DRl3gj8IfDTUWa4iEini6eI7AX+DHiTUupw5FxCKVVbRh9fBPwRcAy4BPhspzJiZL4MPZd3A1kRmVZKPWTOLWfcLwfeYeQVRWRGKfVrSqnaaYz7VcBbgRuVUkURSSmlKp3Kich8GfBr6FyR94jIPyqlvnE6MgMCVhrBohBwTkBEbgDeBXwDqAK3isgLlrPLFpEXGFk/DbweuAb4ntPs33cBvwf8GDpmfBhYF2nTkQVERK4G/hT4baXUl0SkT0S2iMgWcDviTq0q1wB/rZT6oohsFJHnGQsDdtHssI83Au8BXge8Cfg1EXluh32KyrT1AH5QKfWj6EWzX0QGTT87GreI9ABvA35cKfUTwMeA14jIe4y82jKezVVoRaYPuFtEsiZkcNmbKzNv7wZ+BHgNkAGev1x5AQFnC0FRCDhX8Fzg40qpzyil3gE8hF7snwEdL8IXAu9RSt2vlNoPfBD4TjFYZv/SwP81u791pl/vEJF3isibYVmm8zXAg8CMiFwHfBx4P/CHIvIby5R5BKiIyFrgP9EL0q+IyGeMvE531jl0HPwDSqlR4A+AG0QkeRpm/SzaajRuzO/PA34FeL+I/KbpZ1vjNopk1ci0VZ++AdwKXCWmPPIy3Rr/Tyn1DOBe4BtnQFkYAP5cKfWgsZb9I/B8EVlzplwkAQErgfByBpwreBLoFpGN5vOD6FSwfyUife180Xtftn8LfMocS6J3rCNAwuxWe9rtlIhcLyK7lVI3K6U+Z+T9P+ADwJuBB4DnicgF7cq0UEp9FW1ReJPp8yeANwJ/DFwpIpe32Ue/3QTa4vE24INKqbcopZ4D5EXkDe32TUTSpo//rpT6imfZeRh4EdDT6U5dRHJG5ijwJeBzaFfBh4FXAH8C7BaRPW3Kux64SSk1D3wR+KRxk7wTXW/gt4DB5SiHSqn70coGSqk3mX7e6ykLF7UrS0SuEZG0Uurf0GO1nIcZtLJYNnM51Gk/AwLOBoKiELBqMOSzSwwx8FPApcC7ROSTwDOVUq8C7gBuaEPWS4B3i8hfAiilJszvKppTMKOUqorIG4G3iE5Lu5TMFwJfRS/iePJ+QSn1HnOPz6CrA+baHPO1xs1i5X0OzSl4p1LqL5VSM0qpO9AL3ZJuFxF5MfAPIrLTyLvN9PfXAV95uQ1oq4a1cVX8gYh8QEQuNYpa1cj/NHo+/9j4/tvd+b8U+KCIfFRENimlfgl4MfAfaEtSRSl1J7p4UFeb4/5v4L2mX78B/D3wciCllPpJdAXD3URcRC1kvkhEflNE3m9knrDviVLqzeg0xF8VkbcAvyNtkBHNe/lp4NmGezFt5FXQZZnnlVJl817+ooisaaevAQFnFUqp8BN+zvoPcBPwKHpRuwW9q06iS9m+CsiZdu8DvncJWS8F7gNeAvwX8M+R84PAR4CfRVsALm+jfy8F7jIyPwS8whxPRNq9EvgasL7NMU+iF+2XRc6lIjK/DmxaQt7L0YrU3hgZb0Hv/l+DJnV+E9jZRh+fBewH9qJJdx9FWyeGvTa7gX8CLmrzWdvn83z0jvrfvXM/hV5IN6OtCl8Hti4h73vMs3mmkfezTdq9Hq1M5Nt8Ng+g0xD/B3Bbk2fzTeAEcFUbMjeb9s+PyjGfe4B/AX4TuL+d9zL8hJ/V+Fn1DoSfp9cPeqfcjTbrvtwc2432rf9apO1PmC/Q7S3kDZgv9heaz1ejc+u/Cb2TTKHdDtNG1iVt9HEb8AXgeebzu4E/jLRJmgX0PmB3m+P+Q+BXzcL5n76yQD2d+k+bfraUaeTdZxc0YD3wC2gOwR5z7Ebgh9G8h11tPp+fBN7nff4TMxc/AXSbY3ngH4ANbchbi+Ze3Gg+X2IWx/8D7AS2A79vFv6vAlcuIW+Dmbvv9t6R90fmJQG8Gq107Gmjj0Noy9CLvWP/ilHAvGM3oJWvJZ+319ePmr8vMM/hg2jX0GY0r+Iwmo+zpBIXfsLPav2EWg8BZw1+2JuIvBNdbe4L5vNm4CvoReq9oqvO/R7w+0qp+1rITKN3u08Y1vzd6PC9FDoy4WeVUodF5L3owjYPtNHPAWCNUuqo+XwRWrH5OaXUv5tjKeAH0AVyHm5z/En0IltB755fC/yVUupTXpvvBkaVUt9qQ1432ry+D13i91a0krMGTZq7vZ1+RWTuRVsjPqSUulV0EaANaIb+Lyjj0hGRpGqz0I9xXUyJTgJ1D/BvQBm9QP+d0hyIC4BTSqmZJWR1AWuVUuPm8wjaavD7Sqm/8dpdBUwqpY600b81aEvWV9BKRgWtzPyHUurvvHZ7jMzDsYIWy02huRMfRlvJPotWnDYC9yul/k5E3g58RmlOREDAOYmgKAScNYjIWqXUKfP3W9EuhRu883vQsfA/BRwH0kqphSay9qB97jWl1D5zbDNwsVLqi+bzh4FppdTbpI0Y+KhMQ45MKu1D/klgK/AbQFW1GT0gIj1KqdmY471o18Fr0eTIPiP31k7kGWXhPuAflVK/aY79HjCglPrxTvtoFt43AC8EZoGsUuolIvLnwGNKqXebdi1zHYjIbvSCi1V6RCQLXK2U+prXzyGlQySX6mODPENQTCpNLHwFepf+i0qpY+2M2ci8Gm2BKCiTw8E792vAt5RSnxAdInq3UupEGzKfgVY2kkqpr4vI64DnAOuUUq8zbX4UeK5S6gfb7WtAwGoikBkDzgpEJyv6exF5r4i8Sin1PuAREbnbtjGWgwJaQai0UBJegnY3/BTwryLyw+b6o0rnD7Dv9V1ofzJtKAm+zE+IyJuVUjWlVNk0eQT4buDCDpSEVwJ/JzpyQswxMf2ZRvvm34eO+/8XdJRHR/KUUnPALnSopmX3HwBmpY0cFJ7MvYacOAr8Odpl8W605QPgMcxcmvu2UhJuQnMYfh74W7PQopQqKqW+5j2ffaafLcMN4+QpDftM96P9/RcuNV5P5o1o3sqrgY+LyLXmuJ3DNDoR1GvQZNMlI2WMzI8amX9rFM/b0aTFq6UedTILZAJxMeC8wWr7PsLPt/8PcAX6y/JFaELhe4E/Nef+DG06fiXwM2gf8EgTOYI23X6WOr/hOvTC+JORtj+ENnNftkTfOpH552jfvGCscS3kXowma34J+F0j01rwxGv3NjQ/Y6l+NpUXafej6DwC7RA2ozKfTYSsadr9HJo3sSTPAZ3w6VtoU74AP4jmOSR82eikQ0v2s4U8a1Gw7d6F5ji082yuQfMCnms+/y6aGDngtfkltAJy21LPponMd6KJoTnTpzejuR5/Z+Resdr/l+En/LT7s+odCD/f/j9osqJVDNLADrSy8H5z7CfQ4Xyfpj1i4G+hzeNp8/ka4BA6bTFos/mtnXwZt5D5Q16bi4CNbcrbgjY596FJjO81i3vSnM+YxfPPaI9Bv5S8LNqy8Jl2x92GzDSa7/CxdvporrkReKP3+TloRdDv57PQhMQl+9mGPPs71cGzuQG41vy9EZhCh1Z+BXizOf5ytBWpXRJonMyPoBWN15rj3cB3tNvP8BN+zpWfwFEIWHGILtJzKzqz4SfNsYvRDP//UkrdbI5llFKlNuS9Bb0DfJsy5DcReQ46UdErqPMMTnbQx1YyX6OUeqxdWZ7MtUqpU6KzJL4DHSnxcaXN7yNKm/nPlLz1SqnjPg/kDMjcpDRJtKNaCSKyURmugJH7caXUTebzgNL5CfJqCeJim/I2qGXW8DBE2LcCs0qpvzREzk+iwzhngYrqgPPQROZz0BEUNyql/mc5/QwIWG0EjkLAisKQ3h5Huxx+RnTmPNA+7+N4yZSWUhI8v/wHMcx+EekVnfXuq+iY9YxSaqJdJaFNmR0XFDIyT5nxnwJ+G51q+MUi8kfAF0QkLx2k7m0h773Alw0psW0loY0+3iodVDj05tJfXFPAiOiUz29G81TWtKMktCHvTcDfiEi3xy1oG0rzTz5kFvSE0lEin0IrmUc7VRKayPyqkTnfqayAgHMFoXpkwIohshO9BegH3i4ivUqpfxGRceBS0WlxY7MGisgl6HwI96AXbJsh8PtF5J/RO/47DSHuBnRUwlL96lTmkhUDozKVzgIpSulSx0qTF39BRL6Gjql/eavFcpnyFkVXrGQf42QC1chzX0Arhb+ENuf/iNIpl8+kvLlljDuplKoqpSbBFY56DToPR8t5XKbMjhS4gIBzCcH1EHBGITpEsaiUGos5l0bzB/4E+DLa/3yjUurBJrL+F5oU9oT5uQf4sL94iY54uAC4CniHioS5rbZMf5ETkSuAz6OTQzXN53Cm5Z0DMr+GzvPwvUqpR86WvHZlig4xfQM6f8QPnInn3anMgIBzGUFRCDhjEB3P/kfoJEAb0eTCI+acn2xpBE2UKyqlnmwiK40ONXufUup2EfleNNGuCPyB2f367ZtaJc4VmaJzJ3Q3G/NKyDtHZP4q8EnVIonUmZa3DJmvQyfPevRsywwIONcROAoBZwQish4dRvd6pdTr0eF07xddPtlvt04pNaqUOrTUYoTOYnix+fvf0Iz+DGAT1zxLdNIcgCVJkKso85kicpVSarqNMa+EvNWSea2I7FRKvXOpRX2F5LUrc5dS6p86WNBXQmZAwDmLoCgEnCmcAE6iv0RRSv0culjS20Wz55Uxa39GRLJLkc8MKeyPgP8lIt9pzM5fRWchfK7oVL570eWpsdaKc1Tmc9DEzSVxpuWtsszracPfvxLyOpQ5tZoyAwLOdQTXQ8Bpwyz6gs6cV0anE7a5+N+HjkV/ofk8oNpIhWva5tAJhK5EF9f5ijn+JTSJ7eAy+nrOyzwf+rgSMs+HPq6UzICAcxkh6iHgtGF23kpEvoxOnDQvIp9WSh1XSr1VRD4ipjAQ2urQrtyCiPwDoIBfEZFL0b7gIZbJIj8fZJ4PfVwJmedDH1dKZkDAuYxgUQg4I7BkRdHFe34XHQ75BDo98q8B1ysTNrYM2Rm0S+An0LUg/kSdZvKa80Hm+dDHlZB5PvRxpWQGBJyLCIpCwBmB1MPCdgMfAD4OPA9dTOeX1Rkooyu6yJFSHWQJ/HaQeT70cSVkng99XCmZAQHnEoKiEHDGICI70fntf0sp9Z/mWGyZ5YCAgICA8wNBUQg4YxCRIWCTUuo+EUmpJUo7BwQEBASc+wiKQkBAQEBAQEBThDwKAQEBAQEBAU0RFIWAgICAgICApgiKQkBAQEBAQEBTBEUhICAgICAgoCmCohAQEBAQEBDQFEFRCAgICAgICGiKoCg8TSEirxSRn485/jwRUSLyvFXo1hmHiLxDRDqOARaRC821F8Wce1xEPnxGOth+f94hIi84y/c8596R1Zj7cxEi8iYR+eEOr/leETkuIms6uOZTIvKnnfcw4NsJQVF4+uKV6GqPUdwLPNv8fjrjQuA3gUWKAvAq4LfPam90X86qokB4R85lvAloW1EQkRTwTuAPlFLzHdznHcCPmayrAU9TBEUhoAFKqRml1J1KqZnV7kscRCRtylqvGpRS//N0LiV8rr8jAbF4BVr5/VAnF5kiV/cBP7sCfQo4TxAUhachjOn2h4BNxoSsRORxc26RWVlEviQiXxWRG0XkPhFZEJH/EZFrRSQlIu8UkWMiclJEPiwi3ZH7rRGRd4nIIREpmd9vF5GW758x/ysReYuIvFtEnkSX8+0z57eJyD+IyLiIFE3fXtXG+H9aRL5m+jslIneKyEu9888D/tt8/Lw3R88z5535W0SeZc69LOY+f2b6lvaO/ZiI3C8iBRGZEJG/EZF1S/TXuk7e7vXlHd75N0RkfkRENrYxDy8WkTtEZFpETonIPhH5DXPuw5yld6SZK8OY15WIXNhiDLGuJXOPx73PKRH5bRE56M3TV0XkOUvMkYjIz5m5KZkxfEBE8pF2SkR+R0Teat7vWRH5sohc3u6ce22uEpFPi8ikmcfbReQ7/bkGbgD2es/mS63GAfwocLNSqqHMu4i8TUQeMfeZFJF7Yv6H/hl4vYh0LXGPgG9TpFa7AwGrgt8GhoBnAi83x4pLXLMD+AN0CelTwLuBT5ufFNoUusu0GQN+EZzJ8xbgMnPfB4DrgF8H1gH/p43+vh24G/hxIAkURGQzcJe5188B48D3A/8qIq9USn26hbwLgb8GHjd9fxnwGRG5SSn1X2iT+k8Bfwq81dwb4OGoIKXU10VkH/BG4D/scdEliF8D/KNSqmyO/b4Z7/uA/wtsAn4H2C0i1yulqk36+2zga8CHgb8wx0aNzB83xz4G/ApwAdrEfK2IXK2UOhUnUDT34tPAJ4DfAkrAxdRdLWftHTlL+CX0e/J29A45D1yDfgdb4XfR8/qn6Odr3+OrROSGSMXINwD7gLcBGfQ4PyUilyqlKm3MOSJyNXAb8D/AjwHzwE8CXzDvyDeAtwAfRf8v/IS5tKl1R0Sy6Equvx45/nrgPaYvtwFdwJUxc/IV9Hw9G/hi86kK+LaFUir8PA1/0IvOaMzx5wEKeJ537EtAGbjIO/Zy0+4Lkes/CRzyPr/RtHtupN3b0V+Uwy36eKG59l5MXRLv3N+glYOByPHPA/d5n9+hX/Om90igF7HPAQi45X4AAAcdSURBVJ+KmYfvjrnmceDDkbEsAL3esVea65/ljaUK/EZE1l7T7pVLPC8F/E7kWBI4Dvx35PhzTPu3tpD3faZN/hx4RxbJM8ffZI5f2GLuY5+v6fvj3ufPAJ/s8H9kHVDw72eOv8H06+WR5/MokI6Z4+s7mPNbgUeATOQ5PwL8e2S+v9rmOK41931h5PgHgHvbuD5t3t1f7WT+ws+3z09wPQS0i/1Kqce8z98yv2+JtPsWMCLieAQ3AoeBO4z5N2WsDJ9DfwFd18a9/10pFTUv3wh8FpiOyL0FvdvLL5JiICLfISKfEZHjQAW9wL0QuKSNvsTho0AWeLV37I3APqXU183nF6KVkn+I9Pcu9G7wucu47yXAMPAP/kGl1FfRc35Di2vvQ4/7n0Xk+0RkeBn3j2K578jZwN3ATSLyuyLyHGPxWQrXoZ/rRyPH/xn93kTn9/PKWI8MHjC/t5jfLefcmPZvAP4FqHnviABfYHnvCGgrE2jF2sfdwB4Reb+IfLc0iYYwY5r25AQ8zRAUhYB2MRn5XGpxPIXeBYFeyLaivyD9H7uADrRx72Mxx4aBH4yR+wet5BqXxa3o3eLPANejzes3A7k2+rIISqnDaPPsG809+oCXAh+J9BfgQEyf8836uwSsiThufp6ihVldKXUAeDH6O+AjwFMicpeItFIulsJy35GzgXeiI0dejjaznxCRvxWRwRbXxM6v0uXTT7B4fk9GPltXTc5ct9Scr0PPya+z+B35aaBfluD1NIF9r6Ouo78H/jfa4nALcFJEPtmEE7KAdk0EPA0ROAoBK40TwCG0vz4Oj7chIy4Pwgn0F/67mlzzZJPjNwK9wGuUUqP2YLPdVAf4CPBXIrIVvRhkaNzpnzC/X8TihdM/3wnswrQh5twG4J5WFyul/hv4b+PD3ov2Vf+niFyolJpYRn+Wi4L5Hd3lt6M8FUBzQpRSJe94w7VmV/wu4F0isgH4HuCPgDVobksc/Pl9yB40u/wBlvHMWs05MAXU0HyIv29yfS3u+BKw/eyPyFJofstfiEg/+t18D5rvcm1ExjrgbL4TAecQgqLw9EWRs7NDuBn4XuCUUupbSzXuUO6zgYeUUgsdXGcVAmciFh0jvhdDEDSwu6925+hfgPcDrwdeAnxFKfW4d/7z6EVgi1Lq8x3016IU05d9aI7Ca9GcDQBE5Hq0Fec97QhWShWBL4rIWuBTwDb0onC23pHD5vdutEvK4qYOr70XnEXnemA27gKl1FPAX4vITea6ZrgTPQevRVuhLL4f/d355Tb6F4u4OVdK3S0itwFXobkDrZSCItDT5u3s/91FwB1N+jMJfExErqVOkATAKFY59PsW8DREUBSevngYWCci/xu98ywo9f/bOZeQLqIoDn+HWgitAhdJBpGQuKxFELVonZtW1cLoQWC0jAhbVLYJXFQbW1iJ9KJ1QU8KSoSCHhCFZaGRlkKERGIpBKfFuco4/Ke/hiLa74PZ3Dl37mMuc889j/HXZer8C9eAvcBDMzsNvCJOjjWEGXibz+wHMBMcJ9wXnWbWSlgmlhMf/jXuXvQzmgeEf/ly6k8VcBLoZ6or7n2S22dmw8SHucfdizafH2Z2k8iWqCIi1rP3e82sBWg1s1pikxkDVhHxCxfTabOIbqDezO4SFolBdx9MqXVtZnaV8KWvJCL1PwAdRQ8zswOEz/s2MABUEtH9g8CbTJtzvkbcfcjMHgNHzewbkRHRQKyRctwh/OcXzOwEEVNwhMi6mMTMbhBr7yUxf+sI61IbBbj7sJmdSf0aJeaqjshU6QJuzWSc05zzQ4Qb656ZtRNuj0pgPbDE3ZuSXDdw0Mx2AL3AiLuX3Mjdvd/MPgEbyMRbmNl5Qpl6Qsz5WsJ9dj/3iAnrQudMxisWEfMdTalrfi5gGXCd+Gg6KUKc4oj2rlz91Uluf668OZUvzZRVpPJ3xIY7TARSNWflSvSxZBuZ+9VEmuMX4sQ9RJzcG/L9ydXbnvoyRpiUd5KLkk9yjUAfoTBMzgm5yPuMfH2Sm5IBkZPZRZxUR4nN7C0RfV5d5n1tAl6kPjvQnLnXQGyC44SZ+QpQVeZ5G4mT7ECqN0RYRWrnaY1UE+mH34n4ilNE7v9fsx5S2ea0nn4SCl5D/n0SaalP0/z8Ik7HzWSyFArmyYi0yp7MGjtHLnOB0lkpE+PfM905T3J1RMDk1yT3mUir3JqRWUEoHCOpjUdlxtEC9OXKdqf3NtHOR+BsibFdAJ7P5vdH18K6LC0EIYQQixQzqyGUnS0eWTHTrVdBKDSH3b29nLxYnCjrQQghFjkevxzvAJrKyeZoJCwOl2a9U2LBIEVBCCH+D44Bz2aY4TNOuE5+z1GfxAJArgchhBBCFCKLghBCCCEKkaIghBBCiEKkKAghhBCiECkKQgghhChEioIQQgghCvkD58KAZ1wnt/cAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "plot_spike_counts(\n", " mean_spike_counts, \n", " mean_spike_counts['time_relative_to_stimulus_onset'],\n", " 'mean spike count', \n", " 'mean spike counts on flash_250_ms presentations'\n", ")\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Waveforms\n", "\n", "We store precomputed mean waveforms for each unit in the `mean_waveforms` attribute on the `EcephysSession` object. This is a dictionary which maps unit ids to xarray [DataArrays](http://xarray.pydata.org/en/stable/generated/xarray.DataArray.html). These have `channel` and `time` (seconds, aligned to the detected event times) dimensions. The data values are in microvolts, as measured at the recording site." ] }, { "cell_type": "code", "execution_count": 28, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnUAAAJrCAYAAACGK2W/AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3XtcVHX6wPHPGWa4qyAgclFRRAUGHJUKS2GtDLyklf5Mc61tydJN18zSXW1Xt5u26aYFkVmt6bpeKNAyyrupm4oXRkTwkopIoMAooiCXYc7vD3SSVEQDIX3erxev9Jzv+Z5nTq/omed8L4qqqgghhBBCiN82TWMHIIQQQgghfj1J6oQQQggh7gCS1AkhhBBC3AEkqRNCCCGEuANIUieEEEIIcQeQpE4IIYQQ4g4gSZ0QQgghxB1AkjohhBBCiDuAJHVCCCGEEHcASeqEEEIIIe4A2sYO4HZzd3dX/fz8GjsMIYQQQogb2rNnT6Gqqh51aXvXJXV+fn7s3r27scMQQgghhLghRVFO1LWtvH4VQgghhLgDSFInhBBCCHEHkKROCCGEEOIOcNeNqRNCCCHEjVVWVpKTk0NZWVljh3JXsLe3x9fXF51Od8t9SFInhBBCiKvk5OTQrFkz/Pz8UBSlscO5o6mqislkIicnh/bt299yP/L6VQghhBBXKSsrw83NTRK620BRFNzc3H51VVSSOiGEEEJckyR0t099PGtJ6oQQQgjRZM2bNw+9Xk9wcDBz584FYMaMGfj4+GAwGDAYDCQnJwNgMpno06cPzs7OjBs3rkY/S5cuJSQkhNDQUKKjoyksLAQgISGB4OBgNBrNVevYpqWl0bNnT4KDgwkJCbFW0pYvX05oaCjBwcFMnjzZ2n7hwoV4eHhY4/rkk0+s56Kjo3FxcWHgwIH1/5AukaROCCGEEE1Seno6CxYsICUlhX379rF69WqOHDkCwMSJEzEajRiNRvr37w9UTzZ44403mD17do1+zGYzEyZMYNOmTaSlpREaGkpsbCwAer2exMREIiIirrrm97//PR999BEHDhxg8+bN6HQ6TCYTr776Khs2bODAgQOcPn2aDRs2WK978sknrXE999xz1uOvvvoqixcvbpDndJkkdUIIIYRokjIzMwkPD8fR0RGtVktkZCRJSUnXbe/k5ESvXr2wt7evcVxVVVRVpaSkBFVVKS4uxtvbG4DAwEA6d+58VV9r164lNDSUrl27AuDm5oaNjQ3Hjh2jU6dOeHhU79z18MMP8+WXX97wszz00EM0a9aszp/9VsjsVyGEEELU6h9fHyAjt7he+wzybs70R4NrbaPX65k2bRomkwkHBweSk5MJCwvDzc2N2NhYFi1aRFhYGHPmzMHV1fW6/eh0OuLj4wkJCcHJyYmAgADi4uJqvffhw4dRFIWoqCgKCgoYPnw4kydPpmPHjhw8eJCsrCx8fX1ZuXIlFRUV1uu+/PJLtmzZQqdOnXjvvfdo06bNzT2YX0EqdUIIIYRokgIDA5kyZQp9+/YlOjqarl27otVqGTt2LEePHsVoNOLl5cWkSZNq7aeyspL4+HhSU1PJzc0lNDSUmTNn1nqN2Wxm27ZtLFmyhG3btpGUlMSGDRtwdXUlPj6eJ598kt69e+Pn54dWW10je/TRR8nKyiItLY2HH36YZ555pt6eRV1IpU4IIYQQtbpRRa0hxcTEEBMTA8DUqVPx9fXF09PTen706NE3nHxgNBoB8Pf3B2DYsGHMmjWr1mt8fX2JjIzE3d0dgP79+7N3714eeughHn30UR599FEAPv74Y2xsbIDqV7RXxjVlypSb+ai/mlTqhBBCCNFk5efnA5CdnU1iYiIjRowgLy/Pej4pKQm9Xl9rHz4+PmRkZFBQUADAunXrCAwMrPWaqKgo0tLSKC0txWw28/333xMUFFQjprNnz/Lhhx9aJ0RcGddXX311w3vUN6nUCSGEEKLJGjJkCCaTCZ1OR1xcHK6urowaNQqj0YiiKPj5+TF//nxrez8/P4qLi6moqGDlypWsXbuWoKAgpk+fTkREBDqdjnbt2rFw4UKgOikcP348BQUFDBgwAIPBwJo1a3B1deXll1/mnnvuQVEU+vfvz4ABAwCYMGEC+/btA+Dvf/87nTp1AuD999/nq6++QqvV0rJlS+s9AHr37s3Bgwe5cOECvr6+fPrpp0RFRdXrs1JUVa3XDpu6sLAw9Zfr0AghhBCipszMzNteabrbXeuZK4qyR1XVsLpcL69fhRBCCCHuAJLUCSGEEELcASSpE0IIIYS4A0hSJ4QQQghxB5CkTgghhBDiDiBLmgghmrwNmac5YSrFoqqXfqDKomKxqHRv58oDHd0bO0QhhGh0UqkTQjRpcZt+JObz3by+OoM3v8nk7eSDzPr2IO+uOcScdYcZ+clOXv86gwqzpbFDFUI0gHnz5qHX6wkODmbu3LkAzJgxAx8fHwwGAwaDgeTkZABMJhN9+vTB2dmZcePG1ehn6dKlhISEEBoaSnR0NIWFhQAkJCQQHByMRqPhyiXPlixZYu3fYDCg0WisO1NMmzaNNm3a4OzsXOMeEydOtLbv1KkTLi4uAGzatKlGX/b29qxcubLen5WsUyeEaLI+3nKUt5MP8pjBm78/GoyNRsFGo6BRQKMoVFlU3l1ziIU/ZBHq24LYEd1p6+bY2GELcUdoCuvUpaenM3z4cFJSUrC1tSU6Opr4+HiWLFmCs7Mzr7zySo32JSUlpKamkp6eTnp6OrGxsUD1Pq7e3t5kZGTg7u7O5MmTcXR0ZMaMGWRmZqLRaHjhhReYPXs2YWFXLwm3f/9+Bg8ezLFjxwDYsWMH7dq1IyAggAsXLlwz9g8++IDU1FQ+++yzGsfPnDlDx44dycnJwdGx5u8rWadOCHFH+mzbcd5OPsiAUC9m/19XWjrZ0sJBh7OdFkdbLfY6G5zstMwYFMz8UT3IKixhwPtb+SYt78adCyF+EzIzMwkPD8fR0RGtVktkZCRJSUnXbe/k5ESvXr2wt7evcVxVVVRVpaSkBFVVKS4uxtvbG4DAwEA6d+5caxxLly5lxIgR1r+Hh4fj5eV1U9dc9sUXX9CvX7+rErr6IGPqhBBNzuLtWby+OoPo4NbMfdKA1qb2759Rwa0J8mrO+KWpvPjfvWw/1pbXBgRhr7O5PQELcaf79i9wan/99tk6BPrNqrWJXq9n2rRpmEwmHBwcSE5OJiwsDDc3N2JjY1m0aBFhYWHMmTMHV1fX6/aj0+mIj48nJCQEJycnAgICiIuLq3Ooy5cvZ9WqVXVuf+LECY4fP86DDz541blly5bx8ssv17mvmyGVOiFEk7IsJZu/rTrAw4GteH9EN3Q3SOgua9PSkYQxPXkhogP/2ZHN0I9+oLTC3MDRCiEaUmBgIFOmTKFv375ER0fTtWtXtFotY8eO5ejRoxiNRry8vJg0aVKt/VRWVhIfH09qaiq5ubmEhoYyc+bMOsWwc+dOHB0d0ev1dY572bJlDB06FBubml8s8/Ly2L9/f73v+XqZVOqEEE3GF3ty+GvSfiI7eRA3sju22pv73qmz0fDX/oF0b+fKmP/s4a1vMnnr8ZAGilaIu8gNKmoNKSYmhpiYGACmTp2Kr68vnp6e1vOjR49m4MCBtfZxeYKDv78/AMOGDWPWrLp9pmXLll3zNeqNrrlWJXDFihU8/vjj6HS6m+qvrqRSJ4RoEnZnnWHyF/t4wN+d+aN6YKe99VenUcGtGd27A0t2ZrPx4Ol6jFIIcbvl5+cDkJ2dTWJiIiNGjCAv7+exs0lJSTesovn4+JCRkUFBQQEA69atq9MkEIvFQkJCAsOHD69zvIcOHeLs2bP07NnzqnPXG2dXX6RSJ4RoEv617jBuznZ8/HSPehkLN+mRTmw5XMDkL/az5iUX3Jzt6iFKIcTtNmTIEEwmEzqdjri4OFxdXRk1ahRGoxFFUfDz82P+/PnW9n5+fhQXF1NRUcHKlStZu3YtQUFBTJ8+nYiICHQ6He3atWPhwoVAdVI4fvx4CgoKGDBgAAaDgTVr1gCwZcsWfH196dChQ42YJk+ezH//+19KS0vx9fXlueeeY8aMGUB14jZ8+HAURalxTVZWFidPniQyMrLBnpUsaSKEaHS7ss7wfx9t57UBgTzXu8ONL6ijg6eKGfTB//hdZw/mj+px1S9ZIcT1NYUlTe42sqSJEOI3b976I7g72zHyvnb12m+X1s15NaozazNOk7A7p177FkKIpkaSOiFEo9pz4gzbfizkhYgOONjW/xIkMb3a07ODG//4+gDZptJ6718IIZoKSeqEEI1q7vojuDnZMjK8bYP0r9EozB7WFY1GYeIKI+Yq2U5MCHFnkqROCNFo9pw4y9YjhTwf0QFH24abt+Xj4sAbg/XsOXGW+VuONdh9hBCiMUlSJ4RoNPM2HKGlky2jetbvWLprGWzwZmCoF++tO0xmXnGD308IIW43SeqEEI0iNfssWw4XNHiV7jJFUXjzMT1Odlre+e5gg99PCCFuN0nqhBCNwlqlC2/4Kt1lLo62/Ol3/mw+VMCOY6bbdl8hxK2bN28eer2e4OBg5s6dC8CMGTPw8fHBYDBgMBhITk4GwGQy0adPH5ydnRk3blyNfpYuXUpISAihoaFER0dTWFgIQEJCAsHBwWg0Gq5c8mzJkiXW/g0GAxqNBqPRSGlpKQMGDKBLly4EBwfzl7/8xXrNRx99REhICAaDgV69epGRkQFASkqKtZ+uXbuSlJTUMA9LVdW76qdHjx6qEKJxpWafVdtNWa3GbTpy2+99scKshr+9Xh0cu021WCy3/f5C/FZkZGQ0dgjq/v371eDgYLWkpEStrKxUH3roIfXw4cPq9OnT1Xffffeq9hcuXFC3bt2qxsfHqy+++KL1eGVlperh4aEWFBSoqqqqr776qjp9+nRVVas/58GDB9XIyEh1165d14wjLS1Nbd++vaqqqlpSUqJu3LhRVVVVLS8vV3v16qUmJyerqqqq586ds16zatUqNSoqynpNZWWlqqqqmpubq3p4eFj/fqVrPXNgt1rHHEcqdUKI2+79DUdwcdTxdE+/235ve50NLz0cgPFkEWsOyBZiQjRlmZmZhIeH4+joiFarJTIystYql5OTE7169cLe3r7G8ctJT0lJCaqqUlxcjLe3NwCBgYF07ty51jiu3N7L0dGRPn36AGBra0v37t3JyaleB7N58+bWa0pKSqwLnl+OH6CsrKzBFkKXbcKEELdVWk4RGw/m82pUZ5ztGudX0JDuvny85RjvrjnIw4Gt0NrI91shavNOyjscPFO/Y1G7tOzClHun1NpGr9czbdo0TCYTDg4OJCcnExYWhpubG7GxsSxatIiwsDDmzJmDq6vrdfvR6XTEx8cTEhKCk5MTAQEBxMXF1TnW5cuXs2rVqquOFxUV8fXXXzNhwgTrsbi4OP71r39RUVHBxo0brcd37tzJH//4R06cOMHixYutSV59kt9kQojbatH2EzSz0/L0bZjxej1aGw2vRnXhaEEJX+yRnSaEaKoCAwOZMmUKffv2JTo6mq5du6LVahk7dixHjx7FaDTi5eXFpEmTau2nsrKS+Ph4UlNTyc3NJTQ0lJkzZ9Yphp07d+Lo6Iher69x3Gw2M2LECP785z/X2Bv2xRdf5OjRo7zzzju8+eab1uP33XcfBw4cYNeuXcycOZOysrKbeBJ1I5U6IcRtU1llYV3GafoGedLMXteosUQFe9KtrQtz1x/hsW4+2OvqfzcLIe4UN6qoNaSYmBhiYmIAmDp1Kr6+vnh6elrPjx49moEDB9bah9FoBMDf3x+AYcOGMWvWrDrdf9myZdZXr1d6/vnnCQgI4KWXXrrmdcOHD2fs2LFXHQ8MDMTJyYn09HTCwuq0pWudSaVOCHHb7Dhm4tzFSqL1rRs7FBRF4S/RXThVXMbCH7IaOxwhxHXk5+cDkJ2dTWJiIiNGjCAvL896Pikp6aoq2i/5+PiQkZFBQUEBAOvWrSMwMPCG97ZYLCQkJDB8+PAax1977TXOnTtnnY172ZEjR6x//uabbwgICADg+PHjmM1mAE6cOMGhQ4fw8/O74f1vVpOq1CmK0gZYBLQGLMDHqqrOUxSlJbAc8AOygGGqqp5VqkcazgP6A6XAH1RV3dsYsQshbuy79FM42toQ0cmjsUMB4L4ObvTp7MGHm35kxD1taeHYuNVDIcTVhgwZgslkQqfTERcXh6urK6NGjcJoNKIoCn5+fsyfP9/a3s/Pj+LiYioqKli5ciVr164lKCiI6dOnExERgU6no127dixcuBCoTgrHjx9PQUEBAwYMwGAwsGbNGgC2bNmCr69vjderOTk5vPXWW3Tp0oXu3bsDMG7cOJ577jliY2NZv349Op0OV1dXPv/8cwC2bdvGrFmz0Ol0aDQaPvzwQ9zd3ev9WSnVs2WbBkVRvAAvVVX3KorSDNgDPAb8ATijquosRVH+AriqqjpFUZT+wHiqk7r7gHmqqt5X2z3CwsLUK9ehEULcHlUWlfve3sB97VsSN7J7Y4djlZlXTP/3t/JChD9/6delscMRosnIzMysUzVL1J9rPXNFUfaoqlqn97RN6vWrqqp5lyttqqqeBzIBH2Aw8PmlZp9Tnehx6fiiS0u57ABcLiWGQogmZs+JsxReKG8Sr16vFOjVnMcMPvz7f8c5da7+By4LIcTt0qSSuispiuIHdAN2Ap6qquZBdeIHtLrUzAc4ecVlOZeO/bKv5xVF2a0oyu7L79OFELfXd+mnsNVq6NOl1Y0b32Yv9+2ERVWJ3XTkxo2FEKKJapJJnaIozsCXwEuqqta28/a1Vu+76n2yqqofq6oapqpqmIdH0xjLI8TdRFVV1hw4RUSAe6OtTVebNi0dGdqjDSt255BfLNU6IcRvU5NL6hRF0VGd0C1RVTXx0uHTl1+rXvpn/qXjOUCbKy73BXJvV6xCiLpJyznHT0UXidY33dERYyP9MVdZWLD1WGOHIoQQt6RJJXWXZrN+CmSqqvqvK059BTxz6c/PAKuuOP60Ui0cOHf5Na0Qoun47sAptBqFhwOb3qvXy9q6OTKoqzdLdmZztqSiscMRQoib1qSSOuABYBTwoKIoxks//YFZQF9FUY4AfS/9HSAZOAb8CCwA/tQIMQshaqGqKt+ln6KnvxsujraNHU6t/tSnI6UVVfxb1q0TQvwGNamkTlXVbaqqKqqqhqqqarj0k6yqqklV1YdUVQ249M8zl9qrqqq+qKqqv6qqIaqqylolQjQxh06f53hhSZOb9XotnTyb8UiQJwv/d5wL5ebGDkcIAcybNw+9Xk9wcLB1sd8ZM2bg4+ODwWDAYDCQnJwMgMlkok+fPjg7OzNu3Lga/SxdupSQkBBCQ0OJjo6msLAQgISEBIKDg9FoNFy55NmSJUus/RsMBjQajXVnistblgUHBzNmzBiqqqpq3Gv27NkoimK9x8GDB+nZsyd2dnbMnj27YR4UTSypE0Lceb5LP4WiQN8gzxs3bgJe7NOR4jIz/9lxorFDEeKul56ezoIFC0hJSWHfvn2sXr3aumvDxIkTMRqNGI1G+vfvD4C9vT1vvPHGVYmT2WxmwoQJbNq0ibS0NEJDQ4mNjQVAr9eTmJhIREREjWtGjhxp7X/x4sX4+flhMBgAWLFiBfv27SM9PZ2CggISEhKs1508eZJ169bRtm1b67GWLVvy/vvv88orr9T/Q7qCJHVCiAb1Xfop7mnXklbN7Bs7lDrp2saF3gHufLL1OGWVVTe+QAjRYDIzMwkPD8fR0RGtVktkZCRJSUnXbe/k5ESvXr2wt6/5+0ZVVVRVpaSkBFVVKS4uxtvbG6jei7Vz5861xrF06dIa+782b94cqE4WKyoqqJ4SUG3ixIn885//rHGsVatW3HPPPeh0DbtrTdNbW0AIccc4XljCwVPn+fvAoMYO5aa82Kcjwz/ewYrdJ3m6p19jhyNEozv19tuUZx6s1z7tArvQeurUWtvo9XqmTZuGyWTCwcGB5ORkwsLCcHNzIzY2lkWLFhEWFsacOXNwdXW9bj86nY74+HhCQkJwcnIiICCAuLi4Ose6fPlyVq1aVeNYVFQUKSkp9OvXj6FDhwLw1Vdf4ePjQ9euXevcd32SSp0QosF8l34K4Dcxnu5K97VvSVg7V+Z/f4zKKktjhyPEXSswMJApU6bQt29f6zg2rVbL2LFjOXr0KEajES8vLyZNmlRrP5WVlcTHx5Oamkpubi6hoaHMnDmzTjHs3LkTR0dH9Hp9jeNr1qwhLy+P8vJyNm7cSGlpKW+99Ravv/76LX/eX0sqdUKIBvNdeh5dfVvg7eLQ2KHcFEVReLFPR55duIuk1J8YFtbmxhcJcQe7UUWtIcXExBATEwPA1KlT8fX1xdPz5zG6o0ePZuDAgbX2cXmCg7+/PwDDhg1j1qxZtV1itWzZshqvXq9kb2/PoEGDWLVqFa1bt+b48ePWKl1OTg7du3cnJSWF1q1vzxdbqdQJIRrET0UX2ZdzrkkvOFyb33X2IMirOR9tPkqV5aqNaoQQt0l+fvV+A9nZ2SQmJjJixAjy8n5ekjYpKemqKtov+fj4kJGRweWtQtetW0dgYOAN722xWEhISGD48OHWYxcuXLDe32w2k5ycTJcuXQgJCSE/P5+srCyysrLw9fVl7969ty2hA6nUCSEayJrf6KvXyy5X6178716+Tc9jYKh3Y4ckxF1pyJAhmEwmdDodcXFxuLq6MmrUKIxGI4qi4Ofnx/z5863t/fz8KC4upqKigpUrV7J27VqCgoKYPn06ERER6HQ62rVrx8KFC4HqpHD8+PEUFBQwYMAADAYDa9asAWDLli34+vrSoUMHa/8lJSUMGjSI8vJyqqqqePDBBxkzZkytn+HUqVOEhYVRXFyMRqNh7ty5ZGRkWCdc1BdFVe+ub6BhYWHqlevQCCEaxpPzt3PuYiXfvRRx48ZNVJVFpe9732OntSH5z71qzGYT4k6XmZlZp2qWqD/XeuaKouxRVTWsLtfL61chRL27WFFFanYRkZ09GjuUX8VGozAm0p/MvGI2Hy5o7HCEEKJWktQJIepdavZZKqoshHdwa+xQfrXHDD54tbAnftPRxg5FCCFqJUmdEKLe7ThmQqNAWLvrrxv1W2Gr1TC6dwdSss6wO+tMY4cjhBDXJUmdEKLe7Th2hhCfFjSzb9jV02+X4fe2oaWTLR9ulmqdEKLpkqROCFGvyiqrMJ4suiNevV7maKvl2fv92Hgwn8y84sYORwghrkmSOiFEvdp7B42nu9LTPf1wsrUhXqp1QogmSpI6IUS92nHsTPV4Or/f/ni6K7Vw1PH78HasTsvlhKmkscMR4q4xb9489Ho9wcHBzJ07F4AZM2bg4+ODwWDAYDCQnJwMgMlkok+fPjg7OzNu3Lga/SxdupSQkBBCQ0OJjo6msLAQgISEBIKDg9FoNFy55NmSJUus/RsMBjQajXVnistblgUHBzNmzBiqqqoAePXVV+nSpQuhoaE8/vjjFBUV1YghOzsbZ2dnZs+e3SDPSpI6IUS92nHMhP4OGk93pZhe7dHaaJi/5VhjhyLEXSE9PZ0FCxaQkpLCvn37WL16NUeOHAFg4sSJGI1GjEYj/fv3B6q37XrjjTeuSprMZjMTJkxg06ZNpKWlERoaSmxsLAB6vZ7ExEQiImquqTly5Ehr/4sXL8bPzw+DwQDAihUr2LdvH+np6RQUFJCQkABA3759SU9PJy0tjU6dOl21v+zEiRPp169f/T+oSySpE0LUmztxPN2VWjW3Z2gPX77YnUN+cVljhyPEHS8zM5Pw8HAcHR3RarVERkaSlJR03fZOTk706tULe3v7GsdVVUVVVUpKSlBVleLiYry9q3eJCQwMpHPnzrXGsXTp0hr7v17eCcJsNlNRUWFdmPyRRx5Bq63erCs8PJycnBzrNStXrqRDhw4EBwffxBO4ObJNmBCi3qRmF1FhthDeoWVjh9JgXojowLKUbD7ddpy/9pfV9sXdYeuKwxSevFCvfbq3cab3sE61ttHr9UybNg2TyYSDgwPJycmEhYXh5uZGbGwsixYtIiwsjDlz5uDqev0hHzqdjvj4eEJCQnByciIgIIC4uLg6x7p8+XJWrVpV41hUVBQpKSn069ePoUOHXnXNZ599xpNPPglUby32zjvvsG7dugZ79QpSqRNC1CPr+nR+d25S187NiYGh3vxnxwnOlVY2djhC3NECAwOZMmUKffv2tY5j02q1jB07lqNHj2I0GvHy8mLSpEm19lNZWUl8fDypqank5uYSGhp61avR69m5cyeOjo7o9foax9esWUNeXh7l5eVs3Lixxrm33noLrVbLyJEjAZg+fToTJ07E2dn5Jj79zZNKnRC/ERe251KZX4rr4I6NHcp17ThmIti7Bc3vwPF0Vxr7O3++2pfLou1ZjH8ooLHDEaLB3aii1pBiYmKIiYkBYOrUqfj6+uLp6Wk9P3r0aAYOHFhrH5cnOPj7+wMwbNgwZs2aVaf7L1u2rMar1yvZ29szaNAgVq1aRd++fQH4/PPPWb16NRs2bLC+lt25cydffPEFkydPpqioCI1Gg729/VWTOX4tSeqE+A0wnymj6JvjYLbgfL83Og/Hxg7pKmWVVaSeLOKZnu0aO5QGF+jVnAe7tOLfP2TxXO8OONjaNHZIQtyx8vPzadWqFdnZ2SQmJrJ9+3by8vLw8vICICkp6aoq2i/5+PiQkZFBQUEBHh4erFu3jsDAGw+fsFgsJCQksGXLFuuxCxcucP78eby8vDCbzSQnJ9O7d28AvvvuO9555x2+//57HB1//j29detW659nzJhxzdm59UGSOiF+A859exxFAVUDJbtP49KvfWOHdBXjycvj6e7MSRK/9EJEB578eAdJqT/x1H1tGzscIe5YQ4YMwWQyodPpiIuLw9XVlVGjRmE0GlEUBT8/P+bPn29t7+fnR3FxMRUVFaxcuZK1a9cSFBTE9OnTiYiIQKfT0a5dOxYuXAhUJ4Xjx4+noKCAAQMGYDAYWLNmDQBbtmzB19eXDh06WPsvKSlh0KBBlJeXU1VVxYMPPsiYMWMAGDduHOXl5dZ2swcTAAAgAElEQVSqXXh4OB999NFtelKgqKp6227WFISFhalXrkMjRFNXfuwcBR+n0fzhtlT8dIGKk+fx+uu9KDZNa0js3PWHeX/DEVL//ggtHJro61eLBfIPQEt/sP111U5VVXk0dhtllRbWTYywvmYR4k6RmZlZp2qWqD/XeuaKouxRVTWsLtdLpU6IJky1qBR9fRSbFnY4R/hS/mMRZZlnKDt4FofgplUR23HMRJB386aZ0FkskLkKNr8DBZmgtYf2kdA5GgKiqLDz5OjeAlRVpbm7A83d7HF2tUNTS+KsKAp/fKA9L6/Yx5YjhUR28riNH0gIIa4mSZ0QTVjp7tNU5pXQckQXNLY22HduiaaZLSW7TzWppK6ssoq92UU8Hd7ExtNZLJCxEr7/Z3Uy594J+s8G049w6FsKMw6SXnqQw+V9qLTY1bhU0Sg4u9rR3M0e7wAXuj3SDp1dzbFzA0O9mfntQT7bdlySOiFEo5OkTogmylJm5tyaLGz9muMQ6g6AYqPg1KMV57fkUFVcgU1z20aOslqTG093VTLXGYZ8CsGPY66Co3sLSK/4P06ZirGxsRDQ8gDB6hIc7Ko4f8/fKG5+L8WFFzlvKuNcwUV2fZNF5vY8eg/rRPuu7tZXrbZaDU+Ht2POusP8mH+ejq2aNfIHF0LczSSpE6KJKt6QjaW0EpdH9TXGazmGteb85hxK9p6m+e/aNGKEP9t57AyKAve0bwLr01mqIOkF2J9QI5lDY8OpY+dIjk/j4vlKWrRy4IGhHenS0wt7p4fhzCBIHE2Lnc9A6HDo/y7YV68an3ukiO+XHuLbj/bTTu9G7yc70cLDAYCn7mvLB5t+5LP/ZfH24yGN+cmFEHe5pjXSWggBQGVBKRd+yMWxhye2PjUXq9S5O2Dbvjmlu0/TVCY67ThmIsirCYynU1VYPbE6oeszDf60HUKGgsaG01nFfP2+EVt7LYMmGBg5IxzDw22xd7oUc8v28Ox3EDkF9q+Aj3rByRQAvANcGDbtHh4Y2pHcI0Us/cdOdn1zHHNlFW7OdjzRzYfEvTmcLaloxA8vhLjbSVInRBN07pvjKFoNLaL8rnneKaw15sKLVBwvvr2BXUP1eLqzjf/qVVVh7Wuw93PoPQkiJ4OmegxcwcnzfP2+EXtnHY+93I02gS1RNNeYrWqjhT5T4dlvq/v7LLp6ckWVGRsbDYaH2/LUjHDaG9xJ+fo4y9/cxbmCUp59oD1llRb+m5J9mz+0EEL8TJI6IZqYssNnKTt4huYPtsWm2bXHzDmEuKPY2VCy+9Rtju5q+04WUd4UxtNtngXbY+G+MfDg36yHTT9d4Kt5RnR2Ngx+qRvOrva1dHJJ23AYuw30T8Dmt2HJUKgsA8DZ1Y6o5/QM+rOBixcqSJy9Fw+Lht4B7izankVllaWBPqAQd6d58+ah1+sJDg5m7ty5QPUCvj4+PhgMBgwGA8nJyQCYTCb69OlzzcV9ly5dSkhICKGhoURHR1NYWAhAQkICwcHBaDQarlzybMmSJdb+DQYDGo3GujPF5S3LgoODGTNmDFVVVQA8+eST1vZ+fn4YDAZrf2lpafTs2ZPg4GBCQkIoKyur92clSZ0QTcy5NVnYuNnj/ID3ddtobG1wNHhwcX8hljLzbYzuajsujae7tzH3e/3hA/h+Fhh+D1Ez4dIYxLOnSlg1z4jGRmHwxG40d3eoe5/2LWDIJ/DoPDi2Cb6Mgaqfn3WboJY8/nJ3UCHpX3sZEdCa08XlJO/Pq+9PJ8RdKz09nQULFpCSksK+fftYvXo1R44cAWDixIkYjUaMRiP9+/cHqrfteuONN5g9e3aNfsxmMxMmTGDTpk2kpaURGhpKbGwsAHq9nsTERCIiImpcM3LkSGv/ixcvrpGkrVixgn379pGenk5BQQEJCQkALF++3HrNkCFDeOKJJ6z3//3vf89HH33EgQMH2Lx5Mzpd/Q9XkaROiCZEVVUqT5fgEOyGoq39P0+nsNaolRZK9xXcpuiubedxE4Gtm9PCsZHG0+3+d/Vr16DHYND7oKl+bucKSln1XiqoKo9N7IZLq1tcbLjHH6DfP+Hgavh6QvVr2UvcfJx5/JXuaG01/JR0gjBnRz7bdrzJjHUU4rcuMzOT8PBwHB0d0Wq1REZGkpSUdN32Tk5O9OrVC3v7mhV5VVVRVZWSkhJUVaW4uBhv7+ovzoGBgXTu3LnWOJYuXVpj/9fmzasnUZnNZioqKq5afFxVVVasWGG9Zu3atYSGhtK1a1cA3NzcsLGp/+0FZfarEE2IWl4FZhUb5xsvVaLzdUbX2pGSXadwvs/rNkR3tXJzFXtOnGXkfY20Pt3+L6onRgREwRMLrGPozp8pY+V7qVSZVR57uRuurZ1+3X3uewFKz1RXAx1c4JE3rdVAl1aOPPFKD1bNTaXPqSqWnz3P3uyz9GjXBGYCC1FPNi38mPwTx+q1z1btOtDnD8/X2kav1zNt2jRMJhMODg4kJycTFhaGm5sbsbGxLFq0iLCwMObMmYOrq+t1+9HpdMTHxxMSEoKTkxMBAQHExcXVOdbly5ezatWqGseioqJISUmhX79+DB06tMa5rVu34unpSUBAAACHDx9GURSioqIoKChg+PDhTJ48uc73ryup1AnRhFSdr549qXG+cdVLURQcw1pTmXOBylMlDR3aNWXkFlNutnCP3/V/mTaY86erE7q24TDsc9BWJ8IWi8raTw5QUWpm0AQDbr+YPXzLfvcXuPf56nF72/5V41SzlvY8Pqk7Lh4ODCmxZcWqI/VzTyHucoGBgUyZMoW+fftax7FptVrGjh3L0aNHMRqNeHl5MWnSpFr7qaysJD4+ntTUVHJzcwkNDWXmzJl1imHnzp04Ojqi1+trHF+zZg15eXmUl5ezcePGGud+Wdkzm81s27aNJUuWsG3bNpKSktiwYUMdn0LdSaVOiCbEUlIJUKdKHYBjt1ac+/Y4JbtO4fKof0OGdk2p2UUAdG/XCEndur+DuQwGx4Hu57FyxnXZnDp2joefDcKjbT0uBqwoEP0OXCyCDa+DgyuE/dF62qmFHUMm9eDjN3fgk3GBPdt/okdPn/q7vxCN6EYVtYYUExNDTEwMAFOnTsXX1xdPT0/r+dGjRzNw4MBa+7g8wcHfv/r35LBhw5g1a1ad7r9s2bIaCdqV7O3tGTRoEKtWraJv375AdQKXmJjInj17rO18fX2JjIzE3b16Ifn+/fuzd+9eHnrooTrFUFdSqROiCak6X53U1aVSB2DjpMMh2I3S1HxU8+2fdZl6sgjvFvZ4Nq/DjNL6dOIHSFsG948Ht5+T2cKcC+z86hj+3T3odK9nLR3cIo0GHvuw+nXv6pchPbHGaXtnHYNfMlBoo/LDksOYci/UfwxC3GXy8/MByM7OJjExkREjRpCX9/OEpKSkpKuqaL/k4+NDRkYGBQXVY5DXrVtHYGDgDe9tsVhISEhg+PDh1mMXLlyw3t9sNpOcnEyXLl2s59evX0+XLl3w9fW1HouKiiItLY3S0lLMZjPff/89QUFBdfj0N0cqdUI0IZYL1a9f61qpA3Ds7snFtELKj5/DPuD2VsxSs8/Sre1trtJVmeGbV6BFm+r16C4frrSw/t8Z2DnpiHyq81UDl+uNjQ7+byH85wlIfB6aeUG7ntbT7Vo34+K9rlzcUcTquDSG/TUMh5v49ymEqGnIkCGYTCZ0Oh1xcXG4uroyatQojEYjiqLg5+fH/Pnzre39/PwoLi6moqKClStXsnbtWoKCgpg+fToRERHodDratWvHwoULgeqkcPz48RQUFDBgwAAMBgNr1qwBYMuWLfj6+tKhQwdr/yUlJQwaNIjy8nKqqqp48MEHGTNmjPX8tSp7rq6uvPzyy9xzzz0oikL//v0ZMGBAvT8r5W6bpRUWFqZeuQ6NEE3JuXUnOL8xG583e6HY1C0psVRUkfv6dpzDvXEZ2KHGuYqKM+h0LihK/Rfl88+Xce9bG3htQCDP9e5w4wvqy46P4LspMGwxBA2yHt6+8ih7vztB/z+F0v7SXrkN6uJZWPAQlBfD6E3g8vOWbYdOnecPs7cystQeH38XBk0wYHOD2cxCNDWZmZl1qmaJ+nOtZ64oyh5VVcPqcr38lhGiCbFcqEDjqK1zQgfVa9bZtW9B2eEzNY6XleXyvx8eYGdKf/Lz19T7MhvGS+PpurV1qdd+a3UhHza9Bf4PQuCj1sN5R8+RuuYEgQ943Z6EDqrH1I1YBuZyWDYCKn6erNK5dTMC9R5838JC7pEitiw7LMucCCEanCR1QjQhVRcq0dzCqzr7Ti0x51/EfPbnFcoLCtZhsVRgqSpnf/qf2LVrMIWFm+otuUg9WYTORiHYu0W99Fcn6/4OlReh37vWJUUqysysX5iBc0t7eg0NuH2xAHh0gqGfwal0WPmnGmvYjYn0Z5dajk7vQsa2XNI25dze2IQQdx1J6oRoQiwXKrGp4ySJK9l3rh7XVnb4rPVYYeFGHB07EB6+jqDAdzGbz7Mv7Tl27xmK6cy2X53cpWafJcirOfa6+l9A85qyd8C+pdWTI9w7Wg9vTzxKceFFHnomEFuHmsOELZYKzp8/QG7uFxw6/A9273mSbf97gIyMVzlbtKt+EtyAvtD3dchYCVt+XsX+Hj9Xurd1YdGFIvxC3fhfwhGyM0y//n5CCHEdktQJ0YRUXai4pUqd1sMBGxc7yg5VJ3Vm83nOFu3E3a0PGo0WL68nCA9fS5cub1Nefhqj8RmOHHnzluM0V1lIyzl3+yZJXJ4c0dwXIl6xHs4+YCJ9y090fagNPp1+jqWgYC07Ux5l8/ehpOwaRObBKeTlfQFYaNGiO/kFa9m7dzjbdzxEVlY85eWnf11894+H0OGw6U3I/BqoXkdwTKQ/OUUXqbinJS29nVmz4ABnG2lNQSHEnU+SOiGaEMv5W6vUKYqCfWdXyn8sQjVbOHPmf6hqJe7uP6+BpNHo8PF+kvt7bsDbaxgncz6nuDjtluI8fPoCpRVVt2883e7P4PR+iHoLbKt3hzBXVrF5ySFcWzsSPvjniRp5eV+Stv9FVNVM27Yx6IPn0TN8PZER+wjrkUCI/gN699pOUOC72Nl5cvTYbLb9rxfGfc/d1PNQLRYsFdWzlVGU6j1ifXpA4gtw+gAADwd60rGVMx//kEX/sSHYaBW+/Wg/FY28X68Q4s4kS5oI0URYKqpQK6puqVIHYN/JlZKdpyg/UUxh+Qa02ha0aNHjqnYajR0BAVMpNG3k8OHX6dFjxU3Pjk09WV0R7NbmNlTqLhZVV8A6/A6CBlsPp23M4fyZMga9ZEB76RXwyZzFHD48A1fX++kaOh8bm2vv92pj44iX1xN4eT1Baelx8vK+JDcvgd17nqRL53/g7T3M2rYsM5OSH7Zjzj9N5el8zKdPYz59msqCArBYsNcH43TvfTiG34fj4E/RLIqGpcNh9GY0Tm68ENGBV79IY6/pPI/EBPPVPCPf//cQDz8b1HDLrggh7kpSqROiibBcuLybxM1X6gDsOrqARqHscCGFps24uUWi0Vz7e5tW2wx//1c5V5zKqVOrrtmmNqnZRbg52dKmpcONG/9aKR9D2Tno+4Z1ckRpcQW7v83CL9SdNl2q91jNOjGfw4dn4O7+EF1DP7luQvdLjo7t8fd/hfD7vsPV5V4yD/6Vgwdfo/JMPnkzZnD8iSHkv/suZxO+oPzgQRRbWxzCeuD2h2dwi4lBsdFi+ve/ORnzHIceGkxuZkfUolws/30KqswMNvjg1cKej74/im+Xltz7aHsOp5zmwNbcBntkQtxJ5s2bh16vJzg4mLlz5wIwY8YMfHx8MBgMGAwGkpOTATCZTPTp0wdnZ2fGjRtXo5+lS5cSEhJCaGgo0dHRFBYWApCQkEBwcDAajYYrlzxbsmSJtX+DwYBGo7HuTPG73/2Ozp07W89duUBynz596NatG6Ghoda4KioqePbZZwkJCaFr165s3ry5QZ6VVOqEaCKqLi08rGl2a5U6jZ0WO7/mnD25i8qOZ3B3f7DW9l6tn+Cnn/7Lj0ffwcOjL1pt3fdI3Zt9lm5tXRq+0lR+HnZ8CJ36gVeo9XDK18eoqrBw/xP+qKrKsWP/IuvEh3i2GkhQ0Gw0mptPjHU6VwyGzzh6dA4nsudTsOMLXNdocB/1e9zHjMHG1fW6n9dSUkLp3lRKd+6gZGcKeSnN8L53ByVvRmE7dikxvdrz5jeZGE8W0SPaj7yj59i64jCt2jWjVbvmt/x4hLjTpaens2DBAlJSUrC1tSU6Otq6aO/EiRN55ZVXarS3t7fnjTfeID09nfT0dOtxs9nMhAkTyMjIwN3dncmTJxMbG8uMGTPQ6/UkJibywgsv1Ohr5MiRjBw5EoD9+/czePBgDAaD9fySJUsIC6u5fNybb77JsGHDGDt2LBkZGfTv35+srCwWLFhg7Sc/P59+/fqxa9cuNJr6ra1JpU6IJuLXVuoA7Dq5UqTZDtjg1jKy1raKoqFTp+lUVBSQlRVX53sUlVZwrKDk9kyS2P1Z9SK/V0yOMP10gYxtuQRH+uDi6cDhI2+QdeJDvL2GERz8r1tK6C4rP3gY7d+MuH6spdKrijMzHbD7U1+0LVvWmsBqnJxw7t2LVq+8QvuEFXgs+B8llq44qbspePZ+Htz6Bc3tbPho81EUjcLDzwbh2MyWNQvSKbu0368Q4mqZmZmEh4fj6OiIVqslMjKSpKSk67Z3cnKiV69e2NvX3LpQVVVUVaWkpARVVSkuLsbb2xuAwMBAOnfuXGscS5cuve7+r1dSFIXi4mIAzp07Z71HRkaGdZ/XVq1a4eLiQkNshCCVOiGaCGul7ldsKWXfuSUXio00twlFp7tUAaoyg+lHOJ1e/XMqHfIzQf84LR55Ey+voWSf/Dfe3sNwdGx/w3sYT15adLhNA0+SqLwIP3wAHfqA78/fhn/48kdsHbTcO6A9h4+8Tk7OYtq0eZaAjtNuuXKoVlaS/6/3OPP559i0aEGHV2Zic38w+9P/RGrq7+nUaTq+Pk/VuT+djw+66RuwfBxF67B9ZK3+hP4+g1leHsnhH3Pp1NGbqNF6kmbvZeOiTPqNCZHxdaJJK/r6KBW59Ttz29bbCZdH/Wtto9frmTZtGiaTCQcHB5KTkwkLC8PNzY3Y2FgWLVpEWFgYc+bMwdX1+l80dTod8fHxhISE4OTkREBAAHFxdf8yu3z5clatqjlU5dlnn8XGxoYhQ4bw2muvoSgKM2bM4JFHHuGDDz6gpKSE9evXA9C1a1dWrVrF8OHDOXnyJHv27OHkyZPce++9dY6hLqRSJ0QTYTl/qVLndOuVJnMLExXOP+F8tjtUlMLCgTDTBz68D76MqU6SinPBuVX1n0/uwt//VTQaOw7XcYmT1OwiFAVCGzqp27sISgogcrL10IkDJrIzzhDW348zxavIyVlM2zYxvyqhqzp3juznn+fMv/+Ny9Ch+H+bjMuQJ2jWrDP3hCXRsmUvDh36Gz/9tOzmOrbRoRm1DE0LT9o/bsMz7avQVZmZ8+ZCLnz/Pa07tOD+IR05vq8Q47qTtxS7EHe6wMBApkyZQt++fYmOjqZr165otVrGjh3L0aNHMRqNeHl5MWnSpFr7qaysJD4+ntTUVHJzcwkNDWXmzJl1imHnzp04Ojqi1+utx5YsWcL+/fvZunUrW7duZfHixUB1Re8Pf/gDOTk5JCcnM2rUKCwWC3/84x/x9fUlLCyMl156ifvvvx+ttv7ralKpE6KJqLpQgWJvg6K79e9aJtMmAOwPdmbLyX+SuaOch3r2p2PvKPAMBvfOoLWtHqsWey+snojd85vp0P7PHPnxbQoLN+Hu3qfWe6SeLKKzZzOc7Rrw14e5HLbNhXYPQLv7AbBUWfjfFz/SwsMBvx7nSd33d1xd76djxym3nNBVZGdz8oUxVOTk4DVzJi6PP1bjvE7XnNCQeNLSXuDgodewsXGkdetB1+ntGpxbwZOLUT7rR2Dwjwy3DGLJQT27X/ornQc/gv7VV8n70YPtK4/i2aE53h1v45ZrQtyEG1XUGlJMTAwxMTEATJ06FV9fXzw9Pa3nR48ezcCBA2vt4/IEB3//6s8xbNgwZs2aVaf7L1u27KpXrz4+PgA0a9aMp556ipSUFJ5++mk+/fRTvvvuOwB69uxJWVkZhYWFtGrVivfee896/f33309AQP3vgCOVOiGaiOrdJG791StAbs43KGVu6IpacXx3HmbVhs2HNFQFD4HWIdUJHYBdM+g3q3rtt5SP8fUdhaOjP4ePvIHFUn79GC0qxkuTJBqU8b9wPrfGWLqMbbmczSvh3sFeZGSOQ6dzRR/8Hopy4x0t1KoqqoqKqDhxgrJDh7BcvEjprl1kDXuSqjNnaPfZp1cldJdpNLaEhHyIi8s9ZGS+QkHB+pv7LD49YOB7cPx7Jrt/i41Wy1eDxlK0fAXHn3iCnoZKmrvZs3ZBOhfPV9xc30LcBa6cWZqYmMiIESPIy8uznk9KSqpRRbsWHx8fMjIyKCgoAGDdunUEBgbe8N4Wi4WEhASGDx9uPWY2m60zZysrK1m9erX1/m3btmXDhg1A9XjAsrIyPDw8KC0tpaSkxHpvrVZLUFBQXR9BnUmlTogmonrf11t79Zqdnsau5KU077aHoh+9UFGJ7uDFRec8vkw5zb5139K93y8qTIGDoGNf2PQWmuDH6BTwN4z7/kB29r/x8xtzzfscKyyhuMzcsOvTVVXCtn9VJ0MdqquG5RfN7Pz6ON4BLSjVvkXZ+Tx6dF+Kra37VZeXHz/OuS+/pGT7DqrOnaPq3Dks58/XbKTRgMWCxtkZt5g/onFyQq2sRNFd+/nb2DjQNfRjUlOfJv3AeLqGfkLLlg/U/TN1Gwm5qTjv+og3/D157WgX/hT/Kerr08h9dhT3/mECG7IDWL8wk4EvhqJoZHydEJcNGTIEk8mETqcjLi4OV1dXRo0ahdFoRFEU/Pz8mD9/vrW9n58fxcXFVFRUsHLlStauXUtQUBDTp08nIiICnU5Hu3btWLhwIVCdFI4fP56CggIGDBiAwWBgzZo1AGzZsgVfX186dPh5gfPy8nKioqKorKykqqqKhx9+mNGjRwMwZ84cRo8ezXvvvYeiKCxcuBBFUcjPzycqKgqNRoOPj4/1dW19U+prc+/firCwMLUhZpwI8WudmrMbXWsn3Ebe+NvjlY7t3UXSO/+gVXAV3r0OE9zlEzSJzqg/pdFqwHm+2JRPwYksYt7/BDvHX6zdduY4fBgOnaJh2OfsS3uBs2e3c3/PzdjatrzqXgm7T/LqF2msmxhBgGezX/Nxr8+4FFaOgRHLoHM/AH5I/JHUddn0euY4haVv06nTdNr4Pm29xFJWxvm1aylakUDp7t1gY4PjPfegbeWBTfMW2DRvjo1LCzTNmnF+w0YurF+PpkULUFUsl2aqKXZ2OEdE4DryKRzvu++ar3QrK8+yZ+9TXLx4km7dPsflGos7X1dVJXz+KJa8fUSVvMH994Xz9wfbcfqttzm3ciWn73uKAw4PcP8THen2SNtf9wyFqAeZmZl1qmaJ+nOtZ64oyh5VVcOuc0kNUqkToomoulCJ3S1U6k5m7MdGp8PweABnzp6mVeveXHD9juKcTuw+ZkOXXvZkp/+dXV99Sa/ho2pe3LI99H6leseGH9fj7/8KO3f2Izv7Ezp2nHzVvVJPFtHMXou/R93XtLsplirYOgc8Q6oTTaCkqJx9G0/iZ9BQWDoLT89H8fWp/hwVWVmcWfwfzn39NZbiYnRt2+Lx8su4PP4YWg+Pq7oveP8DLqxfj8v//R+t//430GqpzMmhbP9+SlONFH/9NefXrcPW3x/XESNo8dhgbJx//qw6nSvdDIvYs/dJ9u2LoXu3/9KsWR1fodjoYMinaOb3ZlGzOB7Z5cGLfTriPWsmTr17of7lrxSGtWbHSvAKaEHr9i1+/fMUQtxVZEydEE2AaragXjTf0szXghPHcfNtw9mibdZdJOyrtgGQu6ucLcuLaNG6K3tWJ3Hh7JmrO3jgz+AWAN+8grOtL56ej5Lz02IqKgqvapqaXYShjQuahno9mLEKTEeqx9JdqpTt23AStUrFrs1MnJz8CezyNoqicG71Nxx7/AmKEhJwjoig7cKF+H/3Le7Pj75mQlecnEzhhx/S4vHHaf36P1B0OhRFwbZNG5r370/raVPp+P1mvGbNROPkxOk33+THiEjy/vEPyo8dt/ZjZ+dBN8NibGycSTU+Q1nZTewM0cIHHv8Yr/JjTFMWMn/LserDAwbQNvYDOhs/wa7iHGvm75f164QQN02SOiGagKpL/wO/ld0kCk4cp1VnByorL+0ioaoouV9RoVpo62rHPQP8qKi4B3Olma/fm0+V2VKzA60dDJgDZ4/Dtvdo7zeeqqoyTmQvqNGspNzMoVPFDbfosMUCW2ZXz9ANrB7/V15aSfrWn3BtfwStUx4h+g/RWHScnjmL3FdewT4oiP9n77yjs6i2PvzMW9J7r6QC6SQQCEjvHakKKCAgNqoCgoCIdBS8qBQVKdIRSUAQBKQFpQRIIyRAAqT33pO3zPfHGwO5tODVT7z3fdbKCsyc2efMsJi1Z5+998/j5EkcV3+KYdsQhMd0Z6+6fp3MD+ah36oVdh8vemy1rERXF7PBg3H7fh+u+/dj3Ls3JQdCuTtoEDmffoq6LtFZX9+RoMDvUKtruR43FbX6GQocmvaADu8xUnqakohd5JVpClOMOnfG7cvP8E3YSkVRFac3x/C/lh6jRYuW/wytU6dFy3OAuq7q8VnVJCqKi6gsKcbQoRBBkGlUJHJuEF8QRI4CrAVo3d+NVxb3xtwxhMxbF9i54Cip8QUNDbl3Bv8R8Ou/MKxSY2c3iPT0ndTU5NUPiU0vQS3y11W+Jv0CuTeg40xNIQMQF56BolqFiccevJovRf9nDfgAACAASURBVLfKhNTxEyj87jvMx4zBZdtW5LY2TzSryMkh/Z3JyCwtcfricyQ6jXOc9f39cFixHM+zZzAbMpjCzVu4038ApSdOIIqiJmrovZLS0mgSk5Y/2712nU+VfRs+FjYReuJM/WGjDu3xWzMPj9Sj3IsvJebIzWezq0WLlv9ptE6dFi3PAfWRumdsaZKfmgKAqJeImWkwcrkJtbfOca1iOEoLOdSoUGSUY2qtz8hFU5Dp6FKWe5rDX8Rw6dCdhsZ6LQOZHhydhZvrFERRQUrq/YqyqLQiAAKd/iKn7sq3YGQLfkMBUNaqiDmVipF9AvbuzphkNeHe0GFUxcXh8Mkq7ObPe2y16u+oq6pIf2cy6ooKnDZuRGZp+czLkllYYL9kCS57diM1MyNj2nTS3nyT2tRUbG364uw8gfT0HWTnHG68UakM/ZHbEGV6dImdTWFxcf0pw7Zt6bB4NJbFCVw4kkZW1L0nGNKiRYuW+2idOi1angPq1SSeMVKXl3IXHeNaalVpWFlpdAVjfyumSm2K59DmIEDVTU0enYGJKSGDh1NTcRsHzyqijqdSnFN535ixLXT5AO6ewSA7FTu7IWRk7KamJgfQ5NO5Wxlibvif9dJ7JMWpkHgCWo7VFBQANy9mUVWmxMLrGI5xIaSMHYugo4Prnt2YDnp6A2BRrSbzg3lUx8fjsGY1es2b/UdLNAgKwu2H/djOm0fVtUjuDhhI3oYNeLjOxNS0FTdvzqO8IrHxBk0dKemzjuZCKmm7pzU4Zdi6Nb2mtUVHUcHPX16j4p5WcUKLFi1PR+vUadHyHFCv+/qMOXV5qclYemrywywtO1FTUk50WgCudrnY+1ii08SE6ge2Wlv1H4yhmTmVhWcQZAKXDv5btC54Apg4wumluLm8gyiqSE75ClEUNUUSf9XW67VtmsKIVq8BGvWIa8eT0LO4S9NsKwqXrccwJAS3H/aj18gWC/nrN1D288/YzJqJcdcnq2Q0FkEmw2LsGNyPHsW4Rw/yv/iSjMnT8HFZjkSiz/XrU1AqG6+P6dh6EMfNR9Mi9xAVV3Y1OGfxQiu6v9SEKrkpRz88Qm3mMxRkaNHyX8Tnn3+On58fvr6+rF27FoBFixbh6OhIYGAggYGBHD16FICCggK6du2KkZERU6ZMaWBnz549+Pv7ExAQQJ8+feobCO/fvx9fX18kEgkPtjzbtWtXvf3AwEAkEkm9MkVtbS1vvPEGzZo1w8vLiwMHDgCaHnYvv/wynp6ehISEkJycDEBycjL6+vr1tt5669G9QP9TtE6dFi3PAepyBYJcgkTn6eoID5KXmoypgz4goK/vQtTBK9SIhoT00BQz6PtYosiqQFlUDYBcT492w0eTfecmLt4l3InKI+tOyX2Dcj3oNBvSI9BPv4m9/TAyMvZyJzuF/PKav6ZIQlmr0Xlt1gdMnQBIupZDeaEaJ93ziF9FYNS1K84bNyA1a5xTWXriBPnr12P84iDE3j25G3mFyGOHObPtG3764lNiT/1MdXl5/XiVQk1laS0qlfoJVu8jt7XB8bM12C1aRMWFi2S9NgMvs/lUVt7l5s15z1Tg0GT4Mi6rvdA59h7k3Ghwzq1PK1q3NyHXqDnnpm9EkZ3daLtatPw3EBcXx6ZNm4iIiCAmJoYjR46QmKiJiL/77rtER0cTHR1Nv379ANDT02PJkiWsXr26gR2lUsn06dM5c+YMsbGxBAQEsG7dOgD8/PwIDQ2lU6dODa555ZVX6u3v2LEDV1dXAgMDAVi2bBk2Njbcvn2b+Ph4OnfuDMDmzZsxNzcnKSmJd999lzlz5tTb8/DwqLf31Vdf/SXPS9unTouW5wBVee0zR+lUSiWF6ak4dRTQ0bWlulwkJkKJp95lrFpPB0DPx4KSY/eoTijE6AUHAPy79eLa0UNk3T6GvvFoLhxIYujslvcrQoNehd/WwumluI7dTVZWKCejDwGeBDn/BZG6m0egIk8TJQREUeTyT7Ho6uTj/P01DFq1wvFfnz01f+53KlNTSJszhwpjQ36+dwP1zHfqz8n1myLT8+NuTC7he48i0zFGRBe1SnNeJpdg7WKMnbumT5ytuwmGprqPnct85MvouLqSPn06xZNW4jr/JZJz92Jq1qpBc+Qn4e1owWy3xbglv4nl7tFI3zoL+ved5+AxbcjN/o3bYmdM3viQlt8sQW5n1yjbWrT800lISKBt27YY1DVO79y5M2FhYY8db2hoSIcOHUhKSmpwXBRFRFGkoqICS0tLSktL8fT0BGhUg+U9e/Y00H/dsmULN29qCpkkEglWVhp1m0OHDrFo0SIAhg8fzpQpU/5fq9i1Tp0WLc8BGt3XZ8unK8rKQKVUIjcU0dW1J/JECiqVQBufBI22KyC3NkBmrU9VfEG9UyeRSunw8qsc/tdK/LrnkBRpyd3oPDyC6qpIpXJNbl3Ym+gnR+LgMILdpzLRlTWlud1foCJxdQuYNQEPTU7gvdhUSnPkeCX+gl6zZjht3IBET++pZkS1mvjw0xTNW4BZdQ35Q/vTNqglJta2lGXpknS1nJJyOXJlOSa61Sh1RCqqUlDWlCKRqrBxdcLcwZvSfJGYU2lEqVIBMLLQxb2FNW0GuqFr8PC/kWHbENz27SXt7XeonfcjNhN8SBSWY2Lsj6lpUKMewet9X+DtL6bzfelSODAJRu8DiSZqKwgCPae15ftFvxKrHIDhhMk037oB+QOC5lq0/NUcO3aM7D85UmxnZ0ffvn2fOMbPz4/58+dTUFCAvr4+R48eJTg4GEtLS9atW8f27dsJDg5mzZo1mJs/fidBLpezceNG/P39MTQ0pGnTpqxfv77Ra923bx+HDh0CoLiusOnDDz/k7NmzeHh4sG7dOmxtbcnIyMDZ2RkAmUyGqakpBQWaFJh79+4RFBSEiYkJS5cupWPHjo2ev7Fot1+1aHkOUJfXPnPla15KXVWkrAyZxJa4s+k01z+LuV+LBuP0vC2puVuCulpZf6xpSHts3T1JiTmKmY0OF8PuNNx69B+h6Rd3Zjmuzm9yr7QJHhYlyKV/8isj7zYkn4dW4+vbmFz8/hK6NUU4SdNp8u0mpMZPdyQzbyewe8FM4pYuxrKwBMOJ42nffzjE1nJ5ZwnXztZQm5OPXclhzEzPY5L/A27X1tMxcgvtdW/jYpNHbtKP3Di1BFvnOF77pC3D3m9FhxFNsXUx4frZdHYvukzStdxHfnXruLrium8vhm1CkH2dhFmYIddjJz+ygfOjaG5njFtQNxYpX4Okk3CmYYsUHT0Z/aa3Rm1gTLRFf5LHjkeRk9Mo21q0/JPx9vZmzpw59OzZkz59+tCiRQtkMhlvv/02d+7cITo6Gnt7e2bOnPlEOwqFgo0bNxIVFUVmZiYBAQGsWLGiUWu4fPkyBgYG+Pn5AZqt3PT0dNq3b09kZCTt2rVj1qxZAI98PwiCgL29PampqURFRfHZZ58xevRoSuskCv9MtJE6LVqeA1TlCnSamDzTNXmpyUikUhTKPIoyDBHValob7gWPvQ3G6ftYUB6eTvWtQgxaaKJxgiDQYdQ4Diz7EPeWady6Ykv8+Uz8u2hy2pBIoes82D8Oyc3fSC1rQlencCor22Fg4Ppn3LKGq1tAIocgjezX7VMnKC6wxrPwR9y3fffUFiTlhQWE79pKwq9nsdIzJCivFP2gILKuF/NLfBY1Ok7o6qRiZJdMjqya1BpTJBIJamMf8NHIexlVVmKWW4BtJaisrIk49AO3Lv1Kj9cn06J7EC26O5ObUsrZXbc4vikOV39LOo1qjrFFw+ih1MQE56+/ImflKti5EworidOdRmDwdiSSp79q3+3ZjK4x3RlglkXI+dXgEAjeA+vPW9gb0v01P45vgviKtkjGjqPJju3IbZ7cp0+Llj+Dp0XU/komTpzIxIkTAZg3bx5OTk7YPhCpnjRpEgMGDHiijd8LHDw8PAB46aWXWLlyZaPm37t3b4OtV0tLSwwMDBgyZAgAI0aMYPPmzQA4OTmRlpaGk5MTSqWSkpISLCwsEAQBXV1NKkerVq3w8PDg9u3bBAc3StK10WgjdVq0/M2IahF1hQLJM26/5qfcw9rdFlGsJee2Dj5OdzExqgWHhlt+Ok1MkBjKqYpvKBHm4h+Is28Aty8dwd5Dnys/3aO26n40D+9BYOfPzVPbUagkeJpnkZi47A/f50PUVkLMbvB5EYysUeTlErU5HpmygrbLJiB3cHji5eVFhez+cBa3L/9GyIsj6KSQIpFIuF1mzxWD9lTZ5VHtHk2GdQppQgVunp6MHDmSefPmMXPmTEaPHk23bt1wbtWK8ubNiff15ZaNI4aWzigUKg4s+5CfvviUypJibFxMGD6nFe2He5J+q4jdH18m5lQaanXDr3JBJsNuwXxsZs9C/yqw+hp3bq5q1ONwNNNnXDtXxuaMoMomEMLegrxbDcZ4trKhRQ9n0m07kKZ20vTgq6p6pseuRcs/jdzcXABSU1MJDQ1l1KhRZGVl1Z8PCwurj6I9DkdHR+Lj48nL0zRUP3nyZKNy6dRqNfv372fkyJH1xwRBYODAgZw9exaAU6dO4VP3kTho0CC+++47AH744Qe6deuGIAjk5eWhUmmSd+/evUtiYiLu7u6NfAKNRxup06Llb0ZdoQARpH+gnYlLK03CfG2FBS31toNLp/pcrN8RJAJ6XhZU3chHVKoRZJpvOUEQ6DhqHLsXzMTE4hZZd5oQeSKFti9qvmSRSKDrAqJ3fAtAZ//u5OcsJT//DFZWf0KLkBuhUF0CwRMQRZEb788h32QMzXxzMfULeOKliupqDn6yhKqyUkYt/hTp6XPkRkaT6DmUJE9/Ks2jUKPE3d6dHv7d8fLyQu+BvDxjY2OMjY1p1ux+77ry8nJ+PXKEq2o1SokEC0NzEiKvkhx9jW4T3sK7QxcCezTBPdCa8L23+XV/Ircjsuk9yQ8TK/0G67OcOBFBX5+cxUson7ednM/9sHV58amP5J0unuyNSGOh7hw+lU+Dva/ApFOgZ1o/pt0QD3KTS7kpHY3h5eXI58zFce2/HiuRpkXLP51hw4ZRUFCAXC5n/fr1mJubM2bMGKKjoxEEAVdXV77++n6jdFdXV0pLS6mtreXgwYOcOHECHx8fPvroIzp16oRcLsfFxYVt27YBGqdw6tSp5OXl0b9/fwIDAzl+/DgA4eHhODk5PeSArVq1ijFjxjBjxgysra3ZunUroIkqjhkzBk9PTywsLNi7d2+9nYULFyKTyZBKpXz11VdYWFj86c9K+F/TFgwODhYf7EOjRcvfTW1WBbmfR2Ix2guDgIeF6B9FVVkpG14fTbtxranS207uxY8YpZgK/T+D1hMfHn+jgIId8VhN9EOvacNk4kOrl5IaF4tHyCzS4it5ZXE7jMzrKj5FkfeWrSa80pnLH/UjImo4oqggpM3PSKWPrwptFN90BUUVvHORgl07Cf/+LlkObXntk84YmDy+MEJUq/nxsxUkXb3Ei7MWYKdQk/z6W1z3GUOyuz41+nk4ODgwZMgQrK0b9zwfpKKsjDObNxOdn49SJsOwqhwxM5kuw0fSetAwBEFAFEWSruVybvctEKD3JD+cvR5+QReF7idr/kIUHgLum/dhbOv/1PnXn0ni0+O3ODZYgveJV6FpL3h5V33OIUBFSQ37l1+B6kqCTs/Dfvwr2Lz37jPfqxYtTyIhIaFR0Swtfx6PeuaCIFwTRbFR+7TaTzstWv5m1OW/6742PlKXl5IMgIGl5r+wuW7d1q3HoyNouk3NQCahOqHwoXPtXx5DbXUVMmkUalHk8uG7908KAtFSXwK5hTR6D82aLaSqKpW0tM2NXusjyYyCzEgInkDNnTtkfLaObPsQXFtKn+jQAYTv3kbSlYt0Hfs6thXV3HlrBhfavk6iVy21Bvl07dqViRMn/iGHDsDQ2JgBM2Yw9fXXCayspEamS6W7L7+cOM6ZHZsR1WoEQaBpsC3D5wZjaKrL4c+jif4l9aEkafOhI7BZuRD5PZHk116lpiDjqfOPb++KjbEuC6JMEXstg1tH4czShms01aXvWwFUq3S42WUeeZu+pTjs4B+6Xy1atPz3oHXqtGj5m1GX1+m+Gjc+py4/VVP5KpFXo1bqYK2+B2YuYPHoHA2JjhS9pmZUxRc85HhYObvg26kb8eE/06yNEbcuZlGYpVFFKKlUcLdEJNBCBeGrsTQKwtq6N/eSN1Bd/R8oHFzdAnID1N5DyJg5iwyHENSCDm36hTzxspiTx7h6OJTA3v3xcnQlYfYiTnYbRaZzAUamBrz++ut07twZqfTZmjj/jqK6mpLcbLISb5FfkINHnx60NdXHMi+HWmtHfo2/TeiXn6Guy40xszFg2PutcAu05rcfkvhlazyKWlUDm1YvjsJ85TSkaTXcGTUYRV1Oz+Mw0JExvUdTrqUU8YvxYGg5Ds6vgeg9DcbZupnQdYwX+Qoz7nWYTNbChVReufKH7luLFi3/HTx3Tp0gCFsEQcgVBCHugWMWgiCcFAQhse63ed1xQRCELwRBSBIEIVYQhJZ/38q1aPljqP5IpC41GQNTMyqrclFUWmBXfvqxUbrf0fexRFVcgyLrYRmrdsNHI6pFassuINORElEXrYtJ1/RjCmzXEypy4de1NPWcD6hJTGpcO4CHqC6B6z+A/3DyvtpG1e1E0lw7YesBVk6Pb1+SHH2NU1s24hbYig49+hP33oec7N6bctNi/LyCmDp9Mo6Ojs+8nNrqKq4eDuXrd17ji3HD+Xbq6+xeMJODnyzhxNdfEHPtErUF6eilJSFKZVwvLGX9xwuoKNO0I9DRk9Fnkh8hg9y5fSWH0E+vUVrQsHjBfuDb6C0Zhphdxp1Xh6AsKnriml4KdsbNypBPjt9C1Xc1uHWCw9Mg5WKDcc1D7Ajs2YQUqRc5Xv1InzKV2pSUZ34GWrRo+e/guXPqgG1An387Nhc4JYpiU+BU3d8B+gJN637eADb+P61Ri5Y/DVW5AqQCgl7jo0t5KfewauJKVWUmykoLrLkOHt2eeI2elwUINNCC/R1TG1ta9OpLwq+naNZGlzuReeSllhGdVowgQECrtuA3HC58gX61EheXt8nNPUph4YVnvl9i9oGikgpJGwq3bCGzc2sUSgta9X58vll+ajKH167EyqkJfV+fTMKMuZxs8wIKnRr6tO3B8JEvIm+k4sTvVJWV8tv3u9j0znjO7dyCuZ0DHUe/Ru+3ZzBk7ke8svxfTFq/hWk7DjBh7df0GDAI14x7yEqLKJDosmbZUvZ+uozc5LsIEoHgfq70fyeA0vxq9q+4SmZScYP53AYvRf1BS9QZ+dwbPxrVAzJl/45cKmF27+Yk5pZzICYHRnwHps6w7xUovNdgbLshHjTxtSDeuhdFRq6kvfU2qpKSx1jWokXLfzPPnVMnimI48O+JPy8C39X9+Ttg8APHt4saLgFmgiDY//+sVIuWPwd1WS1SI537Ml1PG69SUZCWirWLGyoxG4nSFB1JNTR54YnXSY110HE2puoReXUAbYe8jEyuQ0nWaXQNZVw6dJfotGI8rI0w0ZNDz8UgSODEAlyaTEJPz4nbiYtRqxXPdsNR21GZ+5P56WYEZwvSzNtjZCng6mf1yOHV5eWEfbIYuZ4+g2fN5968JRxtFoBCp4ZOBja07dPhmaYvK8jn7PZNfDN5PJcO7MHR24/RS9fw0sLltHlxOH5deuAe1Bo7j6aYWNkg19HF3N6R4CEvMXbrbl73CaBJfAyiTM7Nshq2LP+YHz9bTn5qMq7+VoyYG4yeoZxDa6NIvHq/QbAgCHiP+IbKKTYoEpNJeWPCE9uR9PWzo4WTKWtP3qZabgqjvwe1CvaM1EQ765BIBHpN9MXU2oA4/zcpyasgbbK21YkWLf+LPHdO3WOwFUUxC6Du9+/dNh2BtAfGpdcd06LlH4Oq/Nl61BVlZ6JU1GLl7IggK0ZfrQP6FmD09MIAPR9LFBnlKItrHjpnYGpG8MAhJF25gFtADSk38olMLiTwd71XU0fo8B4k/Ig0NYJmTRdQUZFIesbORq+drBjErOtkXbVAWVBA2lBrqoo8COrhiSB52KkVRZFfvl1PeWEBg96bR+6Gbzlk4UCtbg0t7+TRZcaERk+tVqm4HPY9m6e9TuSxwzRr8wLjVq9n8OwF2Ddt3igbgiBgN2kSL783l44Rl5FWllHt4MaNtEy2vT+VI2tXoVIUMOz9Vti6mnDi2xtEHk+pz2OUyYzwGfsdpeNlVEddJ23aVMTa2sfONbevN5kl1Wz+9R5YecJL26EgCfaPB9X9noK6BnL6ve2PWpBys/uHlEffIH3qNNSPsa1Fi5b/Tv4pTt3jeFRo46EeLYIgvCEIwlVBEK7mPSVJWYuW/2/U5bXPpPuan5oMgE5dYYWxogqsG+eU6PtoFBqqEx7eggVo/eJwTG1sSYk+QI2xhOJqJYHO93uk8cIUjU7rsTlYmXfBwqIjd++upaaRclhE7aIk1ZiyK4nIx4aQXRSCXBe82j06wJ5w/gy3Lp7nhRGvIIZf4ocqKTV6NfjHJtP1tcFIdBvXVqUgPZXdC2bx697teLRux8TPN9F3ykysnF0at+5/w7BtCB2/20Hne/fQKcimxtQKeVB7kqKvsW3WO5ze8jndxjjTNNiGi2F3OLf7Fuo6GTYDAzc8X/uCklFKKs//Rsbs2YhK5SPnaedhSU8fWzacSSK3rBrcO0P/NXDnFByf12CsuZ0hvSb6UlQqIXnYCsp//ZXMmTMfa1uLln8Kn3/+OX5+fvj6+rJ27VoAFi1ahKOjI4GBgQQGBnL06FEACgoK6Nq1K0ZGRkyZMqWBnT179uDv709AQAB9+vQhP1/z3tq/fz++vr5IJBIebHm2a9euevuBgYFIJJJ6ZYra2lreeOMNmjVrhpeXFwcOHAAgJSWF7t27ExAQQJcuXUhPT68/3qpVKwIDA/H19eWrr776S57VP8Wpy/l9W7Xud27d8XTA+YFxTsBDJXmiKH4jimKwKIrBf7TNgRYtfxXqcsUz6b7mpWjkwapqKgGwrEwBq6aNulZmrY/MSp+qR+TVAch1dOn62psUZaZTaq75r2SneOA1IdeHXssgNx4hchvNmi5Era7h9u3FT59cWYMy4ntyos3Qa9mCFP+7lKW3xqejMzp6D/dBL87J5tSWjTh5++Gqa8bOWxlU69fik5hPsBkYde/+1CnVKhURh35gx5xplOblMGDGXAbOmIOpje1Tr30acnt7OmzfRaeqanQz71FUWYXQoh0+fQaSGHGRXR9Mw8W3mJZ9XLhxPpOfNsRSW6e/a2XVFbuxMygZpqTs+AmyPlyIqFY/cp4P+npRo1Tz2YnbmgOtXoO2kyHia7jUMI3Yxc+SdoM9SMnRoWjccspO/kLmB/Mea1uLlueduLg4Nm3aREREBDExMRw5coTExEQA3n33XaKjo4mOjqZfv34A6OnpsWTJElavXt3AjlKpZPr06Zw5c4bY2FgCAgJYt24dAH5+foSGhtKpU6cG17zyyiv19nfs2IGrqyuBgYEALFu2DBsbG27fvk18fDydO3cGYNasWYwdO5bY2FgWLlzIBx98AIC9vT0XLlwgOjqay5cvs3LlSjIz/4MOAo/hn+LU/QiMq/vzOODQA8fH1lXBtgVKft+m1aLln4AoiqgqFEifoZ1JXspdLBycKCnQfAHaVCWCVeO3D/V8LKi5W4K6+tERHI9WbfBs3ZbYzHRkIuSFZzdsg+I9UFONeXophoIZbq6Tyc39iby8E0+e/NYxci6IiAoB9Zve5N1qCaKEgN/1Zh9ArVJxdN1qBEFC5xdfZvvpK1QZKPCvNcY/5iy2H3zw1BzEgow09i58n/O7t+Heqg2vrdlA83bPln/3NCSGhrT/ZgsdzCzRT7lFaUE+0Zn5dJw8GzM7e46sXUlJ5mE6jGhCWkIRYWsiqajb+nZ1eQeDkT0p66+mJCyMnOUrHikG7m5txNh2ruy7mkZ8Zp0AeK8l4DUAfv4A4g40GB/UqwkeLW2ISTVFNXEepYcPk/3x4kfa1qLleSchIYG2bdtiYGCATCajc+fOhIWFPXa8oaEhHTp0aKAgA5p3rSiKVFRUIIoipaWlONRJEXp7e9O8+ZPfoXv27Gmg/7ply5Z6h00ikWBlpckJjo+Pp3vdB2fXrl05dEjjrujo6NRrv9bU1KD+iz60njuZMEEQ9gBdACtBENKBj4CVwPeCIEwEUoERdcOPAv2AJKASGP//vmAtWv4DxColqMRni9SlJuPY3Ify0nR0DcGgthasmj00rra2lqioKDw8POpfOAD63paUh2dQfbvosQoWXce9wcoVR3AQSilM0+dudB4eQXWprIIAfVbBV+3hzDJc+q4kN+84N28txMysDXK52SNtlu/fSGmqARZvjyNetY+Se4txC7R+SGIL4FLoPrJu36TftNkc3HWSCiMF/mbN8PlmGeajRqHX7OH7/R1RFIk5eYyz2zch19Wj/7TZNH+hU6MLUZ4VQSKh4yefoV62iIj4WFROHvz488/07DcMl4x7RITtJy3+OiEDXufa8SpCV19j8HstMbbQw8f7E66OGEZlTSbs3IkglWAzd+5Da53evSmhUeks/SmeXa+HIEikMOxb2DEUQt8EAyvN1iwax73bWC+Ksiu4lO1C9/FTKN66Dom+PjZz3v/LnoOW/25u315CWXnCn2rT2MibZs0+fOIYPz8/5s+fT0FBAfr6+hw9epTg4GAsLS1Zt24d27dvJzg4mDVr1mBubv5YO3K5nI0bN+Lv74+hoSFNmzZl/fr1jV7rvn376h204mJNZfuHH37I2bNn8fDwYN26ddja2tKiRQsOHDjA9OnTCQsLo6ysjIKCAiwtLUlLS6N///4kJSXx6aef1juVfybPXaROFMVRoijai6IoF0XRSRTFzaIoFoii2F0UQzhlygAAIABJREFUxaZ1vwvrxoqiKE4WRdFDFEV/URS1+l9a/lGo6hoPNzanrrqinLL8PKyauFJTkwkKI6RqHtp+TU5OZuPGjRw7dowNGzZw/PhxqqurAdBxMUFiKKPqxqO3YAH0zK3I17XBouQu+oYZXP7xXkPxelsfCJ4IV7cgyb2Fj/cqFIpCEhOXPdKeOvsOWT/eQ8fOhLLeagrv+KKs0aVFt4ejdBm3Erh0YC8+HbuSFJFOtlEldqIVwVEnkBobYz11yiNm0KCoreH4xs85tXkDZvZN8eo1nTv3jNi/8QJbVp3kyw8P8+nsH9jw5QG+OxzGvshQdsXvYkP0BlZGrCQsMYwKxcN9/BpD5/mLaNWyNbKUW5gW5HHyl18oMjBjxEcrEAQ4t30FTbxvU1VWzcHPIiktqEImMyIg4CvKR0io7WVG4XfbyV256qGomqmBnBndm3LhTgGnEuqyT+T6MGq35t9+7yuQFVM/XkdPRt+3/EGECEVrjEePpXDbNvK/XPeH7k2Llr8Lb29v5syZQ8+ePenTpw8tWrRAJpPx9ttvc+fOHaKjo7G3t2fmzJlPtKNQKNi4cSNRUVFkZmYSEBDAihWN67V5+fJlDAwM8PPzAzRbuenp6bRv357IyEjatWvHrFmzAFi9ejXnzp0jKCiIc+fO4ejoiEymiZ85OzsTGxtLUlIS3333HTk5OY+d84/y3EXqtGj5X0JVpqlObGz16+9FEvrG9kgqCpCrDEGmpyleQBOdO3XqFJcvX8bc3JyRI0dy+/ZtLl68SExMDN27dycoKAh9PysqI3NR16iQ6D7cH+9mdikKUcDTUEVN6Skqy21IjMimedsHChq6zoO4H+DnuRiPO4xLkzdJTtmAjW1/rCy7NLCXt3QuykopDiuncS1rBaX3lmLlbIS9Z8OoXk1lJcfWrcbYyhpbr878GH4UfYUuI9q7k7tvPbYfLkBq9uhIYHF2Nj8sX0JJTgp3nCVs8z0G1cc0Jw3rfh6kkAbNk3QletSoq1kRsYLuTboz0GMgIXYhSCWN7x/Y9b25KNZ+wvVL57GrqOAaUFhYyIjFn3Jx73ZunDmEhZM7lSXdOLgmisHvBWFi5Yav77+IUU7CXt6cwu++A0F4KKr2SlsXdlxKYfnRBDo1s0ZHJgF9c3jlB9jcC3YOh4knwMIN0Khd9Bjvw08bYokPHojv0HLyN2wARKymTtVG7LQ8E0+LqP2VTJw4kYkTNZrW8+bNw8nJCVvb+3mxkyZNYsCAAU+08XuBg4eHBwAvvfQSK1eubNT8e/fubbD1amlpiYGBAUOGDAFgxIgRbN6skU50cHAgNDQUgPLycg4cOICpqWkDew4ODvj6+nL+/HmGDx/eqDU0Fq1Tp0XL34i6PlLXuO3XvBRN41m1aIncoBADpRosPUEiJSUlhYMHD1JUVESbNm3o0aMHOjo6eHl5ERwczLFjxzh8+DBXr16le4uO6CnUVMUXYPj7tuoDRKdpthdeHjGA8M8WYmITTcQRYzyDbZHK6gL8BhbQdT4cnQU3wnDzmUJe/klu3pxP25Cfkck06hBVsbEUnorDLNCYbJdEyiM9qCw0od0g54cci9Nbv6I0L4/eUz8i7NhJJAiM7tOZosUL0W3aFPOXX35orRUlNZz//heun/kWFbWca5VHhb0BY93GY2lqjlwqQypIkUnu/zbRMUGn1oDyZJGSRCUFN2tR1YiU2GWQ6xvHubRzHLl7BFsDWwa4D6CvW1+amTd7qiMkCAK9ps9GqVZxM+ICbgnlpAgCO3btZvTosbi3bM3Jr79EUbsDVW1nQlerGTKzJVbW3XB1m0Jyv3W4yNtTuG2bxrF7f3b9nHKphPn9vZmw7So7L6UwoYPGecPUEcaEwpbesHMoTDhR397G1d+KkIHuXP7xLjbD3sBGgPwNGxFVaqxnTNc6dlr+EeTm5mJjY0NqaiqhoaFcvHiRrKws7O01H5lhYWH1UbTH4ejoSHx8PHl5eVhbW3Py5Em8vb2fOrdarWb//v2Eh4fXHxMEgYEDB3L27Fm6devGqVOn8PHxASA/Px8LCwskEgkrVqxgwgRN26X09HQsLS3R19enqKiI3377jffee++PPpLHonXqtGj5G1GXP1ukLi81GT1jE4rzBOSWhRgXqVFatOPksWP10bnXXnsNV1fXBtc5ODgwYcIE4uLiOHnyJDt//p5AQw/aR5k/2qlLLcbKSJfgNkHkd+xKwm/hVFd7kHAhC79OD7SCbDUeonbAsfeRuHfB22slV6+NIDFpBd5eyxEVCrLmzkKmq8LszeEkZG6mKnUJ+sZymrZqWIF6N/IK8eGnCR40iqPHL6CU1tBLboz+zTjKMzJosnULguz+K6uipIbw0Hh+jdyEeW4KJUYK4tvJmNRpLgM9BiKXNuKZegI9QKVQk3azkOjTOlhflhFk7k6ZXyqRkhtsjdvC5rjNWOka08bai/b2rWnr0AFzQ2dkMtOHHCNBIqHvjDmoPltO4tXLNL9yiXshL7Bp0yZGjhzJ2NXr+HnDWlKvn0BRfZfQT6sYMqs97m7TKC2NIbXXZTzlvSnculXj2M2eVT9H1+Y2tPe05LNfblNrr4+JgRxzmRRzuSN2Q3bg8v0IxN0jkIw7ArpGmn+iPi7kppRyIewug6a+h5lESsHXX4NahfV772kdOy3PPcOGDaOgoAC5XM769esxNzdnzJgxREdHIwgCrq6ufP311/XjXV1dKS0tpba2loMHD3LixAl8fHz46KOP6NSpE3K5HBcXF7Zt2wZonMKpU6eSl5dH//79CQwM5Pjx4wCEh4fj5OSEu3tDXe1Vq1YxZswYZsyYgbW1NVu3bgXg7NmzfFBXyNWpU6f6vL2EhARmzpyJIAiIosisWbPw93+8is4fRfhfq4gKDg4WH+xDo0XL30nJ8WTKzqXhuLTDI5vv/ju7589EpquLRL8X5q0m0vROBem6kzlxV9UgOvckamtrOXbsGFFRUXRT+NF+7iCkxg2v6bbmLO5Whnw7rjUVxUVsffctBKktBhYjGLP0BWQ6D2xJZsfBN53BdygM20Ri0gpSU78lKHA7YmgCuavX4Ni5gox3XiQ1LYaknxYR3NeVkEH3X5JqlYrt709FpVSiduxGRuVNvNJKGPrRu9wbPASDdu1wXr+ubqya62czOHjyOEUVP+CcK6OgiZQuk96iR9PeSITGpQqr1UrKym9QXBxBcfEViouvolQ+LK9VphS4US0joVrgZrWUGlFAioi7rpoWhjIGu/fC2X4o5uYhCML956JSKjm8eil3oq7iWVDOva49KVWpGDhwIIEtWhB57EfCd21DFHUxsurHSwtGYGhRQ8SVFxHVKtxOdqF0XyhmEyeSOektLpZUcKmkgktphSjO56BqYojSu+FWdI+Ci2yLm89ly9bs6LKeIDMTWpkY0kwq58jqSKrKFAybHUTV12so3rMXi/HjG0QDtWh5kISEhEZFs7T8eTzqmQuCcE0UxeDGXK+N1GnR8jeiLlcgMZQ3yqET1Wry0pLx69qLlKQUzAHdGhWxFXIcHe3q+zQ9DR0dHQYMGEBeVi7nsxJocsEL1973ty5KKhXczatgaJAmImdoZk6HkWM5tWUjSlU0ceEuBPZoct+gnR90nAXnVoLfUNw93yUv7xduhb+P+ZflGDkr0O/RkcyCYyhzFyMIAr4dG1Z9xZ09SUF6Kg7tJnCrKBarvGr6jx9G/tdfo1YosJ2tSULOTCzi9J54Tov7sSyOw7lIjyb9u/Luq+8ikTzdmauuziQ7+xBFxZcpKbmGSqXp9aev74q1dS8MDT3QkVuho2NFeYEeN85WkhFVi72xLmMmOGHsUElkdgQXsq5yOS+eHwoLOFd6nOEphwgwscbWdgB2doMxMvJGKpMxYOZ8Dn2ymKTYKHyPHSG97wAOHTpETk4OPfsMpIlfC3787BOKs/ezc/5dRiyYgb/feq5FvkTWoBRyywbitnkz32cX892A4Xga6DLYw5b0IpEr8XnsGRiAqZkexQoVRUolxQonzpgo6HnhQ9KvrGC621QA5IJASEdjOh/J5+D6WF5+/wMEiZTCrVsRVcpGtYjRokXL84/WqdOi5W9EVV7b6Hy64pwslDU16BvbI9W5A0BljTHZZdX0bRfwTPNKpVJeGv0yG/+1jkMRx3mrS9P6Hkox6Zp8ukDn++0BWvTsy80L58hKPMfVnzzw6eDQsGFwx5mQcBiOvIv0nUv4eK/i3qevICLDLqiAZIsyJFiQFeeIWwsLjMzv95Cqra7iwve7MHPryO3CePRqBAYYgczcnJLQMCzGj0dhbs+5LTe4HBvLJbedBMYqMKvUp/s7Uwns3OuJ9yqKagoLfyU9Yxf5+acBNYaGzbCzG4q5WRvMzFqjq/vwFrSlJbg0g7zUMk5svsGRL1JoN9iDbj3H072ZJk/mQuYFll1axsa8VEIUOvSr2k5q2mYMDZvi6DAKe/thDJq9gLCVi4jnOi0OH8S870AuXbpEbm4uw4cPZ9ynn3Ny0ybiw4+xZ8Fs+k+fg8RpHiWpizjWbwidq3vy2k8HeMfLFZdJrwOQ72RDt6SzfPHTTfa90Q7Jgx8FjtOAXF6+8CV9m7fit2ajuVZaydWSCna+YMDoM2V88dkVOrw9FQ+JhKLtO0CpwvbDBVrHTouWfzjPXUsTLVr+l3gW3de8uspXEStkhpqyzTvVTTWRL1/fZ57bxMSEAYE9KFaWceiHg/VtNKLTihEECHhAHkyQSOj91nQEiZqyvGPEnE5raEymA4PXQ3kunFiAPEGBXrwE46ASsDUnlTjkFTOoqVTh3t6c6Nxo0krTqFRUcu3IQcpLqsmT6gMqul/9Fce575OzYgVSc3Nqur/M7o8vEpb+A6c91tI2UsRSacRL85c90aFTKIpISf2Wi5e6Ex0znpLiSFwtptLK7CgtjHbgynRMy9tDjh61meUocitR16oesmPdxJgRc4NxD7TiQmgSP38TR02VpnHzCw4vEPZiGFMCpxBdVs6qXBPi9QaCxIDbiYv59bf23Ev5lD7TJuDQ3IcYFzssfzpEx9IyUlJS2LRpE4XFxfSdPJkeb8xCrSrixzVz+eIQXJH2ZrAkjE4L+2Pcpw+Va9ZQtO97AKyMdPlwgA9XkovYfjH54Zvv8TE074/JL/PpWxTBAg8HDrZsSujAFtT0d8Aoq4ad317nlR6DyX1pJEW7d5O9eLFWeUKLln842kidFi1/I+qyWuRWpk8fiEYeTBAkVJYZoW9ajCAKxCgD8PT0xMjI6A/N79WlBcFXbnElMYGIiAhCQkKITivGw9oIE72Gzqa5vSMdR43j7PZNXPnxZwK6vI6uwQNjHIKg/TTE8/8iNzIJmY0lDs6Z3LM0QkfXicRf7ag1LWN05IvUiveF5uUKgb4eY5HLC6msvkve2z2ouHyZqqvXUL86gyPbYjnnu5Oqijv0vWyHkZEZw+ctwbqJ6yPvqaY2n+Tk9WSmf4+8xA6Lmh64VLRFyDFEXaqgnFzK65UG/w0BpBZ6yG0NkdsZILcz1PxY6tN7kh8xp9K4EHqH/Suu0PdNfywdjdCR6vBmizfp596PFZdX8E3iKc6YN2VOi9UYloeTnr6DtLRtNB/SGelpcyIFkaDfztG7mQ/h/n58++23DBkyhETfAA4On8KAgzt5IWIfbnTHuGMG8bfep9VHu1BXVpC9aBESQ0NMB/RneCsnfrqexaqfb9HNy5Ymlgb370MihWGbYEsf+GE8TDgOdn446unwfn8vLkl04dA9JJHlvNxlENNLqxi8Zy+iWsT+o4UIjdjK1qJFy/OH1qnTouVvQhRF1BWNj9QVZqZjamtLfloVFv6lSGtllIqG9Ax4tq3XB5Ga6tK6SQB5OeUcP34ce3t7otOK6eb18HYkQFDfAcSHh5Ob8guXf2xLp5FBDQd0nkvZT4eoTkzBflQwAnFk2cpJSTejMgtiPM8yrPkw2tm3o7S2lEvhh6lM1ENHpwalWskl9zh+KYnkizUCUlsLjhfKOBv0ORa5lfSOtcfS3omhH3yMidXDShhKZRkpqZvIun0Qs6SeeGavQ1BqXnESM1103EzQdTVBx8kYJAKiUl3/g0KNqFCjLKhCkVOJIruC6oQCqKsjkxjJMWprj3+IPTYuJhzfFMcPq67S5RUvmofYAeBs7Mz67us5nXqa5RHLefPcx0wKmMRrbU+TnbWPjIw9WAQVYuxhRuJ5EzwjEumVl8fF/v3Yt28fEa5eGPsF0XPVJ1xZvo57EacozXfAvW8O0Tcm0XLVTsRp1WTOmYPEQB/jbt1YPsSfXv8KZ86BWHa9HtJwG1bHEEbvg03dYPfLMOk0GGsqjkP6uFKVXw2/ZdHL05WtYyZQqRYZvW8fBbVK/JYt1jp2WrT8A9E6dVq0/E2ItSpEhbrROXUVRQUYmltSmFWBXbtCqsv00JGIT9UsfBqGQbZ0PNCcw9bVfLv3IIUVHgQ6P7rBr0Qipf/099g2czKRR7cR3M8HAxPd+/ckyMiLM0dukooo/EyWsYx8mRTxXicEuZIv31qKsZGmC3BBRhp3fvkehXMrqiQ59Dkdztxt+4ja9xWWRUf5eFQxN1zX0jzLlHbR5jh5+/DirAXoGTaMSqpUNaRn7CDt1k5MEzvikr4YASkGLW3Ra2qOjqsJMlNdnhVRoUaRq3HwqmLzKP0lldIzaRi0sGboRB9OH0nml63xFGVXEDLIHUEQEASB7i7daW3fmpWXV/JVzFecSzvH8g7Lae8ymeycg9y7tw6P/qmUBRmgPiXhUqVAta0zbZJvEmiuT0DQAPw+W8D3S3eTfSuUmgO2NBucTMzNN2j5+Ray3pxNxox3cf76KxzatWNeP2/mhV1nd0Qqr7Z1aXgTJg4wai9s7Qt7R8G4I6BjoGm3MLo5ZUU1ZISl8MWUAK588D4HZRIGhx0grLKKTqtWYKXXePk6LVq0/P1oP8W0aPmbUJdpGg83NlJXXlSITG6CKIIgzaGo2hJvB6OntjB5Gvr+VujKdOjn2IG0Cs0rIcDR5LHjLRwcaT1oFKqaO5zYFNrgXMmhQ9SmZXG9qwnm6loKHPRwc1pMWVobzFx+BTG5fmz4ru8QzDtTpZ+DR1IKzV56CYVKD7Pdp7nr6ESCq4zmeRaERJmSaVFFbGeBGtn9nDdRFMnOPsTl8AEUH03C5exCzNN6YdjSAbvZrbEY3gyDFtZ/yKEDEOQSdByNMGxli9V4P2xntsKwjR1VcfmUbb3BCwZS2vhbcO1YCie3xKNS3M9HM9ExYXnH5aztspacyhxePvIyOxL2YGc3nBfa/YKH23z0LdVsH9OPY2064JifTIitLdFRUezduxcRFSMXvkKzF6ZRkWvGzTArqioziE2aisPGNei4NCFt8hQqIyMZ1caZ9p6WrDiaQHpR5cM34hCo0YnNiISwN0GteYZSqYQ+k/wwtzfg+DdxdFbpMHnVEuJHjML7+FF2TpvJ1rRcVP9jba+0PH98/vnn+Pn54evry9q1awFYtGgRjo6OBAYGEhgYyNGjRwEoKCiga9euGBkZMWVKQ0nBPXv24O/vT0BAAH369CE/Px+A/fv34+vri0Qi4cGWZwqFgnHjxuHv74+3t3e9rFhaWhpdu3bF29sbX19fPv/88wbzfPnllzRv3hxfX1/ef//9p67rz0Tr1GnR8jehqms8/O894h6FKIpUFBYiigYgqFCJhVTVGBPg4/Ufr0OiJ0Pf2xKjJBWGzr5IUVNw9/oTr2n/8nAMzV24c+UAOcnZAKhrasj7ch0FbhYYWWRSKxOo1tdFmRiEqJZi4xVD3I13UakqSU+IIzmuhnLzYnRr1bQuzIEBo4me8jGoa/jXgCy6qwJpH2mGnWcznMf246fUYww9NJTw9HBqavKIjX2LzGM/43RqDpbJ/TH0d8B2ZjAWw5she6C69t+pUlaRU5HD3eK7xObF8nPKeZbHhPHqr1sYceEHRl+LYGR0EkOjkhhw7Ta9rtxiaFQSHxYVEtbKlHuTfVH2c0VdVot9Whn9nAwojsrlxy+iqa5QNJiru0t3QgeF0sGxA2uurWHC8QlkVOTi6jaBS26HOSH0p4/iMH3a78ak/DM6WuqTlJTEtm3bqKqupP/ULvh0mUF1UUvuHLOjtCye2Huzcfp2I3Jra9Jen0RVZCQrhwYgAh+EXn9INxYAr/7Qexkk/AjH3oe6MTr6MvpPboGOvowfv4hBLK5l6OIPYcIEeof/Qv7HH9Mv4iZRpY9wFrVo+X8gLi6OTZs2ERERQUxMDEeOHCExMRGAd999l+joaKKjo+tbOunp6bFkyRJWr17dwI5SqWT69OmcOXOG2NhYAgICWLdO0/vSz8+P0NBQOnXq1OCa/fv3U1NTw/Xr17l27Rpff/01ycnJyGQy1qxZQ0JCApcuXWL9+vXEx8cDcObMGQ4dOkRsbCw3btyo14R93Lr+bLTbr1q0/E38LhEmMXx6pK6mogKlopbaGl1M7SpBEKFGipt/2z9lLQaB1lRdzyelWMDFSCT87Bmaerjj5OT0yPESiZR+U99l/+JZHPnXv5iwdiVFu3ejzM5m28vwdXUNGQ66NEmt4nhiIo7NnGn5wvtERY/jduIyrmyTorB2RSVL44Vz5zGZs4Tjq44QlPobR0IEejoPQPfgLSybuPLS/KXoGhjSs2kfFvy6gMmnJvOCgYx3skdgk9ER3ebmmPVzQ2777+KuGtSimhv5NzifcZ5fM34lLj8OkSdHnwSpEbq6TdDTb4Khvitluh4cKLWj7IHiUIsX9PASDWl7t5KOajl6WWWcWHWVLtMCMbHSrx9nqW/J2q5rOXL3CCsur2DYj8No5f42YVWBvGpnTsihMnJkVti1KERQfEN7aU8u5UrZvHkzr776Kr1eb4EoSrl92ZHUs2G4dL1C9N15BG7fStq4CaROeoMmX3/F3L5eLDx0g/1X03mptfPDN9VuMpTnwG+fg6E1dJkLgLGFHgOnBRK2+v/YO+/wqMq0cd/TJzPpk94rkEZCCKH3jjRB6aKAFEVcpC9YwIpSRAUjKIpIkaKAAlKkht4SQgqEkISE9DpJJpNMO78/4rLrUvdbV77vt3NfV67Jlfd9n3nPOTM5z3nqFX76JJlhc1vTYu4cymQyBq5di6PRwJCxUxjt78FfgzxxlFlvG1b+PDIyMmjXrh0qVVMiUNeuXdm1a9cD56vVajp16kRWVtbv/i4IQtPDsU6HRqOhpqaGkJAQgAcWWBaJROh0OkwmE3q9Hrlcjr29Pc7OzndblNnZ2REWFkZBQQHh4eEkJCSwYMGCuyWi3NzcHrqvPxrrt9OKlSfE3y11j1bq6qoqAKivkeHVqhYAb1MdYrt7Ewb+JyibO9OokJBRXsOEjkGosm6xc+dOpk2bhlJ5f6uXX0QIPhH9uZP2M1d+3IN0zaekB4oYE9YCyfVCqgKbY1c1hdpUOzp6JOPsPBF/vynk5n5FtX4B9U75+Nwpwje2C4dOgCp/LQ0K8Bo2kaofzmHv7snwhW+jUDUpa6F2nrwR6MX267l0uP4SGl0Y1W0gYljEPfXVGkwNHM07SmJBIqcLT1PVUIUIEUpVM+rth2CSOiES2+CisMfDxh53pT1OCjW2QjVS4x30+lxua29xszqRgooDTedbqaG1Zwd8nOORqKLIM8i5XKNjpZ+UlX62BOosdCkxol13hR4DQvGO+XuyiUgkYlDwINp4tGHCkXmcylxJC8d45rf7EMfZ77Bn2buk7zhPRE8tohaHiS0M5FpBD9avX8+YMWPo82IkFrNAdpI7pVfWQ+xpLqTMI/7bDeS/MIG8KVMZ9sUX7A105p196XRp5oqHw32uW68loKuA4x+ASgPxkwFw9lQzcEY0uz9O4udPkxk6KxbXmX9BrFLR6eOP+ba+likvzGBfmZa3Qrx4xt3JWtPuv4w3bt4htU7/h8qMtLXhndD7PzjenRMZyaJFi6ioqMDGxob9+/cTFxeHRqNh9erVbNy4kbi4OFasWIGTk9MD5chkMhISEoiKikKtVhMaGnq3hdeDeOaZZ9izZw+enp7U19fz8ccf4+zs/Ls5ubm5JCUl0bZtWwAyMzNJTExk0aJFKJVKli9fTps2bR7zjPz7WN2vVqw8If4VS11dVVNdugadAos6F4BmKslDVvxriKRisgPVmID4AA3Dhw9Hq9Wyb9+++7vzfqP/9OcQy7wo+GwF8roGSsf1pEvJDbR2UtwiXiO1MAK1Qkdg5jy4fQZ/v+kUXxlMra0WqWCh5a08zst7ky7aSsStSgp6taZ61wXUTk48+8Z7qOybyr2UlR/h/IX+1N1JYnruR7TSh7Ep6ACj617m3XPv0mhuRBAE8hsMLEs7TJedg5ifOJ+9uScokYRRo3mJMu815Lm8Tp3jcBpse6BXtSdfEsFFgy97axz4vlxGQrkLn2lj+MowlHTHBQRHbKZf9Ff08XuZQEUop24f4evLb7A+cRhp56fQ/NoqpmQl0rswC8GsZVOAnLnt1fQuvsOUb4/zzbY9JCYmkpmZiVar5YhWSpLtTHx9XqS2Jplnfh7OyeJTDJ37Bj4hHUna5YL4Whts1DlEhG9HLNKxYcMGrqYk02dyBP4tw6i4OYu6nDAaJWc4evRVvL5ah8zLizvTpvFBoAGj2cJff0y5/3UTiWDQJ9B8AOyfC6k/3B1yD7BnwLQoqkrq2bcmBZPRgsvUKXgt+wiP6+nsWf0+LXVaZmTkMSw5i5u6hj/s82fFyoMICwtj/vz59O7dm379+hEdHY1UKuWll17i1q1bJCcn4+npyezZsx8qx2g0kpCQQFJSEoWFhbRs2fJujNyDuHDhAhKJhMLCQnJyclixYgXZ2dl3x+vq6hg+fDirVq3C3r4pDtlkMlFVVcW5c+dYtmwZI0aMeOj/0D8aq6XOipUnhLnOiFglRSR59LOV7jelDpEanekWKsBbE/AQ4UbSY3gQAAAgAElEQVQ4v7bJ1eboB836QbO+4BHVdGO/D+l2TUpiRL2AV5Qf3bp149ixYwQHBxMTE3PfNfYaFY4xrQi8cooCdyemdxyNdMNGysJ9caYH+RmXaTsgFHGuH+ycSJLPWxQXRmN0vEVzp/PciH2Va/JLBKQfQ2unJL/KhEKt5tk33kPt6IQgmLmV/TG3byfgZOyG+5WJYBShmRDGa0Hx1F9wYHvmd+y7c5kGzYvUVf6Cje4kFqk79j4L0crD0ZoEVGIxAzR2DHd3IlilRC0RoxCLUIibXuW/nZNSg4m0Oj3JVVrOF5aSWlzDMakCi7g9Ivu2uArleNRcw8aUTp04h9PS00g5TxRRTDB1xLnBlzSLDVfqlez1dWCf4EB0gZbAi4cxYeanmE40a9QxW9UKeetYPs36lJnHZvJ0yNPMfvU1JAkJXDlzhtja4WhMu4hou5PMzB789NNP5OTk0HdCf3790sKdS68R6rQamfsl9u18he7LP6J67jyM82by7vQ3mXOjjJ2X7/Bs3H3csBIpPPM1fDcMfpwKNk4Q3AMA3zBn+kyM4OCXqRxYm8qAl6NwGDQIqasbd2bMYPG7f2XYu0t5vU5Cn0s3eDfUhzGezlar3X8Bj7Ko/SeZNGkSkyZNAmDhwoX4+Pjg7u5+d3zy5MkMHDjwoTKSk5MBCA4OBmDEiBEsXbr0oWu2bNlCv379kMlkuLm50bFjRy5dukRQUBBGo5Hhw4czduxYhg0bdneNj48Pw4YNQyQSER8fj1gspry8HFfXP8ar8iisljorVp4QlloD4scsZ1JX2eR+tcglGM3FYBQjcw2//+Ts45DQEQ4tArcWgADH3oW1neHjCPh5Jtw4AKbG3y27WlNPgFiCPL1JgezcuTP+/v7s37+fioqK+77VjcobVCetQWyBLCdbqvYvwiQGm7iZpCWWIJaICO8WBCO+RdBXcedULnrbAuwMdbhG3kTbfCtXXb8jNkvKlVB/pHI5z77xHvYubphMtVxNmcrt2wn4ml/B/fRExBIZdlOj+NlOYOTVPNY19EGrmYlOn485fyEq3Sni/EfjGryCHHEYdlIZHzTzIbVTJOsjAxng6khztRIfpRxXuQx7qQSFWIxIJKKhoYHC9FQK9u+hdvPXhB39mSlZV9goqWWttz1TPBzx8vEj1a8nF4JmkB+8iqjw1cT6DiBdSGd13WoOy3bTs5WU7YNa8+E1M0OyDWQ5O/BDq46ciuiEvcXCU7fTSTx2lCPbjxCZEklboS27s3bz7M8jaT5+GGGdunHlWjp6+Ti81kCM+1H8/ZO5di2F9V+vJXaYKx6Bjtw68jJiYziOEdf4edNsRHNnIff1JXL1EkaJi3j753SKtA9wl8lsYPRWcG0O34+Dgst3h4Jj3eg6pjl5aRUc2ZCBYBFQt2uL/+ZNiKRSol6bwWFjBXEOambfyGdq+m1qTPd24rBi5Y+itLSpWHheXh4//vgjo0ePpqio6O74rl27iIyMfNByALy9vUlPT6esrAyAw4cPPzCW7m/4+flx9OjRu7F4586do0WLFgiCwKRJkwgLC2PWrFm/WzN06FCOHj0KNLliDQYDLi4u//Ix/08R/Zlmwf8NxMXFCf+YsmzFypOiNOEqIokI1ymPLh585OsvuHbkCOLgIXhErcNHkU+HsHUQ2vvvk6rz4dDrkL4bnAKg34fQvF/TWG0JZB2GzINw6ygY6sAtoqk4raMvFotAq3cO08NRzexiCx5z4pBqbNBqtSQkJODs7MzEiRORSn9v3J+7YwLj3zqHtHt/jmhrmRa6gzIPO5yeu853iy7jH6mhz6SmFmbnl7/B6fyW1Dil4V6oQRV3ifWqS4w8YIOl3hWpxpmRSz7E2csHnS6blGtT0evzaGb6EI5qMLmr2NhNw6baGmpMFgJs5AxxspCV9zkXChORSe2osB9Fo20XAmzkzA/0ZLCbI5KHWJFMJhNZWVlcvXqVzMxMzGYzjo6OREVFER4RgcremdpGE7pGM3qjGb3BTFmDgeQqHSnVOlLr9NRIRdiqG4mQn6esbD/axnICHQJ5rsV4FMeCKMvQkhWj5oSrhGxbCT5iCXMDXYmqqyQvL4/bt2+TWpXKOddzmCVmZoS+gte1WlKPHSa6dTu8d+5G18tCfhs116+3x2hU06N7LwpPyakqKqPF0JUYTHnc3ONHXLuxuOzYTWN+PvM6TMW5dSs2TGjzYEtabTF83RcaamD8HvD8+2fx8oFczu3OpkUHT7qPa4FYLMJYUkr+tGk0Zmbivngxm+I782FOEV4KOWvD/Yl1uH+yipX/m2RkZDxS8fkz6Ny5MxUVFchkMlauXEnPnj157rnnSE5ORiQSERAQwNq1a+8mLwQEBFBTU4PBYMDR0ZFDhw4RHh7OF198wSeffIJMJsPf358NGzag0WjYtWsXM2bMoKysDEdHR2JiYjh48CB1dXVMmDCB9PR0BEFgwoQJzJ07l1OnTtG5c2eioqIQ/1ak+/3332fAgAEYDAYmTpxIcnIycrmc5cuX06NHj4fu6x+53zkXiUSXBUGIe5xzZVXqrFh5QhQvu4jMxw7N6EeXJflpxftkX72JPiSCmLhteOmKiO51qkl5M5vg9CpIXNFUqqLzbOgwA2QPKOthaoQbv8BPM0CmgjHfc1MSQu+PT/LhU+F0PFCAOt4DpyFNmWHp6els376dDh060KfP33utXiy+yLF5zzPwEoQcOkzGzneJrt7CSZcYNNGbOb45k2FzYvEMcURbVsZ3C49S65qHUlaEb7Un2ztdRpd3g/6n3UGhYPSyz9D4+FFefozUtJmIxXKaN3yC8YiZdDcZU6MUCHIxA10dGe3pjKM5j5ePvEydUYez+xiuSbqiEhkQV2yli30Dyzp/gMZGc8/hC4JAfn7+3ZIDJToLpVJXqpSe6FHSYIaaBhN1jaZ/7YKKwKIUUDmnobI7iVGUh6PcBQdLHy65deWtQhvcTBY+cYFMewmt1DYsaeZNvKMtDQ0NnLh8go8yPqJUVkqMIYa++hiKTx8nKr49gT8dwqjQUj3Hn8vXXais9CEwwBtlSQTVJSU0H/QRJkMd6du9CPKPo/mJ8+i1tbzcdhozXujJyDZ+D953ZTZsGASNtTB2B/i1vXueLu7N4eK+XIJj3eg9MRyJVIy5TkfBzJnoTp1C89I0bj8/iZcyblPcaGR+oCfT/dwQW92x/1/wv0Wp+2/i31XqrDF1Vqw8Icx1RpSPkSQBTdmvJrk9jZY6FPJalFUicPgtXur8F3D0HQgb3FSLzPEhN3AAqQIihoJLM9gyAr4ZwKWo9QAUNBhIsZcQdr6IlfW1mJVS5BIxYtcgzpw5g9zehW7tYhEEgS8Sl/NKMtj274/cx5tg0SHqbKRcPmeDY14GGm8HPIKbEh0Orj2ASWlHo1xHvDmb4832kV+uYswVXywiIy0HmHH0dCc39wtuZS9HqYrAUrgE44VajrlJWd/Wntf9XRnu7oSjTMrZwrNMODYTi1hNsdsSdEo/3vB3Z6K3Cweyi3nv/HuM2DuCVd1WEeUaBTRZ5ZKTkzl56jQ3KkwU4kSJJJxSgxgMEKxWE+pmi51Shp1Siv0/vKoVUlRyCUqZBBu5BBtZ04+AQEGVnrzKem5V6LhYrOVmeRwVpVFI5TcwaY5Rrd6CS/5u1pd3INzSm7el3qTn6UkIFRiclMVTLg68HuxF34596dqmKwsOL+BI+REKTYV0jm7PlZtZNAzoQcTpSzjNymLA++Gc06RyK8uMSlWMp1sHsg5OJ6jPMqJG15LyXTI1wd7EpmSy7MJ65qtUdAp1xdvR5v6fB+cgmHgANg6B74bCqC0Q3L0pJmhQEDKllDM/ZGFsNNNvaiQyWzW+CZ9TtGQJFQlf4F1YyK9vLWZOdjHvZReRWFXLyhZ++Fi7UVix8qdjtdRZsfIEEIxmCt44g31ff+y7P0IJA9a+9AIVCm8EFxHtOmwlpMwO/5HJTd0BPo1pUvAm7P/XN1JbgmXLSObmtWWfuR0NyGlvb8OyGhlbFSa2yUwYTBbMZhNdRBm4iHSUerSlRbSOqm/fZPQJC4G7d2GxyUf1zTPkBHRmz9HWyFRdiRvgRtvBkRTeuMWPK66jc86kQV6HYF/GAduTjDjtjlQvoaOLHdUjLqFWN6NKl0OS7QwckuMZkt3AKT8FNsNCGOjudNeN+tOtfbxx+nVMUk907vOYEtCM6X5uOPxD/bSMigxmHptJub6c19u+jke1H5uPXCa9VkEBzjRaxMgkItoFaejRwo0eLdzw1/xxrsPs+kbeSs/jSG4lsrobuHKQRlEKgkWOsaot7hXdmIMbV/xt+CZIjkksYoCDHW+E+eCnUrAzcyfvnXsPtUVNm4I2OOpVuMnEdL1dgOjMWRxnTuRGWD5nzygwGlV4yiKR6svw6/YpNrJmXNtih6ykira3CilQOLJj/Busm97j4QkNdaXw3dNQngnPfANhfw88T0ss4PiWG3iFOPLUyy2R20gRBIGKL76g7JNPUbVti/enn7BVZ+StrELEwJvBXjznpbEmUfwfxmqp+/P5dy111kQJK1aeAObfypk8Tt9XwWKhXluFWSnD3a3J2qJQejcNZh6E6jyIn/Kv78Ei8EOmkX7V80k0R9JJnMKZ6INsmd8FZXMnxspsuDi/JymL+5L2zlMsmD4JmcoOl5KL/HhxPf0vQmVELA1+QehPv41FBB4Dl6Ny7oIgGMg8swGL2cyh9WcwSwX0Ci0io5RDdqcZetEPqUFM/K0CwiZOQan0RafLZKPoFezPt2ZIdgMVrTSMmBrHEA/nuwrdGxfXsejUAhrkIcSELeVEh/YsDPb6nUIHEKYJ48ueG3HS92DujgzG7spnr9abMqkbA2N8+WJca5Le7MN3k9oyoWPgH6rQAfjbyDFIxUhdlLSN6cgd/7kYfJbibdcOufMptCFL2RixHyddFTtP1tH/joG91TXEn0un9/FU3Bx6saH/BhQqBYl+iZR7V1AsiNnp60vasKcp+mILoYdsGf50MxwciihoTEMrE1Fwbjx6Yxrxk22xjY7igo8Gr7py+m1ZxveJNx++aVs3eGEveLSE7ePh6ra7QxGdvek9MZziW1r2rEqioc6ISCTC5aWX8PpwKfVXrnB77FhGCY0ca9OcGDsV8zLv8GzyLW7rGx/yplasWPkjsSp1Vqw8ASz6pngtsc2jIyD0dbWYzWYscnD9LYlKad+s6ZcLa8HeG1o8PJ3/nzl2vZQ+H59g9o6riOQqSnGmdYAGrxvfYtw6Ept2DljqjNQnld5d4+/uxIwpE7BRinjhsi2O9RaWOsYzcPlW7LKvUecTAoogzEYxgkVHac51fl61jjqtJw2qLEDEhcCj9L3kgcokp21hNd6aeoQTz5NQ8xS5lhAWJZsZWmDErocvLUeEIf6t3EtOvZ5ev7zJ7vTPkNq25dMen7O5VUv8be7t65pfoWPaV8fp/uEFsrK7IapvjsThCjHRpzgyP54VI2LoF+mBreI/F33yye0STlTV8kEzH7bHBPNrXDPauYVxVTMZfJfj3hhHpuEAGzWL+LXnSf6iq2fvSR29CoxcMxoYkZ7LuEsWegR/SrRbK46rTpMTlolJX0qqTMa+oUM4lnsb49IzjBs2juDgbKrNxRQYJRSlDKWy+lcin4WQ58aT7OtCi8o8zG8uIK9U+/CN2zjB+N0Q0BF2TYELX94datbGg/7Toqgo0LFr5RV02iZlzWHIEPy+XIeppJScUaNwy85iR0wwy5r7kFxbT7cLN/jqThmW/zKvkBUrTwKrUmfFyhNAMDSVgBApHl1AuK6yAkEqRxCDs10NAErnSCi93lS+pM2kptpjj8nR6yW8uPESIpGIz8ZEMiS+aQ/HnApY5uqOJOtXbu2KJV+ZQfr+s4z8aQSTD03mr4l/5VjZMS54nCMqPYcadzfefX00bwX+gNwk8HntYE4cyMFiFgiODUWiCOd2uhKLSI9eVYNWUUp4EtjppPSIbIN9WTWnh7VBpDfwespmonMW4lgSS2XELyi7qu+67bYVldF//2xKSncR7jWY00MS6Ot2b82n/Mp6pm84RddlxziUVUukbT0f9vUi4+2nWfZMLPmmQ4w/MJYblTce+1z9TzhYWs3ynGKGOdjxjElGQ1Y1wfl6Eky2bFc4oZF6kdL8ZdxslhJQ2Yrvc7czwW4Oe6J+5sVbWRxNMdGzTkSFyMJnNUYOGafi7/gXrjXe4ERMKnV1SSga6sgODeUHXx8Ovf0dvcMm0bFjFWZJFbeq7Sm+0Z2i4p24x+bR/oOPuBoSROviDE5NmI7J+IgEEIUdjNkBzfrD/jlw5rO7QwEtXRg4I5qaigZ2Lr1EcXaTkqhu146ALZsRyWTcfm48ujNneM7LhePxLWjnqOb1mwUMS8oi12q1s2LlP4o1ps6KlSeA/kYlFd+k4fpyNAo/+4fOzUm6xPbVH6P3DWVwlxyqhUS6h+9CdPlbSNoEszJAfW+W5/24ml/NqHWncfO5jJ9vFmkVqdQW9cJY1ZGYtpto4xFDx7oaOp5dT6PEnrra99kafYvL9hncqb1DRUMF7TIszNpt4XSnDog7RTGk5n3UOgldjd8wpFiKvcaG52e3ZtOiRCxmCbXy4zQ4i6muuYRvAfR/aSa8/hY3NI68NPM9pjScZ/aZFGqNo5C3F5Hu+BI2Nv6ER2/mrexqfkpfiU3dUZ6LnMrc2On3xGjdqapn2d4Ufk4rBwQiVTXM7BNOt/jou+UGAK6VXWPm8ZnUGmpZ3H4xA4IG/KuXDQBLvRFjuR5TRQPmCj3mGkPTT62BJIuBqRFygussrL1Yj819yreZRLDFX8baEAUSAcZl5VNn2Mtx+4sYxSaCG3zpq+1A94B+bHBRs83UgF4mQlJSgaZxDQI3aVHoScc8d9yi2nOzpASx2Uysjze+HeDw4TRqazU087uOe8AlAvxn4Go/hl1TZxGffpnrodEM2rkBqeIB2dF/w2yEHydD2i7o/xG0nXp3qCyvlgPrrlFX1UjHZ0KJ6uaNSPRbyZMpU2jMzsbrgw9wGPgUgiCwrbiSN7MKMAmwJMSLcZ7WWLv/C1hj6v58rDF1Vqz8H0RobLrbi+WPYamrqsSsaIqlkwrFKBotiGzd4er3EPXMYyt0tyt0TNi0H4XfF1Qqd9BobmBMizH4y7sT7ePE7qE7WNRuEd16fYhswgHUUhFuirk8XxbApgGb2D10N2qpimcvSCnTyNjdsgh7YS/OlY3kBXdgXb8oHCxiftLVMG7jeSxmAxbBRL2DGb25At8C6Dx2Amkp1xCVV/Jdv6Es9TMz330otcZRqCTHcC17m6jmK8jS1dLn3Hl2X/8Km7qjvBAxkXmtX/mdItBgNLNox2W6fnSUn9PKCFdU8VlfDT8uHEmPdq1+p9ABRLlGsW3gNlo4t2B+4nw+uvgRRovx/tdHEDBVNaC/Xon2WB4V265T+nkyhW+fpfDtc5R9fpWqbTeo+TUPfVoFZm0jeY5SZkYq8BBL+MbdHe9nm6N5PhzXKVG4vRKD++zWeC6Mx2duG+YMiuRXb2/ilErWtfDjjO8UZlQuZ7phPEjgc/dtjNFNRpe6jI/PX+H5MgHcNFR4v06teCoZXiVsiC5gX1YGPdt2wF+v52JRMXt/LCEmOhZfvyIy81pQWtiC3NufUVG3h7HbvuZEdHda3LzKocHDqS4uuu+x30Uig2FfNrn2f5kHF9ffHXL1s+PZv7bBN9yZxG2ZHP46HWOjGZm7G/7fbUQVHU3hnDlUbtyISCRilKeGY21a0Npexdwbdxibkk1J4/3PvRUr/8wnn3xCZGQkERERrFq1CoDFixfj7e1NTEwMMTEx7N/flChWUVFB9+7dsbW15ZVXXvmdnK1btxIVFUXLli3p168f5eXlAOzYsYOIiAjEYjH/aPTZvHnzXfkxMTGIxeK7nSkeJAvgs88+o3nz5kRERDBv3rxHyvojsVrqrFh5AuguFlP1w0085rdB6vRwi8nZnVs5cvoMEmdf+sR/j2CoJc5lJhxcCFNOgNf9W3j9I+W1DQz89iN06j2o5QrebP86/QP7YzBbiHrrEC90DGDhgH96Iq/MxvLlEET1xZh6rWGNqpBze7/kra0WPJYspqSbL5JfniE0V8dsdU9stQPw0AfgNbYZh785QZjRmxqb6zQ6lGKTl4nM3MjFcdOZtGQJZlsJoVtW413tRdn6VBT+9ri0y0a0ayI/NZvAa55jkGp/QV69jaHBQ3i74zu/U+hS71Qz7dtz3Kk100JWweQOPgzs0RGF4t4Yu3/GaDGy4tIKNmdsJtatNS+HL6YoT+B6ViUllfVU1RnQNpjQCha0CNQiYAAkgFQkQiIWIZWIkEjE2CqlRHo7EORjz3fiBkwi2B/XjID7xPrdD0EQ2FNazcKMfKosZlrlGXk9zBsH/2q2HfuWw/rj1En0tG2IZnDFM3wT6sNZFymOjfWIKtYgMaRjKOlHrLIr3SpvYim8RqmPF2qVFL+AUm5k2NOs+Vlc3XIJDnwbN++RrB43m0Eph7jt5krw8g8JjW//8E2aDLD9Ocg8AIM/g9jxf9+/ReDygduc/zkbZ081/aZE4uShxtLYSOGcOdQe/hXNlCm4vjYTkUiERRD4pqCcd28VohSLWdrchyFuD27CbuXJ8r/BUpeamsqoUaO4cOECcrmcfv36kZCQwObNm7G1tWXOnDm/m6/T6UhKSiI1NZXU1FRWr14NNJU08vLyIj09HRcXF+bNm4dKpWLx4sVkZGQgFouZOnUqy5cvJy7uXqPYtWvXGDJkCNnZ2Q+VdezYMd577z327duHQqGgtLQUNze3B8r6Z6x16qxY+T+I5W8xdY9hqautqMCiUONs60yDUIeDyL4pgN233WMpdLerC3n2h9fQ26UT6dSGVT0/wF3d1DcxtUCLwWyhtf99bqzOQTDlVwyfDEF+ZApGFxdeTPFC4iLgMHQoxbfewqukgUr7EBwq43EuD+SC90FKMj9mgGEaJksJdXbZKBrECGY1BlMDPT5fiXd5KZoFi3AyBVC68SpSZyWacWEYlZEsqd/Der0dLSp/prJ2O+FKE6Nc/v7gabEIrP41nU+O5iDHyAsBBmaPfRo7O7tHngdBEEgvquFkZhkFuT1xqBJx2bKNiQVj0ReMRaT3xxERDjIJjrYyAmzlODsocXa2QWkjw2IRMFkEzBYLJouAySxQVW8guUjLbjszgkqK4lI5Uy5VEu3jSLsgDR1DXPBweLDSLhKJGOruRHdnOz7MKOBboZJR2lIGn5bw3qB3mFVQzcaDa/nO7ieSvN9mvGgEQ3O7s9JdSYnXXDy0KQjSBFKrr3PePBIbt8G0zkvDz05Hnc4ZF5cqcrPjkEgMCMKbWExyhn72LlumwciMQ2TP/AuFL02l0+jnkUgfcDuQymHERvh+DPz0KohlEDO6af9iEXEDAnAPsOfQ12ns+OASPcaHEdLaDe9Vqyhe8jYV69ZhqijHc8kSxFIpk3xc6epsx4z0PKam3eZAmZa3Q71xlT9ezUYr/11kZGTQrl07VCoVAF27dmXXrl0PnK9Wq+nUqRNZWVm/+7sgCHfbfWk0GmpqaggJaSqw/jiK69atWxk9evQjZSUkJLBgwYK7D5j/rND9s6w/GqtSZ8XKE+BviRLix0iUqCopw6JQ4OLsTKPUhLNWAVVp0PONR67dd2s/i04twSQ2MsxvBku6Tf6dxetSbhUAsX73t5aIndzRt/kG87nXmHHzIjlpMpxn/oUGcyG6m9tQ682oer1K8HEvqsqhvX8LClM0iERqCh32YyN2p76hBInzSGSNebRM+wS9nRqHdkMo/zoNkVSEy4RIamQiJl3N5rTejqFc5nzNNlpZJMyLGE5x4VZsFB4oHCcx7ZszXCttJECq5a0BzejWPu6hsVlGs4Xz2ZUcTi/mcGoxhbVNgfoeiAgihlidF0neG6gN+JJZYa8xLm7cPW7bh2GwWBiXkk1OVR1znJ0Rt7Hj6p1qfs0oYcflOwAEu6rpFOJCxxAX2gVrsFfeq7w4yKS839KfSXVuzD6XzU5nI0dOpjHPy43pUxbS72A/VuWt4Ss246M8zke+s0ks82WDfRQy1ScolJtwsfkYf+0zJEuiSDQKBJQX0QoXHCWF5OfGIZGcIzvvrziq8ohcNIct71gYc+NX8hPWsv1GBv1nzMHR3eP+BypVwMhNsHUU7Hm5yTUb9czdYd9wZ0YsbMPBL1M5+GUqBZnedHwmBI8li5G6uFD++eeYK6vwWvYREltbQlRKfo4N5dO8ElbmFnOgXMs4Lw0v+brhZS1a/L+SJT+nkV5Y84fKDPey561BEQ+dExkZyaJFi6ioqMDGxob9+/cTFxeHRqNh9erVbNy4kbi4OFasWIGT04OtvjKZjISEBKKiolCr1YSGhrJmzZrH3uu2bdvYs2fPI2VlZmaSmJjIokWLUCqVLF++nDZt2jxQ1h+NNabOipUngNBoBokIkfTRX8HK6moQifBwMSKIRTiXVoKdZ1MHiYdwpeQKC07Nx6DXMDloNW93n3KPAnTpdhUBGhWudg92F8rb+1BqmkPuzWDEUgtO0oNkZy3Ds8SAIFVibjaEhkIltl4CRVkFaCpbUm++hkqsRDAb2NZnHAUd0vEr12LfYCDLyZ7cVSex1BpweT6CAhsRg67c5IJWxwKvepIK1xGg9uLT4jLCj+3HU9OP7WeP02v5ITJK6xnkruWH1/rRvcP9e5oaTBYOphXz6tYkYt85zLj15/n+3G2Cas0sENlwsLkfR4bHsnFuFz5ZNI69Y36ko08HlmUsY+HpheiMukdeE2h6Wp91PZ+TVXWsaOHLa9F+/KVXKF+/0IbLr/dm/6udWTQgDB8nFdsv3WHKd5eJWXKI59afZ29KIY2me7Mogm1t2N0rgi89PLExwV+ryumZmI6hWwSrhq1haf1chFojc67Mos6UwI5IPF8AACAASURBVLYoZyLt7al2mUi153zSPI/Q33kvc93VWOxc2NUYyJ6aVmRYWpOV2YGqKk+0+s9R5b9Nw9iJbG3eC9/KWlxPnmHjnOlcPbyfB4bkyGxg1Fbw7wg/ToFrO383bOes5OnZsUT38iX1RAE7P7xMdUk9rq/OwP3NN6g7cYKcwUPQXbgAgFQsYlaAB8fjWzDIzZGvC8ppey6D2dfzyKm3ZslaaSIsLIz58+fTu3dv+vXrR3R0NFKplJdeeolbt26RnJyMp6cns2fPfqgco9FIQkICSUlJFBYW0rJlSz744IPH2sP58+dRqVRERkY+UpbJZKKqqopz586xbNkyRowY8bvv1D/L+qOxWuqsWHkCWBrNj+V6BdAZmm5wbrbFVNWaUFaUQ/fXm6wlD0AQBBaf/hCL0Y7Rfu/xl66t7jvnyu0qujW/1z3wjxypOk6t+AKtcnQ49omnvvoAZaV2hJUZEYUN4VaangadkcEvtuLnjeVYLAYaLacQVBFkePsyWb6ScNlVXCr9aVA44xr+CiqjHbluNym0bckLl29iFgRWhyhZcWoGjgpH1g74DoeyW1g2jWDPbgVr9RMJtM9lWkwZz/Z78x5rmiAIXMmrZlfSHfamFFFdb8RJKqGLIKETNrRzskUT74m6tTsSu99bghwUDnzW4zO+TPmSz69+zrWya3zU9SMiNA+2IDRaLMy9kc/OkioWBHowyvP3ySpisYhwL3vCveyZ3CUIg8lCUl4VJ2+WsTupkFe2JOGkkjEs1odRbXwJdf+9+3hQmDu9AzW8/8t1NikN9LmUyYtuGha8OJZ25zvzzYX1fG/Zz9nis7wa+xdG+vbm3Wwx1TbvsUO1n/DS5ayUTiLbZMP3QiOHq5xIFHWj3Y1m9A38ATePo8QUVPJNp5dQyiQ8nXoQW5UtR9atIfP8GfpOexV7l/t8LuQqGP19U3u5HyZBSRr0eB3ETZ9liVRMp2dC8WnuxJENGWz/4BJdRzWjxZgxKMPCKFywgLznX8D5+edxfW0mYoWCEJWST8P8mRPgwef5ZWwtqmBrUSVD3ByZGeBBc/UjsnSt/Ck8yqL2n2TSpElMmjQJgIULF+Lj44O7u/vd8cmTJzNw4MNrdf4tKSE4OBiAESNGsHTp0sd6/++///537tKHyfLx8WHYsGFNbfbi4xGLxZSXl+Pq6npfWX80VqXOipUngNBofizXq8VsxgAggANZqAsbEMQyRK1feOi6I3lHyKlNx0Y3knl9Wt53Tm5FPRU6A3EBDw9U33p9KwPuFAIiJNEvkx2mwy3nPBJjI3i35tqJAhzdVYgkIswVNtTXf4/F1Q0LMCLoB1zlZSRdj6H5nTTKe7xCqNKVI7qbnKrI5JcrN/FVK1kf7sWbx1/EJJj4ovcXuKncqPd0ZrLNZ5wulTFcksiIrgXUNZ4hJ9eBoMCmwPuCaj07LuWzO6mA3Ip6FFIx3exU9NJLaWORYRfpgjreA0WQIyLxg920YpGYF4PH0UbnzrdHl7Ph5Cj6q9rQ3OCMsagYwWBA4uyE1NGJajcPZoW1JtnGjleFeiZXFmEQG5A4axCrVfe1HsqlYtoGaWgbpGFW7+acyipn28U8Np7NZf2pHGL9HBnVxo+B0Z6o5E3/lpVKKW8/HcnTl4tZlJrHOnEl+05r+bhlADOj3qDvTz1ZVvM5Sy8vJVK9h42dF7Ol0oHvRYNIVrVlku0mVsqHsuaWN9er9HwvGDhS482pq9NZ0LiJQP8rDDWvY3Xz8dg42tPv1A76Nm/G8Yw0vp0znW7jJxPZvfe9x6Owhed2wf65cGolFKfA8K+aChf/RkCUCyNfj+fw12kc+TaDO9er6DI6iqBduyhdvpzKDRuoO5WI14cfYhPRpCz42ShY2syHWf7ufJFfxreF5ewpreZ5bxfmBXrgJLPerv5b+VuyQV5eHj/++CNnz56lqKgIT09PAHbt2vVIy5e3tzfp6emUlZXh6urK4cOHHyuWzmKxsGPHDk6ePPlYsoYOHcrRo0fp1q0bmZmZGAwGXFxcHijrj8b6LbFi5QkgGB7PUlevrcasVCKzSDHW3MSrpBEhYhgi23uL7/4Nk8XEB+dWYm505bV2Y1FIf3sfixkKkyH7KOQkcqkhHmhFaz/HB8pKLU/lZkEKMdekKGM6UV1ynfKAq7SvcQWRnvL9X1FS2owOw4PZt/oERt0hQI/ZwQUxUJ3jRt9Rqwja/DH1zboSaN+SdIuW/aHNOBEVi3dRLpN15Ww0ZpFZlcmanmsIdAikoFLH6M+Pk1cn5WnnApYJ2xGdEXG9Ry9yc1ejra9lR+ZQdly6g1kQaOvjyPNqWzrk6VHXSrDt4INdV18k9vfGZxny8mi8dQtDTi6GnBwMubk05uZgLivHBpj2t/MoPku+kxKXgDDkDg6YyytIrdGxoG1vtBI5b325im5XzpP3D7JFcjkSjQapRoOiRXNsWrbEJjoaRUgIIslv1iyxiK7NXOnazJXyukZ2XSng+4t5zPshhXf2pjM4xovR8X5EejsA0Kq1B9sCHVm9PY3vvMyMuHqLYS6OvD2yM2tvR/Pjoc18btrClF/GMD54HNtavsDMFCNFnrOYVJfI7E7lTA0eS/iWI0zLqmOfvRsJN55nqN6FDi0OMdzgwCfmodg87UjXn76mb2gIyWE+HFr7KTfPn6bX5On3Wu2kChj8KXi1alLu1nWHUVvAPfzuFFsnBUNea8Wl/blc2pdDcY6WbmOa4/Pmm9h270HRokXkjhyFy8sv4TJlCqLfEjXcFDLeDPFiup8by3OL+bagnN0lVcwN9GC8lwvShyjnVv7/ZPjw4VRUVCCTyVizZg1OTk4899xzJCcnIxKJCAgIYO3atXfnBwQEUFNTg8FgYPfu3Rw6dIjw8HDeeustunTpgkwmw9/fnw0bNgBNSuGMGTMoKyvjqaeeIiYmhoMHDwJw8uRJfHx8CAoKuivfy8vrgbImTpzIxIkTiYyMRC6X8+233959MLqfrD8aa0kTK1aeAGVfpyLoTbhNf3j2avGtm6z9+mvs5K6M9U7A/U4pwotHEfm0fuCa7Te28865d1BXv0jic0ORZR+BW8cg5yQ0VDdNco/kr4Wd2WeMJdn/U8Txk5sC3+W/74G66NQihJ37ee5AA37fbSHlzpsI0tu0v3IHUfwUTp51Ib00kk4RSRy6UI5guEF2hC+uFjfc3XMpKQmklUZD2PeHUHWegyTQnhdCcrgqDiLitp6WF3dRqz7H+YgqpsdMZ1r0NC5llzLh6/PoTQKTIyTMGdMPSVU2bByKuUHLnsguONie5+SdTphkf2G0UYZjRjUiqRh1O0/suvjc42I1lZWh3bsP7e7dNN74e0cJiZMT8oAA5IGBTa++Psg8PZF4erKz7DDLk1bipHBiaZellEpCeSU9DyeZhK+beRFh0GOqqMRcVYmpshJzRSWmyoqm19ISGtLSMWubOi6IVSqUkZHYRLfEJjYWVZs2SGxt7+5DEAQu5lbx/YU89l0rotFkIcrbgdHxfgyO8cJWIcVitnBqXw6f5pdypoUSe6mEBSFejHFzovRsJitTPuaw3Vm8xR7M7vBXDlU6sanWApY6OhmusLnvdITcfAoXvkejzo4LkT254XGObpE72Hl9KAfvdGOWJJk++3YidXen9rnRnDz4EwgCcYOH0WbwcORKm3s/cHnnm0qeNNbB0DUQ8fQ9UwoyqzjybQa1FQ0Ex7rSYXgIaqmB4nfepWbvXhQtWuC5ZDE20dH3rM2o0/P6zQJOV9fRXK3k3RBvOjs/OtvZyr/P/4aSJv9t/LslTaxKnZX/77m8+waGqkbajol4LJfnn0FpwlVEMjGuL0Y9dF7amUR2HDqCr10AI4S5iC0C6nnlD5xfb6yn147+VGntWOfzLJ2TZoHFBPY+ENwNgrpDYFewdaX3imP4SKr4RrECSlJB4QCtxkKbF0ETTGVDJX229+Lzr6W4ugXi8MWrJCWPJ/xKGJ51iZimXuCbj4rxVWdSXpRISV0lGYEQaNsKO4dCRo58hltZDug/+IzQ0PFI3Z3Y92wAb9wupodSR8T2O9TIyvglbB0+ZUqiGscT2a0nS/ZnocDI2728GN6zHQDF2gY2HTrNsNRX8KCcgzG9sXc4j31RRzwzX8S2nS92nb2R2P5dmbM0NlJ39CjVu3ejO3UazGaULVviMGgQNlGRyAMCkDg+2EoJcL3yOnNOzCVDFIPOYTit7VV8ExmIm+LR5TcEQcB4+zb6lBT0V1PQp6TQcP06GI0gkWATGYmqfTvU7dph06oV4t9KIGjrjexKusPWC/ncKKlFLZcwpq0fkzoF4eGg5M6NKjZtz2BXcxm3XWUE2yhYGOxJX6WK47/sZbl2DQXyUmLtY+jXfAKLc/RoVd44N1xnZ/sehKmdKE9IoHztOmS+IRSM7YnebQ1fp43lQmksYxuOMS7xOFKVCudlH3L2fCI3zpzE1smZTqOfJ7xzd0T/nCFcUwTbx8OdC9DxL9DjjXtiPk0GM0mH87hy4DYCENvHj1Z9/dEfP0LJu+9hKivDcdRI3F57DYn977usCILAL+VaFmcVktdg4ClXB5Y397W6ZP/DWJW6Px+rUvcvYlXq/rswGMx0fvMQDQjs9HAjaGIUEvvHKwz7n6Rk1RUkzkpcxoc/dN6BLVs4l5lJfHBb+uaMosLdGbepOQ+c/3lyAglXP6d1+WC+qf8SkXsEDFsHmhD4h9io6noDMW8fZm7f5kzvFgz555tq36XvAQRo9zJfuXpyYtcaFm634LnsI256fkNjQwntTuiwGORkdfuBY9tukud8G7dbP1Dj6E6QfxE5hnj69LWjQ/vZNGTdpuTjCwgqBz4P07IpMJS+Lg58FRnA2ZvnmXXyNaRmBT2v+3O7zpOTms64Ser5YmwrYsNDuFFcy1eJ2exJLsQiCLwQo2ZOwQLk2htkePegODgJjUM3wqOWIZc7A9CQkUH1jh1o9+7DUlOD1N0dh8GDcRg6BMVvgc2PgyAInK3WsTyngDNaPQrdKfoqr/NRp3dxVD5cGXwQlsZG9EnJ6M6dpf7sOfSpqWA2I5LLsYmNRd2hA+oOHVCGh4FIRFJ+NRtO57I3pRCJWMTTrbyZ0iUYb5WcIxszOFxew8k2dhQpIc5exZvBXkRoDXy3dx2blT9RLa2lm1c3cso8uOTeCxEiBjoJvB8Zi21GOoXz5mPIy8Pm5adIDz3OJ8njuFkdxLCGC4xL3IfSLMLzgxXUBblz/Nt1FN+6iUdwKN2en4J383+62Zsa4Zf5cPkb8GnT1I3COfCec1Bb2cCZH7PIulSKrbOCjsNDCWhmQ/lnn1G1aTMSZ2fc58/HfuBT98TzNZgtrM0vY3luMV4KGV9HBRJhex/roZU/BKtS9+djVer+RaxK3X8XOw9nMedIk7vtWbGcWXYOuEyIQOahfsTK/yxFH11E4W+P88jmD5337cpV5NRUM651GCGXp5AfHobviHP3nVuhr6DPzv5Ite6cqr6MzNEHJh4AlfM9c49dL2XChotsndyO9sH/kLlZWwLH3sV8ZSP9/XyZuUtBaLUah20LuXZ9Oi1dXsL1x3eoMk/ncGN/CgwNmIs+RSwLoLbFBTSmeMQyMdPmfYhILKfwjb1YTHakdFczVSbBpaGOXbHN8PFw4cWDL5JekU7/9KncqHfnvFJMkC4bJ6Ge8F4DyKvUcyKzDKVMzLOtfZkQ4419YhGNafm4qt9DZk7hTu/R3DQcRya1x7d8IMKWazRcu4ZILseub18cnx6Kqm3bu/Fsj4NFEPi1ooZPb5dwqaYeF5mU1/zdUdcd5aNLH6Kx0bC863KiXe91Ff6rmOvqqL94kfpz59CdPUdjZiYAEkfHJitehw7YdupEscKBLxOz2XYxH4PZQp9wd6Z2CUaWo+Pkj1mkBitJjFFRbrHQ38WBN/w8UJ64xXeZm/lB8yuNYgPNJM1Itomj1qk3Uiy84O3Cqx7OWD5ZRdWWrYhifMh+XuCdS6OprHdmuOEKA08fxFFbh6rHBNymv0BOWQqntn5LXVUlYZ270238i6jsHX5/UKk/ws8zQbDAwJXQcsR9j70gs4rEbTepKKjDI8ietkOC0ZgKKX5rMQ2pqag7tMfjzTeRBwTcs/ayVsek1Fy0JhMrWvgxzN3aleI/gVWp+/P5U5U6kUjkAXgBNkA5kCMIguHxt/vksSp1/z0IgkD/949SX2ugQ6wXO5LusEHlSJBJhGZcGMrQJ3cjKHznHDaRGpyeDn3ovE+WvEOVycDcGCPqawnkdB9EYNdN95377rn32HZ9G5sLtESpbBFNPAQO3vedu+zgddaeyOba4r7Y3Cdh4+iVtXx4/DNWrTPj0tWF7OeVmEUW2le1QnR5I/ktDvLTkSoMDacQDLnc8femXXQi6de78TS/0DLEn0oWok+tpVB9k4nd41EgMOTycWT1ddTE1bC3cC9LO33IL0ft2HurhnCDhZa6bbhWV3PBsTVJmra82CWIFzsFIrtSRs2vt0EAu55+2LV1RrRrEg3nD1Mka01ebA4mDwv2Sc4Euk3DadDwR7pW/xmTRWB3aRWr80q5rmvAVynnZT83Rnk4YyNpcjemlacx+8RsSnQlzIqbxbiwcX9oY3pjaSn1Z8+iO3OGujNnMJc1udpV8fE4Dh+GoWNXNl4pYePZ22j1/4+98wyPotz78D1bk91Nsum9hxSSQOihg3SkC4JSxIp6rKioKIrHIypWFMWKgkjvIF16S0ggpBDSe8+mb5Kt836IghEQPSr6erivK192nmfmmZnszm/+1cTgMFce7O5P3tYCysqbKBjhxk6tFYsoMj/IixkGGXmbE1kt38Z3TscRBAF1kz2F3mMw2N2CUiJwn687s8ryMC5YgLGxnKxnAnk5bTpYZIwR0xhw+gR+pSU0BvTA95aHsenlRmrxMRK+24xSpWbw3XMI7zOg/XWoK4RN90PRaeg0DUa/BTb2V5yv1WIl/WQZZ77LR19nwCfckV5jAlDE7aLqvfcRzWbc5s7Fccb0K1y+lQYTD6Tlc7pez/0+LrwU7I38ZhLFH8pNUXfj+b2i7rqVTwVB6C4IwieCIOQDJcAZ4ChwAagXBOGoIAgPCYJw5Tf2Jjf5CzmZo+NiYyvTHe2Zd2sEaqWMZS4SpFoF1V+loU8o/8vWZjVYEJTXjwfSm4xIDSZsahJoVUiQuFz9B7agoYANGRu4tdFImESKMHPbNQUdtHWSiPSyv6qgA1hTncBtSTYIMimm8AKaWnMJ0vshpGyCsFHsrDYgilbMpmwE+9F0jdpNeUUUGo2KyFH303hRS0tqI1UFB5g7uDsmUWRtlw48PnsWFU4V7CzdSX/VADYeULEzp4FQZSuDDLY4CXeRaxdEz7pEBlV+z6kzhdR+nkL9rjyUQVrcn+yG3UAfmpPTKPxeTd5eNwy7Cwje4YindCgNXWrI6rAevbT4190IILu5lTdyy+h1+gKPpBciAksj/DjZK4K7vV0uCTqASJdI1o1ZR3+f/iw+s5gnDz9Jdcu1Yxx/K3I3NxzGj8frzTfpcPQogdu34fr4Y5jKyih99jlqRgzlzuOrOTjamWdHhJFQUMsdqxNICFMQ1MeDDrsqefpECz1tbVmQXcIdDdWoH+jDXJ9H+Tz7JQYaelCvrsFFtwrPvMeg8SgfFVYw2KJh7cfLYfx0Ql/N4Rmn1bSIMg7LQzjaZxAXIiKwyz9D0o4FnNiaSFBWB8aPeBp7R1d2ffAWWxf/m4bqqssnovWD2d/BoOchZT182h+KE684X4lUQmR/b2b8O5a+k0OoLm5i09vnOFUfjcOXG1H17EHFokUUzr4bY3FJu7luSjkbYkJ4wMeVz4urmZKUTaXB9Ifdi5vc5P8j17TUCYLQHXgbGACk0CbkzgFVQAvgBAQCvYAhP0xbDLwjimLrn7vs/56blrr/HWZ9fprUnBr2DAzHbVQQK07m8/L2NJZNjaH72RoMWXXYD/PHfojfDV2XaBEpeeE49kP9sB/qf+1xosi/X34Zhd7Es66rqNK0Yp2wFE+fqVeMnXvgEY4VHWZTcQ0+9+xC4n3trFqD2UKnhfuYEevPgjFXxvTl1uVy59pxfLFMwHH0GArHnkLSVEPPkwUIwOGuL5K8KxLRVIxEokXvmUtkt00knruVIUOG0NW2A7Ubs9CXnmLuEB9S/DuytnMIfRw15NblMu27abiKbtRfmEKx1QVXaQtVFls6O6gYqZNgbGkhw+YTgovNuNoG0MVtPBnRboyb2hHDsaPoPvuclvPnkTo743TXLBzDRaRHXwalHbpRj5NetxqjqYbAgH/h6zsbmezKTEmd0cy2ylo2lNdyrrEZCTDIyY67vF0Y5myP5DrWN1EUWZG2gg/OfYBSquTRLo8yNWwqUsmfk4gjWq00JyRQv3kLDXv3Ira0oAgORt5/ILuVvnxQocIskzM5zAOflCbEJjP1Yzz5SmPEDCwI9mJqHdRtySbHks83YXs5ZUhAZhYwyh0wu8yiwbY7thIpM2hlzOJ/c6azjLet9xJqV8xIczP2+an0jD9Dg1LNp31nMcwujAEWGbnWFJJLDyGRSel/52w6DxvV3qpWeBo23QcNpTDwWej/FEiv/kJjbDWTfLCIc/uLMLaYCe3pTpTyIg3vvg6iiNtzz6KdMuUK6+im8hqezijCQSbjpRAvJrhpr3sPb3J9blrqbjx/pqXuCJAERIqi2FkUxUdFUVwuiuIOURQPiKK4XhTFN0VRnAS4Aw8Ak4Bn/rtTuclN/jjSyxo4mqPjNhQ4RLTFjE3v5UeYux2L9mdgNz0cm0hnGg4UYDVe2a7pz0Q0tR3vepa6+vp6RIkEF4kJSWsD9fZyFKorrW9pZWfYX3KEGfVNlPX77BcFHcD5onoMZiu9Aq+MtQNYm7GWoSkCUoMZ6ygvmluLCOryDoJPTwwSJfsOWpBiQ5PSiElhywRjVxp105HL5UQ6BFO7OQvBVs/r4TYk+nXk/ax36KOLo9nUzFNHnkIptaG57C6KrS7EyIoZLU9lbkQza5/sw8wXYnFz1RKlf5Rg7UiqWgrYUbuCvbs3cGrQSIr/9QhmnQ6PhS8T8v0BXB54AOmAOXD/QVA54bzxRXoZbsHVZQi5ee9z/EQ/MrNeo6WliNJWI6tLdcxOySXmZBrzs0owilYWBntxrk8kqzsHM8LF4VeJAUEQmB01m83jNhPtEs3r8a9zx3d3kFKVct25/w2CRIK6Z0+83nidDseO4vHqv5E5OaFftZIBn77Cxl0vsfTscoxbVrHXkElBsALV9hKeON5MZ7mC5zOLuctUh+XhaDqGxvBS0j28p3+BQIUfErEO24oPcSx+HAdjGp9bFUyb9xpFoXdyj34LmY0+HFRZkUS5cXLYSGxEE08f/IT4wsPMsNVT4t6V4R6zcRTc+H75Mr59ei4laRcuL94vFh48DlGT4PAiWD4cqrOuep4KGxndRwcy8z+96TrCn+yzlexMcKVlwdcoO3Wm/KWXKXpgDqaKinbzbvNwYme3UJzkUh6+UMAtZzLYU1V/7ZZnN/l/xZIlS4iKiiIyMpL3338fgIULF+Lt7U1MTAwxMTHs2rULAJ1Ox+DBg9FoNDzyyCPt9rNmzRqio6Pp1KkTI0eOpLq6zcq+YcMGIiMjkUgk/NTo8+23317af0xMDBKJ5FI3iXXr1tGpUyciIyOZN2/epTnvvvsuHTt2pFOnTgwZMoSCggIADh061G5fNjY2bN269Q+/Vr9kqfMQRfE3+6cEQXAXRbHi+iP/Gm5a6v43mLsuid3nS9kstyf8pb4I0rYH9cnsau78Io6nh4cyW6Whbms2nvN73tCMWHO9gfLX49FOCkHT0/Oa49LTL7Bu3Xr6W4oZIt3AmRgHIobuR6Npn1yxaNMkNjdkMLJ2Bq8++dx1Y7w+/D6Ldw9kcm7BMLSq9vXc9CY9w9bdwpJlZlwDIyh5uBCF3JnuEZ8hvhvOXmtnsopmIMrdkKFCEraNwbrhrJclEhMeTbc0N2TONqzNXc/rE+9grruCeYfvQ6xK58WoQexoykEsu5fGumDkgsijgwLxN+Rz7mwCjo6OjIgYgM3xZuJrjVSZRGpVO1AVZWBjtuBZZWZ/6FAmPjmLYdFXcS0b9bB7HpxbBX69qRz+FLurznK0zsh5sTPFQptF1lMhZ7y7likeTn9I5qQoiuwr2Mfi+MVUtVQxOXQyj3d9HAelw/Un/06sej36M2d+iMM7hSGrTSxV2Go5FdKbFs8+uJocqRrpybdaMxZE7vJy4aEmKdadeVhazcRFZfBh3afUqFqRIMEs1eLs+wxZVh9sEelzNI7jLb50dUtiltdxdEmDCT2xHZcqHen+wbwdPRWJ1pUHfd3xSztDSvH3tFr0BHh1ou/EGbj3DkeQ/2A/SN0M380FUysM+3db+Zyfl0f5CbXleo6uzaT4Yi2ufhq6OOVj+fQNBIkE5wcewGnWTCS2l++hVRTZXlnH4rxyclsMdLFT8VyQJwMcNX9o7OP/Cn8HS11qairTpk0jPj4ehULByJEjWbZsGd9++y0ajYann3663Xi9Xs+5c+dITU0lNTWVpUuXAm09Wb28vLhw4QIuLi7MmzcPlUrFwoULSU9PRyKRMGfOHN5++226d7/SKJaSksL48ePJzc1Fp9PRpUsXEhMTcXV15a677mLWrFkMGTKEQ4cO0atXL1QqFcuWLePw4cOsW7eu3b5qamoICQmhuLgYlUrVbtvvtdT9kqmg/tfs4Of8nQXdTf43KK1rYfv5UibJlLiFOF0SdAB9QlwYFeXBR4dyGD06CgVgbbUgvYERoaKhzVInuU5HicLcfAD8VTqsRmjUyFAo2neSEI0tHKzLoEOrksGj7vlVD664vBrC3O2uEHQAO3J2EH6hCY3OivhIAK2tpwgPe43Ks2txt5opz3NAahtAk7wWuWAg2n8f+QYZ1lY7glPVD6szCgAAIABJREFUSOzkFLsV8F7YRHpJrDwVEQEh+9m84Xa2N2UzRGfH3jpvwu3MrHp0OC72KiCK6IgItq7fwtqT24hWBzFsUm+OfXEamseiFW0otklC72uLyd3I/avOMbtvHc+PDr/ULaPeZCa9WSS9+yuku04hvaqU1It2tEhHoBAgWqljkHEdUdZTRMgd8FXNwN321l9xt66PIAiMCBhBX6++fHz+Y1anr+ZAwQEeinmIyR0mI/+FHr2/F4lajd2gQdgNGgS0JVroT57EuG4z487tQZKym3T3UKRVsTwWEUvyKG++KKlipSDwwARv7jrXSOz5MGI9l/JV3efs0ibQpKqhNv95vJU+OPi9wIEBsYTl1nA2Kwa5aOGewV9R6DyOpsQyws+fYUn1Enb2Gsyb+ljstAE8MuAF3M4dJjXtEGs+eo6Q1d3o1ncsTr0CUXaciODXG7Y/CrufgYxdMP6ja8Z/OnqoGfd4DNkJlRzfkMW+Ihc6PvQZ/udWUfXee9SuXo3rY4/iMGECglSKRBCY4O7IGFct6ytqeCevnKnnc+itVbMgyIuuDn9t1vtNfjvp6enExsZeEj8DBw5ky5Yt1xyvVqvp168f2dnZ7T4XRRFRFNHr9Tg7O9PQ0EBISAjArxKua9asudSzNTc3l9DQ0Ev9XIcOHcqmTZsYMmQIgwcPvjQnNjaWVauuTGzbuHEjo0aNukLQ/RH8kqirEARhI7BCFMUjf/iRb3KTP4mvTuQhiiJTjDKUoVdmuM4fHcHBi5W8k1LM84C1xXxD1/ejqBOuUwi5pLAEwWjAzbYYg0IKggS5vH1G54UzH1Ihk6A1xjI47CoN2H+GyWIlsaCWqT18r7p9U9Ym7k6yReZlT7H3AbTqHtg49KHixL8ob9HQYj8G0SSiMTni2HUFHYwDWd+qwM+ixcFsi6yLPU/qFCgQ+bhnJBJgeVIS75nK8Gh2YHF9Ks+oX8b9gW3I7Nt+0EyVzah21jGxqTvn/UpJqsgkf1UyPdPOoun7AOkMwzWgH4m1K9A0V9DPO4WVJUo2btMT6OtAqdlMyU8C5O1lTkR4OHFn6REGFn1HXw9P1KMXY7HtQ1n5FoqLV5J+8Tkys/6Dh8d4vL2mYWf3y/UCfw0ahYZ5PeYxPng8b8S/waK4RXxz4Rse7fIoIwJGIBGum5f2u5G7uaGdMAHthAkYikuI/3QVrrt3EFGxkuaM9QSe7MbI2EEcGN+TD6tr+MwPXnF345b4Wu7W38VY4yi+1H9OQoSOJkMxFVkP4eswhNygWailSuIudkMZZ2Zm39UYAgJJd7uDwNM7mHpoJ9EROezp2If/HNfj7xbFK/PHoNuzmfTEI+TtSibiRG9CvXrh0N0H9dCvkYetg30vwrLeMPw/EDPjqlY7QRDo0MMdvyhn4rfnknK4mDzNbXR58XYcdnxA2QsvUvP1Clyfmotm4EAEQUAmEbjT05nb3B35plTHkoIKRp/NYqKblheCvfCxufKF5ibXYfdzUP4Hhxd4RMOoN35xSFRUFC+88AI6nQ5bW1t27dpF9+7dcXZ2ZunSpaxcuZLu3bvzzjvv4Oh47YoGcrmcZcuWER0djVqtpkOHDnz00Ue/eqnr1q1j27ZtAISEhHDx4kXy8/Px8fFh69atGI1XFgL58ssvGTVq1BWfr127lrlz5/7qY/8WfknUbQOmAHcJglAErAS+EUXx6sEQN7nJ34CGVhNr4osY7qnFs9SKzVVEna+TijkDgvjgYDajUTGk9caKuh9j+K7X+1VXV4Pc0Ihday46rQSFRIPwU2EgihxIW4OggA4BM5D8inIOycX1tJgsxAZdGU93seYiLenpBOZaEO7vhtF8gKjgD/nsyA6eNBRwxNodo8ULUWJAaluHtyWXmpAlNF/cTpTVHxk5/CdDR2ZUAJ9YGmioM/DEjpNc4N8IUhuySx5hpVsW97Z8gfD5QOj5AM32U6ndqUOQS3DsJRL0ySpqHBw5PmAQB6N6IPX1p0qiptBixiKd3269JoORs2X1dHbUMCvQg0g7FRFqG7yU8jaLpaUjnLLAodcg/wjSW9/BJ/JOvL3uoL4+kZLStZSVbaSk5Fvs7Trh5T0ND/exSKW/7+05zCmM5SOWc6zkGEvOLmHe0Xl8lfoVT3R7gj5efX7Xvn8LSh9v+r/6LIYFT/Hdyh3UbNhEt+J4bDadIGS7hhmd+3B05CDme/hh38eW93V2dEyRME86n7Qzp9njF8dp3xL09d/j0HAMg8sMzMExHM3phfqoPZO7fIrN+DwKwnvhvk8k8sI5PMrLCe8dS3xtMNNXNzKyY1+eeHUC5zetIjnpMBeb4ggp6UKHQ12x8++KptdmVHkLEbY/CmdXwq3vgOfV6/8pbWX0nxpKeG9Pjq3L5OTxepyj59J1TB3WVe9Q/OBDqHr2xH3+89iEh7fNkUi4z8eVaR5OLC2s5JOiSnZX1/OgrxuP+rmhlv09Oszc5NpERETw7LPPMmzYMDQaDZ07d0Ymk/HQQw+xYMECBEFgwYIFPPXUUyxfvvya+zGZTCxbtoxz584RFBTEo48+yuuvv86LL7543TXExcWhUqmIiooCwNHRkWXLljF16lQkEgl9+vQhNze33ZxVq1aRkJDAkSPtbWJlZWWkpKQwYsSI/+JqXJ9rijpRFGcKgqAGJgOzgPnAC4IgxAFfA+tFUaz7U1Z1k5v8l6yOK6TJYOZOmQ0yVxGZo81Vxz04KJj18UUsaWpl0F9kqfullmVmsxm9oYUgSymCaKbBzhaF7GcCNfcwh4VmHFs8mDDgl4sY/8jpXB0APQOdEUWRWrOFghYjha0GVmaeZ0hqB0zKPArD49Hb9OSlEhcmHngMi0LgnN0c5I1tsYemDmdpif2Ac3uO4GhVIxvbnW3yCtY1yJh44gjZcj1Pfd+A2mcdErWO5oL7GeGnpsvUJ4ivnYTXsUX4HH8PibCMeM9JLPcZR4agpuHZRZfWKogi9i163CxVTHBwxZSkR6u3YBNwEf3xTXjpJFS6B7JVOYgdni6EjwjDq6PdZRe0VAb9noDQEbD1IdgwGy5sRxj9Nlptd7Ta7oR2eJHy8q2UlK7l4sX55OS8jZ/vvfj4zEAm0/z88v1qBEFggM8A+nn347vc71h6bilz9s+hl2cvHu/yONGuv9we7o9EqZAx6b6JNM4Yw5ffXyR543f0LDxP7LnDTErYxziNA6mxfVjcuSeSQR1ZXCohMq03oTVdGFISR+4ogU0Ne6nVLUduo6U1eAy7c8Kh4B1m1bwA/eJoClbSsKsnvkeTGbl3L56dOhMa2oG4jADGZFTxUL8JTJ00lbM7t3DhzCkyGuMJNMQQmtcFO5sX0PrEo676GD4bhND9XrjlRbC9ep1BVz87Jj7dlezESk5tzmH/CRmB4xcTqUjH8OUH5E26Dcc77sD18ccutRvTyKQ8F+TJDC9nFuWW8X5BBavLdDwX5MlUDyekN+Ptrs91LGp/Jvfeey/33nsvAPPnz8fHxwd3d/dL2++//37GjBnzi/v4McEh+IeuMrfffjtvvPHrzmnt2rWXXK8/MnbsWMaOHQvAZ599hvQnBc4PHDjAa6+9xpEjR1Aq28drr1+/nokTJyKX/zlhGb+6+LAgCN7ATGAG0BFoBXYCK4Ddoiha/5QV/sHcTJT452I0W+m/+CDBLmoWF1rR9PRAO+7abaGW7c3gzUPZHBvdCd8BV3dH/hk0J1VSszYD96e6IXe9ulWovLycTz75hAH1+7jFIY2zUfZI/PsS02PtpTEFq8YzxpKLsmYccY//B+mvsNTNWh5PQW0zXkN9OVOvp8ly+Wuramlm4/MPU9zdE/X0TF7iTTwS81lZ/wbn1OFsaXqQAJ0HFQ7wxQhnhhVWEZx/EoVdRz7oGorMbMa/rBj/smIO9uyHqm4v6oZVGCpHoncdj8W/vUgK0+cxL38lo6oPYUDBEbvB5A9/AV8PP0JUNgTYKijMyWHbtm00NzfTrUsPGlMc0BW24horsD9/EaEXFaBUcsG9L0eEDsT4O/PsyHB6BTm3P3GLGU68D4ffaBMLI16H6MmXWqeJokhd3RnyCz6mpuYYMpkDvr534+tzF3L57w+4NFqMrM9Yz2fJn1FrqKW/d38e6vzQDRV3P1LVaGDpwSw2nsimW/lFxhQm07HqAlKLgSo3D3b06o8kdhj3ldtgW9RKi7mJCrtSSkYr+Cz/ayqbK7FatRir+qJS9uHZuuN4uezEEmHAXOSG02otmoJ8dJ5aTnXrS7nGkeOGYASlLbP7BDI61J6MfTtJO/o9FrMZf59oOshicBY1OGrWorLsAFsnhBGvthUu/oVECrPRQtKBIhL3FmC1WInu64Zf5nb061Yh1Wpxe2ouDhMnXlG4OLFez8vZJSQ0NNNBpeRubxdu93BCc9Ny146/Q6IEQGVlJW5ubhQWFjJ8+HBOnTpFa2srnp5tiWbvvfcecXFxrF17+ffx66+/JiEh4VKiRGlpKd26dSM5ORlXV1cWLFhAc3Mz77zzzqU5gwYNuiJRwmq14ufnx9GjRwkKCrpiTbW1tQwePJj169cTGhrKuXPnmDx5Mnv27KFDhyuLy8fGxvL666+3i737KX9Jm7AfatjNBKYBLkClKIrXTuP7G3FT1P1z2ZBQxDMbk/l8eAQR+0pwnh2JbfjVy3YA7DxbwiPrk9jYtwPdx4besHU2xZVRt+WXs26Tk5PZvHkz05vX0sHZwLFOIi5+U4iIfKttQFUmy1fdwntOjgzVLOG922657nGrWo30/s/3GDxt0XRyZqK7IwG2CvxslBTXJpD68VPM2WNA95wMTde+vJEznik7X+U23zQ+kz+Msaitd2hLwG76jHmYzI17KUXH4DkPMr+wkpy6Rl5f8jq7xs3FSVrGYfkizPoQfFvHcnusFm1gX9QtVsTd+djrLQR3s6Xlw4VQkYb3BA8UrSkICg0MWwjd7rn0MG9ubmbfvn0kJSWhVqvx0USiO6/EPUTDCZcvkcXl4lljAw5aTjj24yw+3BLhzjMjwojw/JkgK0+F7Y9A6TkI6N/m7nNtb+WsbzhPfv7HVFcfQCrV4OszC1/fuy/1lv096E161lxcw4q0FdQZ6v5ScVeg0/POvky2ny/F0WzkjvxUhjUlY5OfCsC50I7IBk6ik8EdTYMSg7UFg7+FkqESFqcsoVxfhGiVY2zpjtZzEFPPHiaqczwyx0aEnUG4fV+NIJpI7hJBRmBHSrHjpDGIVhQMDnXmtihnVNmnSdm/i1Z9E66eAYQ598JXb8JZ8SlKyUUsTl0RJryLxK/LL56Lvs7A6W05XDxVjlIlIzrGFuc9SzGdjcemcyc8FryEbVRkuzmiKLK9qo6PCitJbmxBI5Vwu4cTs71dCFVf3cL/v8bfRdT1798fnU6HXC7n3XffZciQIcycOZOkpCQEQSAgIIBPP/30ksgLCAigoaEBo9GIVqtl3759dOzYkU8++YQlS5Ygl8vx9/fn66+/xtnZmS1btvDoo49SVVWFVqslJiaGvXv3AnD48GGee+45Tp9u357xjjvu4Pz58wC89NJLTJs2DWhLmkhJSbm0Fj8/P7Zv3w5Afn4+ffv2paioCMk1Xlb+st6vgiAMBO4FpgOIovj/4hXnpqj7ZyKKIiPfP4YgwJpgb/Sny/B6uTeVopWDugaCVEpite0tRWcLapi07BRLO/kx5s4b91BtPFpM/a48vBb2RmJz9QiI/fv3c+L4MeZZP8XWzZtDHevxD/wXwUE/BNfufJLppbtIsfrx8ZA19Ovgcs3jWUSR1WU6/pOYj+FEBX0H+bN0SDiO8svHfujAQ0xYdAI/hYbSZyo55/gRjUtXMMP9PAHqJp4w3UXHikHI7XIZ5FKJ3GEIK8v20DOmO7t8wtnQ1Mi8lZ/g7t6B4S/cx7h1k2iglQF1c/jYaS1C4QmMDoOprp8LUgW2kfVUvvESCALeb7+Npn8/qLgAe+dD7iEIHADjloLj5eLMJSUl7N69m+LiYhztXRCKfLBTuKAZVceGpPcIS5GhbZKDuz/f2fYkT+LClG4+PD08DDf7nzykrRZI/Bq+fwWMzdDnURjwDCjaW00bGy+Qn/8xlVV7kEiUeHhMwNfnLjSa3/8C8HNx18+7Hw91fohOrp1+975/K6kl9by15yJHsqpRWWG8qYUZTgXoD+7GrqyEBpWa0iG346vsgIfZBbNoQt7JgfI+Vp6Pe4/SlnQEiRmjLBypbX9GlRcxoMN+NNVmNF+4Yl9STqO/I0c796JJbUeFxJaj+jD0KHFUyRkf5Urn1ixq47+ntqwEtYMTEcG96dhagpN1JRIaabWfiCX2WWw7BSK1u3aSQ1VRI3HbcylI0WFrryDSux6HjW8hVlficNskXB97DLlb+4QiURQ519DM8pJqtlfWYRRF+jtquMfb5VfXLfyn8ncRdf9L3Ojer2FcdsH6Ag3ABtoyZE/86h39hdwUdf9MzuTXMOWTU7wxKRq3s1Ucc5Vxwt+G5MYWALyUchJ6d2z3A11a10KfNw6yINCde+f8qu/LH0LDgQIaDhTivagfwjVcpqtWraI27SSPKr/F5BbC0fA6QkMX4uszE5prqHo/ilu8nRHqRpL4yJvIpVd/64uva+KFrBJSmloIKjdQer6a+BeG4GZ3WeRU6Ct44KOhvLHcTOM0GQ1je7NxvT1RJRf4V2g83xNBUuUz2Jo1OBu+YPT0/3Dw8FGSZPmUR49mq1ZO9/Q03lz1MRGHDzJ582NkGk8TVTSHd6xdcL07CvJPULVbQLDqkVYto+ZUKcrwcHw+/ACFj8/lBYtim+Da90Pw8vBXodvd7dykKSkpHDhwgIaGBtRWd2xqAugxJphD9htJPLiTLplabAwSzH7RbCCaZlsn5gwI5v4BgagUPxHRTVWw/yU4vxoc/GDUmxA++opr2KTPoqjoK8rLt2K1GnBy7Iev72ycnQe2T1z5L/g7ibsz+TW8tiWNpIoG7K0C04LdmBzWSt7KlXifOg6CQE6vETg7d8VP6osggE2kM4mBRp468y3YxSGR12OROmJRdiJKhElOcfjsk+O8S48gQG7fYM66RaGwbaVBJhBXH0mh1RmzFeyUUkZo6wgsP0tr/gWkcgURUZ3oIU3DUX8Aq2hHvXk2Zu+J2Ea7oerqhlR99biksuw6Tm/LpTSrDo2jgnDJRTTblyKVS3G+9x6c774byVXKSVQZTawpq2FFSTUlBhMhKiUP+7lxm7sjyl9wA/9TuSnqbjx/uqgTBMEZuIM2MdcdsAIHaIul2/p3bgl2NW6Kun8mc9cnsaVFj12QPZVmCwLQ3V7NMBd7zKLI4rxydnXt0K5OlcliJfSF3dzv7sj8J29cVmLdd7noT5fh/Wrfa455++136FB5kPGq4+hdvTkdYSA66iPc3EbCsXdZH/8Or7o40dfmDT6ZevV6a3uq6rk7NQ9PpZyXgr3YviuL/JpmDj41qN24L1K+QL/oXYalSShf1MKGipmE7Etg0ohAAgtX8qBmENHZjyORlTM2WoK5wJO1NicpktqzuVNPNEqB1c/OIfDBOSz1s7Cp8mNs6wZyYMpr6FdlYmloS/UXFAbM59+mOS0Ph4BmPGb0RzJsPrhfpZxIXSFsewTyjkDQYBj3IWgvxz0ajUZOnjzJ8ePHsZgtKJs9CPeLIWiChrcSX4P4QqLztUitEup9u7LR2hF7J2eeGRHGxC7e7TOF80/Ad09BVTr49YbYhyH8VvhZyy+jsYbS0rUUF6/CYKzA1jYAX59ZeHpOumorst+C3qRn7cW1fJ329V8q7kRR5FBaBa9uTCGv1YiLIOWu3v6MD1OS/s1KXL7bgaqlmcIOXZEG9CPYtgNyiZJqVyVPttZQTBIKjwMIMh0CZkTBBjulJ8NbKhm5WoK2sJZWXz/ie4VQJnNFq61AUOhJrYqhXh1CTrMSXbMZZ1MNg80ZeNZcBGMrfq5ShnnmoTUVYJR2pLb5AUySDqiiXVDHeqLwt7+iRqMoihSl13B6ay5VhY1oneV0qD+B5sAK5G5uuD7xBA4Txl8Rbwdgtors/ME1m9LUgodCzhxfV2Z6Of9Pxd3dFHU3nj9N1AmCMJk2ITcSkANptJU1WSWKYtnvWfRfyU1R98+jodVEp5WnaO1gz1CZkn7n6hg/sSOevm0V/etNZqJOpHGfjwsvh7Qvctpt/m762alY8vzAG7be2i1ZtKTp8Hox9qrbW1paePPNNxnXvI1odSkNjgJJUWq6dV2H1q4zvN+JexzVxFk0fNBvLUMiPK7Yx/nGZiaczSZMbcOmmGBsJBJiXtnH2BgvFk287GoWRZFJ62/l5UUFiF2lXJjuT8mXEryiY5jqcITimiy+qn8F96YgXOq3MaDLdJKbCzhFGpuDBlLp68gHp/bTefN6Mt5fxPzM55AYPdkz5Ru8nB3Rn6ugdl0mIGLM2ogh8zAeTz+O1qcUIe5TMDZCx/FtPUHd28c8IYqQsBz2LQBBAoOfb+tAILsch1hfX8/Ro0c5e/YcolXEQfRlwh0jOSc7zUcn3iMoXUp4oR0SqZx8j27sFiLo4OvKvwaHMLyjO7IfLZwWU9uxTi1tE5RaP+g5B7rOBJv2nSGsVhOVlbspKl5BQ0MSUqkKD/fxeHtPx87u9z0A/y6WO1EUWfVdFh8dy6FcsCIHBge5MKuXB6YTe5GuW4trRRnNKjvqoobj69ELq8SBFyUtJFjNdPYpI8v+K1B4IpgrkFjqQISxGTbcvrsFuRFqBvbnqIczZgQ8PPJQKFspK/PHYhdNi2MwabUCqYU6AlsKiLXm41iTTUe7MgZ5FGIjMdCknUBj7XSsBhtk7io0PT1QdXVHYiu74lxyk6qI25ZLbXkzLq5SgnK2oTm7G2VEBK6PP4amf38E6ZViTRRFjtQ28mFBJSfqmnCQSbnb24V7vF1wU/55RaX/LtwUdTeeP1PUWQEdsIY292ri71zr34Kbou6fx1uncninuYE+dmo+yzZjzGvAc36vdm/u08/nktncSnxsRLvPR720D61UwpqXh96w9dasvYihqBHPZ3pcdXt+fj5ff/01Dxu/QOnkR7M6mwthdvSOPYgqO56GrffT388fa/0AEv71/qWuCj9S3GpkdGImConArq6huCnlpBTXM3bpcZZMi2F8zGVhe7biLF+/OZOHdlmpnmviZGkn5CUqHpr/BLYrhvC2gzs2GR8jiC2MDlEh0clZqoij1smBXZ17crudgjmzpmCZMpk7vE4hyuv4uN9yBoRG0ZJajW7NRaw1ZxEtdkgcg9B0V+E45Yfzbq6B08va/oyNEDGuTdx5RLW/ILX5sPNJyDkIWn8Y+jJETrrkkgWora1lz84DZGRfAARC/aPoP64HH6V/xJHUvfTP88a9ACQ2apKdu3FKGoyzsyOz+wQwtacv9jY/PKCtlrYuB6eXQcEJUGggZjrEPghOQfychoZkiku+paJiB1arAQeHrnh7T8fNdRRS6X/feu7n4q6za2fuCL+D4f7D/9QOFT/H2Gpm+64c1sYVkoIRgwDedkqm9fKlY2sRlTu3EXrqOCpDK02+Mag63cpyuRubMNFDKaeffxorJFswaXtiEQXQx+HYUMPdBwT6XjDToHWidNxIkk1mRFHEzS0fR8d6ysq8sVoDCYjsToHgzs7USsoqdIS35tLPksEQ2XFiHMtoFdRUetyL3DAWa5kBQS7BJsIJVWdXbEKdLrcnA6wWKxlx5cTvzKOpxoCHswX/cytR5yYgc3fHYcIEtJMmovD3v+q1ONug56PCSnZV1SMTBMa5abnPx5Uu9n98V4C/CzdF3Y3n94o66cKFC6+64ZVXXjkPzBFF8buFCxf+v7XM/ZzPPvts4QMPPPBXL+MmfxCtFiuz0/IB2NkzFNOOPGzCnFBFtU8cMIpW1pfXMtzFAY+fvGHvP1lIucHMrFtCbtia9YkVYLKiib16wnhmZiaFWamMkJygxSMWvSSPWkcFwYFzkex8kv22NhxQWOlmN5PJndsneDSaLdyelEONyczGLiH427YJix3nSzmaVc0r4yLRKC9bMpadX0b/tenYayTkjHBE/72C0Q/PRX5+PYqac+xtvQc7fRDOQjmBoisrJNWgKOVYr8HYKRUs3rMZa8ZF7u1lg8k+i/uC5zG16xCakyrRfZuCKXM9LfEbkHuBbecBtKQ1I4qgDHJAUKjaEiK6zQapElI3QtwyqMkDz5jLFjJbLXSaCr49oOAknPkcsvaBc0ibRQ2wtbUlunMkoSHh5KWVU6zL4nxCMjG2XRgWM4ptqpOkacsJtLjhWZxJt8YUPA3lHLxQwtK4asr0VgKc1WjVyrZs2C7TIXQUGBoh6VuI+wR0OW3b1Jf/t5RKd1xdh+HjPR2FwoXaunjKytZTUroavT4bq9WIUumOVPrbsikVUgVd3bsyNWwqTjZOJJQnsClrExszN6I36wmwD0At//NbXkllEjpGuDBpUAB9ZLZYcpsoazayJ1/H7mIr9n0G4vnwPcS5uNJcnI3n6c10zz2Gq9aLbUpHCnWuvFU7jFijhKrWOCzOQdh7DGV3iIRc50q6ZOnxSUjBIDZgG+BPVaMjVVWeaDQ6fHzTqCzJoDm/gqldvZgyuCuN9j5s0PuxxdSD2lYtkZIsvFuOUlO7h0JPB2w8fBHyzTQnVtJ0shRzdQuCXIJUq0QileDqa0f0AB9sNHLyMprIt+2EKXYUahsLxi2rqf3mG/SnTwMCCj8/BMXlpAxPpYLxbo5McndERGRbZR1flVRzqKYBlVRCsEr5j6t3V11dfakV1k1uDFe75q+88krZwoULP/s18//r7Nf/r9y01P2z+FdSLptqG5gtU/HvAE8qP0rCaVoYqpj2GW61JjPRJ1J52NeN+cFelz5/5u3j7NU1kPz6lQHyfxZVnycjmkXcHrp65fwdO3ZQn7iFGWyiPnoOFfpVlPo5MSjoC1g+gjlhAzjerOOm91vfAAAgAElEQVStnhsZHX35XMxWkZkpuRyrbWR1p2AGOF2O87pvRQLZlY0cfuZybaRmUzMzPxzAfz7TU3+bmSR8Udr2Y+YzL9L4hj/JNiKpBV+BRc5grZxyGeSFlbBJasNZryBW+zvjOf5WVvUOYHvfPGI0w/nmtnfQJ1ag+zYBw9lPMJdn4/zAA7g+/hggoXZzFs2JFah7eqAdG9zOkkJLLZxYAqc+brPCxT4M/Z4Em5+UJbFaIHkdHPwPNJS0Ca8hL7WLyxOtIoe3JBEfH0+rTQWiYMXDw5M6j1rW163H2+DAaEN3ZNk1NFRUIAoSSmy8yFIH4xrZlVt7hTEyyuOy+G0sh5MftrlnTS0QOaEtW/bn7mJAFK3U1J6krHQDupqjmM0NCIIUe/suuDgPxNl5IBpNx9/cXN4qWjlZepI1F9dwrPgYUkHKUP+h3BZ6Gz09et6QFmQAFrOVjNPl7Nudw5FmPalKCyZgQAcXJvf2JyE7iZr4RDplXURV0cjbXadjkil5SbShr9SWZmkLSbaZ5DlVYOroR0JlEv13JjA8oQGjDHb30lIZHIq96IHMYIu9QwWeHgW0tCiprg4nOnoAPXrFEl/Sypr4Qk5llvG4uJEHbPcgFS2cqvYlR9Yd35DueMmDsSvXgMGKRC3DJsIZ2wgnlCGOSJRSjK1mzn9fxPmDRRj0Ztz9VHSQ5aD+/htMBQUIKhX2w4ZiP3Yc6t6xV7hnG80W1pXXsLy4mtwWA+4KGVM9nBjv7khHtc1vvsd/R25a6m48NyT7VRCEPOCXBoqiKF67yuvfiJui7p/DkZpGpp7PQVGkJ3lyD6wnytB/X4DXi7FINVeWPZiWlENBq4GTvS67YN/+OI6lhdVcfHUkNvIbEwBdsfQcEpUc13uirrr9yy+/JLRgI32Fkxhj55Jd/zkNfqH0KQ+hNXMPsZ5umOq7kPDgJ9j+0GpMFEWezSxmZamOd8J8me51ufiu1SrS5dX9jIz04M3Jl2OztmZvJffl+Yw8L5LzooyL34Uw591PuXBgLbEZC1huM4iW/MdxUkJPlQxhZhBv7d3C1s79mOntwpNbV5O9cQUPz9HgoHDm++lbMSfWovvmBC1nPkRsrcdr8ZvYDx9+6ZiiKNKwN5/Gw8XI3FU4TQ1D4fWzzg11RXDw1TbxpnKBQc/9YM37idvR1NLmIj3+HhgaIHwM9J8L3t0uDWmobuHUtgxS0lJoVZdilragsFFS7VTFaeE0cjs5M50nEFRhR3bcaRoryxGBCqUbRZpAvDp159aBXRgQ6taWXayvhlMfQfznbe7iH4/p1bWdK/jydTfT0JCETncEXc0RGhvTAFCpAvH2no6nxyTkcocr5l2PwoZC1mWsY0v2FhqNjXiqPRkbPJbxwePxs/f7zfv7b7BYrGTGVXB0Vy7HGptIUlloEkXCPeyYFutLZlMpm1utOJdW0pJtolbQcE9ZKncarVi9wrFVtFkiGqRN1IVUckyWjNeWBLpfqKTaHtYMlJDp74av0QPnZm8cBSkeHjkobZrQVQfi7z+czp1jQOPCuoQSDp9J4gnjZ4yUJdJgUXG6yoe0WldkGkf8Q2Lwtw3BsdYFiQGQCSiDtNhGOGET7oSokpN+spSk/UU01rTi6KEiMkzEJW03TXv3YG1sROrqgsOtY3AYNxZlRPsQDqsocqimkS+LqzhS24hFhBCVkrGuWsa7awlX296Qe/Jn8HcRdUuWLOHzzz9HFEXuv/9+nnjiCRYuXMjnn39+yaq1aNEiRo8ejU6nY/LkyZw5c4bZs2dfKj4MsGbNGhYtWoQgCHh5ebFq1SpcXFzYsGEDCxcuJD09nfj4+EvFh7/99lveeuutS/OTk5M5e/YsMTExrFu3jtdeew2LxcKtt97K4sWLATAYDMyaNYvExEScnZ1Zt24dAQEBGI1G5syZQ0JCAhKJhCVLljBo0KArzvVGibqvuVLUOQN9gCbgoCiK9/yaA/7V3BR1/wxqTGYGx1+kuraV8Y1SXhsXyZDXvme2nYbHnu9/1TmrSnU8nVHEwR5hdNS0/dB+syKJBeklHHpqIIGu/31bqN9C+bsJyN3VOE+/+o/lm2++ye2Nq1Cba3DtM5mz4k7w6U63A3EcDOzB4y0XiZI8xZqZsy/N+aSwkoU5pTzi58aLP7FEAlwobWD0B8d49/bOTOp6uXzIfdtn8a+XE7BGmkkOdiUo5gl6DBlH3LJwuhrqWFG+AqlVw3B7GdoxgSSYs3iiRYHawYH94V4U3nILL9xhS7Gnka0TNuKWboPuq/20nPkIiY0M32UfYxsTc9VzbLlYQ+2mTKzNZuyH+WM3wOfK8i4lZ9uSJAqOg3OHtni7yAntxV1zTZtrNO4TaK1vy5Tt/xQE9LsktHSlTZzemkPmxWyM9uW0yqoRETGpTGQqMql3qmdy58mMUPWl9HwyKadP0VjU1sexQWZHmX0QPp27MXp4P7oFuiK01ELcp22u4tZ6cAyEiLFtf97dr9kBwWCoQqc7TGnpOuobziGR2ODhPg4fnxnY2V1p9bsereZWDhUdYlvONk6VnsIqWunq1pXxIeMZ6j8Ue8Xv74RxPawWK5lnKji9M4/TDU2cVVupFC0opAL9Q12QKfQcl1toKJYgLW/BX2Xk32Thk5JKvkJOfVA4wWI4zmYtTeoyUuwO4/BdMr5FOrI9FawZaCYlQEBr0ODe6o1nswfBmhZcnUpoaVXT0hxFaGhfwjtGklwjITPuO0aWf06kNYNSiyN76yKpqJIjF82YZTbIfaMJ8uhMZ6Mn8pq2rGy5hwqbCGcUoVoKK1s5t78QXXETagcFUf098RdzaN27naYjR8FkQhESjOOUKThMnHipDdmPVBvN7KqqY1tlHSfrmhCBMLUNE920TPFwwtvm2jX2/o78HURdamoq06ZNIz4+HoVCwciRI1m2bBnffvstGo2Gp59+ut14vV7PuXPnSE1NJTU19ZKoM5vNeHl5ceHCBVxcXJg3bx4qleqSmJNIJMyZM+eKjhI/kpKSwvjx48nNzUWn09GlSxcSExNxdXXlrrvuYtasWQwZMoSPP/6Y5ORkPvnkE9auXcuWLVtYt24dH330EQkJCXz11VdUVlYyatQozpw5c0UR4t8r6q7Z+/WniKI4+2qfC4KgBfbQVuLkJje5IYiiyDMZRVQbzUjP1zB9alc+3ptBjdXKUcHMYz8OtJigPAWKE8AtgpHevZmXUcSOyrpLos79h44O5brmGybqRIMFQXF1q6DRaKS1RY+XpIxMsw9u9UUYXWVoLFJoqWW7RI5osWFKp8tu1JO1TbySU8oYVwfmB10Zp/djv9efts4qbChEcSwRmxaRsm4SGosi6Td2Ih+teZv7W2s5JY1AZtXgLAP7MEe0vT34cNNZ6t39+Szcj5MvvkhmJxNFXlbmdX8e11Ql1Z9voiXxC+Se7vh9/hmKgIBrXgPbcCcUT3SjbksWDXvyab1Yg9PtYcicfhJ75t0VZu+EjN1wYCFsvq+trlyvB9osd7aOoHKCwfPbCggnLIeTS2HFGPDp2ea6DR2Bs5eGWx/uTLe8AE5vzaEoqxKzXQ3Y1iKvk0MdpBWncdjhMD069+DOV15AbZSTeSaOxGPH0eRcQHLoPPsPf8MahwC8O3Vj1KhZRPR+GFI3QfpOOP0xnPwANB4QMabNihfQr50AVSpd8fKagpfXFBob0ygu+Zby8u2Ulq3H3r4L3l7TcHUd9qutdzYyG0YFjmJU4Cgq9BXszN3JtpxtvHzyZV499Spd3bsy0Gcgg3wH/WkWPIlUQnisJ6E93Ol9poIzu/JJ1+nJVoucza6l1mTGRi6ho6NAkZOV/FoFs+TR2EwdwO1+akbmXqQkYwf7zfV4CD2IrbgNaa/R5HdZjduxDBasNZLp48yWPmrOBmaRoc3kpEWBZ60nwSY1XVziadLvZ+8eP8ymznSN6I37xO8w6xJxPvAqd0uPU+sTwB7JcBLywSU/iZy8M6RIbal17YiDdyc6Wr2JPFyI/aEi7DRyhoU6UtPFlQsZtcTtLCBRoSCi32NEPfEiQsIR6rdsoeL1N6h8fwkOY8bgOP1ObMLDAXBRyJjl7cIsbxcqDSZ2VNWxvbKON/LKeTOvnAGOdkzzdGKkiwO216gteZP2pKenExsbi+qHuoIDBw5ky5Yt1xyvVqvp168f2dnZ7T4XRRFRFNHr9Tg7O9PQ0EBISFss9a8RrmvWrLnU/zU3N5fQ0NBLVsKhQ4eyadMmhgwZwrZt2/gxV2Hy5Mk88sgjiKLIhQsXGDJkCABubm5otVoSEhLo2bPnb7sg1+F3x9QJgnAb8JooiuF/zJL+XG5a6v7/s7ZMxxMXiwiuNiHJa2Td/b0ZvPhQ25dWIpLc/wy2ZfFtraDMbcWHUbvB3HRuS86n0mjiWK+2L3Hy93mM23+Bd8dGMqlvwA1Zf8nCU6i7ul21L211dTUblr7MQ6ziaMtABviUciSiAQ+hA8HHTxEbGEZzfQjxD3x1KebrrpRcEuubOdO741UfFHO+SeBCWQPH5l1uJfbB2Q8I/j/2zjs+jvLO/+9nyvaVtFr1XizZlmXLHWwIvZkWEmpCSEiA3JGEwF0ghFxIciUhuTRydwlJOHIEUggQEnooDs2AbdybbMm2ZHVptbva3mbm+f0xskyxgUsg5X58Xq/nNaPVzOwzz8zOfJ7Pt33hNhoyks2nl3DShf+Do7iKn963jC+EQ/xH+FbUQiNLilSWfelo7u3p5h/ikg/6dI7f1412+zf410sLLK5Zya3uLzJ528/IbbsH17wO6n/8I7Rg8A39OByklKQ3TzD14D6QUHJOC56llW/0R7Is2PuUbf7sew50Dyz8MBx1NZS9KsilkIUtP7d986YG7KTCSy+HRR8FXzlSSsb2xdj+3DD7Nk1QkBlc9SkSjmESiSn7Grgm8Tf4Oe+Y81jesBwjn6Nn82bW/OF5Iru34MglkEDCX0PlvEUcd/wK5rbVofb9Abofgr2roZC2Az3az7Bz3rWeDM43ThoKhTijY79hePgXpNN9CKFTWnoMFRWrKC97+wTv1eO5Y3IHqwdW89zQc+ydsl9szcXNnFB3Aic2nEhXede75oNnWZKBnWF2rRmhb/skQ8JkoFxjp8wzlTMAULCwUJBBB7mOAH6/g5NKvKwa6iax4xHCacEcsYy5mWoSU/eS374FdzjLcEU59x6/gBc7sqj5rUiyqNJFRa6BxbrByor9FPJ+xkbb0PTlzJ/XxULnEJ6134XJPVDSSGrOBTwfaWDHlj0wuAvFMkmpHoZdNVilTdSWtDAvW0SXoeBRFTJVXvZlTPoOJLAsSfOCMhae0kBJboipe+4h/sijyGwW9+LFBD70IfynnoLiemNQzIFMjl+PRbh3LMJQtkCRpnBeRYBLqkpZVOT5q/W/e7Vq9M3132R3ZPc7evw5pXO4cfmNb9mH97///bz88su43W5OPvlkli5dSjAY5M4776SoqIilS5fyne98h0AgMLPf62u/Atx///184hOfwOv10tbWxjPPPIP6Kl/Jw9V+PYjW1lYefPBBOjs7iUajzJ8/nzVr1lBXV8fFF19MPp/n4YcfprOzk9///vfUTSdVb21tZd26dTzwwAM89dRT/OpXv2JwcJBFixZxxx13cP7557/hfN91pe4tkAXq3nKr9/Ae3gH0pXP8U+8wi71udj4xzA2ntfMfT+7BlJLPiQN802rklbXPcVydCks/DnXLbBPZI9fB3qc5u2IpN/UMsSeVZbbXRXXAVuzGopk/S/+llMi8iXAeXqmLxWLUMwJAqqgdM7EOQ/HhDA2xuWEhORlidtGKGUI3ks3z1GScTzdUHJbQWZZkfV+Ek+dWznxmWAZr197PqQMQPdvCXfZB6mbP5ca7ruOiZJx+WUGJ2UgG6Lh4DsKn852JBD7NyUmhUTY8vIYdZ+Tw6H6+4r+G0L/fSr7ncbzHn0Dd975z2Ez9R4IQAu/iSpzNxUTv6yH6m17S20IEzpuFFnyVL5KiQPvpdhvbbvvTbboLXrkDZp1i55NrXwW6y85lt/hjsPtReOW/YfW/wDO3QMe5iKVXUN26kupZJaQvbKP7pRF2vjBCIRzEX2yg1kdQUr1YPSaP9jzKfcX3MX/+fC445gLmHb0CKSXdO3ez+slniO/cTGbtozyx9lEeU3XcdbOYv+xs5pz/eSqMfpS9v7dVxm2/tqN7W0+0CV7baeC3cwvqehEN9R+nvu5y4oltTEw8xsTE43R3P8tu8SVKS1dSXnYafv88vN5ZqOqb+2cJIZhfPp/55fO5bsl1DCWGeG7oOZ4dfJa7u+/mf3b+DzXeGlY1r+KslrNoC7yx4PifAkURNM0vo2l+GalYjj1rx9i1ZoSjQxYhj06yzsWAYrB5PI4ZzuN6YRx0yepqHw9XlMOSv+OoYg+OiW76dj+K9FUwt+If8Q/vp7r3Mf7hvtVcWezm4RNP4KFFTaSUHYwomxiVOR6OFqHrHTRWaxzt+D3dvU/x3FgrNWVXcdySGA2Tz+Jd+x1WIVg17zgKF15Id6yULa9sxdu7Ewb3wiB0q27+4KpBljTRFmrl2Hwxs7wqB1SFvl0R+rZOUt1azPLLPkfbDTcw9cBvid7zK0ZuuAGh67gWLMCzdCmeZcvwLFqI4vXS6Hby+eZqrm+q4qWpJPeMRrhvLMJdI2HaPE4urCrlgsoANX9j5tk/B+bOncuNN97Iqaeeis/no6urC03TuPrqq7n55psRQnDzzTfzuc99jp/+9KdHPE6hUOC2225j8+bNtLS0cM0113DLLbfwpS996S37sG7dOjweD52dth90IBDgtttu4+KLL0ZRFFauXMn+/bbLxuGEMiEEn/jEJ+ju7mbp0qU0NjaycuVKNO2doGCvxR99RCGEBnQCX8VOTPwe3sO7ioxpcdXOfnQhWBK12C1gWWMp332yhw+gMyvxOML7Se6o/zrHXfmqChFmwY6W3PILzjzvZL7YM8QjE1PMbq7C73fiAcam/kyFUQwJljyi+fUgqUsaThyVNeSnbL8fR2SUh0vbkekoF847dWb7X41GsICP1BxeGeudSBJNFziq+VAx+heHX2Tl+hBSkQwEyznvI5+id18/27NP881cjheTJ5GyoLHMQdGSSu7c0cOQ288FUyP8Yv0ADWVrOFAp+HbLFyh8/b8o7H+WkosuourLNyP+yIeUFnBRduV8UmtHiT3Rz/itmyg6pQHfsbWI15PVqvlw3g/h5K/Ahjtg091w70fBE4QFl9gEr2Ku7X837zwI9dim2S2/tM2l5XNh0aV45l/IkjOaWHRaIwM7w+x8fpiBnTqlVjnuSoOpkv2YqSH61vTxzTXfxBl0snDOQubPns+nrv07VFVlx/4Rnnj6RQa3b8U/coD8/T9n4/0gHC7K6huprP8spVUWwdx+Sg+8RPGe39uufmWzoeV4aD4emo5FuEsoLuqiuKiLWa1fIJHYzvg0wQuH/2n6xAVudwM+bzteXztebxsuZzUORxBdD6Jp/jcoPnX+Oi6deymXzr2UZD7JM4PP8FjfY9y5807u2HEHbYE2zmo+i1XNq6jxvdYX80+Ft9jJ4tMbWXRaAyO9U3S/NMr+zSFacyarSkroq1W4bzRCPg/0x3EMpNBVyZ4qD+sqKrEWXEG1x8HidB81vQmCbSewtN9DcM8aPvy7x/nQw5KpLic7Fnby+4pmBmUf2dxG9ucK7AcsrQxP8yD1YpjNI35KRhcxr2gZK0vHqI68gP7oZ1jgLGbBvPcjL7yCKc8s9u/YxfYNG/Hs3YUY3ges5kE9QLyklbrSdo7yVaNmFXr3x3jwe5upCDpZcvyJNN3/IXLbN5J88UXSGzYQ/u//JvzjH4Oq4po3D8+iRbg65uKcO5djWlo4NtDILUYdD09Mce9YhK/vH+WW/aO8L+DjoqpSVpUX4z1MMuS/JN5KUXs3ccUVV3DFFVcA8MUvfpG6ujoqKw9NVK+66irOPvvsNz3Gli1bAFs5A7jooov4xje+8ba+/5577pkxvR7EOeecwznnnAPAT37ykxnFr66ujsHBQerq6jAMg1gsRmlpKUIIvve9783sv3LlStra3tlJFbxNUjediPhIdto4cPg6Re/hPbyDuLl3mB3JDD+b18TNt2/g2FllXPerzTiA83J7WR+SVOkTrOmVbB6IsqhhWopXdVhwEay/nUojzlHFXh4JTfG55ioUl0Y5CmPxPw+ps/ImAIrj8OaveDzOAkYZyfgo8irk0/Z2jrzFc7kIVqaZszqbADCl5JejYU4I+Gfy0b0e6/psf7qjX+VPd3/3r7lyG2Q7JW0rbsDl8/Gpn3+a92cTWAhy5tlYwKJLOzAsyXdHowTyBZKbexHJvTyzJMe54ihav/Yohb4XCFz+cSpvvOFPNiEJReBbWYNrXpCph/YRe7yf9OYQgfPbcNQfpgyXv9L2pzv+Rjsx8aa7YP1PYO0P7CjYRR+Bue+H8nZY9Q079cmO38DG/7Fryz71ZWg9GaXrEprmnEXT/C4yyTz7NoXofWWc7B6datpRq+OMuXcTiYVZ/+J6XnnxFVRdpaWphdbWVq665HT8V13ArtE4j6zdw6Z1G3CFDxAcjlI+8DKOQnq6w7VoeiOBYhelsTTBntWUag8QdGYpaWxDaz4GahYhqhdSVNpJUdECZrXeSDrdRyrVQzLVQyrZQzLVy2T4D0hpvnb8hI7DEcThCKKpflTVg6K6UFUPquJGVd3M1/wsnXcquc73s36yl8cGXuLWTbdy66ZbaQu0cWzNsRxTewwLy7vQhIVpZtE0H4ryxytIQghq2wPUtgcofNikf+skPevHyO+McIV080zAoNsyKFXyFKUnGR0I4hjOoAoJQQfrggEi5RditWpoC4c4eiTD8XtbWLQ7TOmuHt63aRMrghvJHKUSq1vCC2Y9m/xpRj2jZPJD9Foxel0gW708qVVzf6GY1twprChEWKb3UbH1XpRNdxHwBFky9xyWXHwesunzRMfH2bTmJXasW0tgeBNKaAMvKQ7CRU0Ul7XTZLUyFcnx+AP7KHtoP/OqPdTMOpfg0ktQ/RJjfC+5PVtJb9xI9J57kLmcPR4OB872dlxz57KqYy4f6OhgbGEz90+luW8syme6B/D2KKwo8U03Lwt8HrQj1In+/wETExNUVFQwMDDAAw88wMsvv8zo6CjV1bYP8W9/+9sZFe1IqK2tZdeuXYRCIcrLy3nqqafeli+dZVncd999PP/884ftUzQa5Yc//CH33nsvAOeeey4/+9nPWLFiBffffz8nnXQSQgjS6TRSSrxeL0899RSaptHRcZgSiX8i3u60+l94I6nLAgeAx6WUsXe0V+/hPbwO941F+PlomM82VKCFc0wkchiWRSRV4KM46J3cyKIzzmHjhlFGHZVc/bN1PHzdiZT7p8nOwkttZ/Yd93N27Qf5Uu8we9NZGl0qZQjGU7k/y3nInP0iFs7D//SS0QkCxOjONlKq5chPk7+Es5KInKDK8T6KPbbz/epwnOFcgX9pqz3ssQDW7Y9QU+yibtrMPJ4aJ//CCzjSMNBWxmnHv58v3vc4o87NnBfKES/MZqzgo6hYo2pOgB/1DjChOTlx9zZeMqupmPNTauI6H3rSpND3EqVXXEXF9f/wjvoEacVOyi7rILNjkuhD+5j44RZ8K2ooOq0RxXWYcVNUaDvVbqlJ29y56W67CsWj19uK2LwP2MELiy+zW6gHtt0DW38Nv7kCnEUw7zzcHefRufJYOo+rJRHJsnfDBL0bxrH2F1MBGJ40w0XbSTNB5kCG3t5ennjiCZqbm1mwYAHXnrkA5weWsWM4zjN7JnhmzwTd/WME8lHqlQTzPFk0Y4pEbII9UQnSVsdEnyTw0loqnE9R6UpS4beoaGrF1dCFt2YR3trFVDSdPhPRa1k50ul+cvkQhXyYfD5MPj9JvmAvDSOJkR/HNDMzzbIyWNah+zwIXOaCjzX5yOEgZ+yB6DbCUz9gzevmHKrqnyGMDr0U3RHE5azG7W7A42nC7W58W/5/ukOlbVklbcsqbQK9cYLWdWM8PxhltRsOOGt4nx9mq2NsnEjSNxIkORnAAQgkJUUuRirO4T/nq6SWR2gJv8BFG3ewpGeCwGNxfGI9H5y9jjMXukhWLORA9HS2aS66g5OEXOPEjB4Sci87qwWPNVRTIRpoTnRwwsAkR8f6aNj4C9SNd4I7SGnHOZyy8ExO+cDXyBUk29atZ/0La1B7d6Dv7WESmNKDOEuOQVrNPDeYIjCeoVaFWl3BpeigLsO15H34znSjOmPIzAiF4X1k9+wm8eSTTN1338EB5vyWFj7c0cFYSyvPltfwZDbIv07GQAi8qsLyYu8M0evyu3EcIcr6/yLOP/98wuEwuq7zgx/8gEAgwGWXXcaWLVsQQtDU1MSPf/zjme2bmpqIx+Pk83l+97vf8eSTT9LR0cFXvvIVjjvuOHRdp7GxkTvvvBOwSeE111xDKBTirLPOYuHChTzxxBMAPP/889TV1dHS8tqKMtdeey1bt24F4Mtf/jLt7e2ArSpedtllzJo1i9LSUu655x7AJoGnn346iqJQW1vL3Xff/a6M1XvJh9/DXz12pzKs2tDLwiI393XN4sLbXmLL4BQuxUI3Ff4zG8GcP8WJV3yGh558iWufmaIrvgPXgvfx86uOtnOMAfzITnUycvlqFr+8i5uaq/lMWYBP/9uzbHHD2q+c9ia9eGdQGEsxfusmSi+dg2f+GzO1P/LfX+fsoW/y0NAcFp58Gkr8J+xp8xGPdvHlZC9nBr7FN889A4DLtu1nayLNxhXz0A8zi5dSsuxrT/O+tnK+d7GdWuRHW39E07/8J/X7TPQ7v826TCdf23gjy7Rt3D02Ql/mJh6LLWfFB1uZfXIdi57djDsRw7sxhFrySxKB/dzyUDVNu4covfJqKq//7Bu+952ElTWIPdFPavEmr/IAACAASURBVO0owqnhf18tvmNqDk/uXnvytu/drt/Bjgcg2geKBi0nQMd5tm+er8IOwOh/AbbeA7sehEIKdK+9Xdup9nZFNSSjWQZ2RRjcFWGgO0w+bSKRhHz7SPlG8GoCYUg0TWP27NksWLCA1tZWNE0jnMzxQu8kz+yZ4LmeEFPpAgBODOZ5c8x2pamWcXypCQpjfSSnDs2RSxxZKpwJKlxJKougoqUdT8tSW4msXQK+/122f9PMkMuNk8uNkc2NkcuOkcuPkc+HURQnUjiYyEQZTE6wPz7EZC6GS4ESTaXG5SPocOJTJZqVxjSmXnNsTSvB42nE42mhyN+J39+J39+Bqr61j2UqlmPnhnH+68X9PJ9K4ZNwpuLhxGZBXhlh29AwO0JZRrUyxl2V5BR7suZ0KIhSFwmfxZKJ1Xxw+wss2B/DHSsgdcjON8ks1EkHFzAensVosoxtlXH2+caJqwfAPIBAIlGReg0epYKuRJ6zIwc4I9ODizyWcGBVLENZcB5K13lIbzkjfft58fmX6d+2GUb3o1oSxTkfXF04lFIkElmiUV7pYbZHp2Iyi0zY113xaDiainE0+VHcacxQP/m9e8ju3EVm107M0OTMuAifj0xNLaMVVewOlLGtpIw9jS2M1TWwpNjH0dNK3uIi77sSTfvXkNLkj4WUEgs7j6C9fPX6qz5DziylBIGtLivYcygF8Zo0lAcpk5zWuVQhCOjvnG/cnyVP3f8lvEfq/raQMkzO2NjDlGHy9NLZPLZhiH9+eBdFbo14xuBTOFnm2cQJX7oeoSgUTIv5Nz9G29ROJILlp57CJfN8BAIByvc/AI9/Hv5+DWcPO8lZkicXtfHlL63mVyJPz9fORHmXTRy5A3FCt22l7BOduNoDb/j/k9++ktOS93HnvsWce/pcpqzH6KtV+O3UUTwz1cd3jnqAMzprGM7mWfbyLj7bWMkXDpPGBGDvRJJTvvsc3/jgfC5Z3oBpmZx992l863sjJDt0Rm94jOsf+h2eph9zeyzH8nCUJ6K/pK+g8rFvHMP3R0b4j7EYJ216hfW5cdy1v+bDz8F5LxmUXvkZKq//9Ls6Vq9GfjhJfPUA2V1hhEvDf2wNvmNq31C8/bCQEka3ws7f2m3qgP151QI7yGLWKVC/3Pa97H/BLkHW8yTEBuztKufDrJOgYSXUL8dyBZjojzOwM8yeHUPEhvJgCgw9QdI7iOmaQmKiazotTbOY39VJ++w2HA6HHR0aSbNrNE73aJxdI/ZyJGab/1VFsKhMY5EvRYMVwR0fYaq/h1g4OnM6Pi1nq3muJCV+B0VVtRTVteFr7ESp6oSKOeA8jLn6j8BgfJCtk1vZHtrO9snt7I7spmDZ5KTMWURHUQWtXj81To1S1cQtE8jcMIXCQWKi4PXOosg/H39RJ37/PPy+uW9K9Nb3THLTb7axL5ahxVA5Ia1R63bSMM+PryRCMtrLlt19dEdNRp2VjLqqmdJL7J0FSLfC/NQrfLD3OZb0TeDIGFgeyM0xybcIrIpaMsoCJiM17NEFW0rCTLgipNRxDIZB2mqmpfgoFhUsT6e5ILqfFZlJFAkpowzc7YjmY9CXnotoms2urTtY/9Jaor07UaNpNH02imMuilqEKU2GtTShKi+Bch8tpkJDrEBT3CCATcQUn45W5kYrcyP0NFZsECs+jhEepTA0SGFggPzwMBh2BHG6NMjWzoU82T6PjXPmk/X5WeB30+lzM9/vYZ7PzVyvC9efSPT+GFInpSQvJTlLkrMsTHl4giUEaEKgziyFvcQ2Cx5kJnL6mBIOHeM1ZMx2RTGkxJT2uiklJhzZaewIOEje/je0yKkI5vjeuQTT7xqpE0J8H7hFSjn2djsjhPgg4JBS3vN29/lz4z1S97cDKSWf2nWAByemuHdhK4mhJFf/YhMCmOXJEkk5uUNmmfdv56I7HOTzeUZGRrj2gT0cCCX4gLIRqdsz+srKSq7+6EXwndmw/Cpu6/gH/nnfCOuOnsuD/7qG71pZ1v/TyVT4/3c1Ov+3yPZEmfzpDsr/fgHOpteaq6SUvPSvq1hhruX7u1fy6VUu9rm3EiqW3BCqIRZtYs0n7qDM5+Tf+0b5Xv84646eS8MR/OnuWT/AFx7YzurPHU9ruY81w2vY/I1rOOWpLAeuPpVPj59OcdOtFLtGeLovQqawnF+Er6FmbhlHf7KDJWu2URMNkds6htL6Q5pHMvzzz02Cl3+WqhuvflfH6Uh4LblT8R9b+/bJHUwreNtg79N26pGBtSBNcPhtM2376XYUrbcMQruh5wmb5A2uh2kyQ0UHNBwNDSug4WhMXy0Tg3HWbdlO7+4hzDEHDgl51yQ5VxipFBBSwa9XUB1ooKG+ierGckqrvRSVuVEUwVQ6z5bBKTb0R1nfH2HL4BR5wwKgKehhXlBnlhajPDeJIzpIarCXyET4NacmkPi0HEV6Do9Lw+Xz4SouxRmoxFVWh6uiBV9NC5Uts9Acf5yPXN7Msyeyh22T29g3tY+B+AAHEgcYSx16TQgE80vqWRoop8WlEhBxyPZTKERmtvB4WvD7O6ZJXgde32wcenDGjG+YFne+1M+tT/eSyZucUOKja0yiZkw0p0rjvCCNnT50R4ixvbvp3d3D5uEEI2opk84gYW81CcuJapksim7kjJGX6ZoYx5ewA48slyTfLDEanKjBWWRc8xlOVDBEggOucUZ9SULeKDF9lAJxu9fCSbXlY2U6wcrkKA2FPDWGScIKEhH1SP9sKluPwzP/KCbiUfZu2cr+rYPkYiWoejtCcWFYMcbkCLu1PAPuIGpRBfOLvXTpDuabCq1xAyVlvGbMFb+OFnSjFusIYhjje8jt3kh603qseBypKITb57BtTifrKuvYUdvAaLAcRVWY5XHR4XVR4dAJOjSCukaprhLUNYIOjYCuUaypR6xZ+3qCIaXEkIdI1MFWeBWJy1nyDaTIVrwOKWCKsH+KpgQD+b8mXzNjM62kqcJWzA4tp9cRM9soApRXfb/yuv8dVOgOnqeF3ceDCt70rTuzEDMfiXfU3/HdTGnSAuwXQjwM/AJ4UUr5mqeIEEIBFgDnAB8BSoDL3n7338N7ODJ+NhLmtxNTfKG5Cj2a59O/tAndJzo07tjl4gbhouWiLnSHg9HRUe666y4ymQwOo5Ip2YBhajhiE+wLzIbxcZLSiW/2Ktj2a8469p/4533wSChGhUOHbJaxWPZdJ3VyOlDicNGv2WyWgBUiapUgdDeO5AB5nwHCS9qKUSI6KPM5MSzJL0cinFDqPyKhA1jfHyHoddBSZhd+v3frPXxoII/pldw0eSI1lduYco5xg9mAKofoyazCkAqzllbwj2s2UFDczOrrZ1f9C0gry9WPmgQuvvovRugAHLU+yj7aMUPu4k8PkHh+CM/iSnwrqtEr36LIvRBQ3WW3933OTnfT97xN8nqfht2PAALqj4I5Z9pVIo69zi5LNrwJBl6yieD2++2IWkD1VVFdv4zz6pbDkuVkK+bwzP5XWL+7j30DY3jiHkoMH7IwSTw0xp7QesQGDa3gQ7d8FHtLqSiroLq+kvdXl/Cxjho8QSe7Q0le6Y+y6UCUneMJHouAlGVAGa6SJcxuddHqKVCrZSmVSYpTw6ixEbKRCcLJFLnxPNmhEKYMA7tmhkARksoSlZrqEmqb6qmZMw9v7Ww78MRbAdqRCZ9DdcykTHk1MkaGwcQgA/EBeqO97Azv5MHRHYSz9itDEyoLAvPo9BfR4BSUkiAXWcv4+MMzx9C0IjyeVryeFjzeVt4/p4VT2mr54Qsp7t80ycYSncvfV8ucjMqBLSH2bZpAd6m0dC3hxPNXcWl7EeGBPvq3baJ/61oGe3uJaEVMBBp54Pgr+b5ZhGt8lM7EKyyO7aIrNEnZ7gJCduNSd+FrgNbaACIwm1i2i6FJF0NKhKgWY9I5ScwzxZg3xP3ePPd7DwUeeS1BY2GU+sIB5vY9Qm2vHz1Ti6I0c1zHQqraO5jUdHo2hRjZB3W5udRaJtbUPozQY6SYZAgXPaqbvO7BXxKgMhCgSHXgsgRuA9zDEvdeiTsn8She/L5VuE/8IIocw4x04xjcRtlDv+Eky36+WB4P0eZW+uob2Vpdz8s1DXRX1lDQ33htBVCsqZToKiWaRkBXEUDatLhOKSCSGUwOKWRHvDcUgVNR8OkC1/S6U7EJlvImPrfyVQqbMa2wCV5HnKZJ1+vJ2buV309MK4Z2B/62AlSOSOqklOcIIY4Drgd+AyhCiBEgBOSAAFAPuIBR4Hbge1LK+Lve6/fwfx4vRZN8uXeYk0r9nOF0c/Z/vogl4eajvfzo+QPU6KWcE3DiX1THxMQEd999Nw6Hgw984AMktWI++JMNNJ/wAeK/+DeqDAWqyujv76dz4aXQ/RANg8/S5W/jkYkpPu/UIQtjsSwL3uWMi9Z0oIRymDx18XicciKEC8V4igIQfYF8nYuE6gMyLC4/CoDVkThj+QK31Bw5QAJgQ3+UpU0BhBCE0iHMFzdR1GcyOL8CS3MiS+6jWoPj9+UwZCmbM40oqmC/GGO1cDFn9AC91hAF13YuW23SFOyi5qvvrg/d28UMuRtJknxxhNSGMVJrR3HOKsG3ohrX3OAby44dDq7iQyW+Dvrh7XnMznH31JftVjbb9q+rWwZdH4bjbgDLhIldNsEbXA9D66HbJiguRWdV9QJWNb0P69zz2eXx8+zoyzw/+DyjY6OUpyspz1QS1EtxmFOkrSFGJ2DrBCAFwtJQpIqq6DgcTrrcHk4oClJSX450lBAuwEgqx4FEhu5xyRNJlQzFWKIY6MDtU5nV4mNeTRHzqv10euM05PuQE3uJDu5ldGiC4fE0W7on2bgrAo9txa9lcasGTtXAoQucTgcOtxunx4O/vJqSxtkUty2hqGUxiq6/YRjdmpv2QDvtgXZOaTwFsF/W4+lxdoZ3snNyJ7siu1gd7mckOTLjj+RV3HT6i2n3+qnVVALZKeKp1TD2m5ljnx6EjqNruGfPBdy6vkCdP8LHT9zGkuIQqSgkJiUbXtYQa12UVAQorSthxZJ2VlhziI5OEB4YZqL/F8RGkiSSHrYVd3HPrKv5D1mEIzZKV+pFjk1uZ95InPKXoghrHS6xltJalVkd1UTrFhAvtDMxrhFRkuTVPFktg6ZKLDVD0hFmwh1lnSfOEz7bjO6xRlmc7WdJ6vcEN5VhZBuJymacrW20B3SyUT8H9rah5tvx6HlqnMNkct1kEkOIgd2IAUkKSL3ZvavouNyllDpKKW5aiqf5eBy5LHouhqMQozQxSvCZp1mam47sV1WU5mYKbe2kWloJN7cy3trGpMtNtGAyZZhECwZTBRMLiVe1FTy3qkyrWzah0qbNpIea/dkfS7DEwWMgOPIU9Y2QUmJJW+UzLIlhWRimpGBa9t/mIdOvvf1rTbm87u9Xq4tCHCSSYoZQqoqYaZoiUBUFVRHoisBzhMC3vwTetCdSyueB54UQ1cBpwFFADTaR24+t4D0PvCCltN7lvr6H/w+QNExu2T/KT4cnaXA5uLmukvNufQHDsvhY0QGeenycUOAovoqb4KltRKIR7rrrLoQQHHvssZSXlzOruISg18H2mMInP3kNj/7Xd4hVBOnZu4/Oc86y1Ygtv+TUo7/Lt/vH8Ht1iMH4nyGtyYxSdxhSF4uGaWWKvfkafMVFYObIOzwMmypmrpyVs+3KCXcNh6ly6JwaPHK04Xg8y0AkzUdXNALwm22/5oxQFiUv+FXgJFa0P82L+QI3iwvwmN/nQPYcpMtDeY2LWwZGEMFqmg7sZFvlE7QPSc7aAPVPf++I3/eXgqPGR+mF7RSvaiL1yjiptaOE7+5GLXHiXVqJXu9Hr/KiFjne+qUjBFQvsNsJX7ArUux53CZ462+Hl6cz0/troG6pTfJql8D8C8FdAskJGHrFJnmD6+Dl/0J58VY6NTedjSv5TOuJRLoWsV0U6JnaS2+0l12RHibDk/hzfvx5P6VWOeVU4TU9qIaGWTCJxCYIJQbsqbME1fSgFfy0Fvy0F7xohgdF6ii6gtQFBVOQGDQY7p/gAWuEOxRJTHUQrFhCS8UJlCzUKXbr+HVBYGofztFdyNAAaiGDlcsQz+bIJQvkIyY5I4Xs3gfsAx5DIClyS0qKPfhLivH63Hi8Hrx+L56iIjxFfvzBChyltQhfOVXeCqoaTubkhpNnhjlrZBlIDNAf66cv1kd/vJ/NsX4eCPWRKtg0xiXc1Dt1mn0BKpweggEnnzjmRfaND/DbnUv51+dPYH7FAB/ueJ76WQMUCnaEL0qeSAoi+191WSuhshIOZjVbIvdiZh4nExFE/U6G9Tr69EVsRWMqF6Jm8gBdY3Hm7jEpeXKYIn2I7BKLqpUKqUANqUgdyUQFUxkvcbMEH9XUSoUKqxivohN1hunz7GWHr5c1ngRgIOReiqweSqwnEHkP6eIysosraQ7Ppm2ylWC0CUEzjmYDz0IPpW1edMVHMgdTmTzxTIFENk88WyAyGWUqNIFIRCnOxSkuTFGc34c7m8aTSdm6kgIUgyiuQxcOVAmKtFAsE9G3E6V3K4qUuPMFOl1egg1NVC5YSPnRR+Fa0IEybZ7v7u4+Yrqkt4KUEnNa2hPThPD1v8EZXzlLzgQymJZNzPKmRcGwyE8TtYJpzRAzDhKzN4GmCBRFvIaYcZCo8Sr1bzqK+CCJk9Pm1tf48kkwCjZZNKfLjR2EU1OZXfXO+LC+E3i7tV9HgZ9Nt/fwHt4VPDkZ46aeIUZyBT5eW8Znaso449vPkc2bnBlfw/hEmrUVp7PKITjN7SXXqPOzn92JYRgEg0EeffRRNE3jhBNO4OiWUtbsneS7F53My089TTydomfvflA16LoY1t5GzdE2iRNFOuoIf5ZcdW+m1OVHu1GxiGYc+MucyDzkHCoHkjHM1HwWNwQYzOb5QyTOdY2Vb+rH8Uq/7b+0rKkUS1psefQRlobS5IpUqk48lWdSf0+H6mL5njhCmLycPJGcabIj18feijksOrCb3uL1SLJ86nFB8Rln4qg5fEDGXwNUn4OiE+vxH1dHtjtM8qUR4k8PzPxfuDX0Kg96lddu1V70Su9hr8MMShrgqL+zm5GH8R12HeGh9TZ5637o0LZFtXbC44q5ts/dvPPAVw2jW+wcevufgSe/RClwvObi+NIWKG2BYBeF+kaGHS52WknWJvrZMrme/ng/AJrQaAu00eZtozpfgyfhpTBVIDoZIZkbn/l6h+bC4yjCrfpx4cOXdlAa0ZiX0adfYWAlJOkDcZKKZAyL3VgkFI2EMp+40klYkXhLNGZX+pldZbfF5V4q5RTayDZifTuIDfczFQoRi0UJT8ZIGzoWb3TG92k5Sp1pgo40pV5JsMRNIFiEy+PG5fTQrjlp192guUB3g68LGXwfk5pOv8zSZyTpz08xkp1kS2KS8ew4k/k4km5k3WqcU0ezffIkbnr2w/gDO2lr2EptsU7QEaA068cz6UQdFnhjGppqUVyp4KvT0csNtKIkljJGtnyQovQA9YdxG89ZsD6nENuv0LxOoXOTQuVaQbp6hPwxg2SXW1g+yBUcpBPlpKaqScbLOZD2Usi7Kco3c1pkDh6hknDHSehhctoICX2CtBpDsfopqANsC25iaxl4c8W0h5YzZ+IotMc1Bp6MM1LUy3DxIMOBCONFeQy9BEstxaosxqopxlLrkUoRllqMFC4QAiVv4Iin8cQT+GNTlEQjBGNhKowcAUy8lonHNHHlc4h8irAZZ1gYMDkIfxhEefpBfDkDp1ARqs6c665n0ukEoSAVYS9VFRQFqajTkQW2rGVKMC3blGorZ3YQg0TMNKYVPSEAOw87b0bPVEXgUBUcqoLXqXHwkXeQqIHdBVUIdFVBUwWaYi/fzOT7p0BOm6FNy8K03ppc/rnx16MZ/gkQQpwBfB9Qgf+WUr69NNHv4a8CoXyBL/UO8+DEFLO9Lh6e18Rsp4NT/v1p4lmLkyefoVGLcUfFuXTpCp/LeTCWl3DX7feSTzpQLB/ZqGSFO0g+YPL0009jeFoIJYLsnUgya95cxp59hmzSRzwep2jhpfDSf1I2/BLQQdyjUaYojMXe/Vx1Mmfa00PtMCW9Juy6iuG0Qr0zj2EJpAIx00LLtTO7ys+3+8cQwKVHqCBxEBv6o7h1lY6aIl7oWc3ieApPD2xbPBep3kFGwufy1+OV32bKbEKrnwsHkjzVWoqzUCAw+QxD5fv56LoANZOTBD/x8XdhNN55CFXg7izD3VmGlS5QGE9TGEtNtzTpTRMzuQIB1KBrhug5qr0ofgdCVxAOFcVhL4WuIjQH1C6221GftHdOhmzSNr4TJrphYif0vQDmq+4jXxUEW+3AijlnQz4Jubi972QP9DyBbhVoApqAs4QK/ioMfyVRh5shJHsnx+gf3UOvkSSuKCQUhWyli3LvLDyyEl/ej5W1KKRzxFIhZGH6NVMMaqlKka8Ej9OPAy/FeRdkHRhxjcyUar91D0IR5FEJDRfY3T/K49YgEcXO8eDSPdQHTqCxzkP9Ag8NpR4ai5yUuyyKZRpXPoaZiJCORoiHxogMDxEen2BHOE4hasKQ/RVSmCh6BtVZQNWzCF1DauqManKwJK0QUCwEJULSqQRQlAAIgaEI8opCXphk3Y+xLj+b7dEOtkTnMuFbjx58jrA7jhQS6kCpldQYBo0Fg7pRg6pBk+qCSanhpMwqokSvRCuuQAtUQnkFKd3FSDzFcCiCPjqKY2KM/VVuemrdlMVzzNk1Tt39GcwHYLBNEF5qoi0coaZ5eIZwZAsOMslysvEyEukilIwfPVmGJiuxPT4llYSZzQGa5CDFYoycNkxC2U246n4OFI4hnF5JbaqRpuh86IeCkmPCf4Choh7G/dsJeQcpaIfuM1VqOKQPqTgwFCd5t5spn5NonZP9igspnEhcSOlGSgfSciIsB4rhgJyCO2VQFovRHBqlITxGcTaDJk3bj84ybOJi2hdGFg7/21Om2xuN86//kU4TQUUBRUUoqm0aVlSEqqJqGk6nE6dTR51W0b7//e9z++23I6Xkqquu4rrrruOrX/0qt99+O+Xldlqfr3/965x55pmEw2EuuOACXnnlFS6//PLX1H791a9+xde//nWEENTU1PDzn/+csrIy7rvvPr761a/S3d3N+vXrZ2q/FgoFrrzySjZt2oRhGHz0ox/lpptuQhXw1JNPce2112KaJldeeSVf+MIXALj88st57rnnKC62LSl33nknCxcuJBaL8ZGPfISBgQEMw+D666/n4x9/55+rf/OkTgihAj8ATsV+dLwihHhISrnrzff8vw+jYJJNFsgkC2QTBXIZA0UVqJqCqgkUTUHVFBRVYORMchmDfNYgnzHJZwyy6TxGvoC0CkizgGnmsAo5DCOLZdi/bDktZh9Uoy1FRXM70DxOnF43Dp8bh9+Dw+chY0E4WWB0KstkPMtUqkAiYzBuGGim5AOxPM6pPHcVBlCk4Hg0Ko0cJc5TmUDj72ICD4InpAmPDKPT/poHyN6YRUNqHxd//DTueXQ1EOTHDz7Hx+bUoqXi5IG+vj66urqgZjFlPY9AcwdTToUylD+b+VU41MOaAtWIXXw9knMwJztCbjrxcNxUmF+2GAv45WiYk4JF1L1Fjcj1fREWN5agqwpP3PczTiKKMAVNH76Mf5/4EifJGur3GjgcPaxPfoxIKkXck2BfZRNL9q1jT8krtIe8nLNTwb1sGe7Oee/4WLzbUDw6zuZinM2HzNRSSsxoziZ5o6kZwpfdFX7zCDxVoDhV+9o51UPreg1Y1Uh5CmgSKi1kPgP5NKoaRxNjqNF+tJGdaLknUUUIIaZJpe6FQJMdaat7bEZjmWBk0PJJyiMhylMhFhlHui/7KQiFuKYxpWpEFEHYIYk5HWSli4L0YEgfMlOMTAdIF3xkcZPEi+lQoQp0t47D6cKhelBzTrS0SmnC4igDjrbd0pGKxMoVsMZN5LiJFAYjwmIIC1PY73oTMBW7KohQFRStAbWmHrVGoloGWAWkaWJa5htPQ9o6ziFHJ4k4aOKabsKwDq0jUTQNNAeLlSxtzp1sLtSyL7kCZ3I5bWqITtckAXcWQy+QVjNMiTh7ZJrtmCi6gqIpKFJBlQpaAoxkDDkYs1OiTN8I0uHEqq/HFCaWsLBqNJ6Z20RFOM2SPVN09SZo2qNQuFdhvFkh3CmJtFtQZOJ1j1JWPEz1NEm1LEEmVUomVkMmVk0qUc7GZBsvYlLQE5QbkzQwSh2jnMQ6KlyPIVyQMgPsyy9hIN9FSXI2tbFDpbCEFsNwTZL0TBDxjhL1TmBqBaQUGFKSVBMktTBpJUdeZDFEDgvjjeOvAyUQLoFwI2wAJCoIL/M8ksmAQKCgIlClQDcVHKbAaYBu2NdK2DbUabOk3STY945iIVULqQikEIcUP2khLQNpgszbkbAABrbTvhB2asnde3v40W0/YPVTv8HldnH+BR/nhBOXky+k+fQ1n+Ifrv+cnWcQhYRhklM1Pv+Vr7Bzx066d+4klC9gSSgYBtdcey3PbtpCoKyMr/3TTXzj1u9z45e/TF37HP7n1/fyj5/+FEnDJGGYKMC9v/416WyWV7ZsJZtJs7Czk0suuYT6+lo+/elP8eij91FXV80xx6zi3HPPnakQ8a1vfYsLLrjgNcP8gx/8gI6ODh5++GFCoRCzZ8/m0ksvxfFHRqIfCX/zpA5YDuyVUu4HEELcA7yfV4d7/YUhpSQdmyIemiCXSSOEQpYcCZkmaaVJmCmyMofL6cHl8OBRPeimA5FWIa3gcOo4PE4cXge604kUKgkJ0YRgLJQlPJkhEc6Qj+aRsTyOlIkzZ6EV/jRh2HaTlNi8+dVwTbc3Q2G6HT5uxjvdAOZgPwIUIad9LySKsJDCJO3K0GO4ceXiVOeH8MWncOYyTFQUIaskp7jXxqVVWwAAIABJREFUU1rYjadtCVuSZ7FuexvHTA3wxc9+kkdueZr1/VNUTO3EUjUKlmBXz16b1C26lODqb0MzRJ2CcikYjGX++MF6m7By5hFNfq7kAWIUY0gVb3aQvNd+I0xlKjihoZanwjHG8wbfeguVLp4tsHsszjUntTE4uo+yvgmCkwXy5X5+mfs1FpK/D1+LW9yPJRUmK1dh9EH3klL0XJ5c4bdIp8E/lV+FHP8PSr/ylXd8HP5SEEKglbrQSl24Ow6No5U3MSbSWGkDmTexChYyb043e93Km8ic3Q6uW6nCdH6EaXOQIhAOD1L3kI/7yUTLwJrHTCVFAYrDQigGwsyhRNOISBJhxFDMCIqIo4g4KjEU4bEbCYTLhSgqA28A4SlGuDygO9ELaYLZGMHsFK3ZGDIThUwUkXvzTFQxoTOFi0TWQyrjJ235yeImh4u8200GF1mcZHGSwUUOJwgNVaioiooqNKQlsEyJtEAeLCRpCDBAySoIBKYQGELHQKcgIItCGo00OgXppCDdGJaTHCppBBkgjSQzfbgqr8qCUoXZRRb1LoMyJYeWS5CITJKYDBGfDOGdinK6spmQq4JXfAvYqdewI1VNTSLMHDFKvSYo1/yUi+k8GthE5CCBlAcdrGxq+apUFcyYDF8TASlgeA6MtFuUh0I09h+grm+Iup4CBU0nHCxlMlhKT9DNSHMGyicp9qaocmcor9hFWd32mUNlU8XkE9UYiRoSyVmszXcwYeUxZJJ6JmhSIjSq+zne/RJ+0mQsP6OFNg4UOhkptJHI1FOcbKUYaAYKapqMM0LcFSLriKNrBiWKSpGiEjS9+E0XTulAlRocJEJqljFnjglnnpAjR0TPMaVniIskQtjbWJiYWAhMsiq2TcwBUmggdEBHoNuJeqWwpwPTS3HwM8kMARTW9PNemW6ahbCZ4SFzrBRYUrB7zwCLFy5BtQLk0rBk6dHce++jpDMGUs0xMjmFkBaKtFCliSItFrbW07NxHTITx5w8gFQUDNNEWiaJ8BB+r0IsOkltQyeJ7CTVTaUoEkwzTyITJpyawEIQyyUJx6Lsj42TiUdRNIWsiPLkH16hoamW8io/WSPNJZdcwoMPPvimZb+EECQSCaSUJJNJSktL0f7IWtlvhv8LpK4WGHzV30PYAR1/EUgp+cmVN2EoTnK6k7yqU1AdGIqOJXQECorEdly1pk0OUkzPGvOoloIqQZWHmVG9CTxIioWJjomGialaFJwWWR3SDkHCCQmnoECOrBqnoKQw1TQWGSwKGIpBXpXkVYuCAnkFDEXBcHjI/j/23jtOrrJe/H8/p0yf2Z3tLbubnk12w6bQAyFgFEUQrlhAEJGi/hQV9dr4qlz0Cxaw4sX6FctFMAgqJApcQicSAum9Z3uZnZ2ZnXba8/vjzCbZNKLuXrg679freZ1z5rTnOTN79vN8qieEoUWQagBV6iiOFwUFiYniGJRkU4RzKUK5FH4jg8/2oDtedOnDI/3ojgeP9BIQQcpkmHLLT6mtUGI5+Kw80oojzRE3m7+RRhoZpJGGXJrewT28abgLFYmtKAxWVKBJm2l7YpTNSlEyI8vAqxH2L99HruRR1FkfZP3yTSw58y0sbZvEI+sVPN4hkrVN5PIOe/bsdR9Y6zspf+KrAMR1QYUUrPmf0tQdR6gL57qJORXu95nvJRt0xd54cirzzojyQP8wVR6N88siJ7zH2gPDOBJOm1zGr37+FaY0xPG+KBDvO5dnEk/wLmM24YEgXn0lHUY7+zMjqMLD001hpnb+nr5AFx+ru57oT57CaWoidN554/oM3ogoHhVPw/g7O0tHYifyWEM57HgOayiHk7WOFg4NGzNrYadNsI4xGTM4xvzIRmEERaRQSBYEQnddkANsBAZC2AjVRigOQjFRVBOfyFNLhjqZQnFiKM5eBMfQoo2OQwqkDODIEA4hHBnEVfE4bhMOQhlND6u4xx08NuwunQACB4SNwHL7JyxQbRzCOLIMW5Zjy3IcIuSxyWQMhnNp4n0pUkqM3Vofea0fS4zg8ej4qr3UVVThNVVaTVhqrac/v5vnlEn8VatjpWglaBrMSfXSnu2n2gEPGl4h8KkSr7BRhIPp2Ni2jY0yxhHfTW1h41EMdNVAV/NoikFeqmSkTlaoDE6ZQeeUFkqG+iiJDxIdGmLOlm20As7zguHSEobKakmUROiIlJAu9+CpzBAKxwkG4/iC/ZRU7EbVTGopTHJtFSsfwc6H2JGvZ5MxGTVvUZJNETUSTDFXcIaVwC9Nsk6EPnMq+61ZDFiTSVi1lAy3IJ1DE29HGHR5hkj4uugNbaYr0k1fqAdbzROxQpTaYaJWhBIzzLRsGF1qOPjwz1CImh4kkL37Huxduw/p4Q5qNQ9pWUf1dCcdNTl9Ms4nrisIzgUDrlCQaCA0pNCoXNDO83fdxTbp4PX6eeLZ55g9bx4lZWX87pe/5PcPPcTsefP49NfuIBI9VGElESgl4wkyGKhBKWh/v/yt77B00ZsIBAI0TZ3KF771fdJSwynY/02hkxIREsLV7i+69Ar+suJJFs2YSzab4TO3fwOjbBZbercSrZ9Kp9KAx7FoaGjgpZdeOnjvW265hdtuu40LLriAr3/963i9Xj72sY9xySWXUFdXRyqV4oEHHjgYpDGe/DMIdcfyhhzzVhRC3AjcCNDY2DihnZGORHIWCh6CeZOwY6I6JoptoDgmQtqFWWJhXnhw5uigWYNoVhbdyqJZGTQri2rnkEjSPpVkQCHlV0j7VUb8Ckl/hlgwzmAkRjI8jKYKdKkCGjlFwRAKlhBYAmwkwjEIZQ1CWQhnIZSVhHIQyukE8hK/4eDLO/gNiT8PfkOi2aA6blOcw9YLT1jIw76AwxI0SkCKQit8rDqg26DZoFtuO2IOPAZLgWSNjw1TaqCyjoZgJbPYxwxlNYm1GkPbwmyPnc3mme9Dbc4SHe6iNvsK22PzOWPDk5w9bTb3v9xB2bR2huNDaIksZlYQj8eJRqMEp5+Pz8kzpPmpRDCStxnJW4QmMDxd5o8t1EnHJmoPsN9aAEBQSdMfKgeyxBMtzJ8U5ZYNMRZGgq+Z6PLlvUOoiqDBZ6Fv2UtdYxIhFX5ZuR1NSN49dB2KfBm/GmeHfSVKOsRAgwdpx0nxF6aJZq6MnkXnxh9R85UvI/6FakyON0IRaFEfWvTk8x86ho2TMXFGTJyMhZMxkZZE2g7ScsAwkKkh5MgwTs6Dk6/AyVVi5xXMvMDOq0f/V7XkqOrpMA7/XiUKg6iiD00dRtVTqHoWVc8jNANFMXCUPFJmQWbASSOkgZuqVEVBBaEiUBCOjWoPIqw9CDOJ4vztkyVHauSdMkBDEyNoIu0KnRYcy4KIzhhnrqsAWwqedtr5L3spTwXmsjrQyJliC+9Wn+Kt6mp84mjnMCkFEg8Sb2FcaYQwXrO/UgpkRQCJDihYhkIuppIbEAQH41QcGD6YuxpA6CpaJIQajuAtqUGP1qFW5TAjSXKBFAmfQlZ3MPQUljeJE7aRHgN0gzgQB3bJCL68QzhlER7ZxpyRTYTTFl7Djd7MOiX0KpPoE03E7CaG842ERmZTk1hAe1fhsXkH8QYPoAcPoAY7sAMbyGsGpgXkJRpvw8swChJb5jALDnUCDvstFRL2HtYO/g8YfT6F446crkgEKsoh0zs2SAtJ7qDGbvqUCNd97P185JILCQQDzJw9BV1kuOLqK/j/PvlehBD84I4f8O0v3MTXvv81RvWDmhVHtdOoVi8gMC2L3/7ixzz41KM0TG7i9s99mZ/edRsf+dRHGdXeKk4er9FPMNeDQPDqS6/iw2TNutUkh5O889J/461nLiScz+CzTaqy6UP/zwsuNXfccQc1NTUYhsGNN97IN77xDb785S/z2GOP0d7ezsqVK9m9ezdLly7lnHPOIRI58ST9b+WfQajrxM2XN0oD0H34AVLKnwA/AbeixER2RlEVrvj2InatfoXul5+HoR7UTApPLo0nl0XYrs0/LzTyikZe6OSFhonmuow4jMYJoeCgOBJvziCQzlE9mGFKJkMkk0M9ImW3IyDjF4wELUw9j9dy8JigmwLNAs0E1T6eMOA63ApVInQJmkTqAkcDU1PcfmoaOUUlq7hLU6jYQgMh0BQHTTjuUnFQhI3AQQh3Fi9wkIAhBDlVkFUEORVyCmRVSdajkPXojHg9pD1e0nqApBaiWw9QHt1EUhvAFgMATDZM2rK1BM6YybTgMG0bNnB6qpNdUy5loLIVf+YANl7WP/gUZ312EQBdVgiAkJPBxs+ePXtYsGABYtqbKO8dJq54mVr4B9ebyDGtKjTeP4tD31PeRjlG4uFMzw6CWMSMMmCEgGYy6NMwHagOzEP1KOzN5rm85ujSYkfy8r4h5tRF+Nkvf0BjfZrSDWA3l7Pcd4Brc6cQiAew5J8xHD/rzHoCjpfn6z3U9N6DoZh8/aI7Sdx6N2pJCSWXXjoBT6HIiVA8qvsbKT2RIDj5H7+RYyNTfZDshmQ3YmQAkr2Q6jn4GakeSGf+8XsdjuoFzQuaH3SvGwGbHYZMDOnYhbefjUcZBBRsqZGTAWxHx3CCWLIMhzC6yOARWTwiV3jXgCtNCKTuAz3AItXD2eoL9NjreDjfwkO5Fm62PsqX7et5i38n7whspkXvK2iHDstVVsiBlsFPCj9xJ8CQ5aPf8tOX9+CxMlSQpUKalEqTMBZBDLTC+04RoJRJRDkoSEIyj2YkEakUciSPncxiJjPku4fI7Tv0PlADEqVEIRTRKInoaBE/eiiApvpQhQcUFVPVSCkRhpUgKUWnW1XIqhamcDB1Ha+So9QeImoPUib7aZGrCal/QQvYSD+MOBUMWE30MZl+ayqxkamMDM0/2AdPqBd/2X680f0oqobqVZFSEPrUh5COcqhJDemoIFXctMCOqxXG1X4qyILes+Az6RzMEwLStVBJIXDSrpneVgR2QRHgmoYFjnANsu9/7zVc9d6rAcGdt3+LmroamqJNYLsm3fe/5yqu+8D1BPNeJK4JTLMliiPRTRMEbFm3ASFtmhsrwE7z1osv4Gff/xmKfWjS4fpyWljkkAIeevj3nH7B6WR9GfQajbmnzWXVhheoaahhf/c+htR+FEfQ2dlJXV0dALW1bpYAr9fLtddey5133gnAL37xCz7/+c8jhGDatGlMnjyZbdu2cdppp43rn9dxhbpC4uGTppDT7vXgZWC6EGIy0AW8F7jydeoLACUlZSxYupQFS5ee1PG2ZZJJJMimkmSSCYaGk/QNpRgczjA4kiVn2ORsSd6SZE2bnGmhpdOEsyNE8mlK8mlCmRTB3AjBbBrNsBjRNJyAQGgSRZOoqo2qOTgeBcerYHsF8mADqSrui8gBgYOKg4ZNmAzlIkmFGKREHP1yj8sQXbLiYOuTUVQcvMLEg4kH6+BSFQ4aDiVIogVPDYFEw0bDQhM2Gkk0exjVtplkDlCTTpBRBKvKAvy1xM/GsIcVnjz1pdtITpOsm6HwvoeHadn7G3qGF7BzxlVU5reyJdbOrC1PMasmzIa+PHMUBYRDVmps3LaLBQsWQPVsyjt2ENdLqCzMNvuSEyvUybyNUnp03qdcxzqCQMyIACP4VZMhkcO0PCxsrGRrOocEWl+jxmDeslnXMcw7TqlFW72e0tNieB5ReOrNDkEhuXjwGvLWEA2Bzew0FlJeMpmRtORAZCu+1EbeUXEJk0d87P7vJyn/0I0o/vGraVjkDYaiIkrqoKTuxMcZaUgPui0zCOkBt9lmIbmXMraNqgQP81tzlw5Yebc6h5Vzm5kDKwveCAQrEcFKRKjKDR4JVoGiouYSrtCXS0CusDQzhwmHXlA9rnAoFBjphUQXJLvcZaKDyblhPsXjfFITvKS0sEyez6OZhTyYaaVZGWCJup4lvMxpyrZjavDGPjfgb/Btd6RC1ikho0YZ8dSQrqgmLSvIOCXk7CDDiSgikSM00kVopIvwcCf+nn4EeSCJFApGKIgV8mGH3cjWnC9P1pvF1AI4UgNHQXE0ghIUtZqcmEqPEqRL+LHxYGKhi0ECah8hrZew2keNuoPp3hcpCQxiSS8D5lT6zWn0mdPp75xG8sDpNLdFMJINKMJEU/KohaZoBgjXH9GRCg4qNiq21JBSwZYKllSRUgFHQRYEv0MpUECguMm2R9V69ljd8eEMDA5QWVFJZ1cHTyx/guUPP0GqM091VQ0AK5ffT8v0NgJW1cFzfFYpHidIxHCTtE8vU9izfR9Op4+K8grWPnkvs6ecQmnuUMZ5zfESMaooy05CODYzKqex8cl1fOhNV5LJptmyehOfuuIGZkyeyi27DpDb2EdNTQ33338/9913HwA9PT3U1tYipeQPf/gDra2tgGslfPLJJznnnHPo6+tj+/btTJky5eR/SCfJiTR1T3PieLBRRpX6J0j4NHFIKS0hxMeAxwp9+H9Sys2vR1/+XlRNJ1xeQbjc9adqHsdrSymxrGGy2U7yRj9SWti2RT5tkEvnyKXz5DN5jHwK00hhWilsO4Vpj+DIJEkHclJlQAbwWnkCdg6/YeB18nhsG9XK0mx2MsXqxuNYaIfZfWypjM5bcUYTPuLO4ERhFjeqkHekwJYCGwXbFthSIWH6eDw5nT6lhN11rWyumkpAT3LpwBp+n9uNX7G5YUmenmZB1Y9s6gZX0V83n3QgSNaJsnPZA5x+5kf57douzqkuZyCbYcj00rF/H1JKROUsys2XGZImlYXXSU9iYv3qRqNfj8TqcX+y8WwIn+rO9LOqSdooZ35TKRtTrkA95zWEuk1dSfKWw57tqzlXNWnozAMav5+S5AO5BfiTfjryDzI1lGWXrxWz38OOWg1/8meErQifP/8LDN35XdA0ole+rnOjIm8UPEG3RZte7578/RhpkBJF83KmonGmENyaM3l0fQ+Pbe7lvj3V/MJ6E35d4azmMOc1+zm3QaUx5CAcG2zDbY7lCrOqB3RfQdvocwVKzeeGawIcFt2uIAgqKkE9QKXmHbNvFNOwGe7LEO9NE+/J0Nk5hN25H6VnH9pAB954J8GhboI9A2POsxQPOV85OV85hjeCrajYogdbONjCxhYmljAxVJu0YtGv5DFUMFUVqZQAJcAUgppJqZ4l6t1KlX8jzQELR/qxxR34RAIbHcv2YdiHJrwqBrrIo4k8XmHg6tRMpFLQsAmBVEXB58ZCKrLgmymQUkHKQnBKYYl0hTx5mEOOEK7F5/r3XkE8HkfTNO789uepnJTjwx/6LBs3bUMIwaRJDdx15/9F8Q+BFMxfeDapkREMw+TPTzzCgw/8ipmzpvHZf/8Yl773zei6xqSGOn549x14Qn088uh/87kv3EYsNsRVH3wXrXNms+y393Ht9dfw8Ztv5qyL34yU8N73XsmseaeDFNz+1bt493U3Yts2N9x4PXPmuBkC3ve+9zEwMICUkvb2dn70ox8B8KUvfYkPfOADtLW1IaXkG9/4BhUVFePw4x7LiYS6JeN+twlCSrkCWPF69+ONiBACXY+i669ttjsWtu1gZCzyB5tJPmORzObIW/swrB2Ycie22IkjdqGSximo0BUlhD/QTCg0lUBgMpFwK5FIO7pWCkYKcgnM1ADZeIyRoTjJ+DDJ+BCp2BDDsRhOqhPFHCGe8RB5Yhc3lj5PXUWGNeGFfFC9kp9X3cetsTYurg8w89ObmPlNgxkj97I69HUiVg+7c6cxddNzGFYzVnkzMjaAxwTbyBKLxaioqKBcWOxEjNHUTSSOcezoVxHbyQgB8oZNmepqCjQNEslyljRFuWcoTpmuUuc9cRaoNYWkw1WdK/HPShD4b4XuBg2r3OFN+68mbycJB/aSdwLUTT+fzl6FPdHVSBJcXfVR/IZN50MPUXLRRehVVSe8V5Ei/2vwHF0TOOLTufL0Rq48vZGsYfPXPTGe2t7PU9v7eXJnonCMRktthNl1pcyujTC7LsL0qjCeY+SZ/EfQPSqVk8JUThoN1pkCHKrfLqXEzNtk+ofJ7T+A1dWN1d2N1dONt6+bcH8vMrEdDAOMPJiv7Qfo6B5sRUMKBVsUJt9CYAuVBDpSEQQushHpNBpuKS8pVBxFd5vQyCsBcuKIAKPjxNsoWCjCRBUmimIhFAsUC6FaoDqu0HechMGPPfaLw4RA9yY/+vHXDwmEjJrO3XGvXbfSFQ7dvCogNaSt8v73Xc/7r/iQazZGAalgjMBbznsfb1n1vrHDMCDgCfOzH/7X6Lfgaicdd33pBW9i6QVvQigWFfWH3pUrV6485hjq6up4/PHHj/1wxpET1X59ZsLvXuQNj6oq+MMe/OFj2RuagMUHt6SU5HLdZDJ7yGT3usvMPhKJVwqFu12tnN/fTGnJfCIl8yiJzidUfwoRReNYRiDbMol1HODl3/2cjWsFW5IOp5evpSqsYnMJ91b9ifuMsxio+yX3N3+IslgS6vJo5SFiiVoWx7+P4ruBfrUSDajS3USau3bvcYU6r4eY8OAlT0RX6Z1oTV3+2Jo6T2IPg5SBmSboc30cfZogY1YxpSLExgPdzAn5X7PU1eq9Q3gVi6nxEcpOzeDpUHjiAocPps/EN+JldfIZ3lq9hS5lPluf2IEZbqHH/wBTk1N518XvIv673yGzWcqu/cBEDL9IkTckfo/KkllVLJlVhZSSPYNpVu2OsbUnyZaeJPev7iBrutKKrgpOm1zGkpnu8VMqghNWWH4UIQQen4ansQIaK4D5Jzxe2jYyn8fJ5XAyWezEMPbwME4igTV8aN3J55GmebA5OQMrk8fOG9h5E0NV0VQN6RRM6I4NtgUyfTAtjCvoaRwViTNac1XRsFVXEJSKhiG8SOdIoViiYqEIy7XrjPplY7s+2gX/bNcxyHUOklJ1/fpQC8Idh2qBjV7VUcdsu1HaVsF8XMjDM7oczU9Y0BpKWYjGleLQ9Tk8uE9yKBHOG4d/hkCJIm8QhBD4/fX4/fWUc86YfbadIZncRCLxKonkWgZjT9PT+1DhPA2vtxa/vwG/bxI+Xz1+/6RCa6KyeQoXfe52zurp4tn/upcXXla4yPMcV2RuYyiW5E/lT3PGCzH2RWup3pqiPPwAsdTV+MiwX57BhfZmXtl9KmdKBy9ZBvCxbssOzjj9NCoCIbJ4yCl5qnz6hJYKk45EGs7R0a9SEkh3sldpQcg0Ia9DXFUJqpJQoBob2J7O8cH6E6vqHUeyak+MqLEXrSRP/e4soLFvNtzQdwV5J4lREsevjGB2BRgMz+BAdDsaKhdHL6YsGmX3/Q8QOO00fDNnTthzKFLkjYwQgqmVIaZWHjI12o5kXyzNlu4kGzqHeWbHAF9bvpWvLd9KY1mAJTMrWTKrigVNUcK+16ypMOEIVUUEAiiBAJQBDfV/13W2bt2Kf8a04+4/mCDacZCO4y5tG2zb3bZsHNNAGgbSSCFzRiE3oIIjNKSqITUPjqIhFRVHam5aGamMMcMeCwUbRViomIcEKzn2LKE4qMJCEU4hnQ44BV8/RboBHULaKLgBHoJDATejEbsIgRSjAYzOUUKcJXSg5m98shPHSQt1QohW4DpgJkdnnpVSyguOPqtIERdVDRCNnkY06kb6SCnJZg+QSLxKJrObbK6TbLaTwdhKDGPwiHNDBAJN+P3NzHlHI/t2BFhuzOPj9u3c2P8DevQYLzdu5KW+dk4HJjmvMOR8AFEXZF/3Qt7v+SYfT7YRDqmM5E16CRPu6sBxHMrDFZCCuEdQ5dEm1PwqzePUfR3px+NkiGu1SCeF7pV0+txjKkvq2ZXJkXfkawZJrO8cJmPYnJY4AAuz+B5R6KiGS5Vz8WY9PJ/7Ky2BDkzpZVNfBG+dxt6yF5k/2M6iSxeRfuEFzK4uqj7z6QkZf5Ei/1tRlUOC3sWn1HHLRdAxlOHpHQM8ta2fB9Z08MtV+wGoL/UzvTrEzOow06vDhWUIn/66uJ1PKEIUkjMrymuIYC5SSlcraBjIfB5pGK62MJ9GmsdIMSNUpKIiVd0tJaapqLqK4tVRvF6E7nOrmIxmwJa2q02UNjij29ItV+FI1yfSybrHKhooamHpObQNrgLvyGAfIdz9Qh2z1JQ3lm7spHojhDgdeAbYB0wHNgBRoBE3pciuCepfkX9ShBAEAk0EAkc7X9t2llyui2z2AJnsfrKZ/WSy+0ilNjIw8BfKJpfRv76cLa0mTR1/5MtdN/KF0u+zun0dzpPgyZsMlf4Vf/8CAkIhb5/CbNZTWVpGYjCGz1+KzMbo7++nvKweUnnifqjWVHZOoPlV5t1Z4FHm18HtAMStSiCBT83R69dRgKbKSWwacStdzAmfWKj79hM7AJiU6aG2Iodnt8KmRYJ39F5OVqTYGba5RFnH4FA9q9veRm08T95v0KIsZPr06XR9/weo5eWELyjOz4oUeS0mlQW4+owmrj6jiZxp89LeITZ1JdjRl2J7b4oXd8UwbPdvXlMEc+pLWNgUZUFTlIVNUaoiJ5+78J8FIQTC4wGPB0JjswxI23aFPdMcq+07fJnP4owYONI5/KIITUNoGqiqu66qoGkIVXcFTo8rgAlVcY9RCpG4QvzdpnNZ0FAeqR18vTlZEfN24CHgatzaT9dJKV8VQpwP/Br42gT1r8i/IKrqJxicRjB4tNrfcUy6Gv7K79Z9g8eyc7mi+c94dy/mtt0XccO079FZrVC912HS2StID59Bd9RBGT6f95T+AMLXsmswxuSQxMzC9p27qWhtg/17GPbZVOBhcCSPaTvo6vgn3HUMV1N3pPnV6d+KAgzlyoFdROQIg/4QEWxm1DXz5HAWnyKY5j/+P4F9g2me39WHz8nhr4/RsC2BkBpN9fPw5jysdNYxzUgTCA+zfbCZcjzsL93OvIGpLDx/IXZ/PyNPP035Bz/ovnSLFCly0vh0lcUzKlk841BFA8t22BfLsKMvxcauBK/si/Obv+7n58+7VW0mlfly2LTVAAAgAElEQVSZNynK9KoQUypDTK0K0lwe/KfU6J0MQlURfj+8RholKSXSsg5q+qRhuNuW5Zp783lXKHROsq7FqGA3mp5HKWyPCn6KghDCFeJse6zAKSWK14t3+vRxeALjw8kKdXOBazisOACAlHKlEOJrwB28jqW5ivzroCg6k6afQ+nk37Nj5wh/+uwzvM/5T+y9b+bNyUY2NeyhYZ1g0rsGeCq2m7KRemzpw2NMQR3WwLaIWAn2Ol7Wb93JJQvdCLNh3aDK9CIlDKTy1JWOf342mS+YX4/Q1JndmwEPqZw7cy1Vc+T0KiIMURqqYVNHhllB/wkrSfzfFVtRpUFDthdxth/vwwrxMMy1rmZEHWGPJ8Xl6V3Yjsb/O/cyZq0Pkg9DmRVg3rx5DP/iXrBtSt/9rnEfd5Ei/4poqsK0qhDTqkK8rc1NSGtYDpu7E7yyP36w/Wn9oVz5QkBD1M/UyhCnNpdxzvQKWutKUF6jisy/EkIIhK6DfmLfRXmYf99BX7/Dl3I0IbJTSIgsx2jfDq7bjlsHXbhaPsXjKWj7Cpq/1+jH/zQnq47QgbR0K7wPAbWH7dsOtI53x4oUORELliylKtbLIxs2E7n+K+Dby1t6rmR7g0CxBLptk2lcgdf0oXn6iOXnktuxDy0zQnokwQARhvq6iBY0csOaQcVoVYkJ8qsbFeqEd+yfnezfxgBlOIb74g5qBinppmDQ9TI2j2RP6E/34u5BntjSjYWfKrOH6SUdeLcK0lMq8VtBVomdNO5P0hRYR09+Kolh12exxsjR1tZGwOtleNkygosW4Zk06bj3KVKkyD+GR1OY1xjl+nOmcM9VC3jh8+ez5ba3sPzji/j+FfP4xAXTaZ8UpWc4x7ce284ld7/Agq89wUfve5UHXj5A13D29R7C68L3vvc9WltbmTNnDt/97ncBuPXWW6mvr6e9vZ329nZWrHCzmsViMZYsWUI4EuHjN9+M4vOhBAKo4TC/W7GCeYsXM//887n46qtJqAp6TQ1/eP552pcuxTdpEhv6+vA0NuJtakJpaODG2/6DhZddRvvbL+Lbv/0tnkmT8NTVoddUI8rKOHXJEt7+9rcf1eebbrqJ0GEm5meffZb58+ejaRoPPvjghD2rk9XU7QZGw2c2AB8UQjxa2L4W6B3vjhUpciJmnnUOT/7yJ0Q3rubFc06n/YNvhf/chFIeBWLoOwXntG1kk7+XKjtLyq4i0Pco4ekR4qZFpKwChgdI9ffhwSGu21Qk3aKSfRPkVzdqflWOqC2rxncxQDWKmUcCAdXAEH4cEabHVBi2bFpP4E/3n0/tpjTYwXC6meDkEWp2JFENnZroW8goOfrznZxu5gmrg9x56nlMeqmReCCDI3OceuqpjDz7LFZfH9X/55YJGXeRIkWOT8CjMaeuhDl1JWM+H0jleXH3IM/uGOT5XQMs39ADQEXIy+SKAE3lQZrLAzRXuGbbxvIAkTdA5O14s2nTJn7605+yevVqPB4PF154IRdddBEAN998M5/5zGfGHO/z+fjqV7/Kpk2b2LRp08HPLcviE5/4BFu2bKGiooLPfvaz3H333dx66620trby0EMP8aEPfWjMtZYtW0Y+n2fjxo1kMhlmz57NFVdcQXNzM+AKmy0tLSSTyTHnrVmzhuHh4TGfNTY2cu+99x4sGzZRnKxQ9whwHnAfrn/dciCJm2YwBHx8IjpXpMjx8IcjTJl/GplNG/hNRz+L5k6l2xPjDPtMBiKPom5QCJ7psKduJeUHFmHJCIZnmMrSJuJ5mykVIVLDsHn7Lir0MHEdKnNu9NVEVZU4qKnzHKapyw6j52IM0uKWTRLgVy0UXeL1VLIp5c7Mj6ep29SV4PldAzSoadKOQW3rMJ7fKxgeQVn4TNaI/Zz70gb8C8voVXWWJ7dzTeoK8qUDlNTXU19fz4H/+A+0qirC5503IeMuUqTI305l2Ms72ut5R3s9Ukp29Y/w3M5Btvem2BtL89zOAR58JT/mnLBPo77UT0PUT0M0QH2pn9pSHxGfTtinEfbpRApLn65MeH698WDr1q2cccYZBAIBABYvXszDDz983OODwSCLFi1i166x8ZuyYFJNp9OUl5eTTCaZNs31225paTnmtYQQpNNpLMsim83i8XiIRCIAdHZ2snz5cm655Ra+/e1vHzzHtm3+/d//nfvuu29MP0cFQUUZf3/twzkpoU5Keeth6/8thDgDeCcQAP4ipZz4NMlFihxB2+IL2PPyKrasXcPgrCZS9SWcuX8pzzcsp22fghqwaPaPkBSCMGCWBInKAMKOUyZGOOD42LR9F+XzzyDu0QgbNh5NmbC0JofMr4f92Q26EatDlCGsDFKTCAEBn0nIX8vqkSwCaAkdO0jix8/uIRzZSzpWTYUaY4FnDfpGBad+MlJVcfY+T16WMTuwhttrp1E7PAUFhbzSw8KFSzA6u0g/9zwVH/mI66dSpEiRNxxCCKYXUqQcTsaw2B/LsG8wzYGhDF3DWbriWTrjWV7aM0Qqbx33mpoi8GgKmiLQVQVdVdBUd11VBIqAL54VQe1LIYBtfz5AqtctVzhGFBSHtoUQh62DQLixBscRHismhTjn3TNOOPbW1lZuueUWYrEYfr+fFStWsHDhQsrLy7n77rv51a9+xcKFC7nrrruIRo9fOUnXde655x7a2toIBoNMnz6dH/7whye89+WXX84f//hHamtryWQyfOc736GsrAyAT37yk3zzm98klUqNOefuu+/mkksuoba29liXnHD+rgQrUsq1wNpx7kuRIn8Tk+ctwBMKM3PbWpb1LmHx7CqCe5NQ7iO8JUuyE6pr17O542xmGWCGS/H1JFD1FEM9HcSVUkoHeijz+Yh7PUhTpbrUO2E+dQfNr4dr6gbcdCYpWQJOBsVjYKJQGsji8VayeSTL1ICXoHp0RFzHUIblG7qYX/4ia7T3MaW6g+gBE19KR5+5mA6ni5Z1L9Fx1nvpCjzOn3UvZ6YvwFYclJDBnDlzGP7hf4IQlL7r8gkZc5EiRSaOgMctY9ZSGznm/kTWpDeRI5UzSeUskjmTZM4ilTMZyVkYloPlSAzbwbIdLFtiOhLHkThSuoJfwe9YOUxgG5N+V4IzWj0CedyK8aPCnRCuwCiEGziSzJoFAdA9SDBWIJwyfQaf/sy/86alSwkFQ7TNnYuiqtz4oQ9zyy3/B6EIvvSlL3Hzpz7FT376c5yCRi5v2pi2Q860URWBY1ncc889rF27lilTpnDTTTdx++2384Uv3oIjJbbjtpG8RSJrIqVk1YsvYknYsGMvQ/Eh3vGWNzH39EVs37qVQEkZVZNb2PficwfH2N3dzbJly3j66af/gW/1H+ONlTWvSJG/AVXTmbPoPHJP/Jnf7e3g3a3NDC5/heZIO7CKoVUak99psMHjzqRUNYznQA9qrU1qZISq8gZErJcIkt1eP0iH6og+YaXCDmnqDhPQBrdjoZGzg0g5gF/L0S9LCGrDeD2VbBzMsCBydN1KgJ89twc9uAfZ4wNdMLNuLdoLClIIvFVzUbb9DsMTpax0L98sK0OKEE2DDVieGG1zW9GFYPj3vye0eDH66zSrLFKkyMRR4tcp8f/9GvitW7fSXOG+f5qvmX1S54wKSI4jsaXEsBzyB5uNYTrY8pDkty+Wfs1rnvm2d3Hm29zI/O9//TZClXUM2j4G+0YAOPfi93LTB97Dtt5Dvm39qTyJrMmOPvf9v2ndq4zkLfL+Srb3pjj1/Lfxs7u/wzuuvengOTnTpmc4S1mhT7/89W+Yd9Z5DKQt8ERonX8az69azbbNG3j8z8t58vHHMPI50iMprrrqKq644gp27dp10KybyWSYNm3aUabgieS4Qp0QYg9wmZRyvRBiL8eVvwG3osTUce9dkSKvwZzFF7D2L4/g2fQK2+fOwPAkmSLfRUJfRa5XpVy1KK/ZhDp4Cprlw9u9B620nDxQG1RIxUA3DIZ0H5ChOuBhc3/qtW77d+EYNmjCDYMfZWA7QyKK6niRMk1It+hXoigiSU6tpjNnck3d0f50Q2mDB9YcoGbaM9DdhtAlS6MvoK1XoHIKKcWgdMcquhZ9nFTF3bzi9+JRr6YkL0hFhliw4BxST67EHhyk9D3vnpDxFilS5F8PRQgUVRQSn0HgiLSXUkqsglZMSulWXZWH9o1uS+RophH6+/uoqKyio+MAzzy+nBX//Qy5bJzq6lok8Ien/0JbWxsN0UBBCyioDHuJ+HQaywLYjoQZzezbtR0rHSdaXsnaVc8yZ85sakv8qIpAVQQ+XWVS1M/0qhBCCNpmTWXHq3+l5aM3kM1m2bHxVW675bN85sMfgB+4fnRPP/00d955J7/5zW8A6O09FDcaCoX+RwU6OLGm7hncYIjR9TdW1doiRYCqyVOJ1k9i7o51/FfPW7ikWkHvCJGqUiiPO6T6BXW1O1C3JJBWmGCqm8pAEznA47hBCDKdIaPo5BSo1kyeTOaQUo67E7HM20flqJMD2+mXURQ7gHSyRDWbAT2ESpK9Th1w7CCJX63ah6nvxDdwgEHtAoLeFGXxHOF+D962hWR3PQXBSkbqIvykwiYqSikbbANMoo0eamtr2f/FL6LV1RI655yjrl+kSJEiE4EQAl0V/C05li95/5XEYjF0XedH9/wn0xtruPrqq1m3bh1CCJqbm/nxj39MWdCVIJubm0kmkxiGwYpH/8Tjjz/O3Nmz+Y9bb+U9l1yIrus0NTVx7733Uh728vDDD3PTTTcxMDDAOy97B+3t7Tz22GN84qabuPbaa2k/ZS5SSq699lrmzp37d4375Zdf5rLLLiMej/PII4/wla98hc2bN/9d1zoRxxXqpJTXHrb+gXG/c5Ei44AQgtbFFxC/715+uXMXF08pwelwKK2ZRfTVLTyyTWfhOcPsVrOYVilWiUOFodBnZMklYgBYyTREShn2CKrtBDnTIZE1KT1yivkPIvP2WNOrmYXhAwxwBqYMIXCIijz9vjIiwC7bdcg9Mp1J1rC598W9VDU9zcyt5TzhraK5dBtiXeHa1bNRnr6D1JmXsz5wP526jlJyBWdtNLC0DKefMRdj3z4yq/5K5Sc+7pbUKVKkSJE3KM8999xRn/36178+7vH79u075ucf/vCH+fCHP3zU55dddhmXXXbZUZ+HQiGWLVt2wr6dd955nHeczAEjIyMH10899VQ6OztPeK3x4KRia4UQXxZC1B1nX60Q4svj260iRU6elnPOAyGYvn0tO0si9Isk4eh5qBJ6kwqKkGQUgxG7isG2AOHYCDI+SDqVxJAKTspVSA95BFWGK+hNRLCEY9hj674O7kQgGaAMM+8KkOVKGqXE9WHZmQ9Q7dGo9Iz1iVn2SgcptpKWuygfrCKr+mmP7sS3QUVE6pGDu5DRRuLnnsufq/Zxqqkz5D2LhhGw/Ana2tqI/24ZqCol73znuI+zSJEiRYq8PpxswpSvAA3H2VdX2F+kyOtCuKyCprZ22neu5wXFS4c6iOqZgQSiKejoVElqFhZe9k6fSrCvHyWdAMARGqIg1MU9gsrMAMCEBEvIvI1yuKauEPk6SBnkDlWT8Ja46Uu2ZhXmHGF6tWyHnz63h7KGp5iVqaHXLgVgpraP8F7Qa9sx9z1DormBR4buJ6NIyvWzmLJzBCEFk1qieIQg8fDDhM8/H72qatzHWaRIkSJFXh9OVqg7kXNRFMifYH+RIhPOnHPPJ5CMs2/PHuIRA+EJoFZXMbPTYV1KJa67LqGWU05guA89k8Gr66iqQEsfLtT1AUxIrjpp2EdFvkoEMUpRLAOAgGbgj+iYws+urElbODDmGn/Z3Et3fgM5dQ8X5ObS769BERYNe/sQEoS/nFxpDb6Lzuel8Au8OZ1hVcVSzurLIIXN6ee3MfLcc9jxOCXv/LdxH2ORIkWKFHn9OFH063nA+Yd99CEhxJEFzvzARcD4e/sVKfI3MO20MxGaRtO+bYw0TCI3bOKpb6dl0+Pc7VFo9tnMAHwjYaTHpjybZ8TnIZfOE8y6Qt2wLqhMu3VRexPjP09x8jZa+DA/vYHtpEUQFQG2m9QzqJn4grDPacWyGKOpk1Lyo2d2E6ldSYW/BrlzgK6SVupD3ZS8qiN8IczhfXQEcqwSW8mpNv+W0fkvq5b3JGKIUJbGpkl03vlN1IoKQosWjfsYixQpUqTI68eJol8XA/+nsC5xa7weiQFsoVgmrMjrjO71Ea2poyoxSPfsNg4wyGTPJLwGlCQEfeED0HMK/lyYfDNU5xRy+SzCcQhhoQkY8gpUx0O5X6U3Of6Fs482v24jLkOouop0MiAEXsVC9xh0mC1gjY18XbU7xtbhNQQie3l/2YfpG/ozg6UlnBfcSnC7RK1rYTDooebUWTye+RPnZ/PsjpzK9ANJFNNL44IwdjzOyNPPUHb11QitmKaySJEiRf6ZOK75VUr5H1JKRUqp4JpfzxjdPqz5pJTzpZSr/ue6XKTIsSmva6A2OcTLapBONYYangzA3P0OmdB2vEoC1QzRNTdEaTKLEXeDIgQQEYJhn4JDkBq/NTE+dYcHStgmxHa7QRKKhpRpVE1FCoElUxxgMkFVodl/SLP38xf2EKx+kppALQ09Xoa9USzpZeHQVoRlIz0httv7eG5BgLyS5SPDQzwVPY03J9wIrNPOn03y0eVgWZRceum4j69IkSJFiry+nJRPXUGAWz3RnSlS5B8hWlePdzjGTq+fLnUIAhUo4VJO3QNZvR9VHcZywmyfrBMajpPr6zl4rs+2GfYpSILUqEl6kxNjfj2oqRvaC9Kmm2pyDkgng6raZNQS8sYge5xa5oT8B2sm9iVzPNvxAtK7nxvmXs/ul//K3io3IH3WnkFQdLpK/FRXlfC7nj8wL1HKNMPhRdlKcNBG9dtUN5aR+MMf8M2ejW/miestFilSpMgbhe9973u0trYyZ84cvvvd7wJw6623Ul9fT3t7O+3t7axYsQKAWCzGkiVLCIVCfOxjHxtznd/+9re0tbUxd+5cLrzwQgYHXXebZcuWMWfOHBRFYc2aNQePN02Ta665hra2NlpaWrjjjjvGXM+2bebNm8fb337IM+26667jlFNOYe7cuVx++eUH05o8++yzzJ8/H03TePDBB8f/IRU42UAJAIQQNUKI04QQ5x7ZJqqDRYqcLGV1DeDYBNNJzNIwqYCJWjmdpn4FS8mTVdNknRK67XKEsClJHCopoxsmcY+Co1dR7fSPe6CEtByw5SFNXWwnAD3UkDccYASv6pawyRkxdlvRMabX37/aiRZ9jgpfNYv0dhJ9vewLevAoBpV7LZSSBjYZm9n11gbScoQbMhleicymKmmg5yNMml1Gbvt2clu2UHKMfExFihQp8kZk06ZN/PSnP2X16tWsX7+eRx99lJ073ffnzTffzLp161i3bh1ve9vbAPD5fHz1q1/lzjvvHHMdy7L4xCc+wVNPPcWGDRuYO3cud999NwCtra089NBDnHvuWFFm2bJl5PN5Nm7cyCuvvMKPf/zjMTnwvve979HS0jLmnO985zusX7+eDRs20NjYePAejY2N3HvvvVx55ZXj+nyO5GTz1NULIZ4CuoBVwFOHtacLyyJFXlfK6tysOwtySfrDpeynHyXQRDBlU5KW9HvTpJ0y8vF6zHpJRSKFqrh/Amouz5AucLQyaowDDKUNcqY9bn2TxhF1X/u3AjBIFNXyI2WWsJbDiVbSTxVZqR0U6qSU3P/qZrTgLt4541L2rlkNAjJaNS2enSixEbKl1VRYBg9kn2dyfAZn53bzdPRUzuvrR0iV2ac3knj4D6DrRN5+0biNq0iRIkUmkq1bt3LGGWcQCATQNI3Fixfz8MMPH/f4YDDIokWL8Pl8Yz6X0i1Llk6nkVKSTCapq3OtHS0tLcycOfOoawkhSKfTWJZFNpvF4/EQiUQA6OzsZPny5Vx//fVjzhndL6Ukm80erEzU3NzM3LlzUZS/SZf2N3OyntL3AK3AZ4GNFFOYFHkDEq2rB+CUfJK/+EppsfcyJ+qWJJ7ZCT2+YSoTKvWJCvpbQ1Q8n8OrqYwYEjWbIR6OIEWEmuxu4AL6k3kaywMnuOPJ4xSEuoPm146XsFDI48VrhMDOENUyqGW17KccgDmFShKr9w7RY72IT0gunnoxK3/9dfoqJKlsPWen3JfbFs8wXUtrSZivck3/fBSP5HntFM4dAqFA/ZQw+x59lPB5i9Gi0XEZU5EiRf51eOren9C/f8+4XrOqaQpLPnDjCY9pbW3llltuIRaL4ff7WbFiBQsXLqS8vJy7776bX/3qVyxcuJC77rqL6Anebbquc88999DW1kYwGGT69On88Ic/POG9L7/8cv74xz9SW1tLJpPhO9/5DmVlbqWfT37yk3zzm98klTq6Vvi1117LihUrmD17NnfddddJPInx42RFxnOAT0kp75JSPi6lfObINpGdLFLkZPAFQwRKSqlPDtEXjjIgklDdBKrG3A6F7mA/AHXZCNtmqpSmc6iWiRAKejZDRoGs9FMjxr+qhMwXNHWeQ5q6LO5MMpQPAZIKLYUTDrKfyWhIZgbc/fe/fABv9FXaKuYSSikMdXWwtULFcjzM7Y6B6mFEJngkuodp+VbODnQzpEVIZkrwGGXUTI2Qf3kV9uBg0fRapEiR/1W0tLTwuc99jqVLl3LhhRdyyimnoGkaH/nIR9i9ezfr1q2jtraWT3/60ye8jmma3HPPPaxdu5bu7m7mzp17lI/ckaxevRpVVenu7mbv3r3cdddd7Nmzh0cffZSqqioWLFhwzPN+8Ytf0N3dTUtLCw888MDfPfa/h5PV1GWB/onsSJEi40FZXQP2QC+0lyFVlVQpeKJNzOjaz/1n7QMgbPlYX5rnAsdGTQwjImUE826euJiiUy4KZcPS46eQdvJHmF9TvSS1WrDAk9WwgLCWx/Dp7DMmMzWg4VMVkjmTP+94Fb2xl3dMvZ5dq91A80y0GnqgrjNOOlJOV5tK3Bhg8Y5raIjezsrShZw+1I1mtTC5rYrEH36DWlZG6Jxzxm1MRYoU+dfhtTRqE8l1113HddddB8AXv/hFGhoaqK6uPrj/hhtuGBOscCzWrVsHwNSprvXm3e9+N1//+tdPeM59993HhRdeiK7rVFVVcfbZZ7NmzRrWrl3Ln/70J1asWEEulyOZTHLVVVfxm9/85uC5qqrynve8h29961tce+2xMsJNDCerqfspcPVEdqRIkfEgWldPvKeL8ypKiIVL6BCDCH8V5QlJ2j+AwEKR0D9ShV0O3sEYSIeIlQZgCIiorgCWzFnj1q9RnzrFo0KqDxyTbk8deSWPcFyNYFAzyOuCDhppDbn1Xx9Z340MrkEVGhdOvpDNLz5Ff2meULaOOqMfPRGnw5vj6Rkp5vjamZMTRMwYz3rbiQ67966pUxlZuZKSi9+O0PVj9q9IkSJF3qj097s6pQMHDvDQQw9xxRVX0NNzKHvBww8/TGtr6wmvUV9fz5YtWxgYcEtBPvHEE0cFORxJY2MjK1euPOiL9/+zd+dRVlVnwv+/+9xz7nxvzfNIMRZUFaVWEJUfiFNQTPLSxqjJa2zamGCrr22bxI52XuyYdPLrDgtNQ9PGdGIwERMigzEYNI6oTUqQAooCBIqhJmquO893v3+cogQZLKVISNyftWoBZ9jnqbOoVc/dw7M3b97MlClT+P73v097ezuHDh3imWee4YorruAXv/gFUkr2798PmHPqfvvb3zJlypSz+dY/stH21HUAtwohXgE2YP7uO4GU8qdjGZiifBzZxaVEA37m2gVPuzNp7jrIJEc2rnDK3EbL6CeFQWKwjIHqHrL6fHQDnoTZKzdoFbi946Ad/JHEmMUlj++pe+/3ABwWecS0BKTNhNJpSdClpRgU2ZQ7zPl0v9pyGHvWdi4vmwO+CINH2jgyJYwvVshc304A9pXGGSDG/+q5ltLCLZCE1kQZJUkbulXD2P46MpFQQ6+KovxFuuGGG+jv78cwDJYvX05WVha33norTU1NCCGorKzk8ccfH7m+srISv99PPB5n3bp1vPjii0ydOpXFixcze/ZsDMOgoqKCJ598EjCTwnvuuYfe3l7mz59PfX09Gzdu5K677mLhwoXU1NQgpWThwoXU1dWdNk4pJbfddht+vx8pJdOnT2fFihUAvPPOOyxYsIDBwUF++9vfsnjxYnbtGvvNuEab1P3X8J+VwOWnOC8BldQpf3bHVsDWRPz0erIIdbSiFeSjvQeZPith6wDxqIvsUBl7p+1g/DofewD7saTOEDhzJkM7BMawpy4dTwPDSd2BVwBoS2aiWXSkPLZFWJweBBKNApvB3qMBdg1swekO8Jnxn2H35k0AeOySRn8xDd2vkLTovHGxxqSMyVg3F1A4sYmWVBXjfEO4tRoKqzIIrPtPbFOmYP8Tf2JUFEUZC5s2bTrp2FNPPXXa648vO3K8RYsWsWjRopOOL1iwgAWn+NDrdrtZvXr1GWO7/PLLufzyywHQNI233nrrlNd96lOfor29/YxtjYXRDr+O+5CvqnMSnaJ8RMdWwMZ7OikcXq4eL8gEILsvj17HAJF0JjmhEloLEmQEzMKQjngcMHvqtMzJuAnjD568qunjOtZTp1kt0LUdCQzGvXismch0CITAqqU4mjKXvxdYdX71Thu2zHfxWjOYXTKbdzf/gUF3nLpBBympU9HVQbdX47A3wmzjGgyiVAS2s8l5AZnhEMmgTl5WiujOnWQuUDtIKIqi/LUbVU+dlPLwuQ5EUcZCRl4BFl1nsLODyy6r46hFp9tukAdk93vpLB2gTHopCGq8pSWxiTgCiTWVQEtLBq2CtGc8XtoJDG8jNhZGhl8NwNdG3OZFi1nJNHJJy73ohkDYPHQPj/hm6xbWNO3HKG/h2nF/g0hD6FAHvsI4Ws4E8jsGcIQG2TPewKk7KTlQi1H8R0nWs/8AACAASURBVIxUkt3pSopFDkjwHN4Kuo73QyYRK4qiKH/5PuqOEnVCiLuFEIuFEIXDxyYIITznJjxF+Wg0i4XMwmIGOju4OjeDXk8WLUQAyBuy4reb28J4RZReXx6xcWlsSTPhsieSZlLnqsIjwvj9Q2MW17E6dWKwBdJJehy5AGRouaTTIVxWifTk05s0fyTfO+QjqL9LmgSfHf9Ztmx7BS0F5X0BDthLuLh/LwAvNUg+XTaP3j1RcnJ2EtZs6EErRZ4qhAD95dW4Z89Gz8kZs+9FURRFOT+NdkcJmxBiNbAN+BHwf4Hi4dP/Bjx0bsJTlI8uq6iEgc52ql12wlk5dEV7wXBSEEjjt5trfGxaEE+ojH21Go5QCCE0rPE4g1YNKVx49RSBUGjMYpKxFMKqIQ6ac0MOGxnmiaiLlAzjsSZIevMZkF4Eko3bOnHlNFHhraA2t5Y33l6PRDJNlxwOlDCzdx8RQ3AwX3KJvJp0WlIR+COb3XW4Y1GMhJesLAHdHWR87nNj9n0oiqIo56/R9tR9D7gKs6xJASCOO/cC8OkxjktRPrbs4hJ83V2kUynKS0sQSIQ7m4JQiJhu1qDTRYzcUCl7ywUufwAhwJ6IM2QVpCNJPE7b2K5+jaeGF0m8DMDe4blzkYCAdIgMPUrMm8EgWWRqKd4++B5p2wE+U/UZEukEA+8dIGaN0zlrIh2BQib2tLKnTDA1pwa9NQtbXj9lkTaaxQScLg++rjhZkTY0pxP3HLU1s6IoyifBaJO6W4B/llI+zcnlTA5iropVlPNCdkkZ6VQKX083l4431/DEvZnkRnykpYukFkEnTmGwlFanxBPwIdNp7PEIA1ZBOprC6/YQSOkQHJua2+lYylwk0f4OAAcS5o9e3AeajOAmQNzpYohs7KkUuncbANePv56XDmwke1AnKxwj5ISi0ACeaJAtE+HGyTfStnuQjNIWAIKRTKrL60jG0zhbNuG+6kq0D+yBqCiKovx1Gm1SlwPsPkMbtrEJR1HOXlaRuQJ2sKudK0sLCVnt9Huc5IT9iEQRQ/YB4ljIDZXQmtCwJ82SIu5khCGrQEaTeDJz8UsndLw7JjHJWAphSUDcXG3bL7OxGBZEJIIA3CJEzGFlkCwigTievO1cVHARJe4Sfv/aL7CkBYzLpiviZnrfAQBax9mZYZtNxB+nKP4O7dZ84nEbmVZzZoS3ayfea68dk/gVRVH+XB577DFqamqYNm0ajz76KAAPP/wwJSUl1NfXU19fz4YNGwDo7+9n7ty5uN1u7r777hPaWbVqFbW1tdTV1TFv3jz6+sw51qtXr2batGlomsaWLVtGrk8kEtx2223U1tZSXV19wrZilZWV1NbWUl9fT0NDw8jxpqYmZs6cOXK8sbERgPXr11NXVzdy/M033zwn72q0Sd1B4JLTnJsB7B2bcBTl7B2rVTfQ0Y5Lt5DOzqXbpuGMR7EG8gnY+vGTgTXpJRHJJK2bc+cciRghXRCNJvDmFBDAiWzfOiYxyXgKkTJLpEQMO2mZicflQaSGCw/rceJWjUGyCYeDxEU3nx3/Wdr8bQwd7kAiCVw8gYO+chp6dzHogk/N+F/0vRch4EgzfWgr24xqPJm5BHvSOEUYh13ivuyyMYlfURTlz6G5uZknnniCxsZGtm/fzvPPP8++ffsAuO+++2hqaqKpqYnrrrsOALvdziOPPMIPf/jDE9pJJpPce++9vPrqq+zYsYO6ujqWLVsGQE1NDWvWrGH27BOnqqxevZpYLMbOnTvZunUrjz/++Ak18F599VWamppOSAS/+c1vsnjxYpqamvjOd77DN7/5TQCuvPJKtm/fTlNTEz/96U/5yle+MubvCkaf1K0E/kkI8SXAOnxMCiHmAvehCg8r5xG7240zI5OBzg4ACgsKCFrNOWzegQz89n7iSXP1aW6olL4Mc3WsY7gAcV88hdflJIWFcFvTmMSUjqXQEv1gsdJuc5IlsrBaXccVHk4Q0iQBvAjasWo2rq64mt9s/wVF/XZsWopJxhEOD1VS07ef5krBjdU30b57AFvVYTypML2JPC6qr6Nr/xDe3t14rr4KYbV+SGSKoijnr927dzNz5kycTie6rjNnzhzWrl172utdLhezZs3C/oFpJ1LKke2+pJT4/X6Kh2uZVldXM3ny5JPaEkIQCoVIJpNEIhGsViter/eM8Qoh8PvNuds+n2/kGW63GyHM30OhUGjk72NttDtK/BswHXgK+MnwsTcBO/CMlPI/zkFsivKxZRWVMNhlVu+eXlbCXpcTAK8vjcjuB2kD0uSGSmjL3YvG+wWI+5NJPHZz79VA5x5cUsJZ/gDKeAoR7UJaNXaLJK6Ui2TagLTZe+fU4+wVFqTQsBnvMbf4chy6g+f3rGXeYB7RCQ4MyxGsPQm8sQS+iYVUucfzyr5NFNTtJI2gJ57HVaWT2RVoobz/PbzX/e1ZxawoinLM0G8PEO8cu4oAANZiF5mfGX/Ga2pqanjooYfo7+/H4XCwYcMGGhoayMnJYdmyZaxcuZKGhgaWLFlCVlbWadsxDIMVK1ZQW1uLy+Vi4sSJLF++/IzP/vznP8/69espKioiHA6zdOlSsrOzATN5u+aaaxBC8LWvfY2vfvWrADz66KN8+tOf5utf/zrpdJq33357pL21a9fyrW99i56eHn73u9+N9jV9JKPqqZNSpqSUNwNzgCWYid2PgCuklF86J5EpylnILi5hoOP9pC7sGE7qAhEyDHMeRZblMEWhEo7kpLHFYtjjUQD6kim8DvPzjj+agoHWs44nHYkhUt2IZJQDuoaIC6JxywlbhB2JD1+cOspV5Vfx2nsbsfgkGgJROYVD0Uwu8P0RgKnzv0zXAR+JZJpxwW3ss1Vgza0k3CvN758+XBdffNZxK4qi/DlVV1fzwAMPcPXVVzNv3jymT5+OruvceeedHDhwgKamJoqKirj//vvP2E4ikWDFihVs27aNzs5O6urqTpgjdyqNjY1YLBY6Ozs5ePAgS5YsobXV/H3w1ltv8e677/LCCy+wfPly3njjDQBWrFjB0qVLaWtrY+nSpdx+++0j7S1YsIA9e/awbt06vv3tb5/lmzm1UfXUCSHKgS4p5SZg0wfO6UCxlPLIOYhPUT6W7OJSIgE/kWCAnJwcIk4HaSHIDfvIMswF3MLWSV5oElsrJBccCeH2mEldbzLJFLsBQAAntG+BnDN/mvwwMprAEN0AHNFtZCTThCMWrOkQuq5hNQw6YhIE6Gk/l5Zcytd/8SXGHbUBkiKblXf9FdQPbKfPK7jyklvY9tt2+nIk9YEWXrNdzMyLLqBzTz96Mkzh7OkIfbQd8YqiKGf2YT1q59Ltt98+khw9+OCDlJaWUlBQMHL+jjvu4PoP2TWnqcmcSjN+vPl9fOELX+AHP/jBGe95+umnmTdvHoZhkJ+fz2WXXcaWLVuoqqoaGVbNz89nwYIFNDY2Mnv2bH7+85/z2GOPAXDjjTeecu7c7NmzOXDgAH19feTm5o7yLYzOR1koccFpzk0fPq8o542s4cUSg53t6LqOIyeXgM1FXmSIfJs5d67fmsYey2NQt+IMhXDGzeMDMo3XPtxTZ8mGjrNbLCGlRCYFFt0HQNJZCUA4pJGWYVw2Ae4ChtLmMy/ILiMUGuKP4hBVvR6M3BRlWjutvjxqunwEp5Ri1+0caRnAVdGOIx2nJ57L9LoaOnYdJcN3gIz5151VzIqiKOeLnh6ztNSRI0dYs2YNt9xyC11dXSPn165dS01NzRnbKCkpoaWlhd7eXgBeeuklqqurz3hPeXk5r7zyyshcvM2bNzNlyhRCoRCBgDl1JhQK8eKLL448v7i4mNdffx2AV155hYkTJwKwf/9+pDRHUt59913i8Tg552Cnn9F+lD/ThCIDSI9BLIoyZrKLzbImA50dFE+qprywgIDTRX54EMPpotPwk8BFBuBIZCLTYfR00tz/VQPPcE+dP7P67JO6eArQsNgTJKOQlXUhHIZkVAMRxmmkiDiz8WsehExxVcmn+NWGf0dLC/SoBdfEYjT3PsTuCO4oZMy7kUggTl9bkNyiZgB6HdPQpIE/qDEh2Y3zoovOKmZFUZTzxQ033EB/fz+GYbB8+XKysrK49dZbaWpqQghBZWUljz/++Mj1lZWV+P1+4vE469at48UXX2Tq1KksXryY2bNnYxgGFRUVPPnkk4CZFN5zzz309vYyf/586uvr2bhxI3fddRcLFy6kpqYGKSULFy6krq6O1tZWFixYAJirar/4xS8yb948AJ544gnuvfdekskkdrudH//4xwA8++yzrFy5EsMwcDgc/OpXvzoniyVOm9QJITKB7OMOlQghqj5wmQO4DTg65pEpylnIyC9Es+gMdJrz6ooLChhwuMgbHOKINZeEtY9UylzF5I5l4bfGkJqGO5HEZ4DXOtxT55kIHU9DMg76x1tJKnsPA5CyBDmq65Q5x9NBB7akDUEElyVGh+ZkiCysaR+ziy7lq68vZeZRMz6Ps46g8zUm9pmTlMdd8RkO7RkkYYFpgW0ctJZQPPkCOneZw7sltUUIi+XjvzxFUZTzyKZNm0469tRTT532+uPLjhxv0aJFLFq06KTjCxYsGEnSjud2u1m9evVJx6uqqti+ffspnzFr1iy2bj25I+CBBx7ggQceOG3MY+VMw6/3AvuBfYAEfjP89+O/dgBfA358bsNUlI9Gs1jILCxicDipy8/PJ+h2kxvxERRJdH0AI55JmjTuWCbdnuEFC/E4g1aBe/gDlN9ZDqk4dO/82LHIg2YNI5nq5ZChU6gXAuBMWSEVwiWCHEzoDJKNgyAH33yBHneK6mgVCEmJRWNHMItpnUH8WR6MwkKO7B6gt9jCp3zNtIoy5l5cz5HXdiHSCco/o2rTKYqifBKdafh1HXAIc+j1p8B3gQMfuCYGtEgpd5yT6BTlLGQXl4zUqisoKCDkcmLIFCm/hscyRDKWxZC9h6JoBm1Z7zElAY54jCHDjpGUWC0aAXue2VjHu1Dy8YY000e2A4XYYt10ZGaQm7QhhYYrpZFOhnESpDmVzSDZ5Bkav2l5Bk+OID2QJLfAidt+iMagzv2dEtuMTyGlpH33AM7qTlytEdqTZVyZn8urrX4yYlE8DdeM0RtUFEVR/pKcNqmTUm4HtgMIISTwOyll358qMEU5W9nFpbS+u4V0KkVmZiZxjxsAbUBQrPlpx4LPfYjCiJd3y0NM6QZnLMJgRiapSBKPXceftoMrf3he3R0fKw7ZuRuLuBBdJknnjCcYDBLHwJqOEsMsZzLgijJIFjOjfWwu8PO59IWkggPkl3+KQEYT/qMhMkOQfcmlDHWHCQ7GyJJm9/9A3iXEegcYkplMLOo7Z0UtFUVRlPPbaOvU/VxK2SeEyBZCzBdC3CqEuE4Ikf3hdyvKn0dWcSnpVBJfz1E0TcNZai5B1wcF5RazfEnINkBGPBOfPYYlmcQZDTNgFfT1h/E6DAKxFJQ2fPzFEr4OpH8IXZjDwN7ii/AHAoRTOjJtDvk69QRxT4yg8JI+9DIpi2BCfBoAudSyxdFKZVfCvP+ieo60DBAxBBN8TbTrBUyov4RDa19Hajrll51cFV1RFEX5ZBhtSROEEN8FOoDngJ8DzwMdQohHzlFsinJWjl8BC5AzfhwAtqEUdqe5YDuupbDGs0AT6PEwjliYkCHo6AuZPXWRBJRcCH3vQWToowdxaBNpHBjCjKG0Yi79g34SaStSHrfvq8MCUtKe3MLkZB5De9pwGC5yRIotsTiT2i0kLAb2SZNo3z1A73gbF/t2sk9UMGf6BNobzYKYZZefeVm/oiiK8tdrVEmdEOIfgAeBXwBXANXA3OF/PyiE+D/nLEJF+ZiOr1UHUFBZTli3YR9KId0xJElEykY8lQES4loU2/D+r4cHw3jtBoFo4v25dJ3bPnoQ21chHSXoooOgsDClbBahUJB02hjpqeu0Q0p3oycOMegOM3/i3xALdDKuoILezBaaIxYmtNnxlU8gLSx0vDeEUdRBRirIQSbiDPnp9Rl4rFGcHtvZvzhFURTlL9Joe+oWAY9JKe+QUr4updw7/OcdmNuF/f25C1FRPh6H24PDmzFS1iQ/P58+RwauoTgxdxxD78cdy2HAFsSdsOOzh9DT5jBnVyhu9tRFk1A8XHf7ow7BDhyE1teQJf8fuminx+HFqtlIJ2Lowg7DSd1mr4W0yMQefB1DWsjrKECE4xQ6pvKHrK2IJFT1hWFqDd0HfSRiKTKiZoIZKL8C/0sv4/NWUTRp7AtZKoqi/Lk99thj1NTUMG3aNB599FEAHn74YUpKSqivr6e+vp4NGzYA0N/fz9y5c3G73dx9990ntLNq1Spqa2upq6tj3rx59PWZywRWr17NtGnT0DSNLVu2jFyfSCS47bbbqK2tpbq6emRbsb179448t76+Hq/XOxLXt7/9berq6qivr+eaa66hs7MTgMHBQRYsWEBdXR0zZsygubn5nLyr0SZ1lcDpdp/93fB5RTnvHL8CNj8/nwGHF3cgSsQZwGXpxRvLYcjRTXXYRZ8zhCFTAPTFEu/31DmyIGeCuQL2o3h3JQiNZF49utZBJLOUYDAIQIbhRMoQQoPXvS7iZGAL/Q+zci7hYFMThmYjJzmO/7G0Ma3LwEinyLzoAtp2DxJwCqYGdnDUksPUCy6j67WtJA0npReWjem7UxRF+XNrbm7miSeeoLGxke3bt/P888+zb98+AO677z6amppoamriuuvMXXTsdjuPPPIIP/zhD09oJ5lMcu+99/Lqq6+yY8cO6urqWLZsGQA1NTWsWbOG2bNnn3DP6tWricVi7Ny5k61bt/L4449z6NAhJk+ePPLcrVu34nQ6R+rcfeMb32DHjh00NTVx/fXX853vfAeAf/3Xf6W+vp4dO3awcuVK7r333nPyvkab1PUDp5usM234vKKcd7KKShnsMpM6j8fDoDMDbzBM0t5HjubDE8th0NHNuLCXIUcIRyIOgC+VGp5TlzQbKmmAji0wvM3Lh0oloOmXMPHT9IUH0UUf1oJpDAz5AcjUnSAiWPQUBy2CQ/EImgzz2aq/IRxop8Q1ni57B4cTSabv8wBQPutTtO0eoL/azcyhHeyiioZiF0dbzTaLxmeO4ZtTFEX589u9ezczZ87E6XSi6zpz5sxh7dq1p73e5XIxa9Ys7Hb7CcellCPbfUkp8fv9I/u3VldXM3nyyYvMhBCEQiGSySSRSASr1YrX6z3hmpdffpnx48dTUVEBcML5UCg0Uo2gpaWFK6+8EoApU6Zw6NAhuru7P8YbObPRbhO2FnhECNEPPCOlTAghdOBG4DuYCycU5byTXVJK86svEg0Gsbvd+L3ZuA9FCWhJMrQ4zoQHv62XomAG/uw27D5zTl0QyXi7TiSRIpFKY5RcBDueAX8HZJR++IPf+z0Eu+Gi2wi9ZhYuzi+/lLfazD0MPRYHIRlCWJPMPiR529kJlhxsewRGdIiKnEtZV/AHBJKKLheDzgTjcgroOfQesfH95HT42GetZcb2rfgdRRgGZOQ7ztl7VBTlk+2FF17g6NGx3TyqsLCQa6+99ozX1NTU8NBDD9Hf34/D4WDDhg00NDSQk5PDsmXLWLlyJQ0NDSxZsoSsrKzTtmMYBitWrKC2thaXy8XEiRNZvnz5GZ/9+c9/nvXr11NUVEQ4HGbp0qVkZ59Y9OOZZ57hlltuOeHYQw89xMqVK8nIyODVV18FYPr06axZs4ZZs2bR2NjI4cOHaW9vp6Cg4IwxfFSj7an7FtCEmbyFhRDdQAT4JWYtuwfHNCpFGSPvr4A159VFssx5Z5o/jXX4f3/I6scTyyWsh7ElE2hpScJg5BNWIJp8f7HEaOfVbf05eIphwtVI/34AMoobaO0yO7UdKSvJZIiAI8GMDkk41ok7cxb739uLFoZcy3hed+5ioi1NYb+fntIJdOwdJC0hJ2LW+o5N+DTB114n6K0krzJD1adTFOWvTnV1NQ888ABXX3018+bNY/r06ei6zp133smBAwdoamqiqKiI+++//4ztJBIJVqxYwbZt2+js7KSurm5kjtzpNDY2YrFY6Ozs5ODBgyxZsoTW1taR8/F4nOeee44bb7zxhPu+973v0dbWxpe+9KWRId5/+qd/YnBwkPr6ev7jP/6DCy64AF0fbb/a6I2qRSllQAgxG5gPzAaygAHgdeAFKUc7JqUof1pZRcMrYLs6KJ40hVSu+anIMiiwDP/vjxohtGQ+EUsEZBp3PE7MphFNmPPrAtEE2YU1YLGaSd3Uz535oUNHYP8fYM43kZoFa/QIEoHIrqKrdyc6EAsIRDpEOJWipRBAUJY9h86BjYx3VLHX0c4QYT4T0MgLDdA96Xra9gwylKsz3d9Mr5bJ5Cl1+Jf/G8Hqy6iqzDg3L1BRFAU+tEftXLr99tu5/fbbAXjwwQcpLS09oYfrjjvu4Prrrz9jG01NTQCMHz8egC984Qv84Ac/OOM9Tz/9NPPmzcMwDPLz87nsssvYsmULVVVVgNl7eeGFF562t+2LX/wi8+fP51/+5V/wer387Gc/A8yh4HHjxjFu3LhRfPcfzajr1EnT81LKbw6vgn1ASrlBJXTK+SwjvwDNoo/01FmGe+4sAwIMc6hVTxv0Wuxkp1PEtQjOeJyIoTEUMVfC+iNJ0G1QWAvto+ipe3d4o+kL/jftgXa86T4SIg8MB4M+PynNSiwQwyJjlHcn2VRhIWWbTGbEhZHqo8Q5kY2Zb2MImNpsJmvO+ul07huia5KFS3xNbJMTuSDRiy9kIY2F/HLPGL85RVGU80NPjzlt5ciRI6xZs4ZbbrmFrq6ukfNr166lpubMNTpLSkpoaWmht7cXgJdeeonq6uoz3lNeXs4rr7wyMhdv8+bNTJkyZeT8qlWrThp6PbaIA+C5554buX5oaIh43Jyz/ZOf/ITZs2efND9vLHykvj8hxFzgEqAEsxDx21LK18Y8KkUZIxZdJ7OgkIEOM6lzlZWRRmAZEMhcs5iwNeWkyxpnYjxBxAhhT0QJWW30BsxdJwJRM7mj5CLY9ktIp0CznPqBqSRs+wVMuAoyy3l3/3rmyn5S1jKiiRTxaAiry4lImoWH05Y4/TZByH0F6e4hbIkAue5yNnl/ynRHEmtvHikxRP70Og69+R7BqX0UxAfYa7uRC/74FgFPOQB5KqlTFOWv1A033EB/fz+GYbB8+XKysrK49dZbaWpqQghBZWUljz/++Mj1lZWV+P1+4vE469at48UXX2Tq1KksXryY2bNnYxgGFRUVPPnkk4CZFN5zzz309vYyf/586uvr2bhxI3fddRcLFy6kpqYGKSULFy6krq4OgHA4zEsvvXTCc8EcZt27dy+aplFRUcF//dd/AeaCjy9/+ctYLBamTp3Kf//3f5+TdzWqpG54O7DVmAWH08Ag5hCsEEK8BtwopRw4JxEqylnKLCpmqNv8VJeV6WXA7sXa50OWm5/+bEkHvUaAibE47xkRbIkYAY9G56BZR85/fFLX+GPo3QsFU0/9sP0vQaATrvs3AN5qf5Pr6SVuv4Q9RwPYSWC3Z44UHt46KYFD0+l1XESibQ/ZsRyaCg8Q1WI0uJLY+5Mc9BZRFdNJCyiM7gZAVs0h+OxKwhWzMOwWMvLUIglFUf46bdq06aRjTz311GmvP3To0CmPL1q0iEWLFp10fMGCBSMlSY7ndrtZvXr1KdtyOp30959c+OPZZ5895fWXXHLJCb1458poh19/BHwK+N+AQ0qZBziALwMNwGPnJjxFOXsZeQX4e3uQUuK26/Q6MtF6NaTD7Ib3JNwM2nspDGUQNMIYyRiDVo1D/ceSumNlTYYXS7S/c/qHbf05uAtg0jwS6QR7j7yGhRhpRyU7O3w4RIKUtCLTIWJ6iu3j00zxFoNmxRrqJ0+M4+WMP2LXDManNTK6OmgrrGLocJCO/CQNgZ0MCC+TCiuI7thBMLuKvDIPQlOLJBRFUT7pRpvUfQb4lpTyaSllAkBKmZBS/hL4Z+Cz5ypARTlb3rx84pEwsZC5n2uPMxN9EFIuM6nLiXsYdHbj9pUR1sM4EnGChkZseKGEf3huHdnjwVsKL/6zOQz7wemkvg7YtxHqvwQWg6aeJvLC5hBv2jWOnW2DOEQCf1ggZZiDxWGSFkHJ8BBqrr8Lr7uYLe4WpjktuA9kYI1HCU2YQtf+IdrGCS7x7aAxPZlp7btICw1fzEFehRp6VRRFUUaf1KWA0/Ub7h0+ryjnpYw8c2WSr7cbt83sqbP608QcSawiTE7czZC9GxGqImIJYx/e/9VlmPcHjvXUaRos/J25YGL938MzX4Rgz/sPavolyDRc+GUA3mh/gwlJ80cj7a1id3sfGjDkS0E6zP7SIBPjKVKaWVupMu7nvZweUiLFLMcQGT1m3Hp1Db1HAoQd/ZTGunnPfgFi85vEymtIpVCLJBRFURRg9EndeuCm05y7GVg3NuEoytjz5uUD4O/rwWM36HVkoaUhJQVWLUxGwkHEGqSfUrz4R3aVKE8HsVq09+fUAWRVwm3PwzXfg/0vw3/OhJb15uKJd1dC1VzINpepv97+OrOFh5TMJGUv5GjfIADF/kEGnF30Zcb5X2kr/Wk7ukxQnMziTe82bMJNpS2N7MskYDhw5ZeSSCeoTB4AQJReTPCtt4lNvxxQiyQURVEU02iTut8CVwkhfieE+FshxLXDf24ArgSeE0Jccezr3IWrKB/dSFLX0zMy/ApgCQh0LYo7YQOgy6lTmvaN9NRN0IJYNPF+T90xmgaX3g1fe8PcXeLXX4YnrwdfG1x0GwBH/Ec46DvItGiUeHoivfEkVmkmi6X+MK15rQgJV9nzGCIDTyKEI5XPVlcLuS4zXtnay56sctxhydGcCA2BXfiEiykpCzIcJlQwGcNmITPfec7foaIoinL+G21Jk98Mil8kXwAAIABJREFU/1kGnKoC4bHlHgKQwGnqPSjKn57d7cGwO/D3dlNs1+l1mMOdlgEQlijWlJnU9Tv8lERSHCQAQF7CR9pS/P6cug/KnwJfeRne+CG88e/gzIXJ8wFz6NWdTuMNdONPX0VbOI5DmO1YUnYOFB2lcsiKpzKbQbIp8PVxODtCUksx3ZlADGVjtB9hz+SrqT8ao6tM8Le+ZrbISYxv3UHcbmco4SG3TFOLJBRFURRg9D11cz/k64rhr2N/V5TzhhCCjLx8fL09uG3H9dQNDhcgTtnQ0xYGHL1kBwxS0meeT6ZIJpInDr9+kMWAud+CRW/Cl9eDbgXModer9BwEkricxCFfhFyL2VN3KD9GwBnjgj5BWLMySDYzjw7QmNmCM+ViptFOTmcRQkp6SycwdDBAvzvGpPBhWvVq0m+/iWPmpfR3hMgvH/vilYqiKOeTxx57jJqaGqZNm8ajjz4KwMMPP0xJSQn19fXU19ezYcMGAPr7+5k7dy5ut5u77777hHZWrVpFbW0tdXV1zJs3j76+PgBWr17NtGnT0DSNLVu2jFyfSCS47bbbqK2tpbq6emRbsb179448t76+Hq/XOxLXTTfdNHK8srKS+vp6wNxSbOHChdTW1jJ9+nRee+21c/KuRrtN2Ovn5OmK8ifizcvH39uNy6oTtDpJWHQsgynIiBCTRRQlchmw92E/6iTpNue+BZ0uMoYC9AVGkTgdV7cuGA+ypXsLPzIqAYinJ7FvKMLkUCeGLc6O4g60NDQMpugLhhl0Z1EzeJCl5S24tHq82uu4+jJIAsmqyUT3h8inAwDDVk6i/TUstywi+U6avHL3WL8qRVGU80ZzczNPPPEEjY2NWK1W5s2bx/z55ojIfffdx9e//vUTrrfb7TzyyCM0NzfT3Nw8cjyZTHLvvffS0tJCbm4u3/zmN1m2bBkPP/wwNTU1rFmzhq997WsntLV69WpisRg7d+4kHA4zdepUbrnlFiZPnjyy7VgqlaKkpGSkzt2vfvWrkfvvv/9+MjLMXYGeeOIJAHbu3ElPTw/XXnst77zzDpo26o29RmVsW1OU85R3uFadpgncNoOg04ulX2DRw8TTLipi+Qw5ekgN5ZLUguipJP1eN0WhPgbD8Y/0rP/p+h+S6SQ10ShpbxUSN4cGg+QHutESUQ5n76ak10EuCdoTCaLCid/SS1xLoOeYiyy0jiTtnny8jgx8bj+T44dIIygaMHsNw6Xmljh5qqdOUZS/Yrt372bmzJk4nU50XWfOnDmsXbv2tNe7XC5mzZqF3W4/4biUcmS7Lyklfr+f4uJiAKqrq5k8efJJbQkhCIVCJJNJIpEIVqv1pK29Xn75ZcaPH09FRcVJz/v1r389so1YS0sLV155JQD5+flkZmae0Cs4Vj7SNmGK8pcqIy+fWDhENBTEY9fxe7Jx9fVhmRoiiY3KaB5veprpS12MQxzFnojTleWkPLCXA7GJH+lZr7e9jsdwk9l5gFTOJdADU7paSLsttGb1ErL5uKgrF5fuo8Vq4Iqn2ek9iCdhp8whQUJ81yH2ZI7HG0rTVST5vH8Xe0UZRXt3YZtaTceQQLdZyCxUiyQURTn33nvvEQLB3WPapsddzaRJ3z7jNTU1NTz00EP09/fjcDjYsGEDDQ0N5OTksGzZMlauXElDQwNLliwhKyvrtO0YhsGKFSuora3F5XIxceJEli9ffsZnf/7zn2f9+vUUFRURDodZunQp2dnZJ1zzzDPPnLT/K5i7YBQUFDBxovn7Y/r06axfv56bb76ZtrY2tm7dSltbGzNmzDhjDB+V6qlTPhFGVsD29uC26/i8uVgGBbo1CEBZNBOEJOTxkCHD2BJxBtwOvPEwsWQK+cFCw6eRlmk2dWxifu4FiGA3aW8tAFe2vkXA5eRg5lEsKZ2ybgdOPU6/3cWsjl7e8eyiLFRCmWjH0uOAwSH2ZFdg9ERpy9K4MNBCc7wSY08znsvn0nskQF6pG00tklAU5a9YdXU1DzzwAFdffTXz5s1j+vTp6LrOnXfeyYEDB2hqaqKoqIj777//jO0kEglWrFjBtm3b6OzspK6ubmSO3Ok0NjZisVjo7Ozk4MGDLFmyhNbW1pHz8Xic5557jhtvvPGke1etWnVCsvd3f/d3lJaW0tDQwD/8wz9w6aWXoutj36923vTUCSFuBB4GqoEZUsotx537FnA7ZpHj/yOl3Dh8fB7mFmUW4CdSyh/8qeNW/jJ4hwsQ+3vNWnX93jwsIYFu+AEoipk9XiGvhjcSw55MELTaMWQMiSAcT+GyffiPS3NfMwPRAeYZeQAk3WZSlxfoIuyYyoCjn/K+cRipOC49gc/qpnSoiXdz4sTEBZSn38JzOAvoY09WBeURH1ZriMxkkHTIA+k0zjlz6P3vAaovKz4Hb0pRFOVkH9ajdi7dfvvt3H777QA8+OCDlJaWUlBQMHL+jjvu4Prrrz9jG8fmwI0fPx6AL3zhC/zgB2dOGZ5++mnmzZuHYRjk5+dz2WWXsWXLFqqqqgB44YUXuPDCC0+IBcz5e2vWrGHr1q0jx3RdZ+nSpSP/vvTSS0d68cbS+dRT1wz8DfDG8QeFEFMxCxxPA+YB/ymEsAghLMByzBIrU4Fbhq9VlJO831Nn7irR484BQBdmUpcl4wgpGHSHcfqS2JJxooaFnpwIAB19gVE95/X219GERk0sCppB0joBgFZPNv2OfhJagqoec1swpyVOUPfSa+zCk3DQVXgFpbThPOohaVgJ5JchrYNUps1FEjm9CSw5OURzx5GMp9VOEoqifCL09Jg79xw5coQ1a9Zwyy230NXVNXJ+7dq11NTUnLGNkpISWlpa6O01t4d86aWXqK6uPuM95eXlvPLKKyNz8TZv3syUKVNGzn+wN+6YP/zhD0yZMoXS0tKRY+FwmFAoNPJsXdeZOnXsU5aP1FMnhNAwE6gcYIuUMjRWgUgpdw8/44OnPgc8I6WMAQeFEPuBY4PQ+6WUrcP3PTN8bctYxaT89XB4vBg2O77eHjz2Mrrs5ookS9JM2tLaEPmJHPqdQ9j2O7AmY4T1LNoKo5CC3S+/zaQvz//Q57zR/gb1efXYju6CwlpCLa2AnfXVE+lyH8AqrZT15QL7MXSJHs2myfUHagYK2FoZxqbF0Q7FOZJbQZ5hozsvwQWhvQwJF7n7O3DNupS+dvPHTu0koSjKJ8ENN9xAf38/hmGwfPlysrKyuPXWW2lqakIIQWVlJY8//vjI9ZWVlfj9fuLxOOvWrePFF19k6tSpLF68mNmzZ2MYBhUVFTz55JOAmRTec8899Pb2Mn/+fOrr69m4cSN33XUXCxcupKamBiklCxcupK6uDjCTtJdeeumE5x5zqnl2PT09fPrTn0bTNEpKSnjqqafOybsadVInhLgLWIyZ0AF8CnhXCLEOeEVK+aNzEB9ACbD5uH+3Dx8DaPvA8YvPUQzKXzghxEhZE0+VznZjOKkLhwGIaxHK4wW0OvqIRZwYyTAx3UZfoQU6oG9zI3xIUnc0dJQ9A3v4xwvvhW2LSU+7kfBvtqAXzGDP+BhBZwc12oVYUjE0DSJWG7I/QsQSI9/noUhrhxSkW3vYWXkp3miKjnwbd/h3sTtZQaZvEOfFMzh4OIBuaGSpRRKKonwCbNq06aRjZ0qKDh06dMrjixYtYtGiRScdX7BgwUhJkuO53W5Wr159yracTif9/f2nPHcsWTxeZWUle/fuPW3MY2VUw69CiDsw566tw9wD9vjutE3ADaNs5w9CiOZTfH3uTLed4pg8w/FTPferQogtQogtx7pelU8eM6nrxWM3OKK5ALAGzJ66WBrKYoX47H2kAXcqQlqzUGSYK53k/n3IZPJ0TQNmLx3AVY4yiAcJNPchEpKAJtC9B0lYEtSnL0HTwtj1FEGrnYFYK+6kgzg1lNKG3gPEE+xzF+GIBPC57UwJHaR/wKxH55oxg54jfnJK3WiW82n2hKIoivLnNtrfCv8ILJFSfhX4YIGYPcDJBV5OQUp5lZSy5hRf689wWzvm9mTHlAKdZzh+quf+WErZIKVsyMvLG02oyl8hs1adOacuKC3gsGIdMpO6eFqnLFZIUksQciTJiqcAyJfB4fMQ/pCaQm+0v0GJu4RSfzcAfc+9w2BOGQFLmojuw5qyUhWpBSLYLHHC9ix221qYNlBKR3EdVYkD2NvNIdXWjGK8Fj+FWh8aEnu/QC8oQC8rp68tqObTKYqiKCcZbVI3Dth4mnMhIHNswjml54CbhRA2IcQ4YCLQCLwDTBRCjBNCWDEXUzx3DuNQ/sJl5OUTDQVxaGkApNeLMSCxiCiphIO8pJkoBTwGWVFzu6+IZi6Q8Nkc+De+eNq2I8kIm7s2M6d0DnRsJZXSSWjZHHYVMqgPEjJClEZKSQU0ZCqES4+z3VZO2BKl7Kid1uJ8xiVbcfRmktYstHny0d1DTImZy+dzDg7inDEDX2+ERCxFXoVK6hRFUZQTjTap6wMqT3NuMgzvYXQWhBALhBDtwCXA74QQGwGklLuAX2MugPg9cJeUMiWlTAJ3Yyabu4FfD1+rKKd0rKyJJW7Oo0tnm7XqLJYI6ZSDzOER/XCmC0/YTPy6bDYA9uW78L30EjKdPmXb7xx9h1gqxpzSOaR2vUyk18KBv/k7bJrOdu82pJBMYQqRQIJUMohHj/IWaVwpByJqodOjk2PtxdplYTCvGKfFoC/bToN/F62yCLsviOviGfQeMZNMtUhCURRF+aDRJnW/Bf6vEKLquGNSCJEL3Ic51+6sSCnXSilLpZQ2KWWBlPLTx537npRyvJRyspTyheOOb5BSTho+972zjUH565YxXNZEi5qJUTKnEMsAWCwRUikHFlcPGUk3Qx6BN2puDTZk5JCjd3Aw34rs6yPStP2UbW84uAGH7uACUYQl3EbKWs6T7qm4RIp33c040g4m2CcQ8oeR6RhOPcI7RjvTh6oIeIrJpQeLJQWHAhzKKCYjFafbk8VF/ha6fGaVdOeMGfQcCWDRNbKKXH+CN6YoiqL8JRltUvfPQAyzltwfMBck/AizhywFfOecRKcoY8ibP1wgMjQEQDyvGC0usGhhEiknyewWc7GEK4g3FAXAQibV3rfo8jpIWjQCL548BPvse8/yu9bfcdPkmwj9x78gNEheewfvHB4Ci599jsNUJarwOD0kIuYcvbYsFyFLlKpuL0NZEyijDS0Isj9Asy0frxbG7kiSnfSR7BFohYUYZWX0HQmQU+rGohZJKIqiKB8wqt8MUsp+oAH4PmAABzDLoSwDLpFS+s5ZhIoyRhweL7rVhgwMAhDNNZM8nTAx6UbLaqYsVki/vRdPyOzNM4QXw7mXlMyiZZyLwIsvnrBl2DtH3+G7m7/LZcWX8dX0ZaRaXgbgZcdFCEuIZk8zKZGmxF+C3epEps0ac01ZLuxpG56uMD1F5UwO70HvMId/93qKcFoCVKTNij1ZbUE8F88ACb1HAmqRhKIonyiPPfYYNTU1TJs2jUcffRSAhx9+mJKSEurr66mvr2fDhg0A9Pf3M3fuXNxuN3ffffcJ7axatYra2lrq6uqYN28efX19AHzjG99gypQp1NXVsWDBAoaGhkbu+f73v8+ECROYPHkyGze+v7Tg97//PZMnT2bChAkn7Ezx8ssvc+GFF1JfX8+sWbPYv38/YJY5ycvLG4n3Jz/5yTl5V6P+uC+lDEgpH5FSzhoe8rxESvkvUkr/OYlMUcbYsVp1qSGzrE04txAAXYaIpV1YtRC50QLCepg4AfRUChtejjgC6Ols3poYJtHZSXSXWd+6zd/GP772j5R5y/j/L/0ePd/5Ls4SC9JbwrN7EzjyNvFKRiOlogh30I1VdyBlGInkj94g9cHJ9Is4rbmZTI6+h+Ooud7ooLcI6RTUB1oIYcfoi+OccTG+3gjxaErNp1MU5ROjubmZJ554gsbGRrZv387zzz/Pvn37ALjvvvtoamqiqamJ6667DgC73c4jjzzCD3/4wxPaSSaT3Hvvvbz66qvs2LGDuro6li1bBsDVV19Nc3MzO3bsYNKkSSN7wra0tPDMM8+wa9cufv/73/P3f//3pFIpUqkUd911Fy+88AItLS2sWrWKlhbz98Kdd97JL3/5S5qamvjiF7/Id7/73ZEYbrrpppF4v/KVr5yT96XGcJRPlIy8fBKDZskRv8ecq6anQ8SkG2s8TUbErK3dbR/EkUggLRn06BpV+n7emQRS0zh0443saWig/errWLx8kH9/2mDgb+8kvv8ArnIrsYILaTxyGMP7Nvsch5nvuAaBQJdWZDpMX0acASPCpMFCenML6XXYKLR1Yz/qIpmRxZDdQyTDyYX+Fg5FCkAKnGqRhKIon0C7d+9m5syZOJ1OdF1nzpw5rF37wcpq73O5XMyaNQu73X7CcSnlyHZfUkr8fj/Fxeb+2ddccw26bu7FMHPmTNrb2wFYv349N998MzabjXHjxjFhwgQaGxtpbGxkwoQJVFVVYbVaufnmm1m/3qzMJoTA7zf7unw+38gz/lQ+yo4StwG3AOWA/QOnpZRy/FgGpijngjevgLb9b0EeDNi9gJnUJaUdS0zDFTETpgFXDGcyRUI3rymwbuGw3crGr9TyRcsFvLz7efwDR7k0ox570iAdCJJ7+y1ooSU0i4lYc15HE2msaRuX2GbyW/5AaigN6RDdxWCRGoUdsLMyH4tM4HT4sLTb6ck394VN53qZureVHT0VWPNzsJaW0vvH/Wi6ILtYLZJQFOVP69v72mkORsa0zRq3g0cmlp75mpoaHnroIfr7+3E4HGzYsIGGhgZycnJYtmwZK1eupKGhgSVLlpCVlXXadgzDYMWKFdTW1uJyuZg4cSLLly8/6bqf/vSn3HTTTQB0dHQwc+bMkXOlpaV0dJjFPsrKyk44/sc//hGAn/zkJ1x33XU4HA68Xi+bN7+/Idazzz7LG2+8waRJk1i6dOkJbYyV0e4o8W3gZ0Ax0AS8/oGvN8Y8MkU5B7x5+SSCPgxNMIQVaQE9YZY40SIORCKJLW1lyC1xJ1JELFbyEpKk4yiIJKvy9/GzmVG+f0k3Od9dTN0Tv6DiZz9j3G9Wk/c5c5e6dX2e/8fevcdXVd0J//+sffY+99xvhEQIEC65EIOkFKcWtBrKqLUPpcVbndqifbAPrbXWYUp+o7bWIlVbdWDAx6njpTPS8akgg1RB6rT0Sq0ExHC/556cXM7JuZ+91++PHY5GLsY2saWu9+uVV5K111l7Zb888j1rre9aOHN+S0pYfKJ/FmLwbdbfFkHKCMfHhKkJTyEUaqU/v5CxshUhLTjRx3H/GDwkKDK60KWJtzmKb5Z91HGgZYDcYh8OXQ2wK4ry4VBRUcGyZcuor69n/vz5XHjhhei6zm233cbhw4dpbGykuLiYO++885ztJJNJ1qxZw86dO2ltbaWmpiY9zXrK/fffj67r3HjjjQBD1k+fIoQ4aznAD3/4QzZv3kxzczNf/OIX+cY3vgHApz71KY4dO8bu3bu54oor+MIXvvAnPY/3MtyRusXAo1LKO0alF4ryAcksKEQAPqfGQCIFPh09HgE3yJiHiN5BabyIbl+ErKSkx6dTHcnksL8fV9JNVIT4j33/wecrPs/npnxuaOMtf0QKjZdSb4KwQEiu7p1DxLQ/3Q70xuj1dNDlCbGwbQJRs4n+vHxq+xrRowKSJk2uPHyOJOUD+wDQOiQ5H7sYgJ62MGOnjOY+34qiKGf2XiNqo2nx4sUsXrwYgOXLl1NaWkpRUVH6+q233srVV199zjYaGxsBmDTJnlRctGjRkASHp59+mk2bNrFt27Z0gFZaWsrJk28fMd/c3JyeTj1TeVdXF7t27eKjH7U/4F977bXMnz8fgLy8vCH9XbZs2ft8CsMz3I/8edh71SnKeS1rcANij0MSiqUQfjfO8OCUQtyL5uxmTGwMne4AWUlJXDdwhycTdGjUhWsByPPk8dUZXz298ebXCfjKSOa8gbSclOkVTIiXEE7FEEIQiUtOFNgn2U3tcxNzuQlkZFIZ3ofRbL8Vd3sLcTgFM4NNtFt5mAkN36yPEI+mGOiNk6v2p1MU5UOms7MTgBMnTvDCCy9w/fXX09bWlr6+fv16qqurz9lGSUkJTU1NnDr/fevWrVRUVAB2JuvKlSvZuHEjXq83/ZprrrmGdevWEY/HOXr0KAcPHmTWrFl85CMf4eDBgxw9epREIsG6deu45ppryMnJob+/nwMHDpx2j3f2d+PGjenykTbckbpfABcCPx+VXijKByRzcANijzAZiKXQMjMwQhHIAyvuxeEJkBMbSyDnD0xNJIgbGSTiU4A3yHW14AxdToBt3Lr1Vn4w9wcU+QY/LUoJLX/kt448hAC0ONeOWQBvQjgRwevyYFoOWor6mBotIxLqoSOvmIjDyThXB57OLDDi7PePIT9Doy74Fj1dXqJ5hRglJbQfsXcNUkGdoigfNgsXLiQQCGAYBqtXryYnJ4ebbrqJxsZGhBCUlZXx+OOPp+uXlZURDAZJJBJs2LCBLVu2UFlZyT333MOcOXMwDIPx48fz1FNPAbB06VLi8Tj19fWAnSyxdu1aqqqqWLRoEZWVlei6zurVq3E4HACsWrWKT37yk5imyZe+9CWqqqoAeOKJJ1i4cCGappGTk8OTTz4JwGOPPcbGjRvRdZ3c3Nz0vUfacIO6rwMvCCECwGag590VpJRnPj9JUf6KeLOy0Q0nhpUkFEvhyMnBtc/+5GbFfTiyesnomQGAkerC1ArxGZmMjTtoc7QQOP5VHls8n+/uuJtrN13Lw5c+zMyimdBzBGJ9vJ7nQLMuQIokn8qbS4jDDMQiOCxB1BGhLbOfeR1zONG3n67KmSRwkp3Rh7PFQ2psEaamk5cxQEGwl4EWB+EZMwF76hVQSRKKonzobN++/bSyZ5999qz1jx07dsbyJUuWsGTJktPKT+0ldyYNDQ00NDScVn7llVemt1F5pwULFrBgwYLTylesWHHaGr7RMNzp1wNANXayRAeQfNdXYlR6pygj7NRedUYqSiiewigYg3Mwo8tM+tAz+3GHi+3fpZ3l5PS68EXG8KYhGStaKXHO4rmrnsPv9HPLK7fwH3v/A9n8OgBvuNyYWg9TvfXoSfvtFY6GMZMmJ7LsdXIz+8cQT8XpzCvGYZrgCqKdiNGRYY8ilmtHAJCdgjFz/g6AntYwuqGRmef5gJ6UoiiKcr4Z7kjdd7CPBlOU815mQSGOYJi+WBLX2PHoqf8BwEx60b0ptGge/pSPPg7bL3DpdPbMIJHTwgzfr9l18gq+NH4Sz131HMu3L+f7v1/B1IhBpRCcZDzQyg0Vi7CCJgCh8ABxK8HxnDcpjReSHbYHujvzi5kR2IXmkdAb4fBEOwmiJrmfOE7i/ToXfHwwqGsLk1PsQ2jiA31WiqIoyvljWEGdlPLeUe6HonxgMgsK0TpCDHhTuKZOQZMWGnFSKS8OZwowGReZQLvXHjFLGQ6aI3Vky//Gn7Gf72xq4r9eP8n86jHcmXM1d+/eSkH/Sdb5M5DOHqyBKj45bSqp7a1YWESiERLCpDXrKAt7rqA3dgSpQSC7gM8c34TeYwdq+7y5aEJSN9BEZySHvuwijGJ71LBXZb4qiqIo70FteKV86GQWFKHFw4SiKVwTJgBvn//qFXEEcQpDZXTr7QgzREzTwHIz2fLT7u3j7iunMNHoofwXX6XsvxdhBZM8mHczd4tPYYkIkz31eJ06VjxFVE8B0OHpwNIsZoeq6Yi2kMpxYTkcTDHacbYYAOzLLCDTlaIqfAjtZJxIpZ1tqzJfFUVRlOF4PydKOIG/B6Zy5hMl7hvJjinKaMkqKMRl7cKUErPg1PmvEeKWD7+MIYmQE5wAJWAkDjMg7WynIibyS2M3j3c9wJd6NyFd8GbZbTwau5L/OTJA5sR/JRYv5O+nfBwAGTeJOVNgQYe/nexkJrm9BgcTOtFxfgDGZvbibvNjZRm0OXOZ7jmJETWxOjR819mbDvemkyT8H/SjUhRFUc4jwwrqhBBjgV8BZdhr604t7HnnOjsV1CnnhcyCIpxWEoCIx48UoFsR4pafAhnHdETIDY7DITWM+AEiogodk6Q1C+l4k/XHX2H25EvxXXInJXnl/KvhZ2fHXm7Zepxk+zVcOs1OeLDiJhEtgSlNWr3N1Pd9lK7YCWKWwUB+JrpMovv7MVo1gjkFDEgXlQ77oOpowGBS/RzATpIAtZ2JoiiKcm7DnX59EOjCPvdVAB8FJgL3A4cGf1aU80JWYRFOy07YHkhJLK9AN8PEpQ+3mcI0BjAsJ+OiF+CMHSSuG2RrUaIDZWQ6PDycl8PnYk1c+epi5v5kLjN/PJNbt96EhoscazZTi+zzY2XMJGRG6HR3ktSS/N1ALZ3xowD05WeTafWSsHoRzWHafH5SOKi1DhCwsmlxFVMwwT4XsKftVObruwfIFUVR/vY9+uijVFdXU1VVxSOPPALAvffeS0lJCbW1tdTW1rJ582YAAoEAl112GX6/n6VLlw5p57nnnmP69OnU1NQwf/58uru7AbjrrruYNm0aNTU1LFiwgL6+vvRrVqxYQXl5OVOnTuWVV14Z0p5pmsyYMWPIaRarVq2ivLwcIUS6fYAXX3yRmpoaamtrqaur41e/+tXIPqRBw51+/TjwTaB18HdLSnkMuFsI4QAeAz498t1TlJHnzczCrQ1mpsZSaD4HeipCxCrBSFpI3wBEoTQ6gSPe3xDVHWQ7ogSjOs//rw0cDx4nkowwkBwgnAwTToYJJQZ46jWLOeXj0kfMWHGTXjNEq68Vj+WhYmACr6ReBDQCeQVMTB1D7xSQsjjhzwQkFyX2MxBw0TWxMt1flfmqKMqH1Z49e3jiiSfYsWMHTqeT+fPnc9VVVwFwxx138M1vfnNIfbfbzX333ceePXvYs2dPujyVSnH77bdPhWweAAAgAElEQVTT1NREfn4+//iP/8iqVau49957qa+vZ8WKFei6zrJly1ixYgUrV66kqamJdevW8dZbb9Ha2soVV1zBgQMH0hsQP/roo1RUVBAMBtP3+djHPsbVV1/NpZdeOqRfl19+Oddccw1CCHbv3s2iRYvYt2/fiD+v93NMWOvgBsNhIOcd134OXDrC/VKUUSM0jZwMeypzIJbC9DsxEnaihDMpEZ4BAHJiExEkiDoCZDuSBKNJxvrHcvHYi7l8/OV8uvzT3FBxA7fW3MqlhTcTDExj7pSC9H1kLEU3/bR526gLV9MXCyCxyHRGCTmzKbOOYrTYgdqxrDGUim6KUj3oJ+IwrSrdTk9rWE29KoryobR3715mz56N1+tF13Xmzp3L+vXrz1rf5/NxySWX4HYPndmQUiKlJBwOI6UkGAymz3GdN28eum6Pcc2ePZvm5mbAHl277rrrcLlcTJgwgfLycnbs2AHY572+9NJL3HLLLUPuM2PGDMrKyk7rl9/vT3/gD4fD6Z9H2nBH6pqB/MGfDwPzgFcHf58FxEa4X4oyqvJyMiECoVgSb4YPIxIlme3BkRA4XEEkEn/CXlUQ5yRZ+jiaI5JkMolhGKe194v9XQgBl5Tnp8sSwRhH3c3EHXE+3n8hnbFjWJYgOytGGB/jacHZqmPpOsd9RVwk7PV08S6DzAvtcwzj0RThvrg6SUJRlL+ob//3WzS1Bt+74vtQOTaTez5Vdc461dXVNDQ0EAgE8Hg8bN68mbq6OvLy8li1ahXPPPMMdXV1PPzww+Tk5Jy1HcMwWLNmDdOnT8fn8zF58mRWr159Wr0nn3ySa6+9FoCWlhZmz56dvlZaWkpLi70p/de//nW+//3vEwqFhv33rl+/nm9961t0dnby0ksvDft178dwR+peA+YO/vw48E0hxBYhxEvYCRL/bzQ6pyijpSDPfvOH4ims7CyMsH2qhIi50fUYUjdxJnLQycWUJ/GJFAnpoLe397S2grEk/7njBB8pyyXH50yXJ6NxDvqPYEiDmeFK2iOHMU0H3iyTCD7GODpxtXkZyM4lRAYznIeICRcDIRcXXGQHdacyX3PUSJ2iKB9CFRUVLFu2jPr6eubPn8+FF16IruvcdtttHD58mMbGRoqLi7nzzjvP2U4ymWTNmjXs3LmT1tZWampqTju26/7770fXdW688UbAHt17NyEEmzZtorCwkJkzZ76vv2XBggXs27ePDRs28M///M/v67XDNdyRuv8PyAWQUq4RQujAtYAX+D72iROKct4oLMyFk9AXiiLyCzD2RQD7/Fenc4CEFoekkyzK6U4dxGfOIIkd1BUWFg5p6+FX9tM9EOdHX6hLl1mWRZ8c4KT/JLPNGThSLvoT7QA4siURfOQ6OnCctAjk+ghqfi4SB2kziziSUcwni+2gU2W+Kory1+C9RtRG0+LFi1m8eDEAy5cvp7S0lKKiovT1W2+9dUiywpk0NjYCMGnSJAAWLVrEAw88kL7+9NNPs2nTJrZt25aeGi0tLeXkyZPpOs3NzYwdO5aNGzeyceNGNm/eTCwWIxgM8vnPf54f//jHw/p75syZw+HDh+nu7iY/P/+9X/A+DHekLgkcP/WLlPJfpJSXSCkvklIul1Kq6VflvFJUZK99C/T24xhzAXryVFDnxWAAUwujJSQFVjnC6sUiQELq9PT0DGlnd3Mfz/zuOP8wezw1pW+f+NDcdJTfZOwi6Ujyye7ZdCXfPh5Z5gFYeENBRH+Cvuws4kJSKY8R6xC0FpXhcdoLcXtaw+hOlfmqKMqHV2dnJwAnTpzghRde4Prrr6etrS19ff369VRXV5+zjZKSEpqamujq6gJg69atVFRUAPDyyy+zcuVKNm7ciNfrTb/mmmuuYd26dcTjcY4ePcrBgweZNWsWK1asoLm5mWPHjrFu3To+8YlPvGdAd+jQofTI3xtvvEEikSAvL+/9P4z38J4jdYOjcgFgAfDfI94DRfkLyCkag27tp6cvhGvcJGKpPwBgJbwYIorpiOOOSEqTE9nngi5PO4mIRiDwdlCXMi2Wr3+TAr+LOz85dUj7b/3uTX6Z9TrelJfa3insTvQDYGgmA1lextCRTpIIZOUw2TyMoZu4j0SIVE1Ot9PTHiZnjMp8VRTlw2vhwoUEAgEMw2D16tXk5ORw00030djYiBCCsrIyHn/88XT9srIygsEgiUSCDRs2sGXLFiorK7nnnnuYM2cOhmEwfvx4nnrqKQCWLl1KPB6nvr4esJMl1q5dS1VVFYsWLaKyshJd11m9enU68/VsHnvsMb7//e/T3t5OTU0NV155Jf/2b//GT3/6U5555hkMw8Dj8fCTn/xkVJIl3jOok1KmhBAdgDnid1eUvxD7VIk36Q1F8c2uIZx6EgAz4cUQAUwthiahOD4W6XbS6e3BG7DoCPSn23j2d8fZ0xJk1Q0zyHS/nTwhpaSpfS/7So/w8b5ZONDoSNhr8XJcUULODPLpRB8M6tp847lIs5Mkkp0a+mffsZ1Ja5jSqWdf/KsoivK3bvv27aeVPfvss2etf+zYsTOWL1myhCVLlpxWfujQobO21dDQQENDw1mvX3rppUO2L/na177G1772tdPqLVu2jGXLlp21nZEy3OnXHwO3vGctRTlP+LJzcMokwUiMrHGT0VN2okRC+vFqUSwtDoA3rpF0TqLH1c10kaJtMKhr74/x8JYDzJ1SwFXTi4e03XK8hSbPfqSQfKbvMsKuBANJO6grcoaIa04K6MRoFkQ8HvocxVykHaRNLyKadJFfNQ2AeCSpMl8VRVGUYRtuosQx4AYhxB+AF4E2hh4RhpTyyZHtmqKMHqFpeBySYDSJ3+fFodsJCXHLj0dPIkz7GDFXQpJ0TSYU28dkLcqhXhPTNPnOprdImhb3fbr6tCH03b/5I4cyjlAcLWJqbBx7OQlWAIBib4i96BTQhdGi05WdzYAvl4usgzQnx3Esy8ekYnttXk+bvc5PJUkoiqIowzHcoO7UZi4lwJlyeCWggjrlvOIzBOGEhUMIpM9EsxLELR9eRxIxOHKnxy1SrskgJIbnJEcjpbz0xjE2v9nOXZ+cyrg875A2pZT8quV39BT2cm37lZgOycH2E1imvRZvrCdETBgUJtvQ2yV9U7Nx+sIUDPRz4mSSA9mlXFLoB9R2JoqiKMr7M9ygbsKo9kJR/gIyXDo9IXupaNKnoZv2qRKZDhMtFkFiYsZNks5yAAKe4wQGKlmx5TDlhX5u/fjpRx63trbS5NqLLnUW9F/KQGGKVLsG0p62zXFGiDlcTOo4jLAgmFFEiWkfFePb30/LxPHk++297lTmq6IoivJ+DCuok1Ief+9ainJ+yfK5iAXjJKIRkj4DPRWxp1+FiSMWxvTFsRIOpMOPU+Zz3NPMNFy8Hkryk+tn4tRPX5LauOOPnPSfpC4+nSzLz4mMbnS3m2Q4ArqGEDDg9FLQ3gsIYp5SJsffJIwbGYDEvKnp6dyetgGV+aooiqIM23BH6gAQQpRjHwtWArQAO6SUZ08bUZS/YjlZGSQ6JN0nTxD3uzASEWKWD5dMIlL9SEcCM+FCkxI342l27+GzQCojzPQxntPak1Ky9dirJHITXNH5UTpEH12BA2h6HsgE0nBiOgSmpuHuMJHoJL0TmZ76f+w3JqJpYTKmvGM7k7YIpdNU5quiKIoyPMPKfhVCuIUQTwJ7sTNhVw5+3yuE+DchhGsU+6goo6IwP4ek5qTj+FGimX6MZISY5cdpmsAAwmFhWg7cJji1ScQdcaoyQ8ww9/OjH/3otI2I7anXfWSZGczuq+Kwo4OWvY1Iab/NpEsjqQscWBjtgmiGCzF2DJXiOCfNsRzOGsvEMVnAOzJf1Xo6RVE+5B599FGqq6upqqrikUceAeDee++lpKSE2tpaamtr2bx5MwCBQIDLLrsMv9/P0qVLh7Tz3HPPMX36dGpqapg/fz7d3d0A3HXXXUybNo2amhoWLFhAX19f+jUrVqygvLycqVOn8sorr6TLy8rKmD59OrW1tdTVvX2a0PPPP09VVRWapvH6668Puf/Z2hpJw93S5CHgRuAeoBzIGPx+L3AT8OBodE5RRlNOjh1AtRw7Tjg7Nz396kxINEfETv+xDNwpC2nY6+raxWFuvv7zhMNhfvSjH6UPdwb4/c7f0e5t54r432EJ6BNhopEQqah94LPLC1HdiUESvUMwkJmDnnUCQ5iEWwUHsy9gUoEdxKnMV0VRFNizZw9PPPEEO3bsYNeuXWzatImDB+19Pe+44w4aGxtpbGzkyiuvBMDtdnPffffx0EMPDWknlUpx++2389prr7F7925qampYtWoVAPX19ezZs4fdu3czZcqU9JmwTU1NrFu3jrfeeouXX36Zr3zlK5jm21v2vvbaazQ2Ng4J3qqrq3nhhReYM2fOkPu/V1sjZbhB3XXAt6WU35NSHpFShge/34997usNI94zRRllXpe9+qD1ZAvh/EI7qJM+jKSFw5lCpjQEAm8yxYCrGKfp5C3vIQrNLG655RYMw+Df//3f2bdvH1JKNh/djBSSKzo+whG9A59woTnBjNsjepmeJAkp8CQj6B2CkGssWck9AOTu7+ZQdgmTBjNfe1oH7HK1R52iKB9ie/fuZfbs2Xi9XnRdZ+7cuaxfv/6s9X0+H5dccglu99AEMyklUkrC4TBSSoLBIGPHjgVg3rx56Lr978Hs2bNpbm4G4MUXX+S6667D5XIxYcIEysvL2bFjxzn7W1FRwdSpU08r/1Pa+lMMd02dCzjb3X8POEemO4rywfEa9nEvHa1t5FdMIj/ZTQovegJ0l4lMChDgjifp9rq4IJ5Lk+cIoddOkn9zFbfccgv/+Z//yU9+8hPq6urY7zpAWayEsthYfur8HePNPHLGFdJzzD63cIwzRkIKijsCiKQg6hpPaXgnR60iiru6OVIzjnG59hYpvW0RdKdGRq7KfFUU5a/Az/4J2t8c2TbHTIe/f+CcVaqrq2loaCAQCODxeNi8eTN1dXXk5eWxatUqnnnmGerq6nj44YfJyTn7GmTDMFizZg3Tp0/H5/MxefJkVq9efVq9J598kmuvvRaAlpYWZs+enb5WWlqanp0RQjBv3jyEEPzv//2/+fKXv3zOv+NcbY2k4Y7UvQrMO8u1ecDPR6Y7ivLB8TrtoC4cTxLOLUZP2VOeMu7F4TIRpn2qhCeeJGLo5MXyaHN10d3aRtfju/FYBjfffDNTpkzh1cZX6XP1MX/gEih206uF8STByPIjTXvj4TGESGgahe32yJ2ZWUZFtIldYjLC4cAxfgKGw35LqsxXRVEUe+Rr2bJl1NfXM3/+fC688EJ0Xee2227j8OHDNDY2UlxczJ133nnOdpLJJGvWrGHnzp20trZSU1OTnmY95f7770fXdW688UbAHt17t1O7E/z617/mjTfe4Gc/+xmrV6/ml7/85Tnvf662RtJZR+qEEO/chOsHwLNCCB/wPNABFAGLgCuBz494zxRllHkGg7qU0LGSGrq0N/u1El4crhTSCgKFuBIpkg6dvHgeAG/N7yH7f7roevLXhGc76ZjQRVOqCYepcWnPTMKzNOgFd0pDihRIO1gskD30OTSy2+2pVc/UbAoSfRywxqPnCiYWZaT71tMaprQi9wN8GoqiKOfwHiNqo2nx4sUsXrwYgOXLl1NaWkpRUVH6+q233srVV199zjYaGxsBmDRpEgCLFi3igQfe/puefvppNm3axLZt29LBVmlpKSdPnkzXaW5uTk/ZnvpeWFjIggUL2LFjx2nr6N7pXG2NpHNNvx5i6FFgArgNWPKuMoBfAI6R7ZqijC6v0/7PPykMHF0hNKcdfCUtH25nigErhCZMXHELqQn88TyE1PjOoRVQOtjIfsjQ/RSKfG7suopsI4tD/hBIcFsCKxlN3y9X9nBUK8TTnSDpceItboPj0NGfheUfy6QCez1dPJIk3J9QSRKKoihAZ2cnhYWFnDhxghdeeIHf/va3tLW1UVxsn7u9fv16qqurz9lGSUkJTU1NdHV1UVBQwNatW6moqADg5ZdfZuXKlfziF7/A6337lKBrrrmGG264gW984xu0trZy8OBBZs2aRTgcxrIsMjIyCIfDbNmyhbvvvvuc9z9bWyPtXEHdF0f8boryV+TU9KszJx+trRvNder8Vx9+V5iA1o3hkHjj9meXuJbJ5LYruG7BbIozismPZeNY14UnNPg2EuC7uIjuvka80onDaZA4dWKFQ8ejxWk3xlLecZxYVhb+1B7C0oWrJcL+7FKuHgzq0pmvKklCURSFhQsXEggEMAyD1atXk5OTw0033URjYyNCCMrKynj88cfT9cvKyggGgyQSCTZs2MCWLVuorKzknnvuYc6cORiGwfjx43nqqacAWLp0KfF4nPr6esBOlli7di1VVVUsWrSIyspKdF1n9erVOBwOOjo6WLBgAWBn1d5www3Mnz8fsAPMr371q3R1dXHVVVdRW1vLK6+8cta2RtpZgzop5dMjfjdF+StyavrVlV+MaN+FcMcAiFt+Mn1RhBbEJcAbs9e5BQ0PYyLFfNo3n8TJAUK/bMYM6aBrkLJAgm/WGDp/2k6m5UY6TWKdIIUOfjtg63PkoHecoL+wkNL+3eyyJnFBXyfbp114euarGqlTFEVh+/btp5U9++yzZ61/7NixM5YvWbKEJUuWnFZ+6NDZz1BoaGigoaFhSNnEiRPZtWvXGesvWLAgHfANp62R9r5OlFCUvyWnRupcuQWYe9qQnsGgTvrxuzoQRNAR+GJ2vX6Xh9xoP61rGtEtMC7IIPuqiTgnZtL7/EGEQ6AXeQn09DBJFmK6IiQGwliaE6/Pg4kGEXAMCCITxjJu4H/4mbya4mQvLf4CJqb3qAurzFdFURTlfRt2UCeEmA98DrgAePe/NlJKOXckO6Yoo81r2P/565l5ICUpTxIkxEwfXoeJlYqiSQfeuD1S1+/24SVBfJyfMVdMwDUpK72gNv8fKgEYGBggZZrkkEHccQBpxrF0H9lunWbGkDnQD4BW5MfAZKdVzjh/EwVZHjLdBgC9bWFyi1Xmq6IoivL+DPeYsH8ENgNXAz7AfNeXNVodVJTRcmr61eHPBiDuFWhmgmgiAzcJUvEIQoI7YecLhd0eNAGp+WNwl2efMR29u6sLgCzpJZRsGyw1ySPBYcaTGQwC4CyxRwX3psbRnlmYTpIAe01djpp6VRRFUd6n4Y7ULQUeB5ZKKUf+XAtF+Qtw6hq6JrBcHgzDSdRtoPdEiKYyMMw40rIQpPAk7BG0hNP+3tLSRlVZ8RnbPLKvCbCDusP9EcCJkYrhSzo46BpHRd8OLF2Qm3GSk4kC9LDJG+4x6aAulTAJ98XJLvSM/gNQFEVR/qYMd/PhTOB5FdApf2s8TgexpCSj9AJiho6RihIz/ThT9sbD0orhSkqEJWFwOrS1+ey7gJ84fAikxC/d9PYlEHohAHoqTCtj8AQSJHJdjA3vZTeTKA118qavOH3ma3+3vQVKZoEK6hRFUZT3Z7hB3SvA7PespSjnGa/TQSSRIueCMlKWhZ6KELP8GKkkAJYcQACelIUQ9jRsT6D7rO11d3XhNCFlxklEwmiavYFwEB0JODst4ll+CqIt7EpOpDgepNWfn858DXbZQV1Wvvdst1AURVGUMxpuULcUuFII8S0hxEwhxMR3f41mJxVltHidOpGEScG4MlIp0FMREtKHkUwBEhz9uAV4UxJNQEw66OvqRFqnLyONhQeIJJK4pZtAvBUA050FQI+RQaajB0cPpDJdADSak8jx6Eihpadf+08FdWqkTlEUBYBHH32U6upqqqqqeOSRRwC49957KSkpoba2ltraWjZv3gxAIBDgsssuw+/3s3Tp0iHtPPfcc0yfPp2amhrmz59Pd7f9Af2uu+5i2rRp1NTUsGDBAvr6+tKvWbFiBeXl5UydOpVXXnkFgP3796fvW1tbS2ZmZrpfu3bt4uKLL2b69Ol86lOfIji4jvrYsWN4PJ70a860tcpIGG5QJ4EQcD+wAzh4hi9FOe94DAfRhMmYsgmk4jo6ERL4MJIWuhssLYhHE/iSkNJ1Wq0srFSEl/7lIcxUakhbx/fswjJcOJN+uuPNSASerEwk0O4qZIJ5FCEFZraGicYeOQHN58PrdFCcZSeUB7uiuLw6Lp/abUhRFGXPnj088cQT7Nixg127drFp0yYOHrRDjjvuuIPGxkYaGxu58sorAXC73dx333089NBDQ9pJpVLcfvvtvPbaa+zevZuamhpWrVoFQH19PXv27GH37t1MmTIlfSZsU1MT69at46233uLll1/mK1/5CqZpMnXq1PR9//jHP+L1etN7091yyy088MADvPnmmyxYsIAHH3ww3YdJkyalX7d27dpReV7DDeqeAv4O+CH2MWFfOsOXopx37OlXk5LxE0jFHGiOMEnNhzNpkVGYgSXCeDTwxC0ShsFJMxvdIWja+Uc2Pnw/yXgs3dbBnX8ETcPvcNEda0HTC8jymkjDxYCeQXYkBEBGZpj9znFEcNPjzmRSgT+dSdvfFSUz3zMqBz0riqKcb/bu3cvs2bPxer3ous7cuXNZv379Wev7fD4uueQS3O6hO69JKZFSEg6HkVISDAbTZ6/OmzcPXbc/SM+ePZvm5mYAXnzxRa677jpcLhcTJkygvLycHTt2DGl327ZtTJo0ifHjxwP2KN6pM2Dr6+v56U9/OjIPYpiGOxxwKXbm61Oj1xVF+eB5nA6CsRS+zCyCWjYlRoSUw4swNbLy3IRaIng0gTMqiWc6aZOZSAQlH/sER7Zt4qffu4cFy+7G5fVx7MB+yCzA70nQHG/DcFYhZD9aTr59r/4EUkgmuk+w2WkvUT2sZ6aTJMAO6grGZfxFnoWiKMrZrNyxkn09+0a0zWm501g2a9k561RXV9PQ0EAgEMDj8bB582bq6urIy8tj1apVPPPMM9TV1fHwww+Tk5Nz1nYMw2DNmjVMnz4dn8/H5MmTWb169Wn1nnzySa699loAWlpamD377XSC0tJSWlqGJsqtW7eO66+/fkh/N27cyKc//Wmef/55Tp48mb529OhRZsyYQWZmJt/97nf5+Mc/fu4H9CcY7khdN9Ax4ndXlL8wr9NBNGFPo3b7S3G47HNXE9JLTpYgkQji0cAdl8QNF7qwCBk59MQSXPW1u2g7uI//+s5yWg/sIxQZfK2ewJRJ0EtIxnoxvRlky370QBIrW5Atg+xjIoaZ5E0rI72ezjItQoGYynxVFEUZVFFRwbJly6ivr2f+/PlceOGF6LrObbfdxuHDh2lsbKS4uJg777zznO0kk0nWrFnDzp07aW1tpaamJj3Nesr999+PruvceOONgD26927vnEVJJBJs3LiRz33uc+myJ598ktWrVzNz5kxCoRBOpxOA4uJiTpw4wc6dO/nBD37ADTfckF5vN5KGO1L3GPAVIcQrUkq10bDyN+NUogRAX94FiOBuMCGW8pPpNYkM9OP2DU6/Ohx4idMss8kMHCFvcgX/665/ZuMPVvD8d5Zj5RaBpdEXtpMdhD6WSOj3xAovoEK8hd6dQObYn6MOxkvJS0Vod2WlM18HeuNYllRJEoqi/NV5rxG10bR48WIWL14MwPLlyyktLaWoqCh9/dZbb+Xqq68+ZxuNjY2Ava4NYNGiRTzwwAPp608//TSbNm1i27Zt6cCttLR0yEhbc3NzesoW4Gc/+xkXXXTRkL5MmzaNLVu2AHDgwAFeeuklAFwuFy6XnSQ3c+ZMJk2axIEDB6irq3ufT+PchjtSlwNUA01CiH8RQnznXV/fHtFeKcoHxOO0EyUAYoUl4LYDsmgiA58ziZlK4BQCz+CpEk7DYn/CDsL279/PhBl1LGz4DpquI7yZaJaHWF8vHj0ThJdgPIalOZhoHsfoTiEyNaKai2PhfLKxt005LfM1XwV1iqIop3R2dgJw4sQJXnjhBa6//nra2trS19evX091dfU52ygpKaGpqYmuwVN/tm7dSkVFBQAvv/wyK1euZOPGjXi9b28ndc0117Bu3Tri8ThHjx7l4MGDzJo1K339ueeeGzL1+s6+WpbFd7/73XSWa1dXF6Zp/1tz5MgRDh48yMSJI79xyHBH6hre8fOUM1yXwD1/fncU5YPlNRzpkbpUUQnSFYUwROIZeOUAAAZW+qgwwykJDTgJZ2Sy8w9vcskll1A6rYovPLiKVf/6JAmXDsebyXVfQCQjRn8yF2FZZIXjhFKg+1Ls8k8h1i8o1gWagPF59v9ETgV1avpVURTlbQsXLiQQCGAYBqtXryYnJ4ebbrqJxsZGhBCUlZXx+OOPp+uXlZURDAZJJBJs2LCBLVu2UFlZyT333MOcOXMwDIPx48fz1FNPAbB06VLi8Tj19fWAnSyxdu1aqqqqWLRoEZWVlei6zurVq3E47OMlI5EIW7duHXJfsAO9U2v1PvOZz/DFL34RgF/+8pfcfffd6LqOw+Fg7dq15ObmjvizGlZQJ6Uc7oieopxXvE4H0aSJZUlE/hhMl32SRDiRwZh4L5CFQzPxJuw3ckFRLkdDkpBTo7u/g1f+fSeX31iDOzObhBWjx+chJzFATmYpCV+QpMxnXOdRglY2ggCFnl62ZVxCWHMjdYsLcr24DbvtYFcUh67hz3b9pR6HoijKX53t27efVvbss8+etf6xY8fOWL5kyZIz7g936NChs7bV0NBAQ0PDaeVer5dAIHBa+e23387tt99+WvnChQtZuHDhWe8zUlSwpnyoeZz255p4ysLrMkh47SWj4WQmzkgvAFIzyUza5RXV9kC1PxhGANsP7+GnD/6Rxu2HQEBfzE668Bsl9GsdIAS1bW8SDtvp9b6MGG96ppBwGASFi/LBqVewjwjLzHcjNLWdiaIoivL+DTuoE7ZrhBAPCSH+XQgxfrB8rhBi7Hu9XpbG0D8AACAASURBVFH+Gnmdg0PpiRReh0Yoy85UiiYzcEaDCKFhihTZSXv61eE2AKj82CeQgHAepXmgm1/99x4AfP09ODQDh5ZFrwxihPootgJYAyZ4LXSXpMUsBeCk5UwnSQD0d0ZVkoSiKIryJxtWUCeEyAF+A2wAbgH+AcgbvHwr8E+j0jtFGWWedFBn4nM46PbnIKwksZQfZ3QAX3Y2Jklyk/bomTDst8yYsWWUTp2GZln0u1/HzLMXxxYFmsnzFnPU2YYFZAd70H0OHMEojmyTgJGF2Wu3kUBjYr69R52U0h6pU0GdoiiK8ica7kjdg8AFwMeAfOCd80OvApePcL8U5QNxaqQumjTxahodnjHoVoS45Uc3TXLyMkhZUXJMCVKSsqvTFYpz+UdnIYA+t5ew1U1Uc5DdEyDXXcpRZzPuVILsaIR43jhcfQO4/CZvZFSS3d6Vvv+EwaAuGkqSiptqpE5RFEX5kw03qPs00CCl/C12pus7ncAO+BTlvOMdMlKn0eIpRpf2+a8AhVk6yVQUv2ZvaxKKp3Bogq5QnPHjx+N2u8koLKKxtJxWtw8BxHxZJLQEzu42PKEIfY4L0KMmfl+cnRnTcHX2pO9fNhjUpTNf1XYmiqIoyp9ouEGdH2g5yzU3Q0fuFOW84THsRIlIIoXPoRFwFuDQIqQ0e5uRPJ9JLDGAVwNPQhKIRsjzOekKxXE4HEyePJnMzlbiNXV4tBBSSI65Q2RYGVi9Xbh7+wgN2Md+uTJT7MysgLiFFxO3oVGYYWe6Brvs0yjUSJ2iKIrypxpuULcfmHeWa3OBN0emO4rywUpPvyZMfLpGiEwcDjuokxKynHESyQh+TeBOSLqjUQozXXSGYoC9e3g0GmVVgYuZbb/FWVJESIsxXhYjAG88QSxof+ZxZqRock0kaPhwOgRleb70zuX9XVEQkJmngjpFUZR3evTRR6murqaqqopHHnkEgHvvvZeSkhJqa2upra1l8+bNAAQCAS677DL8fj9Lly4d0s5zzz3H9OnTqampYf78+XR3dwNw1113MW3aNGpqaliwYAF9fX3p16xYsYLy8nKmTp3KK6+8ki7/4Q9/SFVVFdXV1Vx//fXEYva/CTfffDMTJkxI9+vUSRb79u3j4osvxuVy8dBDD43asxpuULca+LoQogEYN1iWLYT4IrB08LqinHe870qUCJGBwxkhpXuJWxo+2U9SJvA6BJ6ERV/KpMDvomvA3s+uvLwch8PB3j2vE27XiGaVkGl5KNLtrFZ3IoWMDIAuacvLxxhIEvBkkdT09KbDYG9n4s9x4TDULkOKoiin7NmzhyeeeIIdO3awa9cuNm3axMGDBwG44447aGxspLGxkSuvvBIAt9vNfffdd1rglEqluP3223nttdfYvXs3NTU1rFq1CoD6+nr27NnD7t27mTJlSvpM2KamJtatW8dbb73Fyy+/zFe+8hVM06SlpYXHHnuM119/nT179mCaJuvWrUvf68EHH0z3q7a2FoDc3Fwee+wxvvnNb47q8xrWvyBSyieAHwDfBk7t0rcV+L/AI1LK/xid7inK6PK8Y6TOq2kMkIHmsoO6gaSBO9JGykpgCDuoC1pQkOGiK2QHdS6XiwkTJrB3736SziyiloMaczzSYU+naloG7kgnzowUb2RWMamtmYA3h2jKYnyeL92PYJfazkRRFOXd9u7dy+zZs/F6vei6zty5c1m/fv1Z6/t8Pi655BLcbveQciklUkrC4TBSSoLBYPoc13nz5qHr9lKc2bNn09zcDMCLL77Iddddl/7/fHl5OTt27ADsIDEajZJKpYhEIkPOhD2TwsJCPvKRj2AYxp/8LIZjuMeEIaX8JyHEGuxp2AIgAGyVUh4Zrc4pymjzOt9eU1fs0IjjQvNESOlugn0eMrM7SFkJwF5TN6DpFGS46B5IYFkSTRNMnTqVQ4cOIcaMx+N0MzlWzCHzAC7NQeKCajJa/oA7N8kbmZVM23GI3/vmgmToSF1XlAk1+X+RZ6AoivJe2r/3PeJ7941om66KaYxZvvycdaqrq2loaCAQCODxeNi8eTN1dXXk5eWxatUqnnnmGerq6nj44YfJyck5azuGYbBmzRqmT5+Oz+dj8uTJ6eO83unJJ5/k2muvBaClpYXZs2enr5WWltLS0sLFF1/MN7/5TcaNG4fH42HevHnMm/f2CrWGhga+853vcPnll/PAAw/gcn1wpwS9r7keKeVxKeUTUsrvSSkfVwGdcr5LT78m7exXhEBkpEBo9HTnoccDpKQd1Pnikqiuk+93YVqSnkgCy0rgcv0cAOlyM62wEgcasXgfPtMilD8VYyCCMzPFzowKJh46mr532eBIXSKWIhpKqj3qFEVR3qWiooJly5ZRX1/P/PnzufDCC9F1ndtuu43Dhw/T2NhIcXExd9555znbSSaTrFmzhp07d9La2kpNTU16mvWU+++/H13XufHGGwF7dO/dhBD09vby4osvcvToUVpbWwmHw/z4xz8G7DV4+/bt4w9/+AM9PT2sXLlyhJ7E8Ax7pA5ACHEB9vYl7ndfk1L+fKQ6pSgfFJeuIcTg9Ktuf8YRgx/2opEMNJnC6zUB8A2eKuH22L+f6DzEkcByTu46jha9As2fSYljPBBkINSJKxQh5PYgACPL4i3fJG4KRdL3PjVSd2o7k6yCt0fuFEVR/pq814jaaFq8eDGLFy8GYPny5ZSWllJUVJS+fuutt3L11Vefs41TCQuTJk0CYNGiRTzwwAPp608//TSbNm1i27Zt6QS20tJSTp48ma7T3NzM2LFjefXVV5kwYQIFBQUAfOYzn+E3v/kNn//85ykuLgbspTlf/OIXRzUp4kyGe6LERCHEb4FjwHbsDYdfxV5Xd+q7opx3hBB4DQeRwTV1ANI3uOYhZX928XpDAPgTdlBnSfsQ51+/0cBAfysdv59CiTC56aZ/wOy3A77+3g6cKS9iwH5tZ1EOzkSKfqedQKFrguIse2QumA7q1EidoijKu3V22if2nDhxghdeeIHrr7+etra29PX169dTXV19zjZKSkpoamqiq8ve/H3r1q1UVFQA8PLLL7Ny5Uo2btyI1/v2h+trrrmGdevWEY/HOXr0KAcPHmTWrFmMGzeO3/3ud0QiEaSUbNu2Ld3WqX5JKdmwYcN79mukDXek7t+ws16/DuwDEqPWI0X5gHmcejr7FcDyDQ5EJwa/x06ADzIGR+qam58HLiPluJDEoY8RC21n4bf+D0VlZRzvbwcgacWx3JPwh1tASHaWVFLU002XNxuA0hwPDu0d25mggjpFUZQzWbhwIYFAAMMwWL16NTk5Odx00000NjYihKCsrIzHH388Xb+srIxgMEgikWDDhg1s2bKFyspK7rnnHubMmYNhGIwfP56nnnoKgKVLlxKPx6mvrwfsZIm1a9dSVVXFokWLqKysRNd1Vq9ejcPh4KMf/Sif/exnueiii9B1nRkzZvDlL38ZgBtvvJGuri6klNTW1rJ27VoA2tvbqaurIxgMomkajzzyCE1NTWRmZo7osxpuUPcR4GYp5U9H9O6K8lfA63QQHdx8GMB0O+3vphdpgcvspi1yhExnGQCJwbPCjOjf8dZr/8LMqxdQNLEcgORAAhyClJUg5pvMhOBLODNS/DZ3JhOOnaA9vwTB28eDgb2didtv4PS8r9UQiqIoHwrbt28/rezZZ589a/1jx46dsXzJkiUsWbLktPJDhw6dobatoaGBhoaG08q//e1v8+1vf/u08p///Mwr0caMGZPOqh1Nw02UaGaUR+eEEA8KIfYJIXYLIdYLIbLfce1bQohDQoj9QohPvqN8/mDZISHEP41m/5S/XV6nPf3q0gQOAXGXPUJn6l6iAzq5HpNdPf9DPhYA/rwbyNAh+tpPyCwo5GOfsxfVxsJJSFpIJCkpCWeW4w+34M5OsjOjgukH99GZba8DKctX25koiqIoI2u4Qd33gGVCCN971vzTbQWqpZQ1wAHgWwBCiErgOqAKmA/8qxDCIYRwYG96/PdAJXD9YF1FeV88TgfRpIkQAp9DI+q211QkdS/hkJOiTI3+ZBd6uAmA3riLiwca0YKdXHHL/8EY3A+przOCLsASFg69FM1MwkACR67FQe846pp2EfBkI3k78xXs6Vd15quiKIry5xrWfI+U8lkhxDTgmBDid0Dv6VXkF/6cjkgpt7zj198Bnx38+dPAOillHDgqhDgEzBq8dujUtipCiHWDdZv+nH4oHz6nRuoAvJqDAcOPV5ikdA+xAZ1CMUCuq5jeju3Axzje1kV1++8JFFUxoXZmup3+zig6ApMkTsd4MsJ21lRHSS4eGaWwr5cehwdSb2e+mimLgZ4YWR8d84H/3YqiKMrflmEFdUKIm7FHzkzgIk6fij19M5c/z5eAnwz+XIId5J3SPFgGcPJd5R8d4X4oHwIeQ6cnbCcr+BwaIfxkGBGShpdEyMBp9VKVfTHbO17AF4nRHG+l2uHkjbFzhrTT3xlB1yBpxcAoozT8awD+WFZFyUCrXce01+OdGqkLBWL2GbNq+lVRFEX5Mw13Zfa3gfXAYill33tVPhshxKvAmYYkGqSULw7WaQBSwKmjx8QZ6kvOPHV8xuBSCPFl4MsA48aNO1MV5UPsVKIE2EFdH1mUOrtJuTyk2h0ILHKdgqKMSYxtP0xL0RjEmCtoiQ19+/R1RikyNPpicaSRR2HqEJrT5KWSy7igq4U+lx9TghBQkmMHcacyX9XGw4qiKMqfa7hBXR7wr39OQAcgpbziXNeFEF8ArgYul29v5dyMveHxKaVA6+DPZyt/933/L/Y5tdTV1Y30qKJynhsy/erQ6Ja5OJwnSLq8WCF7ZM2hdTA57yOUtJ/k4MQqklIjEYkQS5q4DbtOf1eUC3RoTtmfQ4xgJ46cFH/IupCbdv0XTWMnApD7/7N37+FRXeeh/797Zs9dQghxMZIQkhEXSaNBUBVEywFjV4pCXVwuh0uxTVxi/4CSUAKOT6wmQCkH+BmKoVKFQ0sAu0FpbQsRReFijFMalxISBlkIBxkLgyRspNF9ZjSXPfv8sUcjyQJ8E8SJ1+d55rG899pLe/bzjHjnXWu9y2rEEF5pK8qZCIIgCAPl0y6U+C8g7V7eiCRJ+cBzwBxVVT29Th0FFkuSZJIkKQUYC5wDfgWMlSQpRZIkI9piiqP38h6FP0wWox5vr6DOFbKhN3QRMFmgSyIUkDDIjdj0USR3ZABQN0TG7tfT2OGL9NN2y4MshWhRDBi6Ggk0dhAcpsevMzLhyjWuPJAM9GTpQFv5Kht1WAcZ798bFgRB+D2ye/du7HY7GRkZvPjiiwBs3LiRhIQEsrKyyMrKoqKiAgCXy8WsWbOIiopi9erVffo5fPgwmZmZOBwO8vPzaWpqAuDZZ59lwoQJOBwO5s6dS2trT/5q69atpKamMn78eI4fPx45vmvXLjIyMrDb7SxZsoSuri4AamtrmTp1KmPHjmXRokX4/dpstQ8++IBHHnkEh8PBQw89dM/Km3zaoG4N8LQkSUslSYqTJEn38dcA3EshEA2clCTJKUnSXgBVVS8B/462AOIY8DeqqiqqqgaB1cBx4DLw7+G2gvCZWI16PAEFVVWx6fV4QioGc4igUVvM4OvQY9Q3IimQ0G7DGIKG0Ray/DIftWsf5K7OAD5PEEIh2lUL8e2/QQ1C/aihyGqQ9EvvURsXD8CYoVGR393WpJUz6d6WRhAEQehRVVXFvn37OHfuHBcvXqS8vJyamhoA1q5di9PpxOl0Mnv2bADMZjObN2/utz1XMBhkzZo1nD59msrKShwOB4WFhQDk5uZSVVVFZWUl48aNi+wJW11dTUlJCZcuXeLYsWOsWrUKRVGor69nz549nD9/nqqqKhRFoaSkBIDnnnuOtWvXUlNTQ2xsLP/6r/8KwPr163nyySeprKzkBz/4Ad/73vfuyfP6tMHYZSATOATcAgIfe33hGnaqqqaqqjpKVdWs8GtFr3NbVFUdo6rqeFVVf97reIWqquPC57Z80XsQvpqsRhklpOJXQtj0OjxKCKNFR1CnZdS8LiNGqRFJkcjOHU18Y4D3o2BISMf16mYAWhu15HKbH1R0pOi0Rdj/mTKFtOBVrH4fH0YNBWDCyOjI7xblTARBEO7s8uXL5OTkYLVakWWZmTNnUlpaesf2NpuN6dOnYzb33aJeVVVUVcXtdqOqKu3t7cTHa1+08/LykGVtNlpOTk4ki1ZWVsbixYsxmUykpKSQmprKuXPnAC1I9Hq9BINBPB4P8fHxqKrKm2++yYIFWvGOZcuWceTIEUALEB955BEAZs2aRVlZ2QA+pR6fdk7d3zPwK1wF4UvBEp4T5/Ur2PQ63EoIk1VGCVkJodLVbCAmtRE9ev74z0eRW6njX9pbaTaA91Qd7j8dRdstbW5cox8kNUSM2kSHpHI49S/5izatwnibcRB0wZhhWqZODam0N3kZnTHkd/PGBUEQPqUz/36FphudA9rn0FFR/K+F4+7axm63U1BQgMvlwmKxUFFRQXZ2NnFxcRQWFnLo0CGys7PZuXMnsbGxd+zHYDBQXFxMZmYmNpuNsWPHUlRU1K/d/v37WbRoEQD19fXk5OREziUmJlJfX8+0adNYv349SUlJWCwW8vLyyMvLo6mpicGDB0cCxO72ABMnTuS1115jzZo1lJaW0tHRgcvlIi4u7jM/t7v5VJk6VVU3qqq66W6vAb0rQbiPrEYtqPP0CurMNhOqaiCkM+DrlDHSiCwZ6Wx28WcPDkWVJP57hITZrfBvP/hvLv1nPXoJGgMq1lAbSnsn+sHQbIll8vtOFL0Or2oCIHmoNqzrbvOjBEJikYQgCMIdpKWl8dxzz5Gbm0t+fj4TJ05ElmVWrlzJ1atXcTqdjBw5knXr1t21n0AgQHFxMRcuXKChoQGHwxEZZu22ZcsWZFlm6VJtl6Ce9Zo9JEmipaWFsrIyamtraWhowO1288orr9yxPcCOHTv4xS9+waRJk/jFL35BQkJCJPgbSGKzSeErz9IrqLPqdQRUFaNNqyMXNFkJev3INCPrJDqam/ijccPRS/BBognqujDZjNy82kZMjJG2Nj8PBBrwu3y0Jw1mkNpK6sX3aRo+jFBA22YsMVYL6tqbtCFbUc5EEIQvu0/KqN1Ly5cvZ/ny5QA8//zzJCYmMmLEiMj5p59+mkcfffSufTidTgDGjBkDwMKFC9m2bVvk/MGDBykvL+fUqVORQCwxMZEbN3rK4dbV1REfH88bb7xBSkoKw4YNA2DevHm8/fbbLF26lNbWVoLBILIsR9oDxMfH8/rrrwPQ2dnJa6+9RkxMzBd6LrczEAscBOH3mtWofbfRhl+1AM9g04ZI/VYLQa8OUDHqmulsbCJK1pMRZcEXZ6QtVkbxK/zZU2kkjte2K04MnCfo0fNO4lgmhpwY6xTq4xMI+UNYjfpICZTWW6KciSAIwie5desWANevX+f1119nyZIl3Lx5M3K+tLQUu91+1z4SEhKorq6msbERgJMnT5KWphX1OHbsGNu3b+fo0aNYrdbINXPmzKGkpASfz0dtbS01NTVMmTKFpKQkzp49i8fjQVVVTp06RVpaGpIkMWvWLF599VVACxQfe+wxAJqamgiFtC/2W7du5a//+q8H6On0JTJ1wldez/BrEJtZ+56jtw0CfAQGWcAFwS4dsv4jOhu1j8zUGBtVbR6uDIbBtQFAoq3JjUWCoYEr+IHTD07lj4JO9I1QO3UUakhliK2ndEl7oxdJJxE1xIwgCIJwe/Pnz8flcmEwGCgqKiI2NpYnnngCp9OJJEkkJyfz0ksvRdonJyfT3t6O3+/nyJEjnDhxgvT0dDZs2MCMGTMwGAyMHj2aAwcOALB69Wp8Ph+5ubmAtlhi7969ZGRksHDhQtLT05FlmaKiIvR6PVOnTmXBggVMnjwZWZaZNGkSzzzzDADbt29n8eLF/N3f/R2TJk2KZBjfeustvve97yFJEjNmzLjtfL6BIII64SsvMvwaULDaDNpBWxzQQNdQC9SCv0NGjv0Ij0v7FjclJop9uibesajkjbBS+eYNXPVuEg06zKF2/MCvU+w86f4xkipxeXgKuCB+cE8A19bkJXqICb1eJMwFQRDu5MyZM/2Ovfzyy3dsf+3atdseX7FiBStWrOh3/L333rtjXwUFBRQUFPQ7vmnTJjZt6r+c4MEHH4yskO1twYIFkVWx95L410T4yuvO1HnDc+oAFKu2iso3TAvC/G0yeulDvM3tgJapA3CZIGNGPLc+6EAJwggZcHsJWfREDWohrl0bYq2J1nbH697zFbRMXczwnlS/IAiCIHwRIqgTvvKsBi1h3b36FSBo1jJ2/lgtCPO2mJGlj/C3aUv6h5sMxKEjEGNk5MShyEYdEiojjfX42yQ+fGAYmVIlkkuHqlf5UK9NiB0/om+NuhhRo04QBEEYICKoE77yLJFMXTCyUKLLGA7uDFrQ5Ws3IEsf4Wt3R64bbzQSijXSGgzyR/nJxFlaseou4WuTqRqVigMnUr1KV7yOkFdb6p6ZqAV3XW5tBwqx8lUQBEEYKCKoE77yPl6nDsCLik4OEJS04dGAW4deuoXiDaAEAwBMirKAUY+zxU327GSGq9fQeZyoio53ktMZx7tI7wXoTDQheYIApI8cBECHS9tebNBQsUhCEARBGBgiqBO+8rp3lOgd1LmVEAZzCEXVgjrFK6FTWzHrobNZ2xrsf8VpQ6nn2rTsneJTUNu0Cbem5BgMBNHfUGhPikHyKegkiAoP63Y0a0FdtFj5KgiCIAwQEdQJX3k6nYRJ1uEN9CyUcCsKRgsoASshvTZ06u/UM0juoqO5CYDJcVHgU7jU1YXP48as8xBo8xCSJBIT2tH7VXRdEq1JI5ECoUh9OugV1MWJoE4QBEEYGCKoEwS0IViPPxgJ6jxKCKNFTyhgJTQoHNR1yEQbPHS6tKAu2mzA0BbgfSVI262PGGKqx9dq4KPhQ7HrL2Jo165rSkmBoMogqyHy+zqbu5ANOsw2A4IgCMKd7d69G7vdTkZGBi+++CIAGzduJCEhgaysLLKysqioqADA5XIxa9YsoqKiWL16dZ9+Dh8+TGZmJg6Hg/z8fJqatL/lzz77LBMmTMDhcDB37lxaW1sj12zdupXU1FTGjx/P8ePHI8d37dpFRkYGdrudJUuW0NWlfVE/deoUkydPJisri+nTp/crl/Lqq68iSRLnz58f+AeFCOoEAdB2lfD4FYw6HUZJwq2EMFmNKH4rgVE9QV2UoZPWjz4EtD39BneFaNfBezdvEmu4gbfVwLXRYxkWuIy+RSI0XKbFNBIJGDGoJyvX0dxF1BBzZDsaQRAEob+qqir27dvHuXPnuHjxIuXl5dTU1ACwdu1anE4nTqeT2bNnA2A2m9m8eTM7duzo008wGGTNmjWcPn2ayspKHA4HhYWFAOTm5lJVVUVlZSXjxo2L7AlbXV1NSUkJly5d4tixY6xatQpFUaivr2fPnj2cP3+eqqoqFEWhpKQEgJUrV/Jv//ZvOJ1O/uqv/op/+Id/iNxDR0cHe/bsYerUqffseYmgThDQVsB6/QoANr0OtxLCYrMQClgJJoVAr8fXbiLa4OaXP3mZA+tW8Z8/PsBQrx+At+tvEaVeQ/HokSek0aW2orslERgFDW1xACQP6alJ19HsI3qI6f6/UUEQhN8jly9fJicnB6vViizLzJw5k9LS0ju2t9lsTJ8+HbO579QWVVVRVRW3242qqrS3t0f2Zc3Ly0OWtdJWOTk51NXVAVBWVsbixYsxmUykpKSQmpoaKSwcDAbxer0Eg0E8Hk+kL0mSaG/X6pm2tbVFjgN8//vf57vf/W6/extIYkcJQaB7+FUL6qzdQV1UFIrfSjAJkCR87WZGWP089OS3ef835/h1eSnS0FykMX/Cbz6qQ9fZDMQxMn0MCgGkj/T44/182KrVuhv/QE+Nus7mLuIy434H71QQBOGzO33gh9z64P0B7XP46AeZ9Y1n7trGbrdTUFCAy+XCYrFQUVFBdnY2cXFxFBYWcujQIbKzs9m5cyexsbF37MdgMFBcXExmZiY2m42xY8fedquu/fv3s2jRIgDq6+vJycmJnEtMTKS+vp5p06axfv16kpKSsFgs5OXlkZeXB8C//Mu/MHv2bCwWC4MGDeLs2bMAXLhwgRs3bvDoo4/2yyIOJJGpEwS0FbDeXkGdRwlhjrIQCpgJxEoQDOLvkJBDt/ijP3+M//39Laz6lx+TkTEefZufOEsbvlbtO9L4jOEA6F0S/kSF5nZtv9eMkVqNOiUQwtPuFytfBUEQPkFaWhrPPfccubm55OfnM3HiRGRZZuXKlVy9ehWn08nIkSNZt27dXfsJBAIUFxdz4cIFGhoacDgckWHWblu2bEGWZZYuXQpo2b2PkySJlpYWysrKqK2tpaGhAbfbzSuvvAJoc+0qKiqoq6vjqaee4jvf+Q6hUIi1a9eyc+fOAXoqdyYydYKAlqlr7PQBYNPrcSsKJosB0BGwmQCFkE9F8jdGrjFZbYxLTUZ9/yYT1ffxthnptEUTN9gLN0DfDIFRKh3va/PmxgzXMnadrdqE2qhYEdQJgvD74ZMyavfS8uXLWb58OQDPP/88iYmJjBgxInL+6aef5tFHH71rH06nE4AxY8YAsHDhQrZt2xY5f/DgQcrLyzl16lRkrnNiYiI3btyItKmrqyM+Pp433niDlJQUhg0bBsC8efN4++23+drXvsbFixcjc+YWLVpEfn4+HR0dVFVV8dBDDwHw4YcfMmfOHI4ePUp2dvYXeTT9iEydINCzUAK0OXUeJYQpvFo1KPfs1xrsDIK3JfL/CSYvez58gW82vEZjx2A88aPx+RoAkL0yoRjo8mhth0drQVxHsxY8ijl1giAIn+zWrVsAXL9+nddff50lS5Zw8+bNCZRN7wAAIABJREFUyPnS0lLsdvtd+0hISKC6uprGRu2L+cmTJ0lLSwPg2LFjbN++naNHj2K19sx9njNnDiUlJfh8Pmpra6mpqWHKlCkkJSVx9uxZPB4Pqqpy6tQp0tLSiI2Npa2tjStXrvT5HTExMTQ1NXHt2jWuXbtGTk7OPQnoQGTqBAHov1Dipi+Ayap9PBQsgDbx1d8hY265hmSJhUtHmH1qNfqQh52jnuThlv/EljaGrq56pAAYB1tA6iLgCyHpJIyy9h2qM1yjLkoMvwqCIHyi+fPn43K5MBgMFBUVERsbyxNPPIHT6USSJJKTk3nppZci7ZOTk2lvb8fv93PkyBFOnDhBeno6GzZsYMaMGRgMBkaPHs2BAwcAWL16NT6fj9zcXEBbLLF3714yMjJYuHAh6enpyLJMUVERer2eqVOnsmDBAiZPnowsy0yaNIlnnnkGWZbZt28f8+fPR6fTERsby/79++/rsxJBnSBw+4USpphwUBe0ocogBbWgLvTbX6A7849Il4/S1WZlsXkL5kEPMjvwBoOSxtDsvoC+GaSkKAKhDlRFxWTu+ahFCg+L4VdBEIRPdObMmX7HXn755Tu2v3bt2m2Pr1ixghUrVvQ7/vFacr0VFBRQUFDQ7/imTZvYtGlTv+Nz585l7ty5d+wP4K233rrr+S9CDL8KAv0zddrwqxaIhQIW1FEyksGIr11G/4sNUP0zbjmj+WDQKt5Vk/jzG/UAmFPG4ml9D12zhJpiw+UdovVv7QnqOpu7sA4yojeIj58gCIIwcMS/KoIAWA0yfiVEUAn1LJQIz6lT/DbUBBV0Mr4OC942G+9XDEF6+Lukff95AB54/32QdJiSH6TLfxO5WSKYbKGxKxmAwdE98+e6Cw8LgiAIwkASQZ0goA2/AngCSqT4sNGsHVMCFpThCmpIwd9h5NrPY4j91gaGffvbGHQS82+eJ+m/fo4uZhRE6QnqPehbIBiv53JrBgDDh1giv0sUHhYEQRDuBRHUCQLa8CuA169g1esIAYpBhyRByG8jODQIAR8ofkb83QaGPPkEvvdruf7kMr75PyV8NHQUluynCei1lVXmrhAtSoi3PtBWZCWEd5NQVZVOkakTBEEQ7gGxUEIQ6JWpCwd1AF5VxWiVUfwWgkMUuj8u8tBhNP7zP+Mq3otksfCzrz3FmVFTKGrS45M+0vpTgvzb1VR8QW0I94EYLYjrcgcIBkJikYQgCIIw4ERQJwj0DuqC2MJBnVaAWCYUsBEc1FNZvOF7z6J6vUR/PZ8Hnn+ehjfrabzSCOjxtv8WAJMEP3tvEvGxXTS0mEmM0YZfOyM16kRQJwiCIAwsMfwqCIDFqH2/8foVbHotwHOHCxCHAjaU7nqUshldVDSJ//zPJO7ahTxsGMOiTTR5A6ioeFp+CyH4pXkKnQEbSdqOYYwarAV1HZEadWJOnSAIwqexe/du7HY7GRkZvPjiiwBs3LiRhIQEsrKyyMrKoqKiAgCXy8WsWbOIiopi9erVffo5fPgwmZmZOBwO8vPzaWpqAuDZZ59lwoQJOBwO5s6dS2tra+SarVu3kpqayvjx4zl+/Hjk+K5du8jIyMBut7NkyRK6urS/7d/4xjdISUmJ3Ff3ThYvvPBC5Jjdbkev19Pc3Dzgz0oEdYJA3+HX7kxdd1mTkN+GYpSQjEbkhCkk7v0J0Q/Pilw7LNqEP6TSCXS5r6FvhX8yzWFC7BUk2YQqQUKUFsRFatSJTJ0gCMInqqqqYt++fZw7d46LFy9SXl5OTU0NAGvXrsXpdOJ0Opk9ezYAZrOZzZs3s2PHjj79BINB1qxZw+nTp6msrMThcFBYWAhAbm4uVVVVVFZWMm7cuMiesNXV1ZSUlHDp0iWOHTvGqlWrUBSF+vp69uzZw/nz56mqqkJRFEpKSiK/64UXXojcV1ZWFqAFjt3Htm7dysyZMxkyZMiAPy8R1AkCYDH0n1MXCeoCNkI60McNBn8HkmToc+2wcLmSZkL4lI+Q2mXqpSH8+YMnaOsygElPjEHLBHY2dyEbdJij+vYhCIIg9Hf58mVycnKwWq3IsszMmTMpLS29Y3ubzcb06dMxm/t+cVZVFVVVcbvdqKpKe3s78fHxAOTl5SHL2t/onJwc6urqACgrK2Px4sWYTCZSUlJITU3l3LlzgBYker1egsEgHo8n0tencfjwYZYsWfKZnsOnJebUCQI9mTpvIEhiOKjrUBQsFhklYAVJQj/SRuBqE2q4SHG37qDOpYdBhnbaOweRGXWLtCFX+PcPdahGlUHhLcI6mn1EDTFHNowWBEH4fdD606v4G9wD2qcx3sbgvxhz1zZ2u52CggJcLhcWi4WKigqys7OJi4ujsLCQQ4cOkZ2dzc6dO4mNjb1jPwaDgeLiYjIzM7HZbIwdO5aioqJ+7fbv38+iRYsAqK+vJycnJ3IuMTGR+vp6pk2bxvr160lKSsJisZCXl0deXl6kXUFBAX//93/PI488wrZt2zCZeqbbeDwejh07FskSDjSRqRMEwBqeU+fxK0TLWoDXGZ5Tp/jD3/jidYQ8LkK+vkHd8HBQ1xbqQIlWuNk1jGUPViNJ4PaCzqTHqOsO6rpEjTpBEIRPKS0tjeeee47c3Fzy8/OZOHEisiyzcuVKrl69itPpZOTIkaxbt+6u/QQCAYqLi7lw4QINDQ04HI7IMGu3LVu2IMsyS5cuBbTs3sdJkkRLSwtlZWXU1tbS0NCA2+3mlVdeAbQ5eO+++y6/+tWvaG5uZvv27X2u/+lPf8qf/umf3pOhVxCZOkEA+tapiwovlOgIKhitMiFFe6nDAhDwoLS2ASMBUEMqMe5wkOd/F/TgDkbx9ZEfUaOCpyuEIa5nqLWzuYu4zLj7+t4EQRC+qE/KqN1Ly5cvZ/ny5QA8//zzJCYmMmLEiMj5p59+mkcfffSufXQvWBgzRnsfCxcuZNu2bZHzBw8epLy8nFOnTkVGUhITE7lx40akTV1dHfHx8bzxxhukpKQwbNgwAObNm8fbb7/N448/zsiR2r8NJpOJp556qt/cvpKSkns29AoiUycIQN+FElHhodLOYAhz9/6vfiuhGA8A3upa2k9dp3F/FQ2b/puulyoxAq6gVs4kXV9PwCgBenxdQcyW8HZjgRCedr9YJCEIgvAZ3Lp1C4Dr16/z+uuvs2TJEm7evBk5X1pait1uv2sfCQkJVFdX09ioFYg/efIkaWlpABw7dozt27dz9OhRrFZr5Jo5c+ZQUlKCz+ejtraWmpoapkyZQlJSEmfPnsXj8aCqKqdOnYr01X1fqqpy5MiRPvfV1tbGL37xCx577LEBeCq3JzJ1ggAY9DoMegmPX8Gk02GUJDoVLVMHoASsBKI9SID3Qg3BW1HIw61Ys4ZhTI5h2M/fIbZL+0b3J+q71OvH4GckaghslvAiidZwORNReFgQBOFTmz9/Pi6XC4PBQFFREbGxsTzxxBM4nU4kSSI5OZmXXnop0j45OZn29nb8fj9HjhzhxIkTpKens2HDBmbMmIHBYGD06NEcOHAAgNWrV+Pz+cjNzQW0xRJ79+4lIyODhQsXkp6ejizLFBUVodfrmTp1KgsWLGDy5MnIssykSZN45plnAFi6dCmNjY2oqkpWVhZ79+6N3FdpaSl5eXnYbLZ79qxEUCcIYRaDHq8/CECUrKNDCWGyavPfQn4rAXMLRsCSrmf4t3PQWXuGVYe9beaBVu0boM2v4Jf8eJREAKKtRkBbJAGIOXWCIAifwZkzZ/ode/nll+/Y/tq1a7c9vmLFClasWNHv+HvvvXfHvgoKCigoKOh3fNOmTWzatKnf8TfffPOOfX3jG9/gG9/4xh3PDwQx/CoIYVajjCe8sjVar6czqO0oAVqmzm/wYUhIoPUn/0rzKwdQ/f7ItakxBqKjOtH7DOhDEFA9uEMPABBj04K/zkjhYZGpEwRBEAaeCOoEIcxq1OMJaEGdlqlTMHUPv/qt+GWFpAM/wvanf0LjP/4j7z/2l7jffhuAggwTodgQpvDWE/5QJ53BoQDEfazwcFSsyNQJgiAIA08EdYIQZjHq8fbK1HUEtZImAKGAlYCswxhnY1RhIaN++BKqonD9r5dT97drCf7yv1DiVCySBWQL/kAzHf7BQE8du87mLiyDjMjhQseCIAiCMJBEUCcIYVajHk9kTp2eTqXX8KvfiiJLKB312vkZM3jwp0cZtubbdJ4+TWPhP6EMAatkRIkaiqJ00uKLQZVgmC08p67FR7TI0gmCIAj3iAjqBCHMYpR7Zep0dAZD6A06ZIOOUEAbVvV19Eyo1ZlMDF25kgd/9jNsf/kIqhHMPoXAIK2qeVOXDYy6PluERceJ+XSCIAjCvSGCOkEIsxr0PQslZD0divaz0Sqj+LUl6L7O9/tdZ0xMIPb5/w8Ai9uL3xYDQHOXEdWoZ5CsR1VVOlxdYpGEIAiCcM+IoE4QwrThVy2Qs+l1dAa1n01WA2pwEAA+T91tr+3qagDA3NFBIFy8stWrRzXqGCTr6XIHCAZCRIsadYIgCJ/J7t27sdvtZGRk8OKLLwKwceNGEhISyMrKIisri4qKCgBcLhezZs0iKiqK1atX9+nn8OHDZGZm4nA4yM/Pp6mpCYBnn32WCRMm4HA4mDt3Lq2trZFrtm7dSmpqKuPHj+f48eOR47t27SIjIwO73c6SJUvo6tIWwi1fvpyJEyficDhYsGABnZ2dAKxduzZyr+PGjWPw4MH35FmJoE4QwixGPd5AT6bOG1IJhlRMFplQIBoAn+/D217b1aXNtTO3uvBbtDl0rR4VTDoG6XV0RmrUiaBOEATh06qqqmLfvn2cO3eOixcvUl5eTk1NDaAFSk6nE6fTyezZswEwm81s3ry53/ZcwWCQNWvWcPr0aSorK3E4HBQWFgKQm5tLVVUVlZWVjBs3LrInbHV1NSUlJVy6dIljx46xatUqFEWhvr6ePXv2cP78eaqqqlAUhZKSEkAL9i5evEhlZSVJSUmR37Fr167IvX7rW99i3rx59+R5iaBOEMJ6L5SIDu//2qkomGwyoYANSVXpCjTd9lpvVz16nRXZ58dvlFFVaPco2vCrQd9TzkQUHhYEQfjULl++TE5ODlarFVmWmTlzJqWlpXdsb7PZmD59OmZz3y/QqqqiqiputxtVVWlvbyc+Ph6AvLw8ZFmb+5yTk0NdnTYiU1ZWxuLFizGZTKSkpJCamsq5c+cALUj0er0Eg0E8Hk+kr0GDBkV+n9frjewj29vhw4fv2f6vYkcJQQizGGW6AiFCITWy/2uHEsJkkVH8FiRVwqe09btOUbpobv4lFuNIJK7jl8HnG0RQUVFNOmJkPbfCQZ3I1AmC8Pvo5z//OR9+ePuRis/rgQce4Otf//pd29jtdgoKCnC5XFgsFioqKsjOziYuLo7CwkIOHTpEdnY2O3fuJDY29o79GAwGiouLyczMxGazMXbsWIqKivq1279/P4sWLQKgvr6enJycyLnExETq6+uZNm0a69evJykpCYvFQl5eHnl5eZF2Tz31FBUVFaSnp7Nz584+/X/wwQfU1tby8MMPf6pn9FmJTJ0ghFmNWnbOG1B6MnVBBZPVgOI3ARI+3P2u++2VjXg87zEmVkunB/RB3KFRAFqmTq+ns7kLvUGHOcrQ73pBEATh9tLS0njuuefIzc0lPz+fiRMnIssyK1eu5OrVqzidTkaOHMm6devu2k8gEKC4uJgLFy7Q0NCAw+GIDLN227JlC7Iss3TpUkDLtn2cJEm0tLRQVlZGbW0tDQ0NuN1uXnnllUibH/3oRzQ0NJCWlsZPfvKTPteXlJSwYMEC9Pp7U69UZOoEIaw7qPP4lZ5MXVDbVSLoN6Ai4dP5+1zT0PAqN2/+B8mjVzHUnwCAHx8eZSQAOpMOq15HR7OP6CHm26biBUEQvuw+KaN2Ly1fvpzly5cD8Pzzz5OYmMiIESMi559++mkeffTRu/bhdDoBGDNmDAALFy5k27ZtkfMHDx6kvLycU6dORf5OJyYmcuPGjUiburo64uPjeeONN0hJSWHYsGEAzJs3j7fffpvHH3880lav17No0SJeeOEFnnrqqcjxkpKS22YIB4rI1AlCmCW804PX3ytTp4QwWmRQJYJBE35ZQVW1xRQdne/y2ys/IDZ2Gg8++Lfg1ubb+VUP7qD2YbdZDEiSRGdLl9geTBAE4XO4desWANevX+f1119nyZIl3Lx5M3K+tLQUu91+1z4SEhKorq6msbERgJMnT5KWlgbAsWPH2L59O0ePHsUarl4AMGfOHEpKSvD5fNTW1lJTU8OUKVNISkri7NmzeDweVFXl1KlTpKWloaoq772n1TJVVZWf/vSnTJgwIdLfb3/7W1paWpg2bdrAPJjbEJk6QQizGrWPgycQJMoc3gVCUXggvP9rKGBBNXrxez9EbxzEO+/8DbIcQ0bGi0iSPhLUBZQ2OoJxAERbw/00dzHaHne/35IgCMLvvfnz5+NyuTAYDBQVFREbG8sTTzyB0+lEkiSSk5N56aWXIu2Tk5Npb2/H7/dz5MgRTpw4QXp6Ohs2bGDGjBkYDAZGjx7NgQMHAFi9ejU+n4/c3FxAWyyxd+9eMjIyWLhwIenp6ciyTFFREXq9nqlTp7JgwQImT56MLMtMmjSJZ555BlVVWbZsGe3t7aiqysSJEykuLo7c1+HDh1m8ePE9HbERQZ0ghPUefn1AryWxO4MhTNburcJsGGzNdLVd4XrTa3R13WBS1iuYjEO1DtyNqOYY/IEWOvwxIMFgmwElEMLT5heLJARBED6HM2fO9Dv28ssv37H9tWvXbnt8xYoVrFixot/x7uza7RQUFFBQUNDv+KZNm9i0aVO/47/85S/v2NfGjRvveG6giKBOEMIsxp7h1yhZ+7kjvFACQAlYAHj/eiHNbiepY75LbOyUng7cjSjRQwmF2mjzRSEb9cQYZDpbw+VMROFhQRAE4R4Sc+oEIax3ps6m7y5pomCyhIdfw1uFNbudDB36ZyQlPd23A3cjgWhtSX2rz4xk0hMj6+mIFB4Wc+oEQRCEe0cEdYIQ1hPUBdFLkrZVmNJr+DVgQQqpmHVDSE/7/5Gkj3183E34rVrg1+o1gFFHtKyVMwHEvq+CIAjCPSWCOkEIs4QXSnjD+79G6/XhOnU9mbpRdV4mGf4SgyGmfwfuRvzhlVPNHomgURfO1HUPv4pMnSAIgnDviKBOEMKshp7hV4BoWUeHEsJolkHSMnVWH1hbbrNVWEgBj4uA2YSqQrM7RMCgI1rW0dnchWWQEdlwb4pNCoIgCAKIoE4QIiy9dpQAsOn1dAQVJJ2E0axH8dsIJk6E8z+CK8f7XuxpBlT8Bh1diomuYM8WYR0tPqJFlk4QBEG4x0RQJwhhJlmHTtLm1IGWqXMrIQDMVgOhgJXguFnwQCa89k1ovNJzsVsraOmXVdxBrdK52mtOnShnIgiC8Pns3r0bu91ORkYGL774IqCVB0lISCArK4usrCwqKioAcLlczJo1i6ioKFavXt2nn8OHD5OZmYnD4SA/P5+mJm3U5dlnn2XChAk4HA7mzp1La2tr5JqtW7eSmprK+PHjOX6858v8rl27yMjIwG63s2TJErq6tGk2b775JpMnT8Zut7Ns2TKCwWDkmrfeeousrCwyMjKYOXPmPXlWIqgThDBJkrAa5Z7h13CmDsBolVEDgwiqXlj8Y5BNULIEvOEPvye8m4QugEeJ144Z9QzS6+ho7hKLJARBED6Hqqoq9u3bx7lz57h48SLl5eXU1NQAsHbtWpxOJ06nk9mzZwNgNpvZvHkzO3bs6NNPMBhkzZo1nD59msrKShwOB4WFhQDk5uZSVVVFZWUl48aNi+wJW11dTUlJCZcuXeLYsWOsWrUKRVGor69nz549nD9/nqqqKhRFoaSkhFAoxLJlyygpKaGqqorRo0dz8OBBAFpbW1m1ahVHjx7l0qVL/Md//Mc9eV4iqBOEXixGfWShRJSso0PRfjZZDYQCUQQDHTB4FCx8GVo+gNeWa/Ppwpm6AD7coQcAUE06bH6VoD8kMnWCIAifw+XLl8nJycFqtSLLMjNnzqS0tPSO7W02G9OnT8ds7vs3V1VVVFXF7Xajqirt7e3Ex2tfwPPy8pBlbUFcTk4OdXV1AJSVlbF48WJMJhMpKSmkpqZy7tw5QAsSvV4vwWAQj8dDfHw8LpcLk8nEuHHjAC1YfO211wD48Y9/zLx580hKSgJg+PDhA/iUeojiw4LQi9Woj2TqovR6OoPa8KvJKqN8ZCWodGgNR0+D2S9A+d/CqU0wKAEAv9pJZ1DbYUI16jF2hLN+IqgTBOH32JUrm+novDygfUZHpTFu3Pfv2sZut1NQUIDL5cJisVBRUUF2djZxcXEUFhZy6NAhsrOz2blzJ7GxsXfsx2AwUFxcTGZmJjabjbFjx1JUVNSv3f79+1m0aBEA9fX15OTkRM4lJiZSX1/PtGnTWL9+PUlJSVgsFvLy8sjLy0NVVQKBAOfPnyc7O5tXX32VGzduAHDlyhUCgQAPPfQQHR0drFmzhieffPLzPLa7Epk6QejFYtD3Wv2qp0NRUFUVk0VG8VsIBtp7Gmc/BdnL4Ze74Tcvg6TDH2yjwz9YO2/Uoe8IABAlCg8LgiB8ZmlpaTz33HPk5uaSn5/PxIkTkWWZlStXcvXqVZxOJyNHjmTdunV37ScQCFBcXMyFCxdoaGjA4XBEhlm7bdmyBVmWWbp0KaBl9z5OkiRaWlooKyujtraWhoYG3G43r7zyCpIkUVJSwtq1a5kyZQrR0dGRDGAwGOTXv/41P/vZzzh+/DibN2/mypUr/fr/okSmThB6sRr1eAPaxNYovQ5Fha6QqmXq/CaCwfa+F+Rvg8Z34YNfotqGEQg00+aPxmKW6dJJhNq0oE5k6gRB+H32SRm1e2n58uUsX74cgOeff57ExERGjBgROf/000/z6KOP3rUPp9MJwJgxYwBYuHAh27Zti5w/ePAg5eXlnDp1CkmSAC0z151pA6irqyM+Pp433niDlJQUhg0bBsC8efN4++23efzxx5k2bVpkr9oTJ05EArfExESGDh2KzWbDZrMxY8YMLl68GBmqHSgiUycIvfRZKBHe/7VT0QoQh4Iyfp+n7wWyEf73QYgZRXDwSFQ1SJvPgiW8tZivqQujWY85ynBf34cgCMIfilu3bgFw/fp1Xn/9dZYsWcLNmzcj50tLS7Hb7XftIyEhgerqahobtfnPJ0+eJC0tDYBjx46xfft2jh49ijVcQB5gzpw5lJSU4PP5qK2tpaamhilTppCUlMTZs2fxeDyoqsqpU6cifXXfq8/nY/v27axYsQKAxx57jDNnzkTm4P3P//xP5JqBJDJ1gtCLxainqTO8V2v3/q/BECarFpT5vIH+F0UNg2++gb/jCrz7FK1eE0azjFWvo6PJS8xwa+SbnyAIgvDZzJ8/H5fLhcFgoKioiNjYWJ544gmcTieSJJGcnMxLL70UaZ+cnEx7ezt+v58jR45w4sQJ0tPT2bBhAzNmzMBgMDB69GgOHDgAwOrVq/H5fOTm5gLaYom9e/eSkZHBwoULSU9PR5ZlioqK0Ov1TJ06lQULFjB58mRkWWbSpEk888wzALzwwguUl5cTCoVYuXIlDz/8MKANI+fn5+NwONDpdHzzm9/8xED085BuN2b8hyw7O1s9f/787/o2hC+pNSUXuHC9lf/87iyON7Wx7J1ajmePw1zdzhs/qiYl//t8/bEz/fd9BVpaf8VvfrOYDecKITYad2Ys3/l5O8OTovna0wP/4RUEQbiXLl++fE+yScKd3e6ZS5L0a1VVsz/N9WL4VRB66bv6tTtT12v/14CFYLDzttcG/C4Amj0qkklPjE5Hh6uLmOGW+3DngiAIwledCOoEoReLQcYb2VFCm1PnVnqGXxW/tf9iiTC/34VPMeDxq4SMOkZ4VNSQSsww623bC4IgCMJAEkGdIPRiNerxBLQyJtF6Lajrm6mzEgx23PZaf6CZdl80AEGDjqGdWo27wSJTJwiCINwHIqgThF4sRj2qCr5giCg5PPyqhCJB3d0ydQG/C3d4izCfQWJwpzaMGzNcZOoEQRCEe08EdYLQi9WoZec8foWocKaus1+m7g7DrwEXnvAWYV4ZotuDGEx6LNGinIkgCIJw731pgjpJkjZLklQpSZJTkqQTkiTFh49LkiTtkSTpvfD5yb2uWSZJUk34tex3d/fCH4qeoC6IWSchS9rwq2zQo5elcKbuDsOvfhedQW0/P7cezG1BYoZbRDkTQRAE4b740gR1wAuqqjpUVc0CyoEfhI9/HRgbfj0DFANIkjQE2ABMBaYAGyRJuvPGb4LwKViMWkbO61eQJIlovZ5ORZsbZ7TqUe6SqQsEmukIDAEgaNQjtwbEIglBEIQvaPfu3djtdjIyMnjxxRcB2LhxIwkJCWRlZZGVlUVFRQUALpeLWbNmERUVxerVq/v0c/jwYTIzM3E4HOTn59PU1ATAs88+y4QJE3A4HMydO5fW1tbINVu3biU1NZXx48dz/PjxyPFdu3aRkZGB3W5nyZIldHV1AfDmm28yefJk7HY7y5YtIxjUFt6pqsq3v/1tUlNTcTgc/OY3v7knz+pLE9Spqtr7X0ob0F1A7zHgkKo5CwyWJGkk8DXgpKqqzaqqtgAngfz7etPCHxyroWf4FSAqvP8rgMliIPQJmboO/yAGWWR0gNTmF4skBEEQvoCqqir27dvHuXPnuHjxIuXl5dTU1ACwdu1anE4nTqeT2bNnA2A2m9m8eTM7duzo008wGGTNmjWcPn2ayspKHA4HhYWFAOTm5lJVVUVlZSXjxo2L7AlbXV1NSUkJly5d4tixY6xatQpFUaivr2fPnj2cP3+eqqoqFEWhpKSEUCjEsmXLKCkpoaqqitGjR3Pw4EEAfv7zn1NTU0NNTQ0//OFkqmaHAAAgAElEQVQPWbly5T15Xl+aoA5AkqQtkiTdAJbSk6lLAG70alYXPnan47fr9xlJks5LknS+e4sQQbid7uFXb6CnVl1nUMvUmawGQsFBtLb+ClUN9bkuFAoSCLTQ5osixmokxhOCEKJGnSAIwhdw+fJlcnJysFqtyLLMzJkzKS0tvWN7m83G9OnTMZv77retqiqqquJ2u1FVlfb2duLjtYVteXl5yLI2SpOTk0NdXR0AZWVlLF68GJPJREpKCqmpqZw7dw7QgkSv1xvZ9is+Ph6Xy4XJZIrs55qbm8trr70W6evJJ59EkiRycnJobW3ts9XZQLmv24RJkvQG8MBtThWoqlqmqmoBUCBJ0veA1WjDq7ebkKTe5Xj/g6r6Q+CHoO0o8XnuXfhqsHQHdb32f+0IhjN1VgO+rmSaW16g9loRD6Z8K3JdINgKqLT5TETbDIQ6witfxfCrIAh/AL5fU0dVp3dA+7RHWdg8NvHubex2CgoKcLlcWCwWKioqyM7OJi4ujsLCQg4dOkR2djY7d+4kNvbOM7AMBgPFxcVkZmZis9kYO3YsRUVF/drt37+fRYsWAVBfX09OTk7kXGJiIvX19UybNo3169eTlJSExWIhLy+PvLw8VFUlEAhw/vx5srOzefXVV7lx40akr1GjRvXra+TIkZ/pmX2S+5qpU1X1z1RVtd/mVfaxpj8G5od/rgNG9TqXCDTc5bggfG7W8Jy63rtKdM+pM1llQsEYHnjgL6mt3U2T663Idd27SbR4DdgsBmLDNepEpk4QBOHzS0tL47nnniM3N5f8/HwmTpyILMusXLmSq1ev4nQ6GTlyJOvWrbtrP4FAgOLiYi5cuEBDQwMOhyMyzNpty5YtyLLM0qVLAS2793GSJNHS0kJZWRm1tbU0NDTgdrt55ZVXkCSJkpIS1q5dy5QpU4iOjo5kAO/U10C7r5m6u5EkaayqqjXh/50DvBv++SiwWpKkErRFEW2qqt6UJOk48H97LY7IA753X29a+IPTe/UraJm6611+QAvq/J4gE8b/A52dv+XSpe8w5Y+PYLEk4Y9sESYx2iJjae5Cb9RhHWT83bwRQRCEAfRJGbV7afny5SxfvhyA559/nsTEREaMGBE5//TTT/Poo4/etQ+n0wnAmDFjAFi4cCHbtm2LnD948CDl5eWcOnUqEmwlJiZGMm0AdXV1xMfH88Ybb5CSksKwYcMAmDdvHm+//TaPP/4406ZN48yZMwCcOHGCK1eu3LWvgfZlmlO3TZKkKkmSKtECtDXh4xXA+8B7wD5gFYCqqs3AZuBX4dffh48Jwudm+dicumh9r+FXi4zPG0SnM5NpLwJUKt/5GxTFiz/gIqDIdPpUDGaZIZ0hooaJciaCIAhf1K1btwC4fv06r7/+OkuWLOkzH620tBS73X7XPhISEqiurqZ7Xv3JkydJS0sD4NixY2zfvp2jR49itfZMmZkzZw4lJSX4fD5qa2upqalhypQpJCUlcfbsWTweD6qqcurUqUhf3ffq8/nYvn07K1asiPR16NAhVFXl7NmzxMTEDPjQK3yJMnWqqs6/w3EV+Js7nNsP7L+X9yV8tfQuPgxgk3V0KD0LJdSQSsCnYLWOJiP9H7lY+U3e/e33iY7OoN2vbRGmN+kZ0qkQmyrm0wmCIHxR8+fPx+VyYTAYKCoqIjY2lieeeAKn04kkSSQnJ/PSSy9F2icnJ9Pe3o7f7+fIkSOcOHGC9PR0NmzYwIwZMzAYDIwePZoDBw4AsHr1anw+H7m5uYC2WGLv3r1kZGSwcOFC0tPTkWWZoqIi9Ho9U6dOZcGCBUyePBlZlpk0aRLPPPMMAC+88ALl5eWEQiFWrlzJww8/DMDs2bOpqKggNTUVq9XKj370o3vyrKTbjfP+IcvOzlbPnz//u74N4UsqFFJ58PkKvv3IWL6TO44dtR+y49qH1D80kd/+8ianX3mXJ//vnxA9RFtZ9f77u6m9tgeLJZnqD1X+4X/WkfdnKdhf+5DsvCT+ZG7q7/gdCYIgfD6XL1+OZKCE++N2z1ySpF+rqpr9aa7/Mg2/CsLvnE4nYTHo8Ubm1GkfEXev/V99nmCkfUrKt4iLewiv9xqekDY/Qh9Q0aswWOz5KgiCINxHIqgThI+xGvWR4dfo8P6vHUEFYySoC0TaSpKOjPR/xGJOwqNoZRINXu1aUXhYEARBuJ9EUCcIH2Mx6iN16mzhTF2HomC2GoC+mToAgyGG7Oz/wDxYq22kd2vnRY06QRAE4X4SQZ0gfMztMnWdwRBGS//h125G41Bau0xEm2TktiCKLGGNEeVMBEEQhPtHBHWC8DEWo4wn0LOjBGjDr91z6vze/kEdQFOnj6HRJoytAXwxBlHORBAEQbivRFAnCB9j7bVQIkqvfUQ6lZ5MXVevOXW9NXX6GBplxNoeJBRruD83KwiCIAhhIqgThI/pM/zanalTFHQ6CesgI60feW57XVOnn6E2I9GdCtIQ0327X0EQhD9ku3fvxm63k5GRwYsvvgjAxo0bSUhIICsri6ysLCoqKgBwuVzMmjWLqKgoVq9e3aefw4cPk5mZicPhID8/n6amJgCeffZZJkyYgMPhYO7cubS2tkau2bp1K6mpqYwfP57jx4/f9Z66/dM//RPjx48nIyOD7373uwD4/X6eeuopMjMzmThxIm+99daAPycQQZ0g9NN7oUQkUxfeVSI5M44P3nERDA/P9tbU6WOYTkYfAqMI6gRBEL6wqqoq9u3bx7lz57h48SLl5eXU1Gg7iq5duxan04nT6WT27NkAmM1mNm/ezI4dO/r0EwwGWbNmDadPn6ayshKHw0FhYSEAubm5VFVVUVlZybhx4yJ7wlZXV1NSUsKlS5c4duwYq1atQlGUu97T6dOnKSsro7KykkuXLrF+/XoA9u3bB8A777zDyZMnWbduHaFQaMCflwjqBOFjemfqoiIlTbQP34OThxPwKdy43NLnmoASotUTIDr8GbUOM9+/GxYEQfgDdfnyZXJycrBarciyzMyZMyktLb1je5vNxvTp0zGb+/4NVlUVVVVxu92oqkp7e3tk79W8vDxkWZtek5OTQ11dHQBlZWUsXrwYk8lESkoKqampnDt37q73VFxczP/5P/8Hk0n7Yj98+HBACxAfeeSRyLHBgwdzLzZC+NJsEyYIXxZWo4wnPKdO1klYdDo6FS3ISxwfi8kq8/5vbpHiGBq5xtXpB8Cs/YeooaJGnSAIfzg2/fQS1Q3tA9pnevwgNvxFxl3b2O12CgoKcLlcWCwWKioqyM7OJi4ujsLCQg4dOkR2djY7d+4kNjb2jv0YDAaKi4vJzMzEZrMxduxYioqK+rXbv38/ixZp5anq6+vJycmJnEtMTKS+vv6O9wRw5coVzpw5Q0FBAWazmR07dvDHf/zHTJw4MRIk3rhx4/+1d/fxVdf33cdfn+QcyC0aQBBzgDhuSiAJQTIbbwp1XSgo1SIbjjKcFd2g49I6R2lBL6yUClWn7CIL6sYg7aa21SBSRmHIWntdYwzkgAhqRBkkYIFwE0hC7vhef/xOjiEkATThwDnv5+PBA8/v5nu+/L6e5HM+3zu2bt3K/v37ufHGGz/Po2uTMnUiLSR2iaemWfdqqi+OU6H9X+N9cWTk9OSTHUdobPgsdX7kVC0AvppG6uMhLU2ZOhGRLyozM5PZs2dTUFDA2LFjGT58OD6fjxkzZrBnzx6CwSB9+vTh0Ucfbbec+vp6ioqK2LZtGwcOHCAnJyfczdpkwYIF+Hw+pkyZAnjZvZbMrM06gdfNe+zYMTZt2sTTTz/NpEmTcM5x//33EwgEyMvL47vf/S4333xz+J6OpEydSAtJ/njqGx31jWfwx8eREh/PyYbPgrwBI67hg02fUv7BMfoN6wHA4VBQZ6caOJoSTzd/fETqLiLSGc6XUetM06ZNY9q0aQDMmTOHQCBA7969w+cffPBBxo8f324ZwWAQgAEDBgAwadIkFi5cGD6/YsUKVq9ezYYNG8LLUQUCAfbv3x++pqysLNxl21qdmu65++67MTNuvPFG4uLiOHLkCNdccw3PPfdcuKybb76ZQYMGfb4H0g5l6kRaSOziBWThcXW+uPCYOoC+Q7vj7xrPnm2Hw8eOnPSCujOV9RxLieMqn4I6EZGOcOjQIQD27dvH66+/zuTJkzl48GD4fElJCVlZWe2WkZ6ezq5duzh82Pu5vX79ejIzMwFYu3YtixYtYtWqVSQlfbYT0J133skrr7xCbW0tn3zyCaWlpeHu0tbqBPDNb36Tt956C/C6Yuvq6ujZsyfV1dVUVVWF39vn8zF06NAv/GxaUqZOpIWkLt7HoqaukasS/aTGx4fH1AH4/PFkZPfg4+BhRk8eTFx8HIdP1WIO3Il6jvbqSjcFdSIiHWLixIlUVFTg9/spLCwkLS2NqVOnEgwGMTMyMjJ44YUXwtdnZGRQWVlJXV0dK1euZN26dQwdOpR58+YxatQo/H4//fv3Z/ny5QDMnDmT2tpaCgoKAG+yxNKlSxk2bBiTJk1i6NCh+Hw+CgsLiQ9NnmutTgD3338/999/P1lZWXTp0oUVK1ZgZhw6dIivf/3rxMXFkZ6ezk9/+tNOeVYK6kRaSApn6rzJEqm+OPafrjvrmj8Y0YvSLYc48NEJAl9K48jJOnr54qHRcTQlTkGdiEgHefvtt8851l5QtHfv3laPT58+nenTp59z/KOPPmqzrLlz5zJ37twLqhNAly5d+NnPfnbO8YyMDD744IM236ejqPtVpIVzul/j48/qfgXon9UDnz+Oj9/xUvBHTtXSz+/t9Xo0NT68aLGIiMiloqBOpIWmTF3TDNgU39ndrwD+rvH0y+rBnuBh3BnHpydOc53P2xqs9iof8dr3VURELjEFdSItNAV1VbWh7td4b6JEy+ntA0ZcQ/WJOj79+ARlx6rpZfGciTfiU7Xvq4iIXHoK6kRa6JXqrTH3+8rTgLf/a71z1J45O6jLyO5JnM/4cOshDlaeJrUBTl/lI9WvoaoiInLpKagTaaHPVQnExxn7jlYDzfZ/bTx7XF2XRB/9MruzZ9sh3BnoUnOGU918Ws5EREQiQkGdSAu++DjSr05k/9EagPCkh5bj6sCbBVtzvI4+jcaZk/WcSI3XzFcREYkIBXUirejbPfGcTF3zXSWaXD+8JxjcUOvDNToOazkTEZEOtXjxYrKyshg2bBjPP/88AE888QTp6enk5uaSm5vLmjVrAKioqOC2224jJSWFmTNnnlXOyy+/THZ2Njk5OYwdO5YjR44AMGvWLIYMGUJOTg4TJkzg+PHj5y1r69atZGdnM3DgQB566KHwmOu2ylq/fj0jR44kOzubkSNHhhco7mgK6kRa0a97EvtDQV1Tpq7lsiYACcl+Gq/pypB675rfJ5mCOhGRDrJz505eeuklNm/ezPbt21m9ejWlpaUAPPLIIwSDQYLBILfffjsACQkJzJ8/n2eeeeaschoaGnj44YfZuHEjO3bsICcnhyVLlgBQUFDAzp072bFjB4MHDw7vCdtWWQAzZszgxRdfpLS0lNLSUtauXdtuWT179uTNN9/k3XffZcWKFUydOrVTnpeCOpFWBNKSqKiqo6q2gZT4trtfAY5cHU8c3hIm+5NQUCci0kF2795Nfn4+SUlJ+Hw+Ro8eTUlJSZvXJycnc+utt5KQkHDWcecczjmqqqpwzlFZWRnex3XMmDH4fN4Et/z8fMrKytot6+DBg1RWVnLTTTdhZtx7772sXLmy3bJGjBgRfr9hw4Zx+vRpamtrv+jjOYem6Ym0ol93b/+//ceqSe3mLSrccqJEkw99jfQC4n3GiUR1v4pIFPq378On73Zsmddmw7iF7V6SlZXF3LlzqaioIDExkTVr1pCXl0ePHj1YsmQJxcXF5OXl8eyzz4a36mqN3++nqKiI7OxskpOTGTRoEIWFhedct2zZMu65555261ReXk4gEAi/DgQClJeXX3BZr732GiNGjKBr167tvs/noUydSCvCQd3RmnCmrrUxdQAfn6zhdHc/qdcmgRndfPpYiYh0hMzMTGbPnk1BQQFjx45l+PDh+Hw+ZsyYwZ49ewgGg/Tp04dHH3203XLq6+spKipi27ZtHDhwgJycnHDXaJMFCxbg8/mYMmVKu2W1XLMUwFosON9WWe+99x6zZ88+a6/ajqRMnUgr+oaCun1Hq7n5Sz2B1oO60/WNHDpZi/8rAYYNvxZK9ypTJyLR5zwZtc40bdo0pk2bBsCcOXMIBAL07t07fP7BBx9k/Pjx7ZYRDAYBGDBgAACTJk1i4cLP/k0rVqxg9erVbNiw4ZwAraVAIBDuVgUoKysLd622V1ZZWRkTJkyguLg4XI+OppSCSCvSkvykdPWx/2g1SXFxxNF69+uB496yJ337pFCf4n1H0jp1IiId59Ahb4/tffv28frrrzN58mQOHjwYPl9SUkJWVla7ZaSnp7Nr1y4OHz4MeLNRMzMzAVi7di2LFi1i1apVJCUlnbc+ffr0ITU1lU2bNuGco7i4mLvuuqvdso4fP84dd9zBU089xS233HJxD+AiKFMn0gozo29oBqyZkdrK/q8A+495QV0gLYkToUxet3gFdSIiHWXixIlUVFTg9/spLCwkLS2NqVOnEgwGMTMyMjLO6s7MyMigsrKSuro6Vq5cybp16xg6dCjz5s1j1KhR+P1++vfvz/LlywGYOXMmtbW1FBQUAN4Eh6VLl7ZbVlFREffddx81NTWMGzeOcePGtVvWkiVL+Oijj5g/fz7z588HYN26dfTq1atDn5WCOpE29E1L5JMjVYC3Vl1rS5qUHfOWPenbPZGy0962Yt38CupERDrK22+/fc6xn/70p21ev3fv3laPT58+nenTp59z/KOPPrrosvLy8ti5c+cFl/XYY4/x2GOPtfk+HUXdryJt6Nc9if3HqnHOkdJWpu5oDf54o1dqgjJ1IiISUQrqRNrQr0cSp+vPcPhULanxca1OlCg7Vk361YnExxmV9aGgTmPqREQkAhTUibShb1rTsibVpPriW+1+3X+shkDousrGRrqYkRCvj5WIiFx6+u0j0obmy5qkxLfe/Vp+rJpAWiIAlQ2NytKJiEjEKKgTaUNTsLb/aA0pvrhzljSpqWvkyKm6cPBX2dCo5UxERCRiFNSJtCHBH0/vbl3Zd7Sa1Pj4c8bUNc18bZ6pS1VQJyIiEaKgTqQd/boned2voUzdmWbbw5Q1W6MO4IQydSIiHW7x4sVkZWUxbNgwnn/+eQCeeOIJ0tPTyc3NJTc3lzVr1gBQUVHBbbfdRkpKCjNnzjyrnJdffpns7GxycnIYO3YsR44cAWDWrFkMGTKEnJwcJkyYwPHjx8P3PPXUUwwcOJAvfelL/PrXv263TgDbt2/npptuIjs7m2984xtUVlYC3mLHI0eOJDs7m5EjR/LWW291yrNSUCfSjr7dkygLZeoAqpp1we5vWqMulKk72dBIqvZ9FRHpMDt37uSll15i8+bNbN++ndWrV1NaWgrAI488QjAYJBgMcvvttwOQkJDA/PnzeeaZZ84qp6GhgYcffpiNGzeyY8cOcnJyWLJkCQAFBQXs3LmTHTt2MHjw4PCesLt27eKVV17hvffeY+3atXznO9+hsbGx3To98MADLFy4kHfffZcJEybw9NNPA9CzZ0/efPNN3n33XVasWMHUqVM75XnpN5BIO/qmJXGw8jSJePv3NZ8sUXashq6+OK5J7QooUyci0tF2795Nfn4+SUlJ+Hw+Ro8eTUlJSZvXJycnc+utt5KQkHDWcecczjmqqqpwzlFZWRner3XMmDH4fN5eDPn5+eF9Xd944w3+7M/+jK5du3L99dczcOBANm/e3G6dPvjgA0aNGgV4weJrr70GwIgRI8LvN2zYME6fPk1tbW0HPimPdpQQaUe/7kk4B3XV9QCcbDhDHy+G89aoS0sMb9h8UmPqRCRKLdq8iPePvt+hZQ7pPoTZN85u95qsrCzmzp1LRUUFiYmJrFmzhry8PHr06MGSJUsoLi4mLy+PZ599lrS0tDbL8fv9FBUVkZ2dTXJyMoMGDaKwsPCc65YtW8Y999wDQHl5Ofn5+eFzgUCA8vLyNuvUVN9Vq1Zx11138Ytf/IL9+/ef8x6vvfYaI0aMoGvXrhf0nC6GMnUi7ejXwxsvV33KC+pONZsssf/oZ2vU1Z05Q80Zp0ydiEgHyszMZPbs2RQUFDB27FiGDx+Oz+djxowZ7Nmzh2AwSJ8+fXj00UfbLae+vp6ioiK2bdvGgQMHyMnJCXezNlmwYAE+n48pU6YAXnavJTNrs07gBYWFhYWMHDmSkydP0qVLl7Puf++995g9e/ZZe9V2JGXqRNrRtADxycpaMDjZbExd2bFqcgJXAVAZWphY69SJSDQ6X0atM02bNo1p06YBMGfOHAKBAL179w6ff/DBBxk/fny7ZQSDQQAGDBgAwKRJk1i4cGH4/IoVK1i9ejUbNmwI974EAoGzMm1lZWXhLtTW6gQwZMgQ1q1bB8CHH37Ir371q7PunzBhAsXFxeF6dDRl6kTa0Su1K118cRyv9MY+NI2pO1XbwLHq+s92k2jQFmEiIp3h0KFDAOzbt4/XX3+dyZMnc/DgwfD5kpISsrKy2i0jPT2dXbt2cfjwYcCbjZqZmQnA2rVrWbRoEatWrSIpKSl8z5133skrr7xCbW0tn3zyCaWlpdx4441t1qn58TNnzvCjH/2I6dOnA3D8+HHuuOMOnnrqKW655ZYv/EzaokydSDvi4oxAWiJHTpyGq/zhteqa1qjr292b+XoidFzdryIiHWvixIlUVFTg9/spLCwkLS2NqVOnEgwGMTMyMjLO6s7MyMigsrKSuro6Vq5cybp16xg6dCjz5s1j1KhR+P1++vfvz/LlywGYOXMmtbW1FBQUAN5kiaVLlzJs2DAmTZrE0KFD8fl8FBYWEh9aCaG1OoG3bErTWL27776bb3/72wAsWbKEjz76iPnz5zN//nwA1q1bR69evTr0WVlrfcbRLC8vz23ZsiXS1ZAryH3/vJlPK08TzOnGjwal80DgGtbv+j0PFm9h5V/fQm7fq/nt0ZNM2r6HkhEDuenqlEhXWUTkC9u9e3c4myWXRmvP3My2OufyLuR+db+KnEe/7kmUhxYabpmpa9pNQpk6ERGJNAV1IufRNy2Jk6cbSGh0nAxNiCg7VkOiP54eyd7MpqZgT0uaiIhIpCioEzmPvt29gbOJp8+EJ0rsP1pNoNkadcrUiYhIpCmoEzmPfqGgrmvtGU41fpapawr2wJv9akBKvD5SIiISGfoNJHIeTTNc42saw92s+49Vh8fTgRfUpfriiAtl7kRERC41BXUi55Ga4CctyQ81DZxsaORETT0nTzeEFyYGr/tVa9SJiEgkKagTuQD9uidxpqqBU41nzpn56pzjw+rT9PT7I1lFEZGotHjxYrKyshg2bBjPP/88AE888QTp6enk5uaSm5vLmjVrAKioqOC2224jJSWFmTNnnlXOyy+/THZ2Njk5OYwdO5YjR44AMGvWLIYMGUJOTg4TJkzg+PHj5y1r69atZGdnM3DgQB566KFzthR75plnMLPwe7zxxhvk5OSQm5tLXl4ev/vd7zr+QaGgTuSCBLonUVtVz6nGRvYf9ZY3adpN4r9PVLHjZA2Trm17M2kREbl4O3fu5KWXXmLz5s1s376d1atXU1paCsAjjzxCMBgkGAxy++23A5CQkMD8+fN55plnziqnoaGBhx9+mI0bN7Jjxw5ycnJYsmQJAAUFBezcuZMdO3YwePDg8J6wbZUFMGPGDF588UVKS0spLS1l7dq14XP79+9n/fr19OvXL3zsa1/7Gtu3bycYDLJs2TIeeOCBjn1QIQrqRC5Av+5JnK6qp7K+8ZzdJIr2H+ZqXzz39OkeySqKiESd3bt3k5+fT1JSEj6fj9GjR1NSUtLm9cnJydx6660kJCScddw5h3OOqqoqnHNUVlaG93EdM2YMPp+3wVZ+fj5lZWXtlnXw4EEqKyu56aabMDPuvfdeVq5cGT7/yCOP8JOf/CS8OgJASkpK+HVVVdVZ5zqStgkTuQD9uidx5oyjqqqOsro4Urr6uCrRz8fVtaw9coKH+vcmOV5j6kQkOn364x9Tu/v9Di2za+YQrp0zp91rsrKymDt3LhUVFSQmJrJmzRry8vLo0aMHS5Ysobi4mLy8PJ599tnwVl2t8fv9FBUVkZ2dTXJyMoMGDQpv59XcsmXLuOeee9qtU3l5OYFAIPw6EAhQXl4OwKpVq0hPT2f48OHn3FdSUsIPfvADDh06xK9+9at23+PzUqZO5AI0TYqor2pgX7M16l4sO4zfjPvTe0a4hiIi0SczM5PZs2dTUFDA2LFjGT58OD6fjxkzZrBnzx6CwSB9+vTh0Ucfbbec+vp6ioqK2LZtGwcOHCAnJyfczdpkwYIF+Hw+pkyZ0m5ZrW2vamZUV1ezYMECnnzyyVbvmzBhAu+//z4rV67k8ccfP8+//PNRpk7kAjStVWfVDew72kBGj2SO1jfw6sEK7u6dRu+umiQhItHrfBm1zjRt2jSmTZsGwJw5cwgEAvTu3Tt8/sEHH2T8+PHtlhEMBgEYMGAAAJMmTWLhwoXh8ytWrGD16tVs2LDhvF2jgUAg3EULUFZWxnXXXceePXv45JNPwlm6srIybrjhBjZv3sy1114bvn7UqFHs2bOHI0eO0LNnxyYElKkTuQB9rk4gzsBqGik/XkPf7omsKD9CzRnHX/W9JtLVExGJWocOHQJg3759vP7660yePJmDBw+Gz5eUlJCVldVuGenp6ezatYvDhw8DsH79ejIzMwFYu3YtixYtYtWqVSQlJbVXDAB9+vQhNTWVTZs24ZyjuLiYu+66i+zsbA4dOsTevXvZu3cvgUCAd955h2uvvZaPPvoonDW9zGAAABXLSURBVOF75513qKuro0ePHp/rebRHmTqRC+CPjyMttSuHTtRRU9fItVclsKT8CLd1TyUzJfH8BYiIyOcyceJEKioq8Pv9FBYWkpaWxtSpUwkGg5gZGRkZvPDCC+HrMzIyqKyspK6ujpUrV7Ju3TqGDh3KvHnzGDVqFH6/n/79+7N8+XIAZs6cSW1tLQUFBYA3WWLp0qXtllVUVMR9991HTU0N48aNY9y4ce3+G1577TWKi4vx+/0kJiby6quvdspkCWutbzia5eXluS1btkS6GnIFuv0f/i/vlZ/AGh1/Pn4w/1hfxc+HD2BU99RIV01EpMPt3r07nM2SS6O1Z25mW51zeRdyv7pfRS7Qdd0TsUbvS9C/V1czNDmBr6SlRLhWIiIiHgV1Iheo+bZge2lkRr9enbbWkIiIyMVSUCdyga7v4QV1zmdcm9yVu3pdHeEaiYiIfEZBncgFGtgjGQCX6GNaoCdd4vTxERGRy4d+K4lcoEE9vaAuLsnH1Os6fiq6iIjIF6ElTUQuUM+UrsQlxDMi/Squ9uujIyIilxdl6kQukJnxX7Nu418n5Ea6KiIiMWPx4sVkZWUxbNgwnn/+eQCeeOIJ0tPTyc3NJTc3lzVr1gBQUVHBbbfdRkpKCjNnzjyrnJdffpns7GxycnIYO3YsR44cAWDWrFkMGTKEnJwcJkyYwPHjx89b1tatW8nOzmbgwIE89NBD4YWFH3/8cXJycsjNzWXMmDEcOHAAgKeffjpc16ysLOLj4zl69GiHPysFdSIX4ZrkrnT1x0e6GiIiMWHnzp289NJLbN68me3bt7N69WpKS0sBeOSRRwgGgwSDQW6//XYAEhISmD9/Ps8888xZ5TQ0NPDwww+zceNGduzYQU5ODkuWLAGgoKCAnTt3smPHDgYPHhzeE7atsgBmzJjBiy++SGlpKaWlpaxduxbwAsQdO3YQDAYZP358eB/YWbNmhev61FNPMXr0aLp3797hz0tBnYiIiFyWdu/eTX5+PklJSfh8PkaPHk1JSUmb1ycnJ3PrrbeSkJBw1nHnHM45qqqqcM5RWVnJddddB8CYMWPw+bwhNfn5+eF9Xdsq6+DBg1RWVnLTTTdhZtx7772sXLkSgG7duoWvq6qqanXZq5dffpnJkyd/jqdxfpfdwCAz+1vgaeAa59wR857IYuB2oBq4zzn3TujavwAeC936I+fcikjUWUREJJq9/fMPObL/VIeW2bNvCl+ZNLjda7Kyspg7dy4VFRUkJiayZs0a8vLy6NGjB0uWLKG4uJi8vDyeffZZ0tLS2izH7/dTVFREdnY2ycnJDBo0iMLCwnOuW7ZsGffcc0+7dSovLycQCIRfBwIBysvLw6/nzp1LcXExV111FRs3bjzr3urqatauXRvOEna0yypTZ2Z9gQJgX7PD44BBoT9/CRSFru0OzAO+DNwIzDOztltUREREriiZmZnMnj2bgoICxo4dy/Dhw/H5fMyYMYM9e/YQDAbp06cPjz76aLvl1NfXU1RUxLZt2zhw4AA5OTnhbtYmCxYswOfzMWXKlHbLam171eYZuQULFrB//36mTJlyTvD25ptvcsstt3RK1ytcfpm654DvAW80O3YXUOy8p7jJzK42sz7AV4H1zrmjAGa2HhgLvHxpqywiIhLdzpdR60zTpk1j2rRpAMyZM4dAIEDv3r3D5x988EHGjx/fbhnBYBCAAQMGADBp0iQWLlwYPr9ixQpWr17Nhg0bzrtTUCAQCHfRApSVlYW7cpv71re+xR133MEPf/jD8LFXXnml07pe4TLK1JnZnUC5c257i1PpwP5mr8tCx9o6LiIiIlHi0KFDAOzbt4/XX3+dyZMnc/DgwfD5kpISsrKy2i0jPT2dXbt2cfjwYQDWr19PZmYmAGvXrmXRokWsWrWKpKSk9ooBoE+fPqSmprJp0yaccxQXF3PXXXcBhCdxAKxatYohQ4aEX584cYLf/OY34Ws7wyXN1JnZvwPXtnJqLjAHGNPaba0cc+0cb+19/xKv65Z+/fpdUF1FREQk8iZOnEhFRQV+v5/CwkLS0tKYOnUqwWAQMyMjI4MXXnghfH1GRgaVlZXU1dWxcuVK1q1bx9ChQ5k3bx6jRo3C7/fTv39/li9fDsDMmTOpra2loKAA8CZLLF26tN2yioqKuO+++6ipqWHcuHGMGzcOgO9///t88MEHxMXF0b9//3A54AWfY8aMITk5udOelbXWN3ypmVk2sAFvIgRAADiAN1buh8B/OOdeDl37AV7X61eBrzrn/ip0/IXm17UlLy/PbdmypRP+FSIiItFj9+7d4WyWXBqtPXMz2+qcy7uQ+y+L7lfn3LvOuV7OuQznXAZeV+oNzrlPgVXAvebJB0445w4CvwbGmFlaaILEmNAxERERkZhzuU2UaM0avOVMPsLL5H0bwDl31MzmA/8duu7JpkkTIiIiIrHmsgzqQtm6pv92wF+3cd0yYNklqpaIiIjIZeuy6H4VERGRy8/lMO4+VnTEs1ZQJyIiIudISEigoqJCgd0l4JyjoqLinC3JLtZl2f0qIiIikdW0yG7T2m7SuRISEs7afuzzUFAnIiIi5/D7/Vx//fWRroZcBHW/ioiIiEQBBXUiIiIiUUBBnYiIiEgUUFAnIiIiEgUU1ImIiIhEAQV1IiIiIlFAQZ2IiIhIFFBQJyIiIhIFLNa2/zCzw8D/XIK36gkcuQTvI5cPtXnsUZvHJrV77Ilkm/d3zl1zIRfGXFB3qZjZFudcXqTrIZeO2jz2qM1jk9o99lwpba7uVxEREZEooKBOREREJAooqOs8L0a6AnLJqc1jj9o8NqndY88V0eYaUyciIiISBZSpExEREYkCCupELiEzs0jXQUREopOCugjSL/jYYWYjzWyg03iHmKTPeuxRm8eWy6W9fZGuQCwxs1HAjcB2oNQ5t9fMTL/oo5uZjQH+GXgBeNLM4pxzZyJcLelEZvY14OvAIWCNc25XhKsknczMCoDbgFJgi3PuXX3Wo5+Z3QqccM69G+m6gDJ1l0zoF/sy4BrgDuCfzCzfOeculwhfOl6o3X8MvA7cEAriz6jNo5eZ3Q48A5QDAWBSs3Nq9yhkZqOBQuAY0A9YaWZ/FPqs6/dslAoF8iXA35pZUqTrAwrqLqXhwD8452YD84B/BV4ysy8rUxedzOzLeD/ov+Oc+19AIvA0gNo8OpnZ9cBfAw855xYD24BrzezLZjZYX+Ki1iBgpXPuaefcD4EfAL80s9v0JS46mdnXgYXA83ixVHLoeETjKgV1l04VMBTAOXfCOfdPeP8zPGFmfSNaM+ksO4E/cc5tDr3+CZBqZteAsjZRqgz4G+fc22bWA/hboAdedv7nZjZSAX1U+j3QvemFc+7nwHSgyMwy1ebRxcxygAXATOfcArwv7H8PEOnudgV1ncjM0s2sX+jlcuAPzezHzS5ZCXwCKKiLIqF2v945V+Wc297s1LtAFvBnoGxdNHLO1TvnPgi9/APgMefcnzrn/jfwJnBr5GonHcnMrjWz9NDLfweGmtlzTedDgd1rhL7MS1QpBaY45/4z9Pr7wBkzy4XIfmFXUNdJzOxP8MZR/dLMngJuAMYCN4de45yrALoAuRGrqHSoZu3+qpk9aWYTms455w4Bc4E/NbMvRaqO0rHM7HYzKzYzf+h1PIBz7r+dc280u9QPXBbjbuSLMbNvAL/AGzv3Q6AOLxv7jeaBHV4GJzMCVZROEArk+znnapp9eQNvQpQP7/+BiH5h144SncDMrgLW4o2t+T1wF96Yut8AG0PntuANqv0GMN45VxqZ2kpHaaPds/Fmwv1T6Jo04CVguXNudaTqKh0jNG7yl3gZ9xPA3c65ejPzOecaml13D/A94FstfhnIFcbM/ghYAkwGavAmxfybc64o9PleBXyAlzTJByY653ZHqr7SMUKB/PeABLw2fsk592nTDGczGwH8C/CAc+7/RaqeytR1jnigATjunCsHXsVLz4/C62q9CXgL7xfBBAV0UaO1dn8Lb9breADn3DHg34D3IlZL6Ug+YD4wGi+QLzEzv3OuoSljF8rezgLuVUAXFfoDzzrntjvnPgT+Acg3sy6hz/fXgZ/iffa/qYDuyhcK5BcBM4EpwB8CTT/Tz4QCu23ABiA7kpMllKnrJGb2BDAY+K5z7pCZ9QSmAj2cc49FtHLSadpp926hWXESZcws1Tl30syS8SY/XYf3Za0ulL2tBno65w5GtKLSYcwszTl3zMx8eOMkHwfGOOcazayrc642wlWUDmRm3wbimvW4jMXL1N4Hn3W3mtk3ga3Ouf0RqqqCuo4SysTcDFyFt2RJd7xGTwWeds793sz646Vn/8Q592nEKisd5iLbfaJz7vcRq6x0iGZt3g14Aqh0ztWFzqUCzwEpeMMthgKPNp2XK1OzNk8BnsTLxjeEzl0P/J1zboKZTcUL6p9Tm0eX8wTyVznnTkS4ioC6XzuEmY0ElgKb8AbGLsb7Yb4JOAkUhgbG54duOR2JekrH+hztrm/vV7gWbZ4E/B/g9lBGDufcSefcA3jZ2gXAP+qX+5WtRZun4I2nG29m3UKXnAROmdl38cZcrVabX/nMbLyZ/djM/j7U43ISIBTM/w/el7nGUCA/3cy6RLK+TRTUdYzBwDrn3Crn3P3A74AxeDNblwM78LplpuMtSno8UhWVDqV2jz0t2/w/8Ga8jQp9g8fM7sTL4n2lxZI2cmVq2eYb8dp8tJl1xQvu7wS+jdcLo/GyV7grOZBXUNcx/gu4zsxuBnDOFeEtPDsFOOacexL4U2Ccc+6dyFVTOpjaPfa0bPMXgHfwxk0mh645htfm+uUeHdpr8wTn3D68LSD/XBNhosYVG8grqPuczCzXzDLNbKhz7mNgK/AVMxsC4Jz7B7yZkD8IvT7lnFO36xVO7R57LqDNi/DWKfte6PXbmtF+ZbvYNge+5y6TDd2lQ1yxgbyCus/BzMbhrQ7/13hb/0wE/glvBfm7zGxU6NLNhPrh5cqndo89F9nmVZGppXSki2zzavB2EolEXaXjREsgr9mvFyG09Ucy8HNgqXNulZndBPwMmIPX//5tPluz6mbgjsux4eXCqd1jj9o89qjNY1cokH8ReAP4Kt5KBtuA2cDHwH86535rZg8Bqc7b7/WypKDuczCzJ4EPgVdDq8ffiPeD4G+cc6+bWQAYAWwPpWklCqjdY4/aPPaozWNHNAbyvkhX4Ar1KfA1vK1C6p1zm0PTmp8zs+3OuT1AWURrKJ1B7R571OaxR20eI0KLBp8ysy1AN/N2g/lPM5vMZ4H8E80C+e9d7oG8xtRdhFBU3zQYPglYamZXhf5HeBtvCYvGSNZROp7aPfaozWOP2jymNQXyiQDOuc14kyLmmNkA51yZc+7Nyz2gA3W/nldo8djuwBbgjHOusdm5V/A2dN6El/X8G2C0c07f4q5wavfYozaPPWrz2GZmFsrWYWav4gXtM4DqUNf7MuBJ59zeCFbzoiioa4eZ3Q38GCgP/dkCLHfOVTa75n68bWGGA09cTuvVyOejdo89avPYozaPTdEeyCuoa4OZ+fEGS/69c+7/hqa15+Nt9fS0a7HPm2kT56igdo89avPYozaPTbEQyGtMXfu6AYNC/10CrMbbAmoygJndaGY3hM5fFluESIdQu8cetXnsUZvHkFAgfw8wzTn3NbzlS/oC37PQ3s0Azrllzrkf4S0sfEUFdKCgrk2hxST/DrjbzL7inDuDt7dnEG+fx0TgFuBA6HqlPKOA2j32qM1jj9o8ZkV9IK+grn1vA+uAqWY2yjnX6Jz7V7zU7HXOueecc59GtorSCdTusUdtHnvU5jEkVgJ5rVPXDufcaTP7F8ABPwhtF1ILXAOcimjlpNOo3WOP2jz2qM1j0tvAl/ACeXPO/Rb4VzP7S0KBfGSr98VposQFMLMueBH8XwGngcXOuW2RrZV0NrV77FGbxx61eWwxszTgW8B4vC7YWrz9XP/IOff7SNatIyiouwhmFo+XlT0T6brIpaN2jz1q89ijNo8d0RzIK6gTERGRmBONgbyCOhEREZEooNmvIiIiIlFAQZ2IiIhIFFBQJyIiIhIFFNSJiIiIRAEFdSISVczsm2b2N60c/6qZOTP7agSq1SozG2lm1WaWfhH3LDazX3VmvUTkyqTZryISVcxsOfDHzrlAi+PdgKHALudcZSTq1pKZvYVXn5kXcU8f4GPgDufcW51WORG54ihTJyIxwTlX6ZzbdBkFdDcAtwFFF3Ofc+4g8Cbwt51RLxG5cimoE5GoEcrS/QWQHupqdWa2N3TunO5XM/sPM/udmY01s6CZ1ZjZNjP7spn5zOzHZnbQzI6a2XIzS27xfklmtsjMPjGzutDfc83sQn62PgjscM6916LMb4XqcMrMTpjZu2b2Vy3ufQX4upn1veiHJCJRyxfpCoiIdKD5eBuy/yFwZ+hY7XnuGQg8DSzA28j9J8Cq0B8fcB+QGbrmEN4+kZiZD/g1XpfufOBdIB94HOgOPHqe9x0LnDU2zsxuBX4G/D0wC++L9xDg6hb3/jZ0rgBYdp73EZEYoaBORKKGc26PmR0G6pxzmy7wth7Azc65jwFCWbY3gOudc38cuubXZjYK+FNCQR0wGbgVGO2c+23o2AYzA5hnZoucc4dae0Mz6w1kANtbnMoHjjvnvtvs2LpW/p1HzKwsdL2COhEB1P0qIvJhU0AX8n7o71+3uO59IGChqA0v0/Y/wP8LddX6Qtm7dYAfL+Bqy3Whvw+3OP7fQJqZ/czMxptZywxdc4eblSMioqBORGLesRav69o57gPiQ697Af2B+hZ/NofO92jnPRNCf5/VNeyc+w1eNrAvUAIcNrN/N7OcVsqoARLbeQ8RiTHqfhUR+XwqgE+ASW2c33ueewHSWp5wzv0S+KWZpQBfBRYBa80s4Jw70+zS7sCOi6yziEQxBXUiEm1quTQZrLXAROCUc+79813cwl7gNPAHbV3gnDsFrDazPwAW42X+DgOYWTxeNu8XF19tEYlWCupEJNrsArqb2QxgC3DaOfduJ7zPvwDfxpsc8SzepIcuwAC8mbffdM5Vt3ajc67OzP4LuLH5cTN7EugNbAQOAAHgISDonGs+/i4LSMabBSsiAiioE5Ho8494kxR+jLcUyP/gzTTtUM65ejP7OvB94C+B64EqYA/eUiV17dwO8CrwtJklO+eqQsf+Cy+Iew6ve/UQ3sSLx1vcOx74FPiPL/4vEZFooW3CREQiILRtWRnwHefczy7y3l3Aa865lsGeiMQwzX4VEYmA0HZli4DvNVsm5bzM7C68LtpnO6tuInJlUveriEjk/B3eEil98MbQXYhE4M+dc8c7rVYickVS96uIiIhIFFD3q4iIiEgUUFAnIiIiEgUU1ImIiIhEAQV1IiIiIlFAQZ2IiIhIFFBQJyIiIhIF/j9AP8yZHBcBUwAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "units_of_interest = high_snr_unit_ids[:35]\n", "\n", "waveforms = {uid: session.mean_waveforms[uid] for uid in units_of_interest}\n", "peak_channels = {uid: session.units.loc[uid, 'peak_channel_id'] for uid in units_of_interest}\n", "\n", "# plot the mean waveform on each unit's peak channel/\n", "plot_mean_waveforms(waveforms, units_of_interest, peak_channels)\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Since neuropixels probes are densely populated with channels, spikes are typically detected on several channels. We can see this by plotting mean waveforms on channels surrounding a unit's peak channel:" ] }, { "cell_type": "code", "execution_count": 29, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXkAAAB8CAYAAACMucA6AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAFsVJREFUeJztnXm0JFWRh7/fW7qbbnboQelmV1wOiAOCyI4KOIIgigviioyK23BEUAcRhKEVwQV35whyEB0UUFlEcWQZYBQRjywOMiCbNovN1kCvb4v54+YbK2++rqxbmfWqXhnfOXW6by43I6PyRd2MGzdCZobjOI7Tnwx0WwDHcRync7iRdxzH6WPcyDuO4/QxbuQdx3H6GDfyjuM4fYwbecdxnD7GjbzjOE4f40becRynj3Ej7ziO08cMNdspaa+UzszsumriOI7jOHWiZmkNJE0AreQ9EGBmNliXYI7jOE51mo7kgX2nRQrHcRynIzQdyTuO4zgzm7KRfAFJGwO7AhsBl5nZE5LmACNmNlG3gI7jOE77tBxdo8AZwGLgUuAcYMts9yXACbVL5ziO41QiJYTyE8AHgVOAlxImWye5DDioRrkcx3GcGkhx1xwFnGJmn5EUR9H8CdimPrEcx3GcOkgx8guAG9ewbwSY1+zkwXXm2dD89RMu1xyp/JjUOeVW+qzzeu3I0O158li+VuRJPaduHVT9XqeDbnyvM0EvMVWfnZlAfI8j9z30mJnNb7e/FCP/ILAdcM0U+3YA7mt6ofnrs2DR+9e4P/W7kcr/KszSem2lzzqv144ME6nXiI9PvMf4arF8rdxz6jllOqj8vcbtqfqr+CwUKJE5vqf46p2wXaV6KRzfvL9UA9zSD1usl4rPTimtPBsdJr7Hew//5ANV+kvxyV8IfErS7o3ySNoWOBa4oIogjuM4Tv2kGPmTgTuB64C7s20XArdn7c/WKpnjOI5TmZbdNWa2UtI+wFuAAwiTrY8DpwLfM7OxpCuXvJ4WaOM1KvXFrQ53SyNlro5WKMhUeH2NTygRoux1d6C6q6TsPqu+UmugZDlGiYsqdhtM1V/qsxB/DwXXRtk9Rx0Urt6K263EtdFp90yZO6Yd90zxu0u0A6nPWifcM4kyV3Y5RSQthjKzceC72cdxHMfpcTzVsOM4Th+TsuJ1lqSTJN0paYWk8eiT5q5xHMdxOk6Ku+YM4APAz4AfAas7ItEkNYfRdYQSX5vF/sQWuozva2I8ao9Fv8vjzX32BR997HOPutNg3j9d8NHHLtMWbir2eQ8MNPeRD5T53Gtm6mcp7fkr8zeX+sdLng5rZYapzH+dSGrsfnF+qI3w3dK5i4ohxGWHl35P6X2kytBNn/xhwElmdlqtEjiO4zgdI8Unvzbw604J4jiO49RPipG/DEgqB+g4juN0lxR3zVeA87KSgFcAT8QHmNm9LfeW6nurw09V91L1uPsSn+jAYLmveXQk/5VMLB/OtQefyeeGGxht3t/EcNSek5fBojYDkU9yMPan59tDQ8V7Ghoaz7WHB+N21Efss0/8nuJUD/HZhf3xvMcUPtPxieZ+1ImJ/PioTIaiDz+SoeR6rcwBVE33UHZ+cs6ggbj/tPOn7rSz6SbaSduRSt0+9zJSjPykq+Zk4KQ1HOM1Xh3HcXqIFCN/JOmLSB3HcZwukpLW4NwOyuE4juN0gOQar12jHd9YzX7/ZAmi/ibG837c8fHivPfEivxXMvR03gM2a2leiqHlTS/J+Jx8e2xuvr/RtfP9jc+L2lEcvs3K+9fjmHeA2ZFPfv21Vuba683Kt+cOjeTPH8ifHxP7v0ctr8exifw9jhTaeR2PTRS/h9HonPiY8bgdyzSePz/27cY+/7i/VJ9+2FbYVHpOs/NL8/GUUIw5b95/a53WnKsm7n4a1t+UxeLXLUOSkZe0N3A4sDkQmQ/MzF5Rl2CO4zhOdVo28pLeC3yDkHnyboorXntgCarjOI7TSMpI/ljg+8CRZjZSdrDjOI7TfVJrvH5n2gx8O761ijkjSku0lZ0eHTCxOh+kPvzXWbn2hncV+9jwD8ty7YE/3JPvc8WKXHtowaa59uptn5VrL91mdq49Pjvy7UZPwMA6+cD7BfOX5to7b5yvRLbbOn8iZsfZD+Xamw7lZZitKHg/YtnEqlx76UQ+991j4/nzl4yvnWs/EbUfj9qPja6Taz89FnseYdl4XublY/n2irG8DKsimVaP5xUb+9xXRz77sagd++wLPv0pntU4dj/VRx/H6qfmi08tcTjlMaUH9IHDYBpi8RtJWfH6O2DrTgniOI7j1E+Kkf8wcIwkT23gOI4zQ0hx11wGrAtcI2kF8GS038xsi9okcxzHcSqTYuSvwle8Oo7jzChSVry+s4NypNPCYpDSxRs1FyiwaOJK8cKmZdHk2azi9Z/YLj9JaNvvkD8nmjidyM8HFn6GFeUPG8zPaRZkGpmdn0D863B+kvKWwYW59sqJ/GQywJ/mbJJrrx1ddI7yk7uDkZCroqxqqyzfXhat8FoxnpdhRSTTymhSNG7Hk6YAI9HE6Vi04Cpe7BQvuIonWkdLFlOVMVUStZhigrz8/uJEbJRAr0SksgVZlri6qaWJ2DoKkVSh7HrTUfi7Il7j1XEcp49JTmsgaQfgeRRXvGJm59UhlOM4jlMPKSte1wd+Cuw6uSn7t/Hdwo284zhOD5Eykl8EbESoDnU9cCjwFCEF8cuAN9cuXSKpCZRq96eVuNLG5+QPWL1B8foFl1/kUItyazExO0qCFrmXbTDaH80D2KyoYMfc/MKj4eF8srDVY3kBFq9Yn5ilI2vl2rMHxwrHNCNe6DMRJyCL2iPxwiIbbLp/vJDQrOi1jP3F8THxV11IWFYoKpI/Pl64FBP74FvxyVct+lF+fvP9cbK6skIoUxXPKE1qlhj7UWYTSufxyvzjbRX6Tj6lEik++QMIhv7GrL3YzK41s7cDvwT+pW7hHMdxnGqkGPlnA/ea2TiwCmgMu/gRcGCdgjmO4zjVSTHyjwCT7+YPEFw0kzynNokcx3Gc2kjxyd9AMOyXA98FTpK0JTAGvAO4tG7hmtKGL6zuiNZCXPJwFDe8fj6X28hwFHu9vFgSd2B15JOM9hd89MORj32oeZuordl5n/vgFIW5G1k5mr+HJ5hbOObpgXzg1WBUqLvMv1xWaLusaHaZfzwm9pdDeaHumLiLwvcWt0tjzpteblqKW8TUXYC6nXtInXcrkznur5bCJqU0LxpSNylG/tPAZMrDMwiTsG8C5hIM/IfqFc1xHMepSsqK13uAe7L/jxLyyx/bIbkcx3GcGvAVr47jOH1Mao3XrYE3suYar++uS7C2qFj0I9XPX/CjxnHBcQxuFJM+MVi8XiG2OHaRF+J4o3ZcWDsx7jcuLr56VT7wfmwsv3/l6mLumlQ/aBnFnCzN+68a7x2OKZer6jWaHV8sql1d5uR1JIXz04pdTHc8+NQypN10alz91Ael5buxDldOTVnxeghwIWH0v4Rijdce+Eodx3GcRlJG8v8GXAscYWaPdkYcx3Ecp05SjPzWwLFu4B3HcWYOajUHtKTfAWea2X+0dSHpUcIiqo2Bx9rpw8nheqwH12N1XIf1sCY9bmFm89vtNMXIvwL4EnCImd3b9gWlm83sJe2e7wRcj/XgeqyO67AeOqXHpu4aSddFmzYC/ijpbuCJaJ+Z2d51Cuc4juNUo8wnP0E+auZ/OyiL4ziOUzNNjbyZ7dOBa/57B/r8e8T1WA+ux+q4DuuhI3pM8cl/DFhoZoUcNZLOAv5iZmfWLJ/jOI5TgZS0Bu8CblvDvtsIFaIcx3GcHiLFyG8O3L2GffcAW1QXx3Ecx6mTFCO/Aliwhn0LKaY5cLqIVDVTieM4vUS7f9MpRv564DhJs6MLzyakHL6+HQHWhBup9pC0k6TnWKuTLU4p/izWg+uxPSTtIWn7dv+mUyZedwB+RViRdT7wIGFk/1ZC/PzuZnZrO0Jk/e8F7ALcCtxtZvdLkhur1pG0P/Ad4FtmdoqkATNrXurJKZAt/DuAkIjvCjO7o8sizUgk7QfsS3Dz3mxmt/szmUamw+8DVwBHm9mK1D5aHslnBnxfQmqCjwFfzf69D9inooHfHzgHmE8oCH62pF3NzPzXvzUyHS4iFFXfMfuBnHD9pSHp1cCZhEHMQkJq7cl9rssWkbQ38DXgScJ83k8kvTx7Jr2ORQtIOgD4LCHTwAAwL9uepL+WR/LRxdcCNgCeNLOVyR0U+zsOGDezL0haDzgMOAY4ysx+U7X/fkfSSwlvV0eY2U2SrgRuN7OPdlm0GYWkrQiDl8+a2fWS3kGoa/wdwrN+l79dtoako4Btzez4rP1G4JvA683sGtdjcyS9iDDw/ZCZ/VrSRcComR2e2ldbv6hmttLMHqrDwGcsB16Y9f2UmZ1N+PU6WdJmNV2jn/kDcJiZ3ZS1PwesI2k++Ag0gcXARzIDvxHwUYIr8kDgh5J2csPUMn8FNpxsmNkPgfcB35D0AtdjKXcTBm2/ztofByYkvRjS/qa79tokaYGkzbPmucDOkhY1HPITgivIjfwayHS4lZktj9xltwPbAW+GkFSoKwLOMMxs1MwmU3dsDXzSzN5gZp8CLgP26J50vY+kZ0majMD7JfBCSV+c3J8Z+ovJBnROkUyHm2cD6cY0MksIGQoOhLS/6a4YeUmHEXzHF0n6DLAj8Cpgt6yNmT0OzAJe3A0Ze50GHf5A0imSDp3cZ2ZLgBOAN0h6XrdknAlIerWk8yQNZ+1BADP7rZld0nDoMDC3GzLOBCS9hlA57ieSPg2MEAzSaxoNPbAW8IIuiNjzNOjwYkknSnpWtn3AzJ4m+OePkLRbSr/TbuQzn/uxwNHAocBfgLcRJnUPB14t6WxJZwJ7Av853TL2OlPo8BFgf0mNNXZvJfz6P3f6JZwZZHMZ3wK2BH4kadjMxiUNRce9CdiP8KPqREh6OXA68EHgCOAfgfeY2ZPAzsBLJH1b0jmEwdzFXRO2R5lChzsDBwFMTlab2e+Bq4DtUyZfuzGSHwTGgKVm9iDwA8Kr3V4E18zLgKsJrppDzWxNq2z/nplKh1cTomomH4wngZ8B/9M1KXufIeBUYG+CD/nHmaEfmxzRZ29MxwFvj16fnb+xBfB5M7vVzO4Cvg7sKmlW9hweAHyX8Iy+1sz+2EVZe5WpdLinMhrCTq8ihPW2HIbaVnRNVSSdDGwLHGNmSyRtTBjNb2Rmn5x2gWYgTXS4rpl9uqvCzSAkrWNmz0iaR5js35QwuBjJ3phWABub2cNdFbTHkbSBmT2ZvQXtAZwI7J+9Gc02M18RX0KJDtczs6fa6XdaRvKSDpK0SNLXMmP0fUJu+uMlbWJmjxFehfeZ9EM5eRJ0uJ+kTboqbA/ToMevZnpcDWBmy4GPAA8D50k6mlC8Xm7gizTo8cuZHp8BMLMxwlqapzPj9DbgGEmzuilvL5Kow/e1q8OOG3lJOxHiY28kTLqcRZhdv5FwU1/LJgd3zU5Z1WmZZhpt6NBHTVMQ6XEu8BXCHNB6AGb2jJkdRXhDOg34tpmNdEveXiXS49qEtQUHSVo3O+QZYJmkY4Djgctdj3mmU4fTMZLfFviFmV1qZkcCNwD7EyJnziWkKf4SIYb2w2a2dBpkmmm4Dush1uO1hAiQvSYnWyUdDKwL7FllFXefE+vxGoIe91bIZTUXOJiQnvwwM/N5oSLTp0Mz6+iHEG/8c2C3hm3vBy4g+I8h/JLN6bQsM/XjOuyoHo8Gfgisl7X3BJ7bbVl7+dOiHr8IbN9tWXv1M5067MjEa7YqazXBn3mHpNOAp4FLzOzO7JjzCdWkPlG7AH2A67AeEvT4gJmd0EVRe5pUPWZRSqNdFLnn6JYOa3fXSPonwurADxCWgr8eOJvwy3WIQrZJgJvIJhqcPK7DekjU4/LuSNn7JOpxBYTVw92QtVfpqg5rfP0QwWVwBXBwtu1lhKpRbyLEgZ5M8D1dAPwZf51zHboee/bjeuwPHXbipk4h5Jgfztq7APcDr8vaC4HXAJt3+wvo1Y/r0PXYSx/X48zWYSeiax4BXkEI9cNCZsS3Af8qaRszW2xml5nZnztw7X7BdVgPrsd6cD1Wp2s6rM3ISyH1pZl9nRD+801J62WTB9cTwvzG67peP+I6rAfXYz24HqvTCzqsFF2TLcDZELgZmDCz8YZ9FwArCcH+Q4TVhHub2eJKEvcZrsN6cD3Wg+uxOr2mw7aNvKTXEcrNPZh9bgbOtZASc/KYIwm5QHYATjZfFJHDdVgPrsd6cD1Wpxd12G75v2FCubkvm9l/Z+FAuxJiQM+wKJGOJygq4jqsB9djPbgeq9OrOqzik1+Xv+Uq/zFwOWGZ/eEAknaRtGO23/NWTI3rsB5cj/XgeqxOz+mw3Rqvo8AXgNdJ2tNCbuMbgFsIeUDWAnYHHsqO9/JzEa7DenA91oPrsTq9qsMqPvk5wFHAi4Dzzey6bPu1wLvN7J66hOxXXIf14HqsB9djdXpRh0Plh0yNma2S9D3AgE9Iej7B9zQfWFaTfH2N67AeXI/14HqsTi/qsHKCMoVE9rsD7yXkgj/LQi1Cp0Vch/XgeqwH12N1ekmHtWWhVKiJaZZQe9DJ4zqsB9djPbgeq9MLOuxKjVfHcRxnepiWGq+O4zhOd3Aj7ziO08e4kXccx+lj3Mg7juP0MW7kHcdx+hg38k5PIem1kj4yxfZ9JJmkfbog1pRI2knSCkkLEs45S9JPOymX4zTiIZROTyHpXOCVZrYw2r4u8ELgjsa0rd1E0tUEeT6YcM6zgXuBA83s6o4J5zgZPpJ3ZgRm9rSZ3dhDBn5HYF/gGynnmdnDwGXARzshl+PEuJF3eoZsFP8OYEHmmjFJ92f7Cu4aSddKukHSqyTdImmlpN9LeqmkIUmLJD0s6QlJ50qaF11vrqTTJd0naST79wRJrfxd/DNwW1zwQdJbMhmWSXpK0u2S3hudewFwgKTNkpXkOIm0naDMcTrAqYRETjsDB2fbyooqPAc4AziNkADqc8Cl2WcIeCfwguyYJcDxAJKGgCsJLqBTgdsJBR5OJJRuO7bkuq8Ccr51SXuQFY0AjiMMop4PrB+de122bz/gnJLrOE4l3Mg7PYOZ3SPpUWDEzG5s8bSNgN3M7F6AbBR+CbCVmb0yO+ZKSXsBbyAz8oQiDnsQ6mtel227SqHu8kmSTjezJVNdUNImwJbArdGuXYGlZnZMw7ZfTHGfj0lanB3vRt7pKO6ucWY6d00a+Iw7s3+vjI67E1iozIoTRuIPAL/KXDtD2ej+F8AwwQCviU2zfx+Ntv8W2EDS+ZIOkhSP4Bt5tKEfx+kYbuSdmc6TUXukyfYhYDBr/wOwBTAafW7K9m/U5Jpzsn9zriQz+y/C28JmhNJvj0r6paQXTdHHSmCtJtdwnFpwd43z98rjwH3AG9ew//6ScwE2iHeY2UXARZLWBvYBTgd+LmlhlG52Q+C2RJkdJxk38k6vsZrpGeH+HHg9sMzM7iw7OOJ+QiGIrdd0gJktAy6XtDVwFuHN4FH4/xzjmwEXpovtOGm4kXd6jTuADSUdDdwMrDKz2ztwne8B7yJMtn6eMIk6C9iGENnzWjNbMdWJZjYi6TfALo3bJZ0CbAJcQyjWvBD4MHCLmTX677cD5hGibByno7iRd3qNbxMmPRcRQg8fIESy1IqZjUo6APg48B5gK2A5cA8hNHKkyekAPwDOkDTPzJZn235DMOpfJLhjlhAmck+Mzj0IeAS4tvqdOE5zPK2B47RBlmZhMfB+Mzs/8dw7gIvNLDb+jlM7Hl3jOG2QpVc4HTi+ISyzFEmHEFw6n++UbI7TiLtrHKd9vkAIyXw2wQffCmsBbzWzpR2TynEacHeN4zhOH+PuGsdxnD7GjbzjOE4f40becRynj3Ej7ziO08e4kXccx+lj/g92ofkPldOOoAAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "uid = units_of_interest[12]\n", "unit_waveforms = waveforms[uid]\n", "peak_channel = peak_channels[uid]\n", "peak_channel_idx = np.where(unit_waveforms[\"channel_id\"] == peak_channel)[0][0]\n", "\n", "ch_min = max(peak_channel_idx - 10, 0)\n", "ch_max = min(peak_channel_idx + 10, len(unit_waveforms[\"channel_id\"]) - 1)\n", "surrounding_channels = unit_waveforms[\"channel_id\"][np.arange(ch_min, ch_max, 2)]\n", "\n", "fig, ax = plt.subplots()\n", "ax.imshow(unit_waveforms.loc[{\"channel_id\": surrounding_channels}])\n", "\n", "ax.yaxis.set_major_locator(plt.NullLocator())\n", "ax.set_ylabel(\"channel\", fontsize=16)\n", "\n", "ax.set_xticks(np.arange(0, len(unit_waveforms['time']), 20))\n", "ax.set_xticklabels([f'{float(ii):1.4f}' for ii in unit_waveforms['time'][::20]], rotation=45)\n", "ax.set_xlabel(\"time (s)\", fontsize=16)\n", "\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Running speed\n", "\n", "We can obtain the velocity at which the experimental subject ran as a function of time by accessing the `running_speed` attribute. This returns a pandas dataframe whose rows are intervals of time (defined by \"start_time\" and \"end_time\" columns), and whose \"velocity\" column contains mean running speeds within those intervals.\n", "\n", "Here we'll plot the running speed trace for an arbitrary chunk of time." ] }, { "cell_type": "code", "execution_count": 30, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAf0AAAH6CAYAAAANyZUwAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzsnXd4ZFd5/z+vRiNp1Fdlpe3avmsbr71ed3DDNqaaYFriBJtiIEAa+SWBVJIA6WACaVQbgk0NxmAwYGMbF1zW63Xd9VZpdyWtetc0zZzfH+deaTSaGc2oTJHez/PMM9K959577p2Z+71vOe8RYwyKoiiKoix9inLdAUVRFEVRsoOKvqIoiqIsE1T0FUVRFGWZoKKvKIqiKMsEFX1FURRFWSao6CuKoijKMkFFf4ERkU+IiBGRK3Ldl+WCc70fzHCb3xeRl0TE72z/h4vUPUVRlIwRkRbn3nTbQu5XRV9ZdojIO4HPAQHgVuBvgcdz2ql5IiJeEfkDEfmaiOwXkZBzw3hfim1udtoke30wyXY+EflbEXlZRAIi0i0i3xGRnRn0V0TkOhH5vNPfAWdfL4vIrSLSlOZ+LhORiNPfT6Z7fGfbjB8W54KI1IrIn4jIN50HzQnn2Fen2MY1HpK9rotrXyEiN4rIHSJyUETGRGRERPaKyB+LSEkG/b1ilmO7r3VJtn+TiPxURHpEJCgiJ0XkbhG5KP2rpiwWxbnuwBLkC8C3gBO57oiSlDe478aYjpz2ZOGowD7AAHQBp4GEN+UE/BDYn2D53vgFIlIK/AK41Fn/Oec4bwNeLyJXGWOeSOOYpcBPgRDwK+A+wANcBfwB8E4ReZUx5nCyHYhIFXA7MA5UpnHMXNEC/LPz9ymgF0jroQZ7fq0Jlh+J+/9VwP8C/cADwF1AHfBG4F+Bt4jIq40xgTSO2Yp9EE7EK4C3AC8aY07GrhCRIuC/gVuAk8D/AX3Yc70IOI8Cf7heCqjoLzDGmF7sj1rJX1YDLCHBByt8rwP2G2M6ReQTwN+kue1dxpjb0mz7Uazgfw94hzEmCiAi38YKzVdF5BXu8hREgL8E/tMYM+AudITjP4EPAJ/BilYyPgfUAP8AfCrN/ueCNuBq4BljTL/jrr0pzW1vM8Y8mEa708BvA981xoTchc6D0YPAJcCHgX+bbUfGmFbgE4nWicidzp9fTLD6j7GC/w3gfbH9cLb1znZsJQsYY/LuhX0yNsBtwDbg20A3EAWucNq0Aq1Jtv+Es/0VccsN9gfQgP3SdgJB4EXg3Qn2c4WzzSeAc4B7gEHsDfYh4JLFOrazTamzv2NO2+PAJ53lBngwg2v6JuD+mON2OOfwobh2Dzr7LnWOddxpfxQrIiVJ9r/D+bxOOu27gDuA7UnalwMfx1qYY8Ao8GvgN5O0LwH+yunHnK5FzGcz45Xgc2oGvgy0YwXq5pg2q4D/cL6DIaAHa9Wcl+CYNzv7vBm4BnjYOdce4GtArdPuXODHwICz/m6gZR6/Ifdc35eizWTf0tynYAXMABsTrP+Vs+7Kef7+Vzv7GUnR5nqnzW/HnMcn09y/2z7R6xNxbd/unNcQ4Aeed763pfM4v9ucY12dxud3xVyPE7Ov33L29aN57qceGxIbB1bErasGRrC//zlfm5j9pXW/ctrWYR/8Djif0ZCz7bUp9v8Op02/c06twJ3Anrh2pcDHgOec8x52fsNvT7DPFqZ0qwXr8e119r8X61lM1Jcq7APuKaftQezD9SZ3f3Htm7Dem5ex985B5+/bgE2zXdt8t/Q3A08Ah4BvAj7sRZ8PtcCj2Jv194Ay4K1YCyVqjLk9wTZ7gD/FitKXgfXADcD9InKOMeblhT62iAjwfeD1wGFs2MCLvWGdmckJi8j7gf/BWgM/wn4RVwJnA+/GWlbxfAc43+lnGHuT/QSwR0TeZJxvn7P/67Ci53X2fwRYi3UDvl5ErjTG7ItpXwv8Eit0+4CvYvNLXgPcISJnGmP+Mu5afMfpw1HnWpQA78G6G9PlQef9ZmADyV2YdVg35KhzXlHsQwwishF4BCtMv8TeKGLd2zcYY36cYJ9vwoYVfox1gV7i9GOjiHwMewN6GPiKc05vBDanaTXPl3OcRMYy7EPOA8aYUwnabcZ+9w8ZY44nWP9TrJv5KqyLea64FuJEopUishL4EtZD8b8icnOG+9+P/ez/BvsQc1vMugdjjvNprMD3Yh9gR4HXAp8GXiMi1xhjwhkeO1NeKSLnYb2yrcD9xnoTM8HtY8LrmQE3Y0Xw6ybGO+PwJmyI5b+BIhF5K7AF+yDwiDHm2XQPksn9SkQ2YD+zFuzv515sqOsNwL0i8gFjzJdi2gv2YfsmZ7//h30AXwtciRXPvU7bEuBnwOVYIf4PrLHyVuDbzr3/zxOcwgbgSayx9g3s/eQdwA9F5GpjzORvwwmX3Y+91z6L1blarIFzeYJrU47VkM3YMNuPsA/jG7D3x+85x03OfJ/IFuPF1BOTAT6dpE0rc7P0DVa4PTHLz8D+IF6Ka39FzDY3x637gLP8Pxfp2L/jtP8VMda184U4SAaWPvA09ml5ZYJ1DXH/P+js+xAxT/NYQfi1s+53YpavwFqnvcAZcfs6E3uj3Be3/DZnP38at7wM+6ONAufELHctlV8DZTHL67APAZl6PR4kxrpP8jl9HShOsP5nzvq/iFt+ifM59gGVMctvdtpPAJfHLC/C/mgN1tq4MW5/X3HWXT/H35D7PUzH0o9/TWBv3mVx7V9PCosRezM0wLfn0ueY/fyZs587k6y/y/m+NcWdR1qWftxnnfB7A1zsrD8BNMcsL8beaA3w53M8P/f7n46lH/8KAH8PSAbH+6mz7Qfm+bkccPaTyMP5OWfdp7H35vh+fw8oT/M4md6vosA745bXYh/u/O73xFn+fqc/TwI1cdt4gFUx/3/cafsTYu4F2AcQ9xwviVneEnO+fxO379e4+4pb/ufO8u8DRTHLN2LvC9MsfawxYIDPJrg2JUDVrNd3Pl+CxXrFXLzTJHEVMXfRHwOqE2zzkLO+KmbZFc6yRxK092KfoPcu0rHvc5ZdlqD9jWQu+mPEueSStH2QOGFPcD0eiFn2B86yDyfZ32ed9Wc4/9djReWpJO13Oe3/OWaZK44z3MZM3fDTuhax55hknSH5DWets74N8CZY/w1n/bsS9O8bCdq/y1n3qwTrLifBzSODc3S/h6lE/3LgI9gQWjk2bPE2rKfGAHfEtXcfvv43yf6ucdb/bC59dvZxPlNu1M0J1r/HOcbbY5a513ghRf9Lzvr3J1i3DRvyOTbHc7yN2UX/N7BW7Ubsw/B64H3Ye6IhiTGUYD8fcdo/k+g7m0Gf3e/jC0nW38nUA+NTwAVYy/8C5/9p4jXLsdK6XzF1r/hukvVuCOhDMcued5adm0Y/DmMfKHYkWPdeZz9fjVnW4ixrJcawi1nfBvQmOEYkyXfd/Q3fFrPMFf20Pv9Er3x37z9rjAku8D4PG2MShQjcTNRarEsqlhlZzMaYsIh0YS3dxTj2udgv3GMJ2j+SwTHBuoz+DXjRSbh6CHjUGNOTYpuHEix7GPujPjdm2cXO+y4neSyebc77TuAl7E3dA5gk7b0x7V12Y69FovN+MMGy+dJqjOlOsNw974dNYrfuL7Ex5nOxnoJYZnyHsHFKsDe5eNqd97Wz9HXOGGMeYvrnPA58V0Qex7oaf1NE/smk75oVd9dz6Y+IbMNa0V6s5XY0bn0LdoTCd40x35nLMTJgt/P+y/gVxphDInIKG5qpNcYMLvTBjTE/iFt0AviyiOzDhp7+n4h8xqRw9YvIW7DX6zRwQ5LvbLq833n/nyTrPc67H3ijMea08/+TIvImrOfwd0TkL4wx7Qn3MEW69yv33lOT5F7S6LzvBDusETgL6DLGPJOqA04C5Bag3RhzMEET93txboJ1+40xkQTLT8b0OfYYJ+O/6w4PMjMZ9yHsveFjIrIb64V4NMUxZ5Dvon969iYZk+wH6sa7PAnWpdomUfuFOHYN0G+MSRSH68rgmBhjPiMivcCHgN8H/hArug8Bf2KMSSRIM45hjImISB/WveVS77zfMks33CFVbvvzndds7WHqWiS6aS3GdyTZPmuc984k693ltQnWDSVYNpHGuqxnPBtjTorIT7AepcuwDwAw1c+ahBvaZK7YdmkjIluxeQB1WMG/O0Gzr2JF5UOZ7n8OpPNZr3faLbjoJ8MYs09EnsSOoLgY+5A0AxF5MzaRrBvrIUsd502BiNRhc5j8WG9WItwY/+Mxgu/2uVNEngBejc2PSin6Gdyv3HvJNc4rGe69xP1dzvbQAfP7rae6z8fWxnGPkex+PuM+ZIwZduod/C02j+I1zqpeEflPrLcr5cNdvhfnSWUxREn+0JLogyg0hoE6EUl0jumO8Z3EGPN1Y8xF2B/K67Ex48uAnzmJUbMeQ0Q8zvax3gr3Br/LGCMpXrfHtf/sLO2vjDtGXZIhP81pX4T0Sfa9c/ue7Jir4toVMq5VVRGzzE1Y3UZitjrvhzI5kNiiPg9hR7a8zRjz/SRNd2MfOHtii8RgE7MA/sJZdlcmx09CPn/WiT6bSUTkbcB3sWJyuUk/0TgZN2ET+L6TwqvhHiPZevehwJfOAdO8X7nX/g9muZe8O65va9LoQjY+f3fbZPfzhMc2xpwyxrwX+1s4C/tg1Af8tfNKSb6LfioGgKYkQrAn251ZBJ7Bfj6XJFj3yrnu1BgzaIz5iTHmFmxssQ6bcR3P5QmWvQr7oBXrGns8Zl06PIl9YEu3PdgM/yISn/cVGexnvrjn/cokD2Pug8q+BOsKjQud91gL8SjWzbzNGcUQz2ud9xku8WSIyCuwbsw6rAv6hymafx17849//cpZv9/5/xdpHj5Kck+d+1lfkaDPW7Bhl+OL4dpPhXO/c0MPM6x3EfktbHy9Ayv4SYsbZYDrxUs0Nt/lfuc92cgid3lrJgee5X6V0b3HGDMGvIDVjURu+di2I9jv+xrHCxXPvH/rzjGOOMfYnKDJFbNsb4wxLxpjPs+Up+PNsx23kEX/SawAvTt2oTN859JcdGiBcWPCn4wtoSkiNdjhHGkjttxpIpFyn5jHE6z7KxGZzFcQkTLsWFiYsqzcvweBvxGRCxIcu0hi5iFwYuXfxA79+6tE/RKRzXGi4h7vU04/3HZ12AIvWcHYYWy/wCbsTKvVLyIXYhPdBoD4eGxeIiIzbpZi+TjWddyLHU0BOJmPNqsf4J+dQjrudtdjb74vEZcPIiLrRWSHM9wodvk5WJd+FXaUQqKhjpMYY37fGPO++BdT3497nGX/kdYFsNZRsqqFX3Xe/1JE3Niw6+36V+y98ytpHicjRKTKuTbxy0uwMfr12BE8e+PW34R1v5/AJgDP6tJ3PpcdKda/ChsTf8EYkyi/CAAn7+NRYKfElX52/t+JFdGn0uhTWvcrx83/MLba4HuS7OsVcZ7Mf3fe/8e5l8a2LRKRVTGLvorNU/kX53N32zUwdQ/+KvPja9jv0j/F/Z42Yi34aYjIWU5uSzyutyDRvXwa+R7TT8XnsYL/XyLyamySxC6sZfxjpkqtFipfB94JXAe8ICJ3Y+O7N2B/7Nuxlko6fAsIiMgj2Cdtwd6gz8cmkd2XYJsD2ESa2HH6m7EFiibjesaYPmdM7g+Ax0XkfmzBoSj25nQx1kVXFrPvj2BdwX+HTe55BOuKXI29OZwP/Ca2AA9Yy+Ud2BjWCyLyQ+davBV7E0n0lLxYfBB7c/sXEbkW+1m44/Sj2EJL8YmgWUHseH/3Bu6KxrtFxPWQPGKM+XLMJr8SkUPYa9iOjTFeinUZjmOHEcYnnn4G+9t6K/CE83mvx57/OPAeM7OuwNexnqMrcRIvnQfK+7GW2/3AxSJyMTO5dRGt6fux5X5/hP0dTGBHUvzKGPOYiPwztj7HC87vYAzrzTgLm1T6L+keSET+FRu+gCmP1Z+IyG87f99ljHHDEvXAMyKyH1sUphOblHYlNpu/F1vEavI6i8iVTNW7eAD7ucd3Y9AYc2vcsgPuLpJ03U3gS2Xlu7wXe12+5CQRvogdkvw67Hfj5jSTzTK5X/0W1rP0FRH5fWxdl0GsJ+Zs7Gd1MTa3AeyQ6VdiR84cdu4lPdh7z1XYa/gJp+2/Yj/v64FnnTyXcux3fSV2hFGmSdXx/BvWOr8B2CciP8P+Dt+B9WC9Ka791cBnROQx7INft3Ou12PvP7N/JxOl9Of6RUxlo1navdK5MO4Qn3uwH/QnSD5s7sEk+7rNWd8Ss+wKZ9knkmzTStywwYU6trO8DCuMx7HDyFqx5UbXOO3vSvN6fhAryseca9WPdV/+KXHjOkleke8YNpM02RDKFmzRnMPYscTDzpfyG8CbE7QvwYr/Y9jYVhBrodyPtaLrE7T/a6aqE7rXYi7VCR8k9ZC9lPtyrv9/YYfghLA34buA8xO0vdnZ580J1iX9fpHmbyDJZ5fsdVtc+3/BWuUdTFVaO+h8jkkre2Hjsn/rfNZB7E3zu8TVaUjQrysSnN9sr5Y0ztu9xpkO2VuJLbrThR02NeOzwD54P4IdVRPACtlfEFfDII1jtc5ynp+IaVuNtUgfxyZzhbD1Lp4F/pHEw0lvnmX/hgRDnN11Sfq8Apu8N45TOTKN81zHVCXLkNP/O4CdGVyrtO9XTvsq7Hj3p53r5Mfet+7BPrRUJNjmRue7P+R8rsexHsjdce3KnH2/4Ox3xPk+zKgcyiy/WZLcd5zP+zPONXMr8v0xCSryYY2iz2CNjR6m7oXfI0H9hEQvcXakFBAicg3wc+AfjTEfX+B9P4iNBSZ78lcURVEKlEKO6S95RGR1gmX12Kd9KJDYsaIoipIfFHJMfznwGRHZhXWBu/WhX4uNg/6PMebJXHZOURRFKSxU9POb/8NmZb4RW3vAjSl+FRs3UxRFUZS00Zi+oiiKoiwTNKavKIqiKMuEgnXvNzQ0mJaWllx3Q1EURVGywtNPP91rjGmcvWVysi76IlKLjUefhR2D+B5s3eZvY8c5tmKnzRxIsgsAWlpa2Ls30TwxiqIoirL0EJG2+e4jF+79zwH3GmN2YCvoHQA+BtxvjNmKLc7ysRz0S1EURVGWNFkVfRGpxs6U9BUAY0zI2BKb1wPuLGy3k8akAYqiKIqiZEa2Lf1N2PHmXxORZ0TkyyJSATQZYzrBzr3M9PnaFUVRFEVZALIt+sXYaSH/yxhzLnYCi7Rd+SLyfhHZKyJ7e3p6Zt9AURRFUZRJsi36p4BTxpgnnP+/h30I6HKnNHTeuxNtbIz5ojFmjzFmT2PjvBIYFUVRFGXZkVXRN8acBk6KyHZn0aux82/fDdzkLLsJ+GE2+6UoiqIoy4FcjNP/PeCbIlKCnTrx3diHj++IyHux06u+LQf9UhRFUZQlTdZF3xizH9iTYNWrs90XRVEURVlOaBleRVEURVkmqOgriqIoyjJBRV9RFEVRlgkq+oqiKIqyTFDRVxRFUZRlgoq+oiiKoiwTVPQVRVEUZZmgoq8oiqIoywQVfUVRFEVZJqjoK4qiLDO+/PAx3vD5h3PdDSUHqOgriqIsM5443s+BzhGMMbnuipJlVPQVRVGWGa29Y0SihkA4muuuKFlGRV9RFGUZEY0a2vrHARgNTuS4N0q2UdFXFEVZRnQM+QlNWAtfRX/5oaKvKIqyjGjrG5/8e0xFf9mhoq8oirKMON47Nvn3SEBFf7mhoq8oirKMaI0RfbX0lx8q+oqiKMuI1r4xyrz21q8x/eWHir6iKMoy4njvGGesqgZU9JcjKvqKoijLhEjUcLLfz1lragAV/eWIir6iKMoyoWPQTygSZeeqakQ0pr8cUdFXFEVZJriZ+xsbKqgsKc7b7P3gRIS/+MHzdA75c92VJYeKvqIoyjKhtS9G9MuK89bSf6F9iG8+cYKHD/fmuitLDhV9RVGUZcLx3jHKSzysrCqlorQ4b2P6rb22gNB4nvavkFHRVxRFWSa09Y2zob4CEaEyj0W/zfFIjIUiOe7J0kNFX1EUZZnQ2jvGxoZygLwW/dY+nRBosVDRVxRFWQZMRKKc6B+npb4CsKKfrzF9N/cgX/tXyKjoK4qiLAPaB/1MRA0tDVb0K0qLGc3D7H1jzOQoA7X0Fx4VfUVRlGXAs6eGANi6shKAqrLk7v0XO4b48sPHsta3WAbHw5NDCdXSX3hU9BVFUZYBP3vxNA2VpZy9thaAilIPo8EJjDEz2n7j12188p4Dkwl12aQ15pjjmsi34KjoK4qiLHEC4QgPHOzm2jOb8BQJAJWlXqIGAuHojPZHukcBuPeF01ntJ0yJ/uqaMnXvLwIq+oqiKEucRw73Mh6KcN2ZzZPLKks9AIwEw9PaGmM47Ij+T3Mh+r3jiMCOVdV54d4fHA/xkTv20TsazHVXFgQVfUVRlCXOT184TXVZMRdvrp9cVllWDMBYcLoLvXc0xJA/zKqaMvafHMx6Kdy2vjFW1/hYUV4yo2+54Mnj/fz4uc6ceD0WAxV9RVGUJUw4EuW+A11cfUYTXs/ULb+ixIp+fAa/69r/4OWbgey7+Fv7xmlpKKfSyTnINe2D9qHnqdb+HPdkYVDRVxRFWcI8cayfIX94mmsfpiz9eGE90mNF/9ozm9jWVJl1F39r3xgt9RWUO3UEEiUaZpMOR/SfONaf874sBCr6iqIoS5h7X+zE5/Vw2bbGacsrSxOL/tHuUSpLi2muLuO6s1bxVGs/PSPZiWcPjocYHA/TUl9BZWkxE1FDcGJmomE2cS3908MBTg0U/qx/KvqKoihLlGjU8LMXu7hyRyNlXs+0da7oxyfLHekeZXOjrc9/3ZnNGAO/eKkrK/1tc8rvbqgvp6LE9jfXw/baB/w0V5cB8MTxwnfxq+griqIsUfadGKBnJMh1Z62asc4V/ZE40T/cPcJmp4DPzlVVbKgv56cvdC5+Z5kartfSUEFFkoeSbNM+GOCybQ3Ulnt5SkVfURRFyVfufeE0JZ4irtzeOGPdVPb+lKgOB8J0DQfZ4oi+iHDdWc38+mgfQ+PhGftYaNr67HC99XXlScMP2SQQjtA7GmTtinL2bKjjySWQzKeiryiKsgQwxtA1HJj2/70vnuaVWxuoKvPOaO/zeiiS6dn7R53M/S2NlZPLXnvWKiaihl8cWHwXf2vvGKuqyyjzevLC0u8cstdzTa2PCzfWcbx3jO6RwCxb5Tcq+oqiKEuAXx7s5qJ/uJ9fH+0D4MWOYU4N+Gdk7buIiJ10J0ZU3eF6W5uqJpftWlvDqpoy7s2Ci7+1b4wN9VMTAkFuLf12J3Fvda2PCzbWAfDU8YGc9WchUNFXFEVZAhzuHsUY+NsfvchEJMq9L5zGUyRcfUZT0m2q4kW/Z5QSTxHrVvgml4kIrzmzmV8d7l10AW5zxuiDnRsAZhYPyibucL21K3ycubqa8hIPTx7vy1l/FgIVfUVRlCVApyNQB0+P8K2nTnLvi6e5cGMddRUlSbepcMbCuxzpGmVjQwXFnunS8NqzmglNRHngYPfidB6bT9A3FqLFtfRLcu/ePzXoRwSaqsso9hRx3oYVBZ/Br6KvKIqyBOgYCrC9qYoLN9bxDz85wJHuUa47K7Fr36WybKal7ybxxbKnpY6GypJFrc7X1usO17OiPzmkMJQ70e8Y9NNUVUZJsZXKC1rqeLlrJCtJjYuFir6iKMoSoGPQz+raMv76jWfgD1uX+LVnzCL6pcWTc9cHwhFO9o9PDteLxVMkXHtmMw+83E0gvDju9qnheq57P/eWfvuAvaYu52+swxjY21a41r6KvqIoyhKgcyjAqlofZ66u4Xev2Mybz1lNc01Zym0qY9z7x3vHiBrYmkD0wbr4x0MRHj7cu+B9BzvRDsCGOmvplxQXUeIpYjSXMf0hP2tWlE/+f866Wko8RTxZwC5+FX1FUZQCxx+K0D8WYk2tTcD7k9fs4NZ3njvrdrHZ++50uonc+wDnt9Q5gjd7ItsDB7u5/F8eYCSQvhu8tW+c5uoyfCVTlQMrSj05s/SjUUPnYGCapV/m9bBrXU1Bx/VV9BVFUQocd/rbVbNY9vFUxoj+ke5RigQ2NlQkbFvm9XD22hr2ts0+ZO22x1pp6xtn/8nBtPvS2jvGhvryacviEw2zSe9okFAkytpa37TlF2ys44X2IcZzmGswH1T0FUVRCpyOQVswZnWcQM1GZcxMdke7R1lXVz6jRn8s57Ws4IX2oZRx/d7RII8csSGAZzMR/b7xycx9l4qS4pyN0z81ODVGP5bzW+qYiBqeOZH+ueUTKvqKoigFTodj6a+uyVD0y4qJGvCHIxzpHp1WiS8RezbUEY4Ynjs1lLTNPc91EokaqsqK2X8yebtYRoMT9I4G2dAQb+l7cpa9747RX7Ni+jU9b8MKiqRwJ99R0VcURSlwOtzx5DWlGW3nZsgP+cMc7x1jS1Nq0T9vwwogdfb6Xfvb2dFcxTU7m3j21GBac9C7SXwb4y390uKcFeeJrcYXS1WZlzNX1xTs5Dsq+oqiKAVO52CAhspSSouTu+YTUeWI/ksdw4Qi0Vkt/bqKEjY1VrC3NXFc/0TfOM+cGOT6c9awa10tPSNBTg/PXqu+NW6MvktlDmP6HYN+qsqKqU4wb8H5LXXsOzFAaCKag57NDxV9RVGUAqdjyJ9xPB+mLH039p4scz+WPRtW8HTbANHoTAv+h/vbAXjTOas5e23NtH2nwh2jn0+JfO2D/snREPFcsLGO4ESU59sLL66voq8oilLgdAz6WZ1h5j5MVb17xhHmRIV54tnTUseQP8zRntFpyyciUe7a384FG+tYU+tj56pqvB5JK67f1jdGY1Xp5ENIbP9ylsg3kFz0z2+xYY4nC3DyHRV9RVGUAsYYQ8dgYE6WfmWMpd9UXZrQlR3Pnsm4/pTgPfhyN9d97mGO9ozxjj3rADvEb+eq6oSW/vOnhjj/U/dxuGsEsJn78fF8cBP5ImnlBSw0HYP+GUl8LvWVpayp9XG4eyTLvZo/KvqKoigFzJA/jD8cyXiMPtjsfYDhwARbV1bN0tqysaGC+ooS9rYOcKR7hJu/9iQ3f+0pwpEoX/yd83jL7jWTbXetreX59qHvv0pGAAAgAElEQVQZoYAnjvfRMxLk1vsPA4nH6IN170eihmCWY+cjgTDDgYmUD1IVpZ5FK0m8mBTP3kRRFEXJV9rdoWVziulPJf6lE88HO9Xu7g0r+OkLndy1v53yEg9/8bqdvOuSDTMSCc9eW8M3Hm/jWO8oW2IeKo712hj+T57v5NmTg3SPBGlJUBQodqa9VPUDFhq37kGqa+rzehgPFZ7oZ93SF5FWEXleRPaLyF5nWZ2I/EJEDjvvK7LdL0VRlEKk0xGoVXMQ/arSKXd+OvF8lyu2NxIIR/jNC9bx4P+7glsu25Rw5MA562oBZsT1j3bb2fx8Xg9/9v3ngJlJfBA76U52xbV90I4mSGXpl3k9+FX00+ZKY8w5xpg9zv8fA+43xmwF7nf+VxRFUWbBLcEbWyM+Xcq8RRSJ/Xu24Xqx/Ob569n/N9fyyTe/gvrK5LUBNjVWUllaPCOuf7RnjN3ra7npkhYOnrZx8fhqfACVjici28l87c6D1NokMX2A8hLP5GyGhUS+xPSvB253/r4deHMO+6IoilIwtA8G8HqEhorMCvOAddW7yXzpuvcBiookraQ/T5HwijU1PHtqSvSH/GF6R4NsaqzklldtotyZYCelpZ/lqnztA368HqExxQONr0Qt/XQxwM9F5GkReb+zrMkY0wngvK9MtKGIvF9E9orI3p6enix1V1EUJX/pHPKzqsZHkWuyZ0hlaTE1Pi8NlSUL3DPLrnW1HOgcJjhhBfKYM9Rvc2MldRUlfPjKLZy7vpaqBA8Rruhn29LvGJz9mvq8xQUZ089FIt+lxpgOEVkJ/EJEDqa7oTHmi8AXAfbs2ZP9MRyKoih5hhWozF37LpVlxayq9SEyt4eG2di1toZwxHCgc4Rz1tVytMcm8W1utO78D1+5hQ9fuSVx30qnEvmySfugf9Zwia+kqCCz97Nu6RtjOpz3buAHwAVAl4isAnDeu7PdL0VRlEJkrmP0XT56zXY+es22BezRdHY5yXxuXP9Yzyhej7CubqY7P56KHIl+x6CfNbWp+1deUpiWflZFX0QqRKTK/Ru4FngBuBu4yWl2E/DDbPZLURSlEIlEDaeHA3NK4nO57qxmLt3SsIC9ms6qmjIaq0onRf9ozyjr68rxemaXnwon3p/N7P1wJErXcIA1s1zTMq9N5MtF4aD5kG33fhPwA8eNVAzcYYy5V0SeAr4jIu8FTgBvy3K/FEVRCo6ekSCRqGFVhlPqZhMRYdfaWvafckV/jM1pjhTIhaV/eihA1MycUjceNwExOBHNag2B+ZJV0TfGHAN2JVjeB7w6m31RFEUpdOZTmCebnLOuhvsOdDEwFqKtb4xrzmhKazuvp4iS4iJGs5i9P3VNU7v3fY7Qj4ciBSX6+TJkT1EURckQd4z+qnm497PB2WttXP+e5zsJR0zalj5kf3rdjsH06h64ol9oY/VV9BVFUQqUKYHKb0vfnWb3//adAmBT48xCPMmoKPVkNabfPpDeNfU57n1/lmsIzBcVfUVRlAKlYzBAZWlxWoVycklteQkbGyrYd8KZwrchfUu/oiS70+u2D/ppqCyZ1WU/aemHEk8GFD/JUL6goq8oilKgdKQxnjxf2OVY+w2VpdSUp/+QMpt7f3A8xD3Pdc67fy7tg/60ciTcRL7xJJb+b/zXY3zkjn0L1q+FQkVfURSlQOkcCuR15n4s7nj9TFz7AOWlxYylGA//tUdb+fAd++gaDsyrfy62MM/s17SsJHVMv3s4MOkNyCdU9BVFUQqUjjQFKh9wk/kySeIDO+lOKkv/GWf8f6szXe98MMY4hXnSt/QT1d+PRg29o0EaqjKfD2GxUdFXFEXJM/afHOSljuGUbQLhCH1jIVbPowRvNjlzdTVrV/i4eHN9RttVlCR37xtjJov+nOgfn3cf+8dCBMLRtB6kUmXvD/nDhCMm5YQ9uUJFX1EUJc/4y7ue5xM/ejFlm84h684uFEu/zOvhkT+7ijftWp3RdhWlyRP5WvvGGfKHgcxE3xjDp+55if1xU/52OFPqzlaYB2Ky9xOIfs9oEIDGPLT0czHhjqIoipICW2kvmLJN52BhjNGfL24inzFmxqRA+08OAOD1SEai3z0S5EsPHydq4Bwn1wCgfdDuIx33/lT2/kzR7x3JX9FXS19RFCWPMMbQPxaidzTIcCCctF2HY+nnezW++VJRWkzUQCA8c2jc/hODlJd42L1+RUaif6hrBIDTccl/7YPpX9NUop/Plr6KvqIoSh4xHJggHLFjvFMlp7mFeZoLJKY/VypLrbgmcvHvPznIK9bUsKmxghN96Yv+y6et6HcNxYn+gB+f10NtGkMKiz1FlHiKGE/k3ldLX1EURUmHvtEpt/7xFKLfOeSnobKU0uL8Gxa2kLiT7sSLfnAiwkudw5yzvpZ1deX0jYXSLuJzuGsUmGnpdwz6WbPCNyOMkIwyb1FiS38kSElxEVWl+RdBV9FXFEXJI/rGQpN/H+tJLvrtg/ObUrdQ2OQM8fv4/z03mbQH8FLHMOGI4dx1tayvs5PjnEzTxX+o21r63cPBaVPjpjtG36W8pDip6DdWlqb98JBNVPQVRVHyCNfSF5nF0h/0s7pACvPMh3PW1XLrO87h6bYB3v7fv56cZMjNvN+1rpYNdbbgT1saLn5jDIe7RikpLiIUidIf85CV7hh9F1+JJ2n2fj669kFFX1EUJa9wLf3tTVVJRd8tIrPUM/dd3nzuGm579wW0D/p5y38+xsunR9h/cpCm6lJW1fgysvQ7hgKMBie4cGMdMOXi94ds3YO1aQzXc/F5PYwns/RV9BVFUZTZ6Bu1or97wwqO945Ncz+7DAcmGAtFlnzmfiyXbmngOx+4mEjU8Nb/foyHD/dODrerKfdSXVZMW//sVfkOOUl8r9raADBZvrdjKL0pdWPxlXgIJLD0e9XSVxRFUdKhbzRIjc/L9qYqRoMTk8O/YnEz9wul7v5Cccbqan7w4Utpqi6jfyw0Wc8fYEN9BSf6/bPuwx2u96qtjQCcHrLX151Sd01tedr98XlnuvcnIlH6xkJ5WY0PVPQVRVHyit6xEPUVdipagOMJkvncuPZyce/HsqbWx/c/eAm/f9UW3r5n3eTy9XXlabn3X+4aYWVVKVtWViIy5d5vH5ybpR/v3u8fC2EMeVl3H1T0FUVR8or+0RD1lTGinyCun0kRmaVITbmXj167nYYYa3p9fTmnBsaJzDKP/eGuUbY3V+H1FNFQWTo5Vr9j0E+RQHN1BqLvnene73bH6KulryiKosxG31iQ+opSVtf6KCkuSij6nYN+iotkmugtd9bXlROOmEkvSCKiUcPh7hG2rqwCrMBPWvoDfpqryyj2pC+L5SUexkPTawPkczU+UNFXFEXJK/ocS99TJLTUl3Msgeh3DPpprinDU5R/48BzhZvBn6oy38mBcQLhKNub7dj/puqyyUS+dqcwTyaUeT0zxum71fhWqugriqIoqYhEDf3jNqYPsLGhIqGl3zEYWBZj9DNhUvRTxPUPOZX4tjY5ln5N6bSYfqYzFpYnGKfvin6+emFU9BVFUfKEgXGbBFbvCMbGhkra+sZmxKnnYpUudVbVlFFclHq2PTdzf+tKa+k3V5cxOB5mPDTB6aFAxjkSPq+HcMQQjkxNBtQ7GqSqtHhy6t18Q0VfURQlT3Crw9VXWkt/U0MF4Yjh1MCUkE1EopwezlygljrFniLWrvDRNovor6n1UVVmJ9RpcpL2nj81xETUZGzpu8Iem8zXMxLM28x9UNFXFEXJG3qdJLA6173faDP4Y+P6p4cDRKImo8pxy4V1swzbe/n0CFubKif/d2cofPrEAEDG3hNX9GPj+m7d/XxFRV9RFCVPcKvxNUy692eO1Z8sIqOiP4P1deVJ3fsTkSjHesbY7sTzYWp43r42W8d/Lu59YFpcP5/r7oOKvqIoSt7gTrbjJvLVV5RQVVY8LZnPLSKj7v2ZbKgvZ3A8PG02PpfWvnFCkehkEh9Ak2Pp73Mt/Tkk8gHTCvTkc919UNFXFEXJG/rHQhQJ1JZb0RcRNsVl8LuWfqbx5+VAqol3DjtJfLGWflVpMeUlHvrHQtSWe6koLc7oeGVxln4gHGEkMKGiryiKosxO71iIFeUl08bfxw/bax/001BZOik4yhTrU0yxe6hrFBHYsnIqpi8iky7+uQyBLC+xDwluTN/NyWhwEjHzERV9RVGUPKFvNDiZue+ysaGS9kH/ZIa4DtdLzro6e10SxfUPdY2wbkX5jKF0bgb/XK7pZEzfEX13jL5a+oqiKMqs9I2GqK+YLhhuBn9rn7X22wf8rFXXfkKqyrzUVZQkFf1tMa59FzeDfy45Eu4DxHg4TvQr83ciJBV9RVGUPKF/LDTD0t8Uk8FvjFFLfxZsBv/0KoahiSjHe8fYFjNcz2VltX3Imo/oB1xLP8/r7oOKvqIoSt7QOxqczNx3aWmYGqvfMxokOBHVzP0UJBq2d7x3jImoYXtzAkvfjenPRfTjEvlcSz/+wS2fUNFXFEXJA0ITUYYDE5MleF0qS4tZWVXK8d6xqTH6KvpJ2VBfTsdgYFpp3Jcny+/OFP2WevtQ5dZEyIT4IXs9I0HqKkrwZjBTX7bJ354piqIsI+JL8MayqdFm8E+O0Vf3flLW1ZUTiRo6Bqem2D3cNYKnSNjUOFPYL9/WyP996BLOWF2d8bFKi4sQmW7p53PmPqjoK4qi5AV9Y25hnpnx4I0NldMtfRX9pCSabe9Q1wgb6ssTDnMsKhJ2r18xp2OJCD6vB39oArDhmXyO54OKvqIoSl7gluBNaOk3VNA/FuKlzmGqyoqpdiaMUWayod6KfuxY/UNdo2xL4NpfCHzeqel1e0bzu+4+qOgriqLkBVOW/kzRd+PNjx7p1Xj+LDRVlVHiKZqsyhcIR2jrG2NbgiS+hcBX4mE8FMEYk/cleEFFX1GUPGQ4MLN2+lKneziFe9+JRfeOhnR2vVkoKhLW1vkm3ftHukeJGhIO11sIfF4PgXCE0eAEgXBURV9RFCUT7nmuk3P/7hc840yCshwwxnDX/g62rqyk2jez/vu6FeWTpXnV0p+dDXXlk+79x4/1AbBjkSz9csfSL4RqfKCiryhKHhEIR/j0Tw4QiRq+/PDxXHcnazx6pI8DncPc8qpNiMiM9SXFRaxzLHxN4pud9XXlnOwfp3c0yL/ff5hLNtezuXFxLP0yrwd/jOg3aExfURQlPW5/rJX2QT8XbKzjpy90cmog8dzoS40vPXyMhspSrj93ddI2blx/TW15trpVsKyvr2AkOMHHvv8c/nCEv7v+rIQPUwuBr8S69wuhGh+o6CuKkif0j4X4wgNHuGrHSm59xzmICLc/1prrbi06L58e4aFDPbz70hZKi5PPnLexwVqqaunPjjts774D3bzvVZumzay30Lju/d7Juvsq+oqiKLPy7/cfZiw4wcdfu4PVtT5ee1Yz33ryJKPBiVx3bVH50sPH8Hk93Hjh+pTtdq2rwef10FKvlv5suKK/uqaM37tqy6Ieq8wZstczGsRTJKwo1+I8iqIoKRkLTvDNJ9p4+551bHVmQnvvKzcyEpzgu3tP5rh3i0fXcIAf7m/nHeevo3YWsXjTrtU89rGrZm2n2FDIpVvq+ccbzp6c836xKC+Ziuk3VJZQVLQ4YYSFQkVfUZSc83TbAOGI4fVnr5pcdu76FexeX8vXHm0lEjU57N3icdtj9tzec+nGWduKCCsSjOFXZlJSXMQ333cRl21rXPRjucV5CmGMPqjoK4qSB/z6WB/FRcJ5G6aXQ33vKzdxon+c+w505ahni8docIJvPt7GdWc1s15d9gWLr6QYfzhC90gw7zP3QUVfUZQ84PFjfexaVzvDFfuaM5tYU+vjK48sveF733nqJMOBCW551aZcd0WZBz6vB2Pg1IA/75P4QEVfUZQcMxac4LlTQ1y0qW7GumJPETdf0sKTx/t5oX0oB72bG//vu8/yw/3tSddPRKJ89dHjnN+ygnPnONmLkh+40+sO+cPq3lcURZmNvW0DRKKGizbVJ1z/jgvWUVHi4asFYu0HwhG+v+8UDx3qSdrm3hdPc2rAr1b+EsAXM3Ofir6iKMosPH6sD69nZjzfpbrMy9v2rONHz3XQPRzIcu8yp7VvDGNgaDz5/AG3P9bKxoYKrt7ZlMWeKYtBWYmKvqIoSto8fqyPXWtnxvNjec+lG5mIGu58Mv+H7x3rGQNg0J9Y9I0xPN8+xFU7Vub98C5ldspjLX2N6SuKoiRndDKen9i177K+vpztTVXsP5n/k/Ac73VEfzyUcH33SJBAOKpFdpYIvhhLv0EtfUVRlOTsbe1PGc+PZXtzFYe6RrPQq/lxtMf2cSiJpe/O/rahviJrfVIWD5+69xVFUdLj8WP9eD3C7g21s7bd1lRF+6CfkUDyWHk+MGXphzFmZlGh1j67foNa+ksCN5GvtLiIqtLFrf63EKjoK4qSM9KJ57tsc8rzHu7OX2vfGMOxnjFEYCJqGAtFZrRp6xujuEhYU6sT5ywF3CF7jVWlizaT30KSE9EXEY+IPCMiP3b+3ygiT4jIYRH5tohorUlFWeKMBid4vn32eL7Ldlf0u0YWs1vzYmA8zJA/zLaVtq+J4vptfeOsXeGj2KM211LAtfQLwbUPubP0/wA4EPP/PwGfNcZsBQaA9+akV4qiZI2nnHj+xZvTE/21K3z4vB5ePp2/lv4xJ57vhisGEwzba+sbZ73G85cM7pC9QsjchwxEX0RKROQiEXmLiNwoIq8RkZZMDygia4HXA192/hfgKuB7TpPbgTdnul9FUQoLd3z+7jQr0hUVCVubKjmUx5a+O1zv3HX2nOKT+YwxtPaNaeb+EsK19Ashcx8gZSBNRDzAbwDvAy4HSoDYoIURkXbgTuBLxpgjaRzzVuBPgSrn/3pg0BjjTpp9CliT9hkoilKQPH6sn3PW1U7Lfp6NbU1VKSvd5ZpjvWN4PcKZa6qBmZb+4HiYkcCEZu4vIbyeIs5eW8N5BVJOOamlLyI3AAeB/wWCwF8C1wC7gG3ARcBvYS30NwMHRORLIpK0xJSIvAHoNsY8Hbs4QdOE82iKyPtFZK+I7O3pyd8fvqIoqRkJhHkhg3i+y7amSnpGggyMJR4Dn2uO9Yyyvq58cra1eEt/MnO/Ti39pcTdH3klN5y3NtfdSItU7v3PA/8BNBtjrjfG/Jsx5pfGmOeNMUeMMU8aY75tjPmoMWY78Eqs1X5Lin1eCrxJRFqBb2Hd+rcCtSLieh3WAh2JNjbGfNEYs8cYs6excfHnSVYUZXGYrd5+MtwM/nx18R/vHWNTYyU1Pi8Ag/7pDyfuGP2WBhV9JTekEv1NxphbjTGD6ezIGPOEMeYtwL+kaPNxY8xaY0wL8E7gl8aYG4EHgLc6zW4CfphW7xVFKUgyjee7bG/OX9GPRA1tfeNsaqygzOuhzFs0o/5+W984IrB2hYq+khuSir4xZk4zWxhjgnPY7M+Aj4rIEay34CtzObaiKIXB40f7OHfdiozi+QDN1WVUlRbzch6KfvuAn1AkyqYGG6+v8XlnxPTb+sZYVV1GmTez81aUhSKt8kEisg2oNcY86fzvA/4aOAv4mTHmC5ke2BjzIPCg8/cx4IJM96EoSuExEgjzfPsQH7lyS8bbigjb8rQc79Fe26dNjZUA1PpKZrj3W/vGNIlPySnpDtn7AlPud4BPAX8MrAY+KyIfXuiOKYqyNNnbNkDUkHE832VbUxWHukYSlrjNJe5wvUlLvzyRpT+u8Xwlp6Qr+mcDjwKISBHwLuDPjDHnAZ8E3r843VMUZalx3BHHHauq57T9tqZKBsfD9IzMJZK4eLzYPkSNz0tdhS0oWuvzTsveHwmE6RsLsb5OLX0ld6Qr+rVAn/P3ucAKporpPAhsWthuKYqyVOkaDlBSXMSKcu+ctt/qlLg90pM/Lv6BsRD3PN/J617RPFl/vTbO0p/M3NfCPEoOSVf0uwA3AHctcNQYc9L5vxKYSLiVoihKHF3DAZqq5z45SX2ltaQTlbjNFd966iTBiSg3XdIyuay2fHpMX6fUVfKBdOcBvBv4BxE5C7gZ+J+Yda8Aji1wvxRFWaKcHg7QXF025+3dMfDDSearzzYTkSjf+HUrl2yuZ0fzVMiixuclEI4SCEco83po69cpdZXck66l/zHgx8BrsA8An4pZ9ybg5wvcL0VRlihdw0FWzkP0q13RD+SH6P/8pS46hgLcHGPlg3Xvw1RVvrbecRoqS6kogDnXlaVL0m+fiKw2xnQAGGPGSFJpzxhzySL1TVGUPMQYQygSpbQ487HmxhhODwW4asfKOR+/osSDp0hmlLjNFV979Djr6ny8euf0CuS1vqkwRFN1mU60o+QFqSz9U84c9x8XkZ1Z65GiKHnNz148zZ6/v4/+OdS/Hw5M4A9H5uXeFxGqy4oZ9uc+leiF9iGeah3gpotb8BRNz1FwLf3BcXudTvSPazxfyTmpRP9SbHncdwEvisjLIvJPInJxdrqmKEo+cvD0CCPBCZ5uG8h42+5hW+izqWbuog/WxZ8P7v3bHmulvMTD2/asm7Fuqv5+mEA4QudQQOP5Ss5JVYb318aYjxljdgJnALdhp9d9REQ6ReR/ROQ6EZnbuBtFUQqS3lE7Pn7ficxF/7Qr+vOce7y6zJtz937vaJC793dww+61kwIfy2RMfzzMiX43c19FX8ktaSXyGWMOGmP+wRhzEXau+78DNgB3Ab0i8m0Reeci9lNRlDzBLYqzbw6W/ukhK/rN87b0i3OevX/nEycIRaYP04ulttyJ6ftDMWP01b2v5JZ0s/cnMcacNsb8lzHmOqAR+KCz6r8WtGeKouQlvaM2Rv3cqSEmItGMtu1yLf15xPTBus6HA7mL6Ycmonzj8TYu29bIlpWVCdtUlHgoLhIGx8O09elwPSU/yFj0YzHGjBhj7jTGvAOYezquoigFQ89IEJ/Xgz8c4eDpmbPdTUSinHTc2fGcHg5QW+6d9yxzuXbv//SFTrpHgrw7iZUPNuGwttzLoD9Ma98YNT7vpPWvKLki7QGjIlIHvB5YB8Q/phtjzN8sZMcURclPekeDXL6tkXtfPM2+EwOctaZm2vrv7zvFn//gBX7+R5exuXG6FXx6KEhT1fysfHAS+XIo+rc91srGhgou39aYsl2Nz8vQeJjhQFiH6yl5QbpT614LfB9IFpAygIq+oixxxoITjIcinL2uhn0nBtjXNsC7Lm6Z1ubFjmEiUcOdT5zgL99wxrR13SOBeWfugxXT4MRUtbtsYoxh/8lBfvfyzRQVpS4l7JbiPdnvZ9e62iz1UFGSk657/zPAM8AuoNQYUxT3yu6vTlGUnOBm7jdWlrJ7/Qr2nRic0eZ4r41ff/fpUwTCkWnrTg8FaK6eX+Y+QHWZtVdGchDXD4SjGANVZbMPXKr1eekdCdE+6FdLX8kL0hX9FuDvjTHPG2NyPzhWUZScMCn6VaXs3lDLif7xyWUux3rGWFfnY8gf5p7nOieXT0Si9I4G51WYx8UtxZuLuP54yD5olJfMbuvUlHs50jNKJGq0MI+SF6Qr+s8AqxezI4qi5D/ucL0Gx9KH6UP3/KEI7YN+bti9lk2NFfzvE21T244GiRrmVXffJZf198dD1nvhS0P0a30lRKIG0Mx9JT9IV/Q/CvypVuNTlOVNjzNcb2VVKWetqcHrkWku/lZnaNrmxkpuvHADz5wY5MWOISBmjP5CiH5Z7mba8zshi3QsfbdAD6joK/lBuqL/NHA/thrfsIiciHu1zbYDRVEKn56RICJQV1FCmdfDGatrplXmO9ZjRX9TYwU37F5DaXERdzxxArCz68H8C/MA1PhsTD837v3MRb+8xENj5fxzGRRlvqQ7ZO9fgY9g3fwHgcxn2lAUpeDpHQ1SV15CscfaC7vX13LnkycIR6J4PUUc6xkFYGNDBeUlxbxx12rueqadj79u54IV5oFY9372E/ncmL7PO/vt0y3Pu76uHJHUmf6Kkg3SFf2bsYl8OixPUZYxPSNBGmIs1t3rV/C1R1s52DnCK9bWcLx3jFU1ZZSX2FvLjReu53tPn+KuZ9o5PRyguEior5h/gZqcuvcziOm7oq/ld5V8IV33vgF+tZgdURQl/+kdDdJQNSXauzc4yXyOi/9o7xibGqcE7px1tZy5uppvPnGCrqEAK6tKZx3bng5lXg8lxUUFENO312pDg8bzlfwgXdH/LvDaxeyIoij5T89IcFpsenVNGU3Vpew7MYAxhmM9o2xqmKrCJyLceOEGDnQO89ChngUpzONSk6PpdSez99MoCtTozCa4pTFxfX5FyTbpuvd/CnxWRGqAe4EZ02sZY365kB1TFCW/MMZYSz9G9EXEKdIzQO9oiJHABBsbpruyrz9nNZ/+yQH6xkJcsLFuwfpTXVbMsD/7MX1/Bol8a2p9fPeDF3OOVuNT8oR0Rf8Hzvt7nZeLAcR516p8irKEGQtFCISjk9ary+71K/jpC6d5qrUfYJp7H6CitJjfOHcN33i8bUGS+FyqfbmZdGcqez+92+f5LQv3oKMo8yVd0b9yUXuhKEreE1uYJ5bdG6wV+/2nTwHMmGQH4MaL1vONx9tYu8K3YP2p8XnpH8v+QCJ/aAIRKPPOa5JSRckJaYm+Meahxe6Ioij5TWwJ3ljOXG2L9Dx4qIeS4iJW184U9h3N1XznAxezc1XVgvWnusxLq1PnP5uMhyL4vB4dgqcUJGk9qorINhG5PMm6y0Rk68J2S1EKl67hAKPB7MeaF5tkln6Z18OZq2uIRA0t9eV4kmTnX7CxLq1JatKl2lecm3H64Uha8XxFyUfS9U/dCrwxybo3AJ9dmO4oSmEzHAjz2s89zKfuOZDrriw4ySx9YLIOf2zm/mJT48T0jTFZOybYRL50xugrSj6SrujvIfk4/Up3wY4AACAASURBVF8B5y9MdxSlsPnyw8fpHwvx7MmZU84WOj0jQYqcErzxuHH9+CS+xaS6zEskaiYT67LFeGgireF6ipKPpCv6VUAgybowULMw3VGUwqV/LMRXHj5GkcCR7lEmItFcd2lB6R0NUldRktB9f8HGOnxeD+c6Fn82yNVMe+OhCL40M/cVJd9IV/SPAa9Osu4qoHVBeqMoBcx/P3QUfzjC716xmVAkyvEcJJktJvEleGNZWVXGvr+6hqt3rsxaf9xSvNkethcIRyhXS18pUNIV/a8DfyQiHxaRUgARKRWRDwN/CNy+WB1UlEKgazjA7Y+18uZz1/CGs1cDcOD0SI57tbD0jIYSxvNdfCXZzWh369pnu0DPeEgT+ZTCJV3R/1fgbuDzwJiIdANjzv93A/+0ON1TlMLgC788QiRq+MNXb2NzYyXFRcLBzuFcd2tB6Y0rwZtrqp3pdbNdf18T+ZRCJt1x+hHgrSJyFXANUA/0Aj83xjy4eN1TlPynfdDPt546wdvPX8f6ejuxypaVlRzMU0u/dzTIMycG2dFcxdoVvrSsc2MMPaNBGlJY+tkmV+59tfSVQiajbBSnvr7W2FeUGL7wyyMIwoev3DK5bEdzFU8e789hrxJjjOH373yGx472AbZ+/Ueu2sL7L9uccruR4AShiWheWfo1OUvkm0i7BK+i5BtJ3fsiMqci2XPdTlEKkZP943x370neecE61sRUotuxqpqOoQBD49mvDZ+KB17u5rGjffzuFZv51G+cxbq6cr708HGi0dRj3ScL81TNHK6XK6rKXPd+dmP6/rC695XCJVVMv1VE/khE0poeSkQuEZG7gT9ZmK4pSv7zhV8eoahI+NAVW6Yt39Fsy80ePJ0/cf2JSJRP/+QgGxsq+KOrt3HjhRu45VWb6BkJ8uyp1HUFeh3Rb6zMn2f6Yk8RFSWerLr3w5Eo4YjR7H2lYEkl+h8GPgB0isgPROSjIvJqETlbRLaLyEUi8lsicquIHAEeBDqBL2ah34qSc9r6xvjevlP81gXraY6bJ35HczVAXsX173zqJEe6R/nYa3dQUmx/+lduX4mnSLjvQFfKbXtG88/SB+viz6Z73y0EpJa+UqgkDUwZY74vIncBb8ZOp/tJoAw7ja6LAG3At4EvGmOOLWJfFSWv+Pf7j1BcJHzoipnx8KbqUmrLvXlj6Y8GJ7j1F4e4YGMd157RNLm8ptzLBS11/OKlLv7kNTuSbt+bpO5+rqn2ebOave9X0VcKnJRD9owxEWPM940xrwNqgYuAG4AbgeuADcaYjcaYj6ngK8uJ471j/OCZU/zORRtYmWCOeBFhR3MVBzrzw9Lf29pP31iI37tqy4xs/WvOaOJQ1yhtfcmLCfWMBvEUCSvK88vSry6baek/eqSXCz99H8+cGFjw4/nDVvQ1e18pVNKeENoYEzLGPGmMucsY8y1jzC+MMScXs3OKkq/8+/2HKS328IHLk2e972iu5uXTI7MmyWWDUwN+ALaunDm17TWO5f+Ll5K7+HtHQklL8OaSap+XoZhEvseO9PLe25+iazjIE4swemI8ZI/l82r2vlKYpC36iqJYjnSP8MP97bzr4g0pK9TtXFWFPxzhRP94FnuXmPZBP16PsDJBf9fVlbOjuSplXL9nNL8K87hU+4on3fu/PtrHe25/ivV15TRUlnCoa+G9LK57Xy19pVBR0VeUDPnc/Uco83p4/2WbUrabSubLfVy/fcDPqhofRUks9at3NvFU6wCD46GE63vzrDCPi+vef/xYH++57SnWrSjnjlsuYueqag53jS748cZV9JUCR0VfUTLAGMPPXjzNDbvXUj+L5butqQqR/Mjgbx/0T6sjEM/VZzQRiRoeeLk74fp8K8HrUuPzMhKY4N1fe4o1K3zccctFNFSWsq2pisPdCx9a0ex9pdBR0VeUDBgcDxOaiLKxYfZ5430lHjbWV3AwD5L5Tg2Ms3ZFctE/e00NK6tKue+lmaJvjKF3NJR3w/Vganrd1bVl3HHLhZPhlm1NlQTCUU4OLGxoxR+2MX2tyKcUKir6ipIBXSMBAJoSZOwnYseqqpy790MTUbpHgqxJIfpFRcKrdzbx4MvdBCci09YN+ycIRfKrBK/LpVvqed0rmrnzlotYWTX1mWxtsgmLhxbYxa/ufaXQUdFXlAzoGrbj1Zuq0xPAHc3VtPWPMxbMbqnYWDqH/BhDSvc+wLVnNDEWivD4selZ7z2j9kEnVdJirtjRXM1/3njejGGTW1dWAix4Mp+O01cKnaQ+KhH5agb7McaY9y5AfxQlr+kaztDSb67CGCs+565fsZhdS0q7M1wvlaUPcPHmenxeD/e91MXl2xonl/eM2OS+fLT0k1FV5mV1TRmHF1j0J2P6WoZXKVBSBaauYnr1vVqgBpgA+rDT6xYDQ8DCV8FQlDykezgzq3fnqqlyvLkS/VODVvTX1panbFfm9XDZtgbuO9DF311/5mQRn6kSvIUj+mBd/Avt3veHI3g9gtejTlKlMEn6zTXGtDjV9jYCvwOMAu8EfMaYVYAP+E1n+W9no7OKkmu6hoPUlnspS9PSW1Pro7K0mIOduYvrnxrwI8KM+QEScc0ZzXQOBXixY6q/+VqCdza2NVVytGeUyAJm8PtDEbXylYIm3cfVzwD/YIz5jjEmApMler8N/CNw62J1UFHyia7hAM1puvbBJshtb67iQA6H7bUP+GmuLpucZCcVV+1YSZHAz2Oq8/WMBikuEmqdTPlCYWtTFcGJ6IIWRxoPTWjmvlLQpCv6rwCOJFl3GDhrYbqjKPlN10gwYa39VGxvruJg5zDG5KYcb/vg+KxJfC51FSXs2VDHfTGi3zsSpL6yJGlhn3xl22QG/8I9cI2HIpq5rxQ06Yr+aeDtSda9E0g9L6eiLBG6hwM0ZRjb3tlcxXBggs6hwCL1KjXtg/5Zk/hiufqMlbzUOcwpZ4x772gwLzP3Z8PN4F/IZD5/KKKZ+0pBk67o3wq8R0TuEZGbReS1zvtPgJuw7n9FWdJEo4bukWDamfsuO1blrhxvJGroHAykbemDjesD3H/AFurpGQ0WXDwfoKK0mDW1vgVN5lNLXyl00hJ9Y8zngFuwbv6vAvc472cCtxhjPr9oPVSUPKF3LEgkatIeo++yvdm6mXMxzW7XcICJqMnI0t/YUMHmxorJCXh6R0IFNVwvlu3NVQvr3g9H8GlMXylgMpla9yvABud1kfPeYoxJezy/iJSJyJMi8qyIvCgif+ss3ygiT4jIYRH5tojkX71PZdnT7RTmyTSmX13mZU2tLyc1+Nvd4XorUg/Xi+fqM5p4/FgfQ/5w3k62kw5bmyo51jPGRCS6IPvzhyYo1+x9pYDJaLCpsZw0xjzpvGeamRQErjLG7ALOAa4TkYuAfwI+a4zZih3zr4V+lLwj08I8sexcVZWTYXuThXkycO+Drc4Xjhju3t/ORNQUrKW/bWUV/7+9+46P6y7zPf55NOrVqrYsuXc7rnHiNNJISChLwgZYYIHApVzuvezSF1iWJRcWFljKcu+yJRdCsktblgUSWgqpm+4a23GJm2yrWMXqvczv/nFmZEmW5JFnRtO+79dLL0nnzJx5dDLxM7/2/AZH/NScjcwM/l6N6UuCCznpm9lmM/uFmbWY2bCZbQkc/4qZ3RrKNQIfGoIDbBmBL4dXCOjngeP3AbeH/BeIzJKZluAda21lIcdbeugI7P0+W4It/Zkm/U0LiinNy+THL54GEq8wT1BwBn+kJvP1DynpS2ILKemb2TXAc8Bq4McTnucHPhTqC5qZz8z2AE3AI8AxoN05FyxOXgtUhXo9kdnS2NmP2cUVqbluVQUjfscTU2xdGy21bb2U5mXOOFH50oxXr6ngYKB3oiw/MUfcllfkYxa5jXd6B0fUvS8JLdSW/leBh/Am7n18wrldwJZQXzBQ1GcTUA1cDqyZ7GGTPdfMPmhmO8xsR3Nzc6gvKRIRTV39lOZlXVQJ1s0L5lBekMXDL8/u6tbatpkt1xvrpjVzR3+uSNCWfk6mjwXFubzSFH5L3zlH35Bm70tiC/Vfry3APwXG8Ccm5Bag/PynTM851w48gTcpcI6ZBafEVgP1UzznbufcVufc1vLyGb+kSFgaOwcuqmsfvMp8N6/1tq7tHxq58BMipK69j+qLTPrXrCgjK1DFLxGX7AWtnJsfke79/iE/zqHZ+5LQQk36/cBU038r8TbduSAzKzezOYGfc4CbgIPA48CbAw+7E7g/xLhEZk1jZ/9FTeILCm5d++yxlghGNTXnHPXtfTMezw/KzUznVSvKyPSlUZRgJXjHWjG3gBMtPQyFOYO/d9AbgVRLXxJZqEn/aeCjZjb23R5s8b8PeCzE61QCj5vZXmA78Ihz7jfAp4GPm9lRvN37vh/i9URmTTgtfYCrlpVRkJU+a138Z3sG6R/yX3TSB/jULav52z9eP7rjXiJaOTefoRFHTUtPWNcZ3VZXSV8SWKj9VJ8HngFewptl74A7zexbwKXAZaFcxDm3F9g8yfHjeOP7InFpaMTP2Z4BKgouvqWfmZ7G9asreORAI19+k8MX5Vr2tcHlejNcoz/WqnkFo8WFEtWKimAN/m5WzL34v6UvMCyjlr4kslAr8r0EXItXY/9zgAEfDpy+zjl3ODrhicSHlu4BnLu4Nfpj3bJuLmd7Btl1qi1CkU3tYtfoJ5vlFfmkWfgb7wRb+kr6kshCnpHinNsFvNrMsoESvGV2kduzUiSOhbNGf6zrVpaT6Uvjof1nuGxxSSRCm1Jdu/e/58XO3k8W2Rk+FpbkciTMGfzBMf1sLdmTBDbztUfeB4UMYHarjIjEUDjV+MYqyM5g04I57DndHomwplXX1kdBdnpCT8KLlBVzC8Jeq98/2r2v2fuSuGZSke8NZrYLb6b+MbzNdzCz75nZO6IUn0hcaAok/YowW/oAyyryOB7mpLJQ1IUxcz/ZrJybT01LD4PDfrr6h/jEz16a8TI+de9LMgi1It/teMvoWvBm2o993gm8ZXYiSetMZz++NKM0L/ykv7Qsn9aeQdp7ByMQ2dRq2y5+jX6yWTm3gGG/40RLD399/8v8565afvBszYyuMTp7X937ksBCbel/AfiBc+41wN9POLcfuCSiUYnEmcbOAcrzsyIy435JWR5A1Fv7dW1q6QcFa/D/3UOH+eXuOopyMnhw/5kZ7b7Xp5a+JIFQk/4a4N8DP0+syNeGt7ZeJCl1Dwzz1CvNrJibH5HrLS0PJP3m6CX9jr4hugaGZ7ylbrJaWp6HL834w8FGLl9cwt/+8XpaewZ5/nhryNc4172vMX1JXKEm/U6gbIpziwEVwpek9Q+PHaWpa4CP37wyItdbUJJLeppxvDkym8BMZnS5nrr3AchK97G4NJfC7HS+/bZN3Li6grxMH7/dN2nFb556pZmjE2b79w0OYwbZGRcz/1kkPoT67n0E+GywhG6AM7MsvPX6v494ZCJx4ERLD/c8fYI7tlSzeWFxRK6Z4UtjYWluRFv6Bxs6ueIrj3IqsG98bVtguZ6690d9/c0b+OH7t1E1J4fsDB83rZ3Lg/vPnFeet7VnkDt/8CI3f/sp/vwnu0eTf+/gCDkZvoSuTigSatL/HDAPOAx8D6+L/zPAHrwNcu6KRnAisfY3vzlAZnoan751VUSvu7Qsn+MtkWvpP3aoiTOd/fzhoFfit65dLf2JLl1Uwobqc+2W16+vpK13iOeOnR33uF0n23AOXre+kj8cbDyX/Ju7NZ4vCS/Uinw1eDvt/Qa4GRjBq9D3PLDNOTd5H5lIAnv8cBOPHmriz25cTkWY6/MnWlaeR83ZXkb8k+4iPWO7TnoV/p477iWwurY+sjPSKM3LjMj1k9G1K8spyErnt3sbxh3feaqN9DTjm2/ZyNOfvpEPXbeMPxxs5InDzSrMIwlvJhX5avE21xFJeoPDfr706wMsLcvjvVcvifj1l5bnMTjsp66tj4Wl4U22c86xM1DW98UTrfj9bnSNvrqip5ad4ePmtXN58OUz/M2bLiHD57WBdp5sY11VEdkZPrIzfHz61tV84FVLuefpE5Tm60OUJLYZz0gxs/lmdpmZzY9GQCLx4N5nT3C8pYfP/9FaMtMjP3FrSZm3EuBYBLr4j7f00N47xJVLS+noG+JAQ6eX9DVz/4Jev6GSjr4hnjnqbXc8NOLnpdPtbFk4Z9zjSvIy+eQtq6LyAVBkNs2kIt+7zewEcBqvW/+0mZ0ws3dGLTqRGGjq6uf/PHqUG1dXcMOqiqi8RiSX7e0MdO3/rxuWA/D88bPUao1+SK5ZUUZB9rku/gP1nQwM+7l0UWQmbYrEm1Ar8n0YuBc4AnwAeGPg+1HgPjP7X9EKUGS2ff3BwwwMj/D5N6yN2muU5mVSmJ3OiQi09HefaqMoJ4OrlpWypCyPxw410dozqGp8IchK9/GatfN46OUzDA77R3c/VNKXZBVqS/8TwL3Oudc45+5xzv028P1m4N+AT0YvRJHZU9/ex8931vLfrl4yWjkvGsyMpeX5EWvpb1k4h7Q044qlpaOT+dTSD80bNlTS2T/M00eb2XmyjflF2VQW6d5Jcgo16c8DfjrFuR8DcyMTjkhsNXR4S92uWj5VLarIWVqeF3bS7+gb4pXGbrYEaghcuawUF1gQoJZ+aK5eXkZhdjq/2dvArpNtbFErX5JYqLP39wHLpji3Aq/+vkjCa+/1doyeje1ol5Xn84tddfQMDJOXde5/xd7BYWpaejnbM0BL9wAtXYO09AyQnmZ87KaVpPvOfVbfPaE7+oolJaPntEY/NJnpadyybh4PvFTPwLCfDyjpSxILNel/BPipmbUAv3DOjZiZD7gD+BTwtmgFKDKbOvq8pD9nFpJ+cPjgREsPC0pyefRgI7/ff4anXmlmYHh8lbg0A7+DG1fPHTfevOtUO2kGGxd4s80rCrNZVp7HybO9VBREtrZAMnv9hkr+Y2ctoPF8SW6hJv2fAYV4XfwjZtYGFAM+oBv42Zj1wM45tyjSgYrMhmBLf05u9JN+cAb/x/59DzVnexgacVQWZfP2yxdy+ZISyvKzKMvPpKwgi47eIV719cc52NA5PumfbGNNZeG4noI3bqzixZqzEdkRMFVcvbyMopwMBoZHWFNZGOtwRKIm1KT/KOfvrieSdNr7hjCDguzoJ/3FpXmU5WfSPzzCe69ewmsvmcfGam9C3kQFWekUZKdzsKFz9NiI37H7VBt/vKV63GM/ctMKvFE3CVWGL40PXruU5q6B0SI9IskopKTvnHtPlOMQiQsdvYMUZKXPSis5O8PHC395E2nGBSvnmRlrKgvHJf3DZ7roGRxRd3SEBOsciCSzsD7SmllppAIRiQcdfUPMyZ29Uqu+NAu5VO7aykIOnenCH6jXrzXlIjJToRbn+YCZfWrM7+vNrBZoMrMdZjYvahGKzKL2vqFZGc+/GGsqC+gdHOFUq7dt7q6TbZQXZGlpnoiELNSW/p8BfWN+/xbQDnwUKAK+GOG4RGKivXdoVpbrXYzgBLMDgS7+nae8ojzaVEdEQhVq0l8IHAIwsyLgOuAvnHP/F/gCcEt0whOZXZ198Zv0V84tIM3gYEMnLd0DnDzbq659EZmRUJO+DwguHL4Gbyb/E4HfTwPR2ZVEZJbFc/d+doaPZeX5HGzoZNdJjeeLyMyFmvSPAK8P/Pw24FnnXG/g9/lAa6QDE5ltfr+jvXeQOTnxu2e6N4O/i52n2sj0pbFuflGsQxKRBBJq0v8G8NFARb53AP93zLkbgL2RDkxktnUPDuN3s1OC92KtqSykrr2Pxw81sa6qkOwMX6xDEpEEEuo6/R+b2SlgG7DdOffUmNONwAPRCE5kNnUE6+7Hafc+eDP4AV5p7Ob91yyJcTQikmhCrciHc+5p4OlJjn8hohGJxMhs1t2/WGvnnysRq/F8EZkp1ZsUCThXdz9+x/QrCrIpy/fi0xawIjJTSvoiAcGWfjyP6QOsm1/EgpIc5hZqFz0RmZmQu/dFkl173yAwOzvsheNLt11Cz+BwrMMQkQSkpC8SEOzej/eW/sLS3FiHICIJSt37IgEdfUNkZ6RpGZyIJC0lfZGAjjiuuy8iEgmh7rLnN7ORKb6GzeysmT1iZq+JdsAi0dLeF9/V+EREwhVqS/9LeDX2m4F7ga8B9wV+rwX+DSgHfm9mb4h8mCLR1947FNeFeUREwhXqRL5+4ATwWudcf/CgmeUAv8dL/luA3wJ/CfwmwnGKRF1H3xALSjRJTkSSV6gt/Q8B3x6b8AGcc33At4EPOef8wPeADZENUWR2dPQNxXU1PhGRcIWa9CuAqf41zARKAz+3ABZuUCKx0N4bv9vqiohEQqhJfwdwl5lVjj1oZvOBLwTOAywC6iMXnsjsGBgeoW9oJK5L8IqIhCvUMf2PAI8CJ8zsOaAJr/V/JdALvDPwuOXAjyMdpEi0BUvwFqp7X0SSWKhb6+4ys+XAJ/C2110PNADfBL7lnDsbeNxfRytQkWgKbqurMX0RSWYz2Vr3LN7MfJGk0x7cVldj+iKSxFSRT4Qx2+qqOI+IJLGQW/pmdifwdmAhMHFPT+ecWxbJwERmU6JsqysiEo6Qkr6ZfR7438B+YA8wEM2gRGZbe6+3ra4q8olIMgu1pf8+4DvOuY9FMxiRWOnoGyLNoCBLu02LSPIKdUy/FPh1NAMRiaWOviEKczJIS1NtKRFJXqEm/SeBjdEMRCSW2ntVgldEkl+ofZkfBX5hZmeB3wGtEx8QqL0vkpDa+4YoUjU+EUlyoSb9VwLffzDFeTeDa4nEnY7eQZXgFZGkF2qi/iJeYhdJSi3dgywuy4t1GCIiURVqGd67ohyHSMyc7R6grr2Pd1UuinUoIiJRpYp8kvL2nG4HYMvC4hhHIiISXVO29M3sr4HvOefqAz9PxznnvnShFzOzBcC/AvMAP3C3c+47ZlYC/DuwGKgB3uqcawvtTxAJz65TbaSnGeurimIdiohIVE3XvX8X8CBQH/h5Og64YNIHhoFPBHbtKwB2mtkjwHuAR51zXzWzzwCfAT4dwvVEwrb7VDtrKgvJyfTFOhQRkaiasnvfOZfmnHtxzM/TfYX0r6VzrsE5tyvwcxdwEKgCbgPuCzzsPuD2cP4okVCN+B0vnW5n88I5sQ5FRCTqYjamb2aLgc3AC8Bc51wDeB8MgIopnvNBM9thZjuam5tnK1RJYofPdNEzOKLxfBFJCTNeW29mFZy/yx7OuVMzuEY+8J/AR51znWahlT51zt0N3A2wdetWLSGUsO0+7U0dUdIXkVQQ6i57hcB3gD8BsqZ4WEhd/GaWgZfwf+Sc+0XgcKOZVTrnGsysEmgK5Voi4dp1sp3SvEwWlOTEOhQRkagLtaX/XeAO4PvAPi5ya13zmvTfBw4657415tQDwJ3AVwPf77+Y64vM1O7TbWxeWEyovU0iIoks1KR/C/Ap59x3w3y9q4F3AfvMbE/g2F/iJfufmdn7gFPAW8J8HZELau8d5HhzD3dsqY51KCIisyLUpG/A4XBfzDn3dOBak3l1uNcXmYndp1SUR0RSS6iz938K/FE0AxGZbbtPtZFmsHGBivKISGoItaX/MPD3gYI6U22t+1gkAxOJtl2n2lk9r5DcTG0QKSKpIdR/7YIT65bgVc8Lcnjd9Y4QZ++LxIMRv2PP6XZu3zw/1qGIiMyaUJP+DVGNQmSWHW3qpntgWOP5IpJSQt1a98loByIym3ad8orybFbSF5EUoq11JSXtPtVGcW4Gi0tzYx2KiMisCXkGk5ndCbwdWMj5ZXidc25ZJAMTiaZdp9pVlEdEUk6oZXg/D/xvYD+wh4usyCcSDzp6hzja1M3tmzSJT0RSS6gt/fcB33HOfSyawYjMhj21KsojIqkp1DH9UuDX0QxEZLbsOukV5dmwYE6sQxERmVWhJv0ngY3RDERktuw61cbKuQXkZ6koj4ikllCT/keB95rZu82szMzSJn5FM0iRSPEHivJsWaSufRFJPaE2dV4JfP/BFOfdDK4lEjPHmrvp6h9ms7r2RSQFhZqov4iX2EUS2vYaryjPpWrpi0gKCrUi311RjkNkVmyvaaUsP4slZXmxDkVEZNZpLF5SyosnWrl8iYryiEhqCrU4z19f4CHOOfelCMQjEjV17X3Utffx/lctiXUoIiIxEeqY/l3TnAuO9SvpS1zbfqIVgMsWl8Q4EhGR2Aipe985lzbxC69gz3vwSvMuj2KMIhHxYk0rBVnprKksjHUoIiIxcdHL7JxzbcC/mlkp8F3gdRGLSiQKtp9oZcuiYnxpGs8XkdQUiYl8LwHXRuA6IlHT2jPIkaZuLl+irn0RSV2RSPpvAJojcB2RqNle443nK+mLSCoLdfb+PZMczgQuAdYDX4hkUCKRtv1EK5npaWyoLop1KCIiMRPqmP6NnF+Rrx84Cfw9cF8kgxKJtO01rWyqnkNWui/WoYiIxEyoFfkWRzkOkagZ8TsOnunizisXxToUEZGYuuCYvpllmtkvzUyT9SQhnW7tZXDYz4q5BbEORUQkpi6Y9J1zg8BNoTxWJB4daeoGYEVFfowjERGJrVAT+TPAFdEMRCRaXmnsAmC5kr6IpLhQJ/J9AviVmXUDvwIamDCxzznnj3BsIhFxtKmbyqJsCrIzYh2KiEhMhdrS3wcsA76DN2N/EBga8zUYlehEIuBIU5da+SIihN7S/yLnL9kTiXt+v+NoUzd/uk0z90VEQl2yd1eU4xCJirr2PvqH/JrEJyKCZuRLkgtO4lsxV0lfRERJX5JacLne8nKt0RcRUdKXpHaksZuKgiyKcjVzX0RESV+S2tGmLnXti4gEKOlL0nLOcaSpmxUV6toXEQElfUli9R399A6OqKUvIhKgpC9Ja3Tmvlr6IiKAkr4ksaON2mhHRGQsJX1JWkeauijLz6Q4LzPW1PADvwAAHJ5JREFUoYiIxAUlfUlamsQnIjKekr4kJeccRxu7NYlPRGQMJX1JSo2dA3QNDGs8X0RkDCV9SUrBmfvL1b0vIjJKSV+SUrDmvrr3RUTOUdKXpHS0qYuSvEzK8rNiHYqISNxQ0pekdKSxm+UazxcRGUdJX5LOuZr7SvoiImMp6UvSae4aoKNvSElfRGQCJX1JOucm8WnmvojIWEr6knSOBDfa0cx9EZFxlPQl6Rxp6qYoJ4NyzdwXERlHSV+STnASn5nFOhQRkbiipC9J52iTau6LiExGSV+SSkv3AK09gyq/KyIyiVlN+mZ2j5k1mdn+McdKzOwRMzsS+F48mzFJcjnS6M3cX6mWvojIeWa7pX8vcOuEY58BHnXOrQAeDfwuclEOnekEYKWW64mInGdWk75z7imgdcLh24D7Aj/fB9w+mzFJcjlQ30lZfiYVBZq5LyIyUTyM6c91zjUABL5XxDgeSWAHGjpZO79IM/dFRCYRD0k/ZGb2QTPbYWY7mpubYx2OxJnBYT+vNHaxtrIw1qGIiMSleEj6jWZWCRD43jTVA51zdzvntjrntpaXl89agJIYjjZ1MzTiWDtfSV9EZDLxkPQfAO4M/HwncH8MY5EEdqDBm8Snlr6IyORme8neT4DngFVmVmtm7wO+CtxsZkeAmwO/i8zYgfpOsjPSWFKWF+tQRETiUvpsvphz7u1TnHr1bMYhyelAQwer5xXiS9MkPhGRycRD975I2JxzHKjvZJ3G80VEpqSkL0mhtq2Pzv5hTeITEZmGkr4kBU3iExG5MCV9SQoH6jtJM1g9T0lfRGQqSvqSFA40dLKkLI+cTF+sQxERiVtK+pIUDtR75XdFRGRqSvqS8Jq7Bqhr72N9lbr2RUSmo6QvCW/nSW/jxq2LS2IciYhIfFPSl4S3vaaNrPQ0LlH3vojItJT0JeHtqGll04I5ZKbr7SwiMh39KykJrXdwmP31nWxdXBzrUERE4p6SviS0PafaGfE7jeeLiIRASV8S2vaaNsxgy0K19EVELkRJXxLajpOtrJpbQFFORqxDERGJe0r6krCGR/zsOtnGZeraFxEJiZK+JKxDZ7roGRzRJD4RkRAp6UvC2l7jFeVRS19EJDRK+pKwdtS0UTUnh/lzcmIdiohIQlDSl4TknGN7Tau69kVEZkBJXxJSbVsfTV0DWp8vIjIDSvqSkM6N56ulLyISKiV9SUjba9ooyE5nZUVBrEMREUkYSvqSkHbUtLJ1UTFpaRbrUEREEoaSviSctp5BjjR1azxfRGSGlPQl4ew82QZofb6IyEwp6UvC2X6ylUxfGhuqi2IdiohIQlHSl4Szo6aN9dVFZGf4Yh2KiEhCUdKXhNI/NMLe2nYV5RERuQhK+pJQ9tZ2MDTiuGyRxvNFRGZKSV8Syp7T3iS+LYvU0hcRmSklfYk7wyP+Kc+9XN/J/KJsSvIyZzEiEZHkoKQvceU3e+vZ+uU/0NTZP+n5A/WdrJ1fOMtRiYgkByV9iSv7ajto7x3inmdqzjvXNzjCseZu1s7XUj0RkYuhpC9xpa69D4AfPX+Szv6hcecOnenE72CdWvoiIhdFSV/iSn17H3MLs+gaGOYnL5wad+7l+k5ASV9E5GIp6Utcaejo51Uryrl6eSnff/oEA8Mjo+cONHRSlJNB1ZycGEYoIpK4lPQlbgyN+Gns7Gd+UTYfum4ZTV0D/Gp33ej5l+s7WVtZiJl21hMRuRhK+hI3Gjv78TuYPyeHa5aXsW5+If/y1HH8fsfwiJ9DDZ3q2hcRCYOSvsSN+nZvmd78OTmYGf/9umUcb+7hkYONnGjpYWDYr+V6IiJhUNKXuFEfmLk/PzBm/7pL5rGgJId/fvLYmEl8Wq4nInKxlPQlbtSNJv1sANJ9aXzwVUvZfaqd+56rISs9jWXleTGMUEQksSnpS9xo6OijODeD3Mz00WNv2bqA0rxMdp9qZ/W8AtJ9esuKiFws/QsqcaO+vZ/KovHL8bIzfNx51WIAjeeLiIRJSV/iRn173+h4/ljvvnIRi0pzuW5lRQyiEhFJHukXfogkk6aufpo6B7ikKv4mxNW197FtScl5x+fkZvLkp26IQUQiIslFLf0U8/d/OMLb7n5+XKW7eNDVP0RX//CkLX0REYkMJf0Uc+psL90Dw2w/0RbrUMZp6Di3Rl9ERKJDSR9vj/YH95+Zldd6cP8ZdtS0zsprTaa+w1sW98ThppjFMJm6CWv0RUQk8pT0gbufOsZf/nIfI34X9df6wgP7+dPvvcCzR1ui/loTOedGC+A8HmdJv37CGn0REYk8JX3ghtUVtPYMsud0+6TnewaGOds9EPbrDAyP0Ng5wOCIn/fdt2PWW/ztvUP0D/lZWJLLseYeTrf2zurrT6e+vQ9fmlFRoKQvIhItSvrAdSvL8aUZjx86v/XbMzDMHf/0LO+9d3vYr9PY4X1w+ORrVlFZlM17frCdl6b4oBENwa79t12+AIivLv769n7mFWbjS9MOeiIi0aKkj7ck7NKFxTw2Iek75/jUz1/i0JkujjZ141x43f/BcetNC+bwow9sozgvg3ff8yIHAnXloy24oc1Vy8pYVJrL44ebZ+V1x+rqH+K5Y2cZHvFPiK2PKo3ni4hElZJ+wI1rKjjQ0ElDoDUM8I9PHON3+86wam4BvYMjtPUOhfUaYzeUqSzK4cfvv4LcTB/v+v4LHG3qOu/xjx3ydpebicFhP72Dw5OeC/5t8+dkc8OqCp491kL/UGhL9xo6+ib90NPeOzij+O5+6jhv/3/Pc93fPcE/P3ls9Pn1HX0azxcRiTIl/YAbV3vV3h4/5LV+Hz/cxDcePswbN87nYzevBKCurW/K54cimPQri7zktqAklx+9fxtmxru//yJDY1q/g8N+PvRvu/jGQ4dn9Bp/9at9vPEfnpk0Qde195HhM8rysrh+VTn9Q35eOHHheQU1LT1c87XHeejl8Ssc9pxuZ8uXHpnRpMS9tR3ML8pmQUkOX/39Ia7420f57C/2caajXzP3RUSiTEk/YEVFPtXFOTx2qIkTLT38+U92s2ZeIV+7YwPVxV4yqmsPb+JbfUcfZfmZZGf4Ro8tLc/nc69fTX1HP0cau0ePHz7TxeCInxdOnA15WKF/aITf7m3gaFM3u06dP1egIVDbPi3NuGJpKVnpaZPOY5jo+eNnGfE7nj8+/gPCY4ea8Du455makOIDONDQyZXLyvjpB6/k9x95FbdvquIXu2oZGnFUF+eGfB0REZk5Jf0AM+PG1RU8c7SFD/7rDtLTjH9516XkZPpGk35tCC39X79Uz8v1HZOeq2ufvDW7oXoOAPvrzj1vX+Dnlu5BjjWH1sX/7LEWega97vr799Sdd76ho2+0lyE7w8dVy0pDmsy346RXyGf3hEmHzx87C3jDEMH5CtNp7hqguWtgdOOcNZWFfPWODTz/2Vfzrbdu5LZN8y94DRERuXhK+mPcsLqCvqERjjV38w/v2MKCEq/lWZSTQV6m74JJv29whI//bA9f/PWBSc/Xt/cxv+j8pL+kNI/8rHT2149N+u1k+LyZ7C+cOBtS/L/fd4aCrHRuXjuX3+xtGDdc4L3++A8d16+qoOZs7wXnDewKJP2D9Z2j5Xv7BkfYfbqN16+vxAE/ffHUBeM72OBNWFxbOX63vOK8TP54SzV5WdoKQkQkmuIm6ZvZrWZ22MyOmtlnYhHDlUtLWTW3gLveuI6rl5eNjY3q4twLJv0dJ1sZGnG8cKL1vJZvsDDOZC39tDRj7fzC0dY9eGPf25aUUlGQxQvHLzzuPjzi55GDjbx6TQVvubSa1p5Bnh4z1j7id5zp7B83We6GVd48hula+2e7Bzje0sPG6iIGR/wcavAmHO482cbQiOPNW6u5YVUFP91++rwPGRMdmCLpi4jI7IiLpG9mPuC7wGuBtcDbzWztbMeRneHjoY9dy7uvXHzeuarinAt2YT977OzoOvMH9tSPO9fZN0zv4MiUM9TXVxVxsKGT4RE//UMjHD7TxYbqIrYtLQ1pXP/FE6209w5x6yXzuH5VBUU5Gdy/+1wXf1NXPyN+N26/+oWluSwty5t26V5wbsB/u2YJAC/Vtgf+1hZ8acZli0t41xWLaO4a4OGXG6eN8UB9J1VzcijKzZj2cSIiEh1xkfSBy4GjzrnjzrlB4KfAbTGOaZzq4hzq2qafyPfcsbNsXjCHSxcV88vdteMSdfADw1Rr0ddXFdE/5OdoczeHznQx7Hde0l9SQmPnACfPTv/aD758huyMNK5dWU5mehqvWz+Phw80ji7fC67Rn/j616+q4PnjZ+kbnHzp3o6TrWT4jFvWzaO8IGu0auFzx8+yobqI/Kx0rl1ZTnVxDj98/uS0MR5o6GSNWvkiIjETL0m/Cjg95vfawLG4UTUnh87+YTr7J1+r39k/xN7adq5cVsrtm6t4pbGbgw3n1t7XX2BDmeD+9vtqO9gXaE1fUlXEFUu9/eWnG9f3+x0PvXyG61dWkJvpjYvftqmK3sERHjngtb6Da/QrJ/Q03LC6nMFhP88dn3zZ3c6aNi6pKiI7w8fG6jnsOd1O98Awe2s7uGpZKQC+NOMd2xby3PGzHG3qnvQ6/UMjHG/uHp3EJyIisy9ekv5ktVfP6882sw+a2Q4z29HcPLvV5KqCy/amGNfffqIVv4Mrl5XyhvWVpKcZvxozg76+Y/qkv7Qsj7xMH/vrOthb20FJXiZVc3JYVp5PWX7mtOP6u0+30dg5wK2XzBs9dvniEiqLskeHGc7VCBj/+pcvKSEnwzdan2CsgeER9tZ1sHVRMQCbFhRxvLmHRw82MuJ3XLn03LyHt25dQIbP+NELk7f2D5/pwu80ni8iEkvxkvRrgQVjfq8G6ic+yDl3t3Nuq3Nua3l5+awFB4yuIZ8q6T937CyZ6WlsWVhMcV4m168q5/49daM799W195GZnkZpXuakz09LM9bNL2JfXQf76jpYX1WEmWFmXL6kZNoiOj964RR5mT5evaZi3PXeuHE+T77STGvPIPXt/eRnpVOYPX6GfFa6j6uXl/L44abz5g3sr+tkcNjPpYGkv3GBt7Tw7qeOk+Gz0eMAZflZvPaSSn6+s3bSioDBSXzr1NIXEYmZeEn624EVZrbEzDKBtwEPxDimcYJj4bVTjOs/e+wsly4sHi28c/vmKho7B3j+uNctX9/ez/yibNKm2VDmkqoiXq7v5JVGbxJf0LYlpdS19026K15z1wC/eamBN19aTUH2+Alyt22qYtjv+N2+htE1+mbnv/51qyqobevjWPP4rvngUr0tgeQerCfwcn0nmxcUk5PpG/f4d16xiK7+YX790nmf1zhQ30lBVvpozQMREZl9cZH0nXPDwIeBh4CDwM+ccy/HNqrxyvIzyUpPm3QGf1vPIAcaOkfHuAFuWjOX/Kx0fhmYQT/Vcr2x1lcXMjDsx++8iX1B20bH9c9v7f/ohZMMjvi586rF551bU1nAiop87t9Td94a/bGuCSxP3F7TNu74jpOtLCzJHd3utigng6XleYA3jDHRZYuLWTk3n+8/fYLdp9rw+8/1HAQn8U32oUNERGZHXCR9AOfc75xzK51zy5xzX451PBOZGVXFOZOu1Q9OshubCLMzfLz2knk8uP8M/UMjoSX9MYk+2KoGWFlRwJzcDF44Pn4y3+Cwnx8+f4rrV5WztDx/0phv31zF9po2jjR1TblccHFpLkU5GeytPVdxzznHzpPto+P5QZsCcU2W9M2Mj7x6Jcebe3jTPz7LlV99lL/61T7+60gzhxo6NYlPRCTG4ibpJ4KqOeev1R8a8fOjF06Rm+kbl6gB3rS5iu6BYR7cf4bGzgtvKLOkLJ/cTB/lBVnMLcwaPZ6WZly++Pxx/d/uq6ele4D3Xr1kymu+caNX2rZ/yH/eJL4gM2NDdREvnT5XHOhUay8t3QNcunh80r/lknmsrSxk88I5Ey8DwOs3VLLzr27m23+ykc0LivnPnXW86/sv0jM4wprKgmn/fhERiS7VPZ2B6uJcDtSf22nO73d8+ud7+a8jLfzN7ZeQmT7+M9S2paXMLczin588ht9B1QW2jvWlGa9aUUZBdsZ53eDblpby8IHGwNh8Ds45fvBMDcvK87h2RdkUV/R28rt0UTE7T7ZN+6FjQ3UR//zkcfqHRsjO8LEj0NV/6YSW/i3r5nHLunmTXWJUUW4Gb9pczZs2V9M/NMJ/HWlh96k2Xru+ctrniYhIdKmlPwPVxTmc7Rmkd3AY5xx/89uD/GJ3HR+/eSXvvGLReY/3pRm3bari0BlvvX4oW8f+y7u28o23bDzv+LYlgXH9wNK9Xafa2FvbwXuuXnLBcfLgRjbT7Ve/oXoOI37Hy/XeLPudp9ooyEpnZUV4rfPsDB83r53LX9y6msJsVeITEYklJf0ZCM7gr2/v47uPH+WeZ07w3qsX82c3Lp/yObdvOldjKJz94tdUFlKQnT46f+CeZ2ooyE7nji0XrmH01q0L+Mqb1rNtyfnj8EEbA0MTwXH9nTVtbF5UPO1qAxERSSxK+jMQXG72rUde4RsPv8KbNlfx+devnbalvaaygFVzvdbyZDvshcoXHNc/3kpDRx8P7j/D2y5bMFqBbzrZGT7esW3h6L4Ak5lXlE1FQRZ7azvo6Bvilaau8ybxiYhIYlPSn4FgVb7f7TvDq1dX8PU3b7hgS9jM+J83LOPWdfPOW9c+U9uWlnC8pYdvPfwKzrlJNwYKx4bqObxU287uU204d/54voiIJDZN5JuBioJsCrLSWVNZyHf/dAsZvtA+M922qYrbNoW/lUCwe/4/dtZyy7q5LCjJDfuaY22sLuIPBxt54nAzvjRj04LJZ+iLiEhiUtKfAV+a8buPvIqKwiyy0sNrtV+MdfMLyc9Kp3tgeNplehdrQyDJ/3xnLWsqC8jL0ttDRCSZ6F/1GYp063om0n1pXLuyjLr2/tHZ/JG0MVD6t3tgmEsXqmtfRCTZKOknmG//ySb8fqJSznZObiaLSnM5ebaXSxdH/kOFiIjElibyJZisdF/YEwKnE6wqqEl8IiLJRy19Geftly2gODdjtCaBiIgkDyV9Geeq5WVctXzqsr4iIpK41L0vIiKSIpT0RUREUoSSvoiISIpQ0hcREUkRSvoiIiIpQklfREQkRSjpi4iIpAglfRERkRShpC8iIpIilPRFRERShJK+iIhIilDSFxERSRFK+iIiIilCSV9ERCRFKOmLiIikCCV9ERGRFKGkLyIikiKU9EVERFKEOediHcNFMbNm4GSs44iBMqAl1kEkMN2/8Okehk/3MDypev8WOefKw7lAwib9VGVmO5xzW2MdR6LS/Quf7mH4dA/Do/t38dS9LyIikiKU9EVERFKEkn7iuTvWASQ43b/w6R6GT/cwPLp/F0lj+iIiIilCLX0REZEUoaQfQ2Z2j5k1mdn+McfuMrM6M9sT+HrdmHOfNbOjZnbYzG6Z4pr3mtmJMc/fNBt/SyzM5P6ZWamZPW5m3Wb2D9Ncs8TMHjGzI4HvxbPxt8RKlO7hlO/hZDPD+3ezme00s32B7zdOcU29B8O/hynzHpwpJf3Yuhe4dZLj33bObQp8/Q7AzNYCbwPWBZ7zj2bmm+K6nxrz/D3RCDxO3EuI9w/oBz4PfPIC1/wM8KhzbgXwaOD3ZHYvkb+HUz0/Gd1L6PevBfgj59x64E7g36a4pt6DnnDu4VTPT3lK+jHknHsKaA3x4bcBP3XODTjnTgBHgcujFlwCmMn9c871OOeexktc07kNuC/w833A7RcfYfyL0j1MGTO8f7udc/WBX18Gss0sa5KH6j049WNDvYcyBSX9+PRhM9sb6PYKdu1VAafHPKY2cGwyXw48/9sp+j/EZPcvVHOdcw0Age8VkQ8vIYRzDyPx/ER3ob//DmC3c25gknN6D3rCuYehPD8lKenHn38ClgGbgAbgm4HjNsljJ1t68VlgNXAZUAJ8OgoxxrOp7p+ELtx7mOr/Dab9+81sHfA14L/PfmgJI9x7mOrvwSkp6ccZ51yjc27EOecH/h/nuvBrgQVjHloN1E/y/AbnGQB+QIoNAUxz/0LVaGaVAIHvTZGOMd6Few8j8N8goU3395tZNfBL4N3OuWNTXELvwTDvYaq/B6ejpB9ngv+zB7wJCM5ofQB4m5llmdkSYAXw4lTPNzPDGwvcP/ExyWya+xeqB/AmCBH4fn8k4kok4d7DCPw3SGhT/f1mNgf4LfBZ59wz01xC78Ew72Gqvwen5ZzTV4y+gJ/gdT0N4bXk34c3G3UfsBfvf/7KMY//HHAMOAy8dszx3wHzAz8/Fnj+fuCHQH6s/844un81eBOGugOPXxs4/j1ga+DnUrwZ00cC30ti/Xcm4D2c8vnJ9jWT+wf8FdAD7BnzVaH3YFTuYcq8B2f6pYp8IiIiKULd+yIiIilCSV9ERCRFKOmLiIikCCV9ERGRFKGkLyIikiKU9EVERFKEkr5IgjKz283s45Mcv97MnJldH4OwJmVml5pZr5lNtV/EZM/5jpn9NppxiaQardMXSVBmdi9wk3OuesLxQmAtcMA51xmL2CYys8fw4vnwDJ5TCRwHXu+ceyxqwYmkELX0RZKMc67TOfd8HCX8LcANeJughMx5O8z9GvhkNOISSUVK+iIJKNDKvxOoCnTlOzOrCZw7r3vfzJ4ws6fN7FYz22NmfWa228y2mVm6mX3FzBrMrNXM7jWzvAmvl2tmXzOzE2Y2GPj+OTML5d+QDwB7nXMvT7jmOwIxdJtZh5ntM7OJu6b9FLjFzBYgImFLj3UAInJRvgSU422h/MbAsan2FQ9aDvwd8GW82vlfx6tL/gDevwXvAdYEHtME/AWAmaUDD+ENGXwJr6b5FcDn8bZv/sQFXvdWvE1SRpnZNXh7Q/wf4FN4DZDVwJwJz30qcO5m4J4LvI6IXICSvkgCcs4dM7NmYNA593yITysFrnLOHQcItNLvB5Y4524KPOYhM7sWeAuBpA+8HbgGuM4591Tg2KPeRo58wcy+5pybdPtXM5sLLAZemnDqCqDdOffRMccenuTvbDGz2sDjlfRFwqTufZHU8Uow4QccCnx/aMLjDgHVge2ZwWupnwSeDQwFpAda/w8DGXgJeSrzA9+bJxzfDhSb2Q/N7A2BLVOn0jzmOiISBiV9kdTRNuH3wWmOpwO+wO8VwCK8rU/Hfr0YOF86zWtmB76PG3pwzj2J15uwAPgl0GxmfzCzDZNcow/ImeY1RCRE6t4XkQs5C5wA3jrF+ZoLPBegeOIJ59zPgZ+bWT5wPfA14EEzq3bO+cc8tARvX3QRCZOSvkjiGmB2WsAPAncA3c65Qxd68AQ1QD+wdKoHOOe6gd+Y2VLgO3g9B80AZubD6w34j5mHLSITKemLJK4DQImZ/Q9gB9DvnNsXhdf5EfBevMl738SblJcJLMNbOXC7c653sic65wbN7AXg8rHHzeyLwFzgcaAeqAb+HNjjnBs7/n8JkIc3i19EwqSkL5K4voc3ie4reEvdTuLNlI8o59yQmd0CfAb4ILAE6AGO4S3FG5zm6QD/DvydmeU553oCx17AS/Lfxuu+b8KbGPj5Cc99A3AGeCL8v0REVIZXRKIqUBa4FvifzrkfzvC5B4D/dM5N/DAgIhdBs/dFJKoC5YC/BvzFmGWAF2Rmt+ENAXwzWrGJpBp174vIbPgW3hLASrwx/FDkAO90zrVHLSqRFKPufRERkRSh7n0REZEUoaQvIiKSIpT0RUREUoSSvoiISIpQ0hcREUkR/x+TwFGv+lxG3QAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "running_speed_midpoints = session.running_speed[\"start_time\"] + \\\n", " (session.running_speed[\"end_time\"] - session.running_speed[\"start_time\"]) / 2\n", "plot_running_speed(\n", " running_speed_midpoints, \n", " session.running_speed[\"velocity\"], \n", " start_index=5000,\n", " stop_index=5100\n", ")\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Optogenetic stimulation" ] }, { "cell_type": "code", "execution_count": 31, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
start_timestop_timeconditionlevelnameduration
id
09224.653399225.65339half-period of a cosine wave1.0raised_cosine1.000
19226.823619227.82361half-period of a cosine wave2.5raised_cosine1.000
29228.643539228.64853a single square pulse1.0pulse0.005
39230.653749230.66374a single square pulse4.0pulse0.010
49232.423759233.423752.5 ms pulses at 10 Hz4.0fast_pulses1.000
.....................
1759562.688319562.69331a single square pulse4.0pulse0.005
1769564.758429564.76842a single square pulse1.0pulse0.010
1779566.868559566.87855a single square pulse2.5pulse0.010
1789568.988609568.99860a single square pulse4.0pulse0.010
1799571.118689572.11868half-period of a cosine wave4.0raised_cosine1.000
\n", "

180 rows × 6 columns

\n", "
" ], "text/plain": [ " start_time stop_time condition level \\\n", "id \n", "0 9224.65339 9225.65339 half-period of a cosine wave 1.0 \n", "1 9226.82361 9227.82361 half-period of a cosine wave 2.5 \n", "2 9228.64353 9228.64853 a single square pulse 1.0 \n", "3 9230.65374 9230.66374 a single square pulse 4.0 \n", "4 9232.42375 9233.42375 2.5 ms pulses at 10 Hz 4.0 \n", ".. ... ... ... ... \n", "175 9562.68831 9562.69331 a single square pulse 4.0 \n", "176 9564.75842 9564.76842 a single square pulse 1.0 \n", "177 9566.86855 9566.87855 a single square pulse 2.5 \n", "178 9568.98860 9568.99860 a single square pulse 4.0 \n", "179 9571.11868 9572.11868 half-period of a cosine wave 4.0 \n", "\n", " name duration \n", "id \n", "0 raised_cosine 1.000 \n", "1 raised_cosine 1.000 \n", "2 pulse 0.005 \n", "3 pulse 0.010 \n", "4 fast_pulses 1.000 \n", ".. ... ... \n", "175 pulse 0.005 \n", "176 pulse 0.010 \n", "177 pulse 0.010 \n", "178 pulse 0.010 \n", "179 raised_cosine 1.000 \n", "\n", "[180 rows x 6 columns]" ] }, "execution_count": 31, "metadata": {}, "output_type": "execute_result" } ], "source": [ "session.optogenetic_stimulation_epochs" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Local Field Potential\n", "\n", "We record local field potential on a subset of channels at 2500 Hz. Even subsampled and compressed, these data are quite large, so we store them seperately for each probe." ] }, { "cell_type": "code", "execution_count": 32, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
descriptionlocationsampling_ratelfp_sampling_ratehas_lfp_data
id
760640083probeA29999.9496111249.997900True
760640087probeB29999.9025411249.995939True
760640090probeC29999.9052751249.996053True
760640094probeD29999.9052751249.996053True
760640097probeE29999.9853351249.999389True
\n", "
" ], "text/plain": [ " description location sampling_rate lfp_sampling_rate has_lfp_data\n", "id \n", "760640083 probeA 29999.949611 1249.997900 True\n", "760640087 probeB 29999.902541 1249.995939 True\n", "760640090 probeC 29999.905275 1249.996053 True\n", "760640094 probeD 29999.905275 1249.996053 True\n", "760640097 probeE 29999.985335 1249.999389 True" ] }, "execution_count": 32, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# list the probes recorded from in this session\n", "session.probes.head()" ] }, { "cell_type": "code", "execution_count": 33, "metadata": { "scrolled": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "array([[ 1.1895e-05, 2.7300e-05, 9.1650e-06, ..., 0.0000e+00, 2.7300e-06,\n", " 3.9000e-07],\n", " [ 9.4185e-05, 8.9505e-05, 1.2285e-05, ..., 5.8500e-06, 5.8500e-06,\n", " -1.1505e-05],\n", " [ 6.0450e-05, 5.7915e-05, 1.4820e-05, ..., 0.0000e+00, 3.9000e-06,\n", " -1.4430e-05],\n", " ...,\n", " [ 1.0530e-05, 5.1285e-05, 8.3265e-05, ..., 0.0000e+00, -3.8025e-05,\n", " -2.1645e-05],\n", " [-1.3650e-06, 3.5685e-05, 5.4600e-05, ..., 0.0000e+00, -2.8470e-05,\n", " -2.4375e-05],\n", " [-1.0140e-05, 1.4625e-05, 3.5685e-05, ..., 2.7300e-06, -1.2675e-05,\n", " -9.5550e-06]], dtype=float32)\n", "Coordinates:\n", " * time (time) float64 3.774 3.775 3.776 ... 9.966e+03 9.966e+03 9.966e+03\n", " * channel (channel) int64 850126378 850126386 ... 850127058 850127066\n" ] } ], "source": [ "# load up the lfp from one of the probes. This returns an xarray dataarray\n", "\n", "probe_id = session.probes.index.values[0]\n", "\n", "lfp = session.get_lfp(probe_id)\n", "print(lfp)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We can figure out where each LFP channel is located in the Brain" ] }, { "cell_type": "code", "execution_count": 34, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "['APN' 'DG' 'CA1' 'VISam' nan]\n", "[ 0 27 35 51 74 87]\n" ] } ], "source": [ "# now use a utility to associate intervals of /rows with structures\n", "structure_acronyms, intervals = session.channel_structure_intervals(lfp[\"channel\"])\n", "interval_midpoints = [aa + (bb - aa) / 2 for aa, bb in zip(intervals[:-1], intervals[1:])]\n", "print(structure_acronyms)\n", "print(intervals)" ] }, { "cell_type": "code", "execution_count": 35, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAE3CAYAAAC0Kga7AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzsvVusLV12HvSNOatqXfY+l/77YjtOIwsUYYMJKAFkLg88cAkoRkgJkiVeIiK3eAKUF56QeIgUEIgHJGTJkVASHiwQdhwsJBKBZISEgMhgJySRRTB23E6cbnf//3/OvqxVVXMOHsZljlp79+ru8/ff7UPmJx2dvfdaq2rWnLNWjTG+Mb5BzIyOjo6Ojo5vhPS9HkBHR0dHx+9u9AdFR0dHR8dV9AdFR0dHR8dV9AdFR0dHR8dV9AdFR0dHR8dV9AdFR0dHR8dV9AdFR0dHR8dV9AdFR0dHR8dV9AdFR0dHR8dV9AdFR0dHR8dV9AdFR0dHR8dV9AdFR0dHR8dV9AdFR0dHR8dV9AdFR0dHR8dV9AdFR0dHR8dV9AdFR0dHR8dV9AdFR0dHR8dV9AdFR0dHR8dV9AdFR0dHR8dV9AdFR0dHR8dV9AdFR0dHR8dV9AdFR0dHR8dV9AdFR0dHR8dV9AdFR0dHR8dV9AdFR0dHR8dV9AdFR0dHR8dV9AdFR0dHR8dV9AdFR0dHR8dV9AdFR0dHR8dV9AdFR0dHR8dV9AdFR0dHR8dV9AdFR0dHR8dV9AdFR0dHR8dV9AdFR0dHR8dV9AdFR0dHR8dV9AdFR0dHR8dV9AdFR0dHR8dV9AdFR0dHR8dV9AdFR0dHR8dV9AdFR0dHR8dV9AdFR0dHR8dV9AdFR0dHR8dV9AdFR0dHR8dV9AdFR0dHR8dV9AdFR0dHR8dVDJd/IKIvAfjS92As3xLSMP3B3We+8L0dBAOgT/D6t/qebwTSz3+7r/29gk8yt+8D4hrHa/129t3vljn6To4j7vvv5DW+y3F+t8xvwONXv/w7zPz5d/ksMb9f3yrHL3yR/8F//U88uUE4AaSXwgRQba8zAanIe/x1+0zF5lhUw/sSQAVPFpwKwFnfa8eKx1wBHvB049qPFUBt77Fx2HHiuDfHtr+Ha6XSfmdq47LroNrOWXMbi79Hz8dxfN9kS2zGE760fM7DfNp7N9eONsfgNm/2+zf64rPP+uefuxm5jYNTO7+vaxwLP3+cOMY4j3Gu/O/faK7s78+Nj9vYUtnunSfHCJ+3cdQsnwPaXov72NeStsfiBKRV98jFvnlu/z+3FnE97XM+N2FOfTy4OAYu3hfHEdfi8tzY/t3WIN4Xfq+yzond8xfj3lznxZw9t55xjDb3T9YK4Ry23/L2eux32492P8bvqs3xwv17bS6f/J3w7H32yz/1J36Jmf/xp2f65uihp46Ojo6Oq3gSenofYNaYIVoHbu3lreVb7OldtsfgjI01VbNaDgOQlmc8h9Se0vXys/Zz8EjSqp8x64L1dbPCETyYeJFm5ZjFZJ4Bt2swSyet8n5igFnGbeP3YwWvBdBrt3EwkNQCdC8qmhDB2iVu53LLJRw/zqfNy6W1VIewFqTXfXE8mz9wGA9v59HGdmmNuuVW23X4mg3NGncjjcPhkq7JhUcSLUifR/t3uRdp+zcf44X3ZvuMKlBT+7wfK+znePwUjxfG7etkn4lzY+fObQ9T2Y7Jx1PsZOHe0r1o+9XWKd4b32gOfM+l7WcAXSvI9acClFHnNyyQ793o/V+sqx0rRgPsJR8rt/v70kux/e97LK5B2v4O4FnPyj2J6C1b9EHvzXgdyfZ8CWtS23cOrUAd2/0Nu9fydmwU7t24ZtGri3voXdA9io6Ojo6Oq+gPio6Ojo6Oq3gvQ09ACx84AokJbN3XdOFyemgqB3LPXHVq/0c3MoZtSD+TLtzQGAowl9KIK6wXLmlwaf1aQhiD9e8x/PAcgeZhn0gCXr4WwlYeagjXxTEcUtXdLYFsC8e091UjRHM7fiTtLklX/3wkcS9d5RLc6nBMHsLcXozV5sqvtfjbwDbO+vTaY2jOzmkEqIXGmCQkUfPFHCZdKsZmjmNI1NdEwzXVwjc64E1yQiBBI+H5JLQUrsdDLIEwjWu6+Rxvwz8xkWGTSBFCSpvw3sUYPNxkx7H5M3K7hD1DbR/QxTHjdSdd+zyHNY6hKwq3R7zP4/4K14kCD8dchqkt5OkkdQjpPEnI0O8R2++yqdTC1uOnGGqz+z2MexNCjMe2Y4Q1t3HFa/d5D+HipGGpuKZxbYDwnRfW7l3RPYqOjo6Ojqt4Lz0Ks1bzDE/1cytKrco6YkNcu4UWLLtklkVIJbN0xVQa8fkkhTRYnGZ1O0EaSDO3DnBhQUYrXF8za9rOleZgSV9Y6XUKlhH0dQTLLqQB+/+XFuczlk/NaKRxTM0Lx/H5WcL8BKIYaBZRXraWjFlD9vcnFqazj9txR0sxErA+fxcphBTGlI04LIw6Eri2uYtWPCeZ80jempWbSktsAOB7zCzOxEDZBUu1AijtejfeRbDkjaSswWNKq16Dpr1Gizh6yRw8OrfuEax9s6YDIe9zpx5V9Gw3qd0hEQTPeB417EUEr9H2gicM6DkTtvvJreJ4b9neD95JWpVcN6s4A8zyHruf6rj1cICtFc5ZroF4m2wSU5R9bcJ96+MMHq4R7fFe4hySRqBW/jNWfIxI1Gl7XnmDrmtImU9LmDdqHgS4kdyX3zeX1+PHjtGOd0D3KDo6Ojo6rqI/KDo6Ojo6ruK9DD0BEr7w0I65WNw8rLSGv0PeayGDS/LRwxqxWpK39Ql2fP+fQijGaisCCXkZiornSXMIY4TxbXLmY2hFQwAWDqFzey26p57vHuoHLitZ3ZUN5LHVEeTgQtvYbV7kZBfXUeBkH0cSztzo4MJ7SOUi3PfcWC1UEI/1JE//GRI3wkIAtg51tItp82RhPQujxdds3DauDZnMYf0s/KTX56T1xfp5zU4I9/BF8gVTqKvYheM/gzrC63FSAcoUQjsX82/HpzDO+He7Rk+eYK0rQNs3cT/H8Kwfx+6VemF92lpb2C2E7fjy2ozoDePdEO2h8joSxZvECQu7JEjYLKoRXJDzVCDJKwb7/nimRoQqPGwZQ8eX9Sqx1oPWbYjryXkADwl6iE2TXvLcxnhZof1E6eBiD3lN0TPz+q7oHkVHR0dHx1W8fx4FNRItkkGXFcBOGAZS8ZLAeo5QigSbHOiClLqw0AFs0tkuSSR6ZnzRsowk1KV17JZB9BgQ0jVJSNTNOFOz7uy8G0LU3kfNiqm0/Z8vLXyzqAa4lWYV51EHx8a8qaROLTHAX48pp5GANyvOrMCLalJfqzBfl5bSc2mlMRkheoA25hJ+tvdt9g7wZF38unU9n0tljZ5JWiEpm3E+U7MoNx7UM9fyhMBft8e3hA4K+9zm0383LwzBQsXWS7TXfGw6rmq/17Yt3HIOXqF7XGGd7RzxXozzE9cxznMx7yyS3rZWNZwvnDveh8jBGo+Wts2ljZvxxBu+tNKRsL1vYlpu0uFz+933cUwYwcXesr02bL+PKOhxbdY4eox2mSGZJu6V9Mx7Pwm6R9HR0dHRcRWfyoOCiH6IiP4GEf1pIvprRPSXiOhARD9JRH+ZiH6FiH6WiI76/j9DRP8ZEf0vRPRrRPRHP41xdXR0dHR8+/g0PYrfB+A/Z+Z/GMBHAP4IgJ9j5n+Cmf9RAH8DwB8P7/8BAP8sgD8M4D/8hketQvTkWVyztAoZaSJa0QXPi75nUaLuom7Ac72DqxnJTHNFjcxLBU6ee150DA3oZ2KV9KUY13Muf6zg9v9jrj/Erd6Q7xckIdDy/eXgwfWP5HMYh82JE516bUnn0a7XQxBxXEaMxvCdfdbCG3xBYmM7lkhWxnVMi6xlsvVdw/s5rMcia2yvpzCu+L+NOYfjb469hjUMx7d5ir/7Gl6G6XBx3Rdz638Pe9HmNy1oBL7OUZ51DsJapOViPgqQz2GcIXzDIVTkY7skNMPe42fCN5cV+x7eDHvdQik11l5YiIq2e2Wzd0qbpzg3FObNrtGFJsPx/XxhfUEtiSWGfH3PrGEeFwBaO+PfH2H/2neLHyvMZZ6344/X5WMJc8AX9+pmX4bvijiv/lr4PgDCfWn30dqSUOw+tfoK/1vcW++IT5Oj+H+Z+Zf1518C8EMAfpSI/iSA1wBuAfzF8P6fZ+YK4K8T0fddHoyIfhzAj08vP/cpDrmjo6Oj4xKf5oMiJHGiADgA+DMA/jVm/hUi+mMA/rlv8P4nFAwz/wKAXzh+4Ys/aamAkfCJBKlZxmaFe4pkDmmMobHJRucopNMZYWv6Ll7ZbKQ4+1s3JKxbdEr8uQZOxUZ/JXozmxQ44Gn6LJpVYmPY6FcFiyTPjTx2iy1YOZGkviTNolVs17L5mxHfQxhvsOAutYguiUuqIRUwWDlmNaY1EKLRGrsksDX98TkCnAJ5HUldT13l58cY0143+ksDPNVxU2mN8N6LtMka1i820IlwDzGQrl45TWFv2vtGbAl+wqaaP/4dALgCbGmzcR14O15LrjBS3CS/n6gM2PgUZtnWARvNNNsbMQ05JkvYlNt7XTEB2zWJul/1krS1e+pibq3i/FLjy64jaozFavtNk6GwrmmBJ3H4scLxLEX58n6Ne9KvM4XX1BupF4kqcS1t/U13zRNK0L6DQHKseJ0u3R510z6hR/HdJrNfAPg7RDQC+De+y+fu6Ojo6HgHfLfTY/99AP8bgN8A8FchD46Ojo6Ojt/F+FQeFMz86wB+NPz+n4SXf+qZ9/+xi99vrx3fKzDt/SHUAxLxrhTCKebWmchbdMM5hCNi+MVznM0tj5+r2IYKopvJ7Vie367hCw9jhdedINRwyiaEYm66ubrpeXc6Etsx73+TQ63XaPNSRwmnbMZ6cQyfM9per5//gpi/rH7d/C2Ee2JYw8bqlb9xPeLYsT2vjwPbeaTwfvushycuxmH7xcNUep1GNnrfc8tJt9BB3Ee6N/w1PL8mHraii99DXUEMlV3W8hDa+3zcMSQYjmHXDOgahzmKNRKe41+w6fH+bFjO5jysYYRXlIfwWCT9N2th13kRz6ghFObjjEkFNpcVXpOyEdgMe8YFQS2EB3hIz98b7tG0BLFDvTesatvmMF5LDLGSroGT12HuYpg5JsHEfRDXBkDrdhjOZbUamzBsvA4dn4XXLfSMsDc+CXodRUdHR0fHVbx/ldnA1rICNhaWEWtmvaRI8qTt5zapndg+7ZNqScHSO+3v6s0YkZ0CeRcrTzlY28Tw6tL4nhQsOh+PWiVGDtr7YpMlJ2hLkFo3awTtGKaHtSFm9b35vL1uk2yOqXdulZmXEyzbHNNdzQugMPYLwtgISbv+aFVFr8VTkO28ZjmrdRZT/3xuFbZmRlK6FH2cdzTL2K1qG3tq779Mb7bqcvdeL9JnY+W5y4dbsgE1Ij2tYqEaoe8JE3otTprr3JpmVZwn6y3tvZQDYrplDcSnp2eyzE+ZtvO3IetDpXlc+2hWsnq/lkZ6SXRf7qGisv/Rc41pyZ4gkuD6ZfkcrPPg7dnxbQxPkjr0GtIC1H3zYmgN56ftz96YyO79C8/60tPxawwRAkMK1xlJZ9tLUSmAKlz7zT2mS88RbewxKebJXARP0tbE1up9I7M7Ojo6Ot4z9AdFR0dHR8dVvJehp0iiyh/U++MWOomy14QQMgjhpSdETyBN3VUMLuqGIw3hIg+HaOgApDLB6gq7y0rNrd7kpV+S6Wjjiv197X8PTVjFpp3HQjerhNw8dGLd0CIBfUmyQauBK4MT+WvEMlmX7jMVOUBagTISksbiWBnAtLaJtb/l0s4Vq383JKWNScN+TwQcAamojT3ICZv6Agsz2BwkbtfFpOHIKNgW1tmOHxMJfC5qW+sYFrAwyuYzRlza+y7cfw8HWVhMiVnfkyHUcxmOsPBeu2D4HrokSuN7NrUxFZuQn89bmI/LWqU0y5wZ8b1JCrDrstqki/qAOI5Iisc183sS7Zhxr3uYqba5sfsyjmVznNLeb6E9R2pz7qFI1nPgYv4iecwAsmoKXoQ0XQDTQk7x/owhcF0zTgCP8D3stUM2/hgaD6FS22+xet5rkC7uhSgS+K7oHkVHR0dHx1W8fx6Fkq7R0nRLXNP8vDdwqEz0tMNgXW8sefVKLi1Ys37KReXlcxbb5v+YCotwjvz03JEQjVYcZwCabugVl2aJBCtiMxcJoOHiHNDjYGshxrGnYsQp+RjE+6HNOd1zWWlTkcxEm9RL3nSEaXPg1xrTC0MyQrSIbbyeWHBB9sXr8epe3h6nWVfk53c59ZDSvKmIvZy76P1d7qmwto5IkF+kshpBzwle4XuZmsxo1bh+nRTGG0lOs+BN+voiRdPnAS3t0j7r8urBm43nYSOGjRRPYW7CfijmncU05UgGh7n2nvYJ2z0d5voyhX1DAqdw/Ljm6m3HOSs7bDweu2cuPdSNR6l754nHE7y7mH68SSOm1lfbPRR9T0zrjt8VT9Jnbb4vNNJiAyYnwxGuLaxNjanOfLEW74juUXR0dHR0XEV/UHR0dHR0XMX7F3piccc2BFZ035VMjmERq+T0PH6CV13GnHigvSd2YLvsM1w1HBLDA7HDlIUcnBRc4S7ysyEmvQYjwLmqG82hApbbMcvYiGEjSo2crAM2PZQ3VcRGSHIIQel4LZ/bQzWaSx4jSJuqYVaC7NJ91vdt6leojSNKqgOyLkAYJ1p4hipAIexEjCdkqScH6DFi7YMRkhzWejNutOMg7qNADnuIp27XGmg1K8DTMEMUiYvELmmdyIaMD2P0OhICsgnthdc3ndUApMKomWQebSwkyQRG3j8hlS2ccxmSiCQwA1QZVIAy0WYcl93dnksIuQzzIMhxx9Aq63oaKXxZHxATDjZ1DZf76+JaLsNfXrEeEkCsRgWAy/PHUM6mniLswViPdNndMIW6DD8eo0mWpyBY6Ikhdk2yZrbPfdyBuHfViXhtIfzmSQZhHi8TDt4F3aPo6Ojo6LiKJx4FEX0JwJe+B2P5ljDdfAbDiVs1aHjUpYVRBzNlgnWgBHhSi86tlwFgoo3uTFaLjowUz3JcSwPlJJaepMAysloXeRYr3shle6LnmZHPYvU9Jx1ulqVUBcv4zQOoA8nfRtqkd+bRrlc+V3YEKqzXK9dfs1yLV7NqWqM0hxEzihMhL+wVzGLJmEnZLPSyJ3ilL0EsWIgFFNNzqbT3bCyzVY5bB0JaWb0qwnqQ4+ZF/lYmGVM9YGulXngTdlzzCuoADCe0qvBgRafCPpc23zZXdSRZ22i94an1VSZCKgwaSK1DHdy0JfCpyLGWo7DHtseQttLbaZHL4wFOXMd9aXuBSdb/0qMC9Lp0bjiHSm3YNcjn0sJuEdeBmld06XlfWODirfGGlDUNq7RYlTq1dV10f5qnx4yyI5ShWcDSjIqBVeaUCiQ1FNiQ0LHiORL37pFWvb5EvhbE7X6uk16PWvFlFzwB0rTpQOx79b3e53b90ROM3r9HEgiews3JkiX0nhhJPBa0tHP3IHQvUmH3ruW6ZK0sGuAJHBlY9yTTkMTJsqZsqO2e83XV8eezfp9cRE3eBU8eFMz80wB++pMd9tPDzWe/yN/8XR0dHR0d3yn00FNHR0dHx1W8d2Q2VWB6y0hLRZoZPBJqJhVYYw8PbQSxiMBnCdHkmT0cshwJaa0AEerQ8o/z3EIAXIHxgZFPrH8j8CBu/PDQYhRGHpo7XydCPjPSyhjfrKhT2tY7AKhTknDZSKCVMZwK6pjchS/7BKrA+FbY+7JLEs5Y5Tz5pJ9l+LnWQ0IZJVwkhLu65gVYRg2/FHOpGeM9q4CgfD7NFXVKQJXfayakkkCFUaakbjA8JOFhGA4V6iRuNScN2RQJv62HJOeZK8o+gXNGWhjDo4VJCMtRw09K+Hk4JQEIHclsL1hyg3e2g4xrOLOHcMooIQoj+vMsJK2QmdxCYyOBs4b56ILgtBx5iNsv4QZuyRHVQiwMYgm5gIByUMIz1AsMj3Jd617Dlif97AyvWcjnsHYWmtB1BrOuIWtoRfZMPtv72cNI+Vw9nFSmBJoIYMbuTcW6lz05nCvKaPUz5McY3xYQM86vBoAI61723fAoYaWaZY7JyOjKHnJdd+Ge0nUZTrxZMwkLUqt3sKhnkX11WSNkIooyh4w6sva7lg/K/VKxroSya+GwOipJbmEkvW1N5NF6Zg8nljEW9rCb3KeEMiXkuXrYlbMlCjDq1LIALBxMB2AFSZi8AGnmzTg5yTV4qPGsr5OEZE3hAQzML6ndB7rP0iL3Zl5YQsN2T5T2OdsPnDSE+QnQPYqOjo6Ojqt47zwKI4zEfGwWFGdCHcgt6bIPT1QS66WAWn9frwgW633dG8EEZQ0bAbruhBgzcso+w0pQG5llvZXLjrx6fHwAyj6LhZ1JycumpyS6RGJN1DE1i2UQqyifGciEMgmRyok8XTFWTHMGlilhPbQxIQFlIJeVriYtXeEV17SHp0KWMWGsaoGXZnmJhS/jMQvItWkSNcvM5tUJRzk/IPNRdgS6K8BAmG9lrElJUc5ihQJaURvIwzoBwz2Q9LpsHXws+s/Sdo2g9/Wc7HPUqmTdwBLLs1mzMSGCnVS3OWZST4DMc1UifkfALKavzw/g2kI25jQ3ktXGxxlNll29l0hM1xHIFZIvzc3Sdc9z0uQFG3IipLmGzycnty3l1a6RB6AWainBUDKVCVSzXO8h+f1SBxlPmSS5Qy5Kzm/JCmWU9XSZc7PMM4GSXHidgPSo53QvtHkPNROGxyp7PbVEEirc0p4TgQcGSkvgSBDru+zkmHWS+a07gE7Nc6nq5VmTnzy3PcCJ5N4Z5b1lFNK+qPdeNamBB4CZfA1rJvdQ64CNdHjZEYaTzt1o3z9y7wyPsueIzfshEPETUr9M4birzHXUFasjvA1BPrW5t6SUT4LuUXR0dHR0XEV/UHR0dHR0XMX7F3oKOd00kodwaiYgaxWp+pBGcotrT07yAY0UpSL56uYmW+c26Zql9Q9J3TqT325RLw11aIgkE5Im99dMSOp+00TIj4y8CBlmZOl4V0BrRR0z0iokcmIgLRV8JpSRkB8rhocVaZc9ZDKcEurYCKoySfhk3Se/tnzW0BtJ+Or8kkBFPjOcGMuxEbsmCsjM6sYyaGWNh5CTeFYrsB5kHoz4K7vkoTsjINPS3G5JEuAmllaEhBweeFsH48R7y/02UUBCCDOF3PdGLGMrv02t+5/3D9bwURlIkhNC+K7ly5OHJZ4Iu1kOveWmW+gvWbgkvN/2CSQMsN6gkcqWTBDOY13O7N96JO1gyH5+IeBJu+Tp+rD8Xi1MojU1qQDw+WQJd1KrIxkeqlyrJlLY3EtIKksIZNB7psqF2n4C2txImKqt33AGwBXzy+RJIVQkvLKthdE9cKooZ/K5zSfGcktegxTve6lXYk+imN7KJkgLgwdZiLQy8qlK2EwJZ/v88AAPD5viQn6048rfLTkjzRXQe5VWCTUhE1AYORNQWZI+oJ+pjPWYMTwUTWwZUHYyNt/fq9bGEPt+y2d4CClr6JK0dqvsJfwGpKBqQEgzMN1XHy+xJCXUQkizJBrkpdVopMIb2f93QfcoOjo6Ojqu4r3zKDgD55dJUx+DBUdiOa4H0lRBITXNEhxOWvkbrFHxFMgJUiOCqlZVOklVqZHbmnq5HMmtQUsDrKNYgetRUv7KWT0VzpjeaiqbpmqCyC0SsTyzpJ9aVW4C5hdJrL5JiHr7fNV/ZZI0PrGCCfNLIbqFgAOSpzNKip0RugCwvJA5WvfkqYFlAgYlLj3d1lLvnLwlLEexWkFica07TekrQh5SAfg1ISt5yINYzE7Uccaic2TEd9m19OSyh7+GBKSz/M16YZdJfs6nRq6afHXZAanIOuWzjHs5KPFo5DeAbFasJh9Md4zlQI38zGqd1zau5dYschkPqqT0tkZXct71oPMQtI3WAwOZgfsEvkWrYoeOIYzR0kXzLOvjFdvu+YgXB8hcmIcH6M8s+8D2kW0yI7Ct6rqOhOUmeYqppXeve02egHjVy1HmIc+yn6loivjY7qlhJNUKE6vZ1tO9GCWFE7ETvykzKkKSxMoYHpsns+7J70/z4u0eW46yr01XbTkmLDeEPJN7VkzwcTK1NSk7WaOoUcYELLcEHhJi0ohZ+5Zmm89Nj8m+K/KpApSkDzknP/9yINBO5pQJWI6SSmtV0rb+44N6c5rSve4JeZHPzzfJPdM6SiLFoOMjT+aBe8eWGGKV85aua/f9u6J7FB0dHR0dV9EfFB0dHR0dV/HehZ6kQpnUhRQ318ImdSSsRwBVwg7rgWB9pTnxpjsXACdX2VzToVXjAhoSyC1csen0VoVEHu+1orkId7julfzOEmkwN7rsNISQSTjIRMhKGtdRSKh61LAYMzglD3tMbyS8RKuIEAJWXcxOlq2HhLRKZfN4f9H3Wq9zmKVCNC/AeKfCeJlALMcpYyP//DMnbqGAg5Dm+ayvPVQnVy18YSQ7k1RlVxBKFovEcsCZWzgAIRwEwHPHTfrbEgmIRQzNBN8qLLQEr6GoO13PJaytirfVqYUI7TN1FDKTiua2D418ryNQixCcRetPeAC4SJioHOCd9zxXXa9Dakb0dSVKkYA6CemZziRy0yN7uCB2wONBQltUAAxAegC8+10WAt86xFmyhcmg21gl3NNChDW30NtwYq3TkSSEkRmkoUGQhp1IQ3yFXI47StNbTv96kOurScZqdQ82lhiajYoJCVLrYv3My0SgSqBawaRhqiDF7uGaERhcgJA9wQLQhJapCeGZCGLsI735DtCQk5DyFiJiF4vkDCy7pOEmmRvOIdwE2tZQaT1NWuScVl9i+3AdJbQpJHSra2IVtCRPHtC6FKu3sNoS/bbmJLVdY4G3T7D7fThb1TxJB8XKXt/xSdA9io6Ojo6Oq3jvPApGszLSot6ApkyWnT7BqVlkZJW85/DkL2KF8CApf3VUa2Jox3JQO59VWqYifWKidO+6E1JuPagFNQFlNWvAiEGxeupoJDeBBnKirKg+zpgSykT+b7qTCtWaM/IimklmyY58HrsPAAAgAElEQVT3FTUDy23SMQjpWHatyUkdyOdmUOnq5ZYkXTABzKSV2+R6NEbgrgch59yC0jRGoFm4dr3Do/1dLK+ipF8dxdtiTV+2c9hnLdvYJbkntOrrzBgWTb2dgfVoaYKN8AXUOlMdIesR7TL00VrPbU2tgZCThbl9HrXtJZMz3/R+DvvQG2Fpyqini1rTpSqLb2mWliZKWYjhtFg6s+5ba3LDUO+YPV3UrifPqsU1JNcV40y+JmmFVyqbNLpZzTZm077iRK4XVNWjsfmyXvGcIZLaRrarxWtzXEcgyvfD7o/gceXayFfZY+Re1figiRpZSeNZ91Vuigcik89OcJd9wvBYsR6zRA+SWO2SLkwqWy/jzWq1I4v34x4fNGngqBEETQZZj0mr3kmVHeR+AlSqfSe6YOLBUdvEBCy7VkluXpU3OgKAQQj4dQeXpbf3DI+SDJMWvQ9sv+q6pbWtj3j6uhnVS7JrtvtOulhhowf1LugeRUdHR0fHVfQHRUdHR0fHVbx/DwoLBVmutBJ0TK17l+cRa6jBc/SDawYEYhMx1KGnqc1FFtE1DRfZ3ymeixqhSe1Y5aDkIsGFuSxHX8TuJLRk+ehC3ik5XCAkc6jaFDJRJLvTwt69bDg3WeRW/dxCIIC47lYjUCYhcb2/7qDhEK1qtkpzzrR1exfG+FAbuWfHHcjz5VNp5KKHlqzy2EM8Uhlt7rUP09aWAE4thmPksuTEM8pNbTUF1Nzssm81FWXXxPIsl355VVGOIk/ttS8ablwP5PUbrHtnPar43UGPt5Nhrrdav3Cjee+3cm6v0La9pvn65QCgqoAdAWXPqBM3kljDRRzCFzJP+vfU6niiskDZSVjJcuYt7CM5+9Ry50PUwSrX16PU6BTtnpgWVkFEJaLHtj8AeK1IWkMIz8Ba5XyC18Uk3X9pCSE4e7tVo5dA5od7z3pVU21JCNYp0sK4w1l+p9LuEf8s0HrRl7YvLUxJaGEzoH0fxJCm/83DZayV061DY1rZ59+q8lmTbVykUvc02zxZOFT3L1RK3xQLAKlOR7wfNRkizneeoVLs7PdBmk3aX+7VTcLLJ+Oy38MHRUdHR0fHdxXvHZltcM0WNGLN5aYzQA9bi7Noapq/X1Pd5lvaeB7p3KzgslNJ6UErZwNhBMCt7boTq8iqUs2jMOvKzmlV0CYTbo2FrJ92VatyviUnocktGyE1l5tGsklasFTXWhWqWafrAV557ER9NstbxmENiCS9lcEHq5JlDCdpelMHIdbXozRZWndJEwIk7TKmn0pFb7vOPAPLQSy4sm9jYAJKVgt+D7eiOWsSwE49ianJKKe1nQslaHjlZukD8AptQNNfT5AUwhFIpwTOjHwi1/YZTnr8pen9rEcjTsUSTafmxZL1VE8AV6lu98Y3j1pBbpbgKaQ4at/y/NjSPqm088K8wFV7skPG5uuXINpGDIz3BfOLLGu4I/dW08rI5yalD1ZCW/fhcBbLcrqrOL9UXSSyeag4fSb7OlgFuqWMG0Htac0VgHpr+aw9y0MaqvfIXtt6+Gt6nLQa1x+8Yb2O4ayHUS9GIgTknrd5YhE23tgXnLPobNnv5qXlGc0yX2y+1aJXTauWaizzttwmDI+ii1XUC0rFPB7xOsqhDco9ZlIvPbd9ZPMhXpc1P1Li/QycX9lFyeeH+22SAGeALE39ZP3ogVW/A4ZzS5GPUZR3RfcoOjo6Ojquoj8oOjo6Ojqu4v0LPXGTj5a8YyOX1JUHpPdwBrhaLjFcctfF1dBCUzWraJ0Sz0A7HiDvMbKMM7yC2Woqqg6MqYVcOEOIqiWQVYEoM9nf8b5ifpGBCgwrsBK7dLb0BQassjZr310TdzOyis9CXK57UldaYjn5LPM1PLZQVM3AoCSahVzAwPRxwXK048q/MklVqnX1kvBFRS1NMI0KMKYKztJFLa2ajz/KONKOPAEgnxvhJj2/dTwWtliB5aUI9oGBWi30oV3EjJu1nwOhvdkiWg+RVnh1rOW5U7GFlH9OihuZrCEh3rW5iV3YNkSnvmYCkmWv5Lfuozq10FrdMXgSIt17qw/stT3J6kHGcD7oNRYVMaSk/dsJy23Sc1JImGgTsR616tyqescmgrjuyCuo7RrKTmpzTFnA5xHtGq0GycxLq6dYb1qIyUToLITltRdZQqUuYMitxgDcQnRyfunHnXUf+3guxuX3FNl9yCANt0gnP3LJewv7mDT6JoEAsvesiloaG8rn6yB1R2Xa9qCuoyggLFrzYOTxkNnDcyZOasR51XA5oc2XrYnNmcnz57NeZ9LxUyPC7TPWyZGzjNEk2Bdoz+3Meq+I6OUnQfcoOjo6Ojqu4qpHQUS/COBPMfNfDH/7dwH8iwD+Pmb+USI6AvjTAH4/5GH5EYA/xMx3n8qIo1VnGi1oaYHe8CZUWFufYyMGyyREUB23hLjBLRdLnw0pudL0Wq2OAVgRKkftnEYihjTaONbYRGTdpY0OTs2Edd/SAEHAfJuUsBJLaT0mTcGkoPUk5PC6l/MIKSzWyMJK0GoKX5nbmOzcy4ssaa5ZznF+RUrGk5P7y+uE8VHkj6UqWLyYOonH0swzJa+JvNLY+hQDTbqbE8AjsGoF6/AIzC+ExJb5Z3BmUE2ok1jSnNlJ7VQI86u2Zp4qqxa6ra0ITamnp9YnacqkWXCe3qzzEglxr6hV/SmXD9d0aaBZxuYBWLqxWdn1RCBOGB7Jq4x5JaSzeqZKqjrxy4209LTj2vZwUr2jtEgjnZZi2SqkAfE66yDvKztbH3patW7pmmjkfKzS3mhwKURPTccJ3e/AppGSSHNjk7IOyLFz8D68cZPdQ/T0WizZgc+ScGFrte5J5ffRmjdZ2qr+oyTS5AjV0nadtm4eqUit73nSfvacU0upZb1PD8m90TrI/WIKB3bMspMfq6ZYm3pBtfRfbW8gPb4JA7PPkVV219S0xew7S66BsO6oNZhi+V3mST3GxO376xPgm338ZwD8xMXffgLAnwq//zsA/i4z/yPM/KMA/jiABR0dHR0d/7/AN3tQ/DcA/jAR7QCAiH4IwO8B8OXwnh8A8Fv2CzP/KjOf9f0/T0S/RER/jYi+ZO8hojsi+o/0tf+BiP5JIvpFIvo1IvpXvzOX1tHR0dHxncDV0BMzf42I/ncAfwjAX4B4E/8V3GEFAPwXAP4SEf1RAP8jgD/LzP+3vvZvMvPXiegA4C8T0c8y89cA3AD4RWb+94jozwP4kwD+BQD/EIA/C+C//UZjMhfYwiGxStqqIUnJZyP5rFrWZJJ51HqCESCr3DYZ6kmO/6ROY2ikkwuqrTKDVGUIVqdR9s2t9Dz0kZywtboOYva+vlbdzIMQf0Ag36oQVtJjWK5ruRGJ83or9Q3LrUisWx621XJUACuAcmAXIswneMhk97F8drlRWXBqAmVWqxArps2lvuyn7JLhIdxnY7DfKYZmNIRTlFh3Ib1V1ic/EubXwlSmRf4Zcc1aNZwf9JyphWVifYKFY5ISsPlsVdLA+CDnM/Lf5KNbRS5clM/WxdbEBfssxFRbKGM9tHGkRWtsLBlCO+9ZRa6HwUoLs7ict4Y4aA0CeaMsAGfyfWP9zuX6TVhPxlD2QP4dVlFICUsMWrMgFwkNxZKuabtfWO8Bu488BGWCfuOWpOUB2zgCtzU3aXiTU+ehvW73sZ83mZKCCnZqOGpQEb06AUm7GMreS1KFPrW6INtjVjNRdsB4D0+AMTLYQnsInRPjXjVhP04ktU1aF2EV43xu1fFUpRYiFQkrjfeM82ty8r/qWnH4nqoq3FkmEe00ZYZ1h9BBT++VkMAhygP6fZFb10FQ6+jpCR6k4ajvQh1FDD/9hP7uYOZfBvD3A/iPAXwAeSD8iL78bxPRrwD4XwF8EcDv07/PAP57/fmvAvifmHnRn3/ouUEQ0Y8T0U+X8+O3MOSOjo6Oju8UvpX02J8H8J8S0R8AcGDm/0NDUA4lrn8OwM8RUQXwrxDR9wH45wH8U8z8oMT4Xj+yMHsnjQrgrMepRPTsmJj5FwD8wu1nv/iTaWXwQiq1rBYCAQAhGdG5NDIoq/XgJGRuqZlW9ZnmRvgQAxwIS9OriT12zQoEjGxkrIlEIydY4CbXbel/CaazpIQtmeUrVi2bF6NS3WYh+4I9VNDLhKxVu+s+pHH6ZIVxmsel5qdVbxPsmltlb57h2jnEQoDWoZHZaeWtRa0pgEYMWyZpOcDJ0rTICpsz4o2hNAVw3cuHqCohbi8H7RwnXcn+pla1aWQtbX5BQEpKTFqappLZlt6ZzmLJZR1LHahJzAOwpkaePgq0XuC2rrntJbP+NxpI1NbNmmOJxUct4WLXxoYMcAmf52ZVroeQLsmskvOBDEbwpBKjqIvt3pLOXyqqC5Raqqxrgum/2LgLWa1Z1u2qKa9UgMRhrEDTVJpZSWDyubTzu1JAab+bHpSR7sOZsR7JddNsHe2zST09u/+GU8VyzCjc/g7ApfCLrRMB46Ok8poqAhJAS9vbxJqSrunnSS304VSRFqlkx2rrTeq5yneQVItLerikMzOotqZSyb5L1JvMs0yD5nd4Cu9waj25qYq3b+tCAIolZpx1LbXRkX2/jQ8V862mqi+Szl7GKMz1bvimHoU+BH4REmL6mcvXieifIaLP6M8TJHz0GwBeAfhQHxI/DODHPvFoOzo6Ojq+6/hWC+5+BuIxXGZAAcA/AOCniEijZ/jvAPwsgAnAv0VEfwXAr0LCTx0dHR0d7xm+pQcFM/95oAkFM/OvA/hR/fnPAfhzz3zsDOBf/gbHuw0//wff6LXnBwOtfpbezebaIcU8aCEBeWziX7EScng0t1Vfy+Ja16L59xXI6s5VDZvkpR0HpCn1TlqyE4PmSlteelqA6b5iOZASdqQS4W3sEtKxjljmdlYXC0yrdjlbRF5796ZiPbReviLjzBAWX65hsHqPNbjtK/n1UWlCZsNJXN48i0BhKgym5tJuiD9bBnXpkds1k4rv4RzCeEHemZNIKHMmlzc38bcyAZiECIxrjcTuVpvceGPM4bvS6xpwERLRegATi7QwoIm0yXsYXKmF1DiMP+b3I/yf2/oDmshge0PJXU982AN1YCCx5/ozpF6kLtLbWCrhw7yS5M97j2ol8Jfb5KKDZWznsJvTuzVmCaush+TH81Ckhkgk5Kch0EReR2PVzBaCjfUhXgVtHQV135uoZTLSVkNy1mXRxuAd3yyWQZp8oWHBdUebimsjcP267G+Ay4vb/q5rSwiwkK8lG6w3OldDGG8IzdZsfcxbGM+TFOaqqghtz5hKggwghPhI7qc6EYZH9u51VqFOlmChdTC0wNUKaG7tBFjHaOoKnDT8V+1eIK/EduWDmbUVgITDhlP1cN6lesG3i16Z3dHR0dFxFe+l1lNaxdKRPsHyZ0kvZZUaJrdyLYXP0vryYilkLd0yrUJ6JU1FzEp2kp6rKMkqKZeaXrgnaSI0t2PkMzxl0UhwkxXP7kGY5W6WOuux2fWUvMHPzgg6ds+FR212NJhXxK7xNL9A07AZGjEZq3x9DvVaso7RNJ1ylbENqmtjBDYnAmveJCextMsk3kcZaSO/nYPFKBLmcg3WSGc4MVatErbUvxpSh2lR674QqKosN9n1kJN/lj5q6bBWDZ1P4i2OD7JWaQLKSlr92s6Tz2KFDY/slbGAkoqP4Zz6mTqKB7QeJUEiFWC8g6cxgoQop7VZ1ICkZ1IFaE5CMKuu2PiGXOPJPDKm4IGZVVwtoUJ7Z5+qaD9ZmmSW+c0LA49wF8Os3LSqxwtSb6J5Era3JFU7bSqbzeszzynPaB6cpobbzybX7dXOYPBeZdjNmq7h/rVEAf03nABO7Pstz7JPlqPuHW2iZVLwWRUJ6tiaOW2q6/Vy1wOa9lLQdvI5NyK4GCnNfox1b/2zs5DcE3lVtCWMZPUCrJ95HQhZ97q3GbBMDiW114PsNd/vte1J15hL2g7AiH8L7AMb+Xcn9hmS4FElQWR0xQBxB01y/F3RPYqOjo6OjqvoD4qOjo6Ojqt4/0JPSsBRYPCoAGTkmYZDrA4BgMtAp6LhHQ33OHmJ5hrXJHn4sSoZwb2jzWcIFSw50gQnlagCRcMGGc2dFDdXSLAEyYU3h5C1GttrFQBQpXZ9ld3dNVLPxmYEn8kSe0Wnuq2N6bST2TFUzjm4xz426wlM6k4vLDncAEAiyuYVoLYOTrS10IJJN0fG9TkZa4TQAI+MmgDO7fwuFJj09dJOXJUw9RCD9gBPi7zu/bO1FiIZYa0V92VqUt1OQGuVbrUw4Nj+lb3tp1Z13Pqgt89aUoMIv4nAYVmyH/9ShNC6GRrJ6tXuNs9M4IV9r7R9q3UlqXVPZBJi2fL7ORESWJMTVJ4+k4diaWXkHW3qamxM1jHOxuqinLYXk9w3QyCHEfdkIHDrQD5P3pkv7JMoTlj1OmsOvcLJI4Qwyf2N1Lzeh8nCmaGWxeXks3wu2z2r9SUiQEggFe0UYtx+ZhQyNQKtircOj2zvI+RzbRXoeyGcmajVUCCEvJQEjwkt0HOkVcOKeh+R7kXrRe5JJjp3+aTkOgmJns+MfKrhnuuhp46Ojo6OTxHvnUdhFYeAkncsT9FUxLS2p7Sl6wFCeEmTH/kcALeIJe2PYGmNo6bOWvpcDtZVWlj66up781k+n1bWilQtEadG7HkvZiXLqDBoYaRaQbskn7PxqOXkFp5q8OSF3bp3a2dt4/LU3UVTFFWTJin56ESike5WjVrkeqgIQQoGkAlpruCBALVUUwHSuYJqUmuS3bNbDxTSaM1KbRWk1o+bKlASuWQ2JwavJBXipVWApyL6T6TpvQy1bK3Sd2Qx3jzV09YQXkXcqnNZEw1IGyk1y5KqWWHyvnQvJKA3+NFKaK96Vw8kFUj1vBGMdjzdn/nU5tySCYRsJtAqekH53PazkdlUWxXy5mfdi2mWfTDeV7VSxQuto1qvSSxK8a4Jpn1lJHfNjFoviF+1lmlhIJPPmzXoqSBALWGa4ckCPEBEeCD7LJ/kPda8x+TyLeXX1sqSQy6l1E12384LsFcm54VbkyzdA1Zdbsekqkkqrg9FQJGkijqLBJW9TwatKauW/hqrytH2MVWxzI1Mt3H6nlkBoM2pvGjuTvCczSO0txS4J5OUSCcW7z7N0pO75lbVbZ8hwD1M+z/NDAzyPSGpsnIsKrxJIKFN3vm3j+5RdHR0dHRcRX9QdHR0dHRcxXsXemIizx3nWVx6l0nOKvt7EBe0aDWn9PbVHHmtjgTgMso8AMtNyIW/qMZdbySvvuyVHJ2MKBeiKmv+9LonLNpJbj02txaQegCqjFTI3c0yJXAS19pJZyOaM7yq0wh4CSlJh7k6SQiDinS34wwsLzRn34jdYAZ41S9Lp6/hEX7evABVRc/KSEhW7UtCrkkfY+mAVyZyolzIXfKe1FVF0OrYJJtlLtvcW/W4yT/nGSgDYT1oz+kdUPcs4a0MQMNG3tlOCW5RpaMm960JDUYqG9lnxKtJdQOtZiEmQwBwgUiXwkbbB1afUi2kEJMdSEIvRny7GKG9tmp4U7ZMS4zQBIe0yD6xmhwL35RJBeb09zwLQUkVyGvFcjtIuCkQ0LE7m8H6KgtRLaRp1UpvZABj6wjn6gBa6W7kPWetEcmtNqkctnssHdreBsk9YFLfVADWtcQY/jbChfTsGstOu8VpH3gQsFjCgV5bWuw+lL8vR/Kub96Zj2XsdWcV3CQV8pogwQPAlgCzap1EZXDVvZ0JfCCQft76fUuNBHmImxMhUwqS/KSS6G0sTDqWpKE8DVvVQe6/shNBUZfLz61jpVWUe393SxQZCMODhksJ8t2ySl0VU0I+VZRDxnIMGQDviO5RdHR0dHRcxXvnUYg2EatscFXyVisozaKpaClmYyMVrf+uWCMAefqiyoNDyecFIvmc9H2mtVREhjjP8tSWyl8hmtPKqDmLxW1WZKi4FFK6pbGlhUGlqAXRiGO5SL1YTp7WazLRPAP5nLxxkWnvlBGYX5j0cSBiFVV790ZiMc9SmZ1mxnBvokKEvFh+os7JmpHOwtjWKXnvb2noApASqkaYWVWqWfJJNaWsYn68Fynk8b5Z0ABh1nlbXnLzrgDwwG5J1ZHBI4MKOZHKWSy1dQ8gKTE4NQu5Tmhy5SRru5Gj1pTnjZ5TIMzNojNC3Ej3TbMb05KCpcPaGsq/citrXTiDmNyjEv0roFqKJ4l1meeQMrq2hIGyT1pxnVBG6RUdm/HYOKWq3NIrW2VuVZLWeq37fcWyD62KHgAqk8+bS4SjJUtYWqp5qq50EFJZ42fzrMR0aXPmXlURoh4Q7ysV2zOyzxLD+0XH6usose0eoua4AEq+qyVeB5XZzww+aYKDVtGnmVH22hzssWKljDRXgFp/eGvsBNb7Rv+ez4zxUfb08FCVaCesLLkt1r/avAfzaJMqO4BNV03SlU3DLT+Se2RcNe06pA/b9bfqfcbwWFGH7JX8nCqGlNybfld0j6Kjo6Oj4yr6g6Kjo6Oj4yreu9CTwXKGsak9wEaoLIG9utPc3+VAAPOm8thDC5NWOQIt7znmndet25dnDQmtzY1PRd3EIcieZw1daYgqnypolbxvWhl0bmEnpjbePCjZfK6acy3nWY8Ap4Q8axUoCYk3PgCzhjwsX99cf6sz8K5mSvbmU5U88qUizQU8JNBa5f/CHhLL5+LhC07Jq8GpEsb7KvUWKvtcKgCQd5+TToQSg2GtpRhOElbI9vNIGB6B8+tG/PLEqpceiLgEUGZYz2mghQ9iVbhXq2uVLOkammyz1ZDIPFWde6kTGR+CMF4RHlBqOXQfaSW+jcrCHi75rUS5ifyttwwapU6ljknrH1hqXVYScy1WNYdra0J67PNoFbdSOwAUos1+tdAZaUgjnasnFXCW/W+CgSY7TgzQPvneQ7gHvNd0CPnEZImNZPgitQA0yjq7QgCg95z+bokFVn9DUhOSz9XDKFQB2reQqYfjuIXBvPpbx1rDz74uA6OODFoIPDCQhTDPZ/J9Ulzkk7XuqqrkvtYXmTrBSH5eg90n40P1wdZsRUBtbVtYHB5CosoantZueo8WxmYQJwnzkSTU2PURA/Xc7mEJoTXByGFMSEtFflzBwwheePO99S7oHkVHR0dHx1W8fx4FwXs4G5iEpJOUNng/X0tDNCKnjOI5FGuco9Z4HVWOeJK2fKgAzDK1NMkE0awpjDyLmWCVlQCAyhjOmuqq8uBWGe6NYLS3Nq1aRTsz8mlFHZNKTye1LIwMFssmn6pY0ksFZyExjeST6svkXlLRc9uY607GYSmmdSCMRgCaNDUDaS5CRq9C4FFh0FykUnutoLWi3IyoU/IqVav6NDnmmls6b9mFMQxCqJappaxKCrBoZVm687oH1ht2qw+jkqpKntdjAQ2MvCsoSRa6TuRWfNnLZ2lVMts+p1LZNQPJ9oWlHbtXKemSVIHlRtOf1bK3/bHesldKixVo+6ilBJtGWCTPy4Ex3c5Y5wy+GwD1fFAb2Wppn6ZTlM+mS9a8YSpircueUbJ1nzcpqmbBZmtQVRl5Ec+TC4PHJPsotUpj8Viq6xh5gx6C9xnnpIcOBLVpZZlKAPz1Rta7p4Tmmdi+MM+WVVnBq5Br0z8CSO4JIj8na4MoqhYFkL1VR5Er997mlh57qOKFLhk8VdCapFK+Nm+UEzA8aGW2NiVi9bCsShxWhW2EMsOTSfJcUQuBxyRRAU3MWPdbD8Rkyi0t2lUgsni+lgrPmTwpouzlXOsN+3cfE2H3dTl+HeAaWuOdfC5Kwst3X0+P7ejo6Oj4FNEfFB0dHR0dV/HehZ6oSp6z9V1uIoBClJVJ85PPQv6WKUsOtrrIpjAOwF1aq66tEzuZbKEKI97GR0Y+MYaHAh5FlWt6s4r7r8KE0L7DZSduJALZJ1XZQkQO97OEHZhB8woaEngakB+KCpVVyZPfJeSzvh8A5wSujOGcZR7uSxP+Yqm2Xo/wMIDJEGPSLn1VOqoND0IgT3cV45sVaakYvn4Pa1jNU5Zx3D8A44h0mEBLAZUD6m4AHQe5bgBUUuvmp4T7ckxSyzASpjtuxGQlDI8V+bGCR8K6T1LL8ViQXw56zYQ6JCAz6ipkdpq1i9uSgFFifbwS0kzegQ4VyCdCOTS3PmlYjZO8byzAdCfjHh8YaZYkgXwqQCKkOWM9Zg9Fec9xFQi0Y0s4hTSUCKkM13oJr8hmeF90ACBiUBIS3sQJ66Ticyd4J0APUxZJxrCwjokB5scV+WEBTQweRul6p9XxaRZi1Gp40gqM9wX5fpWEfki4z7varQyqGmpciioFaMgjEcoooaiys3AYNMyhc2BCjEre57N0C5T7MyPNModtPIx8krkqWgVtBHXWpIKkCRrEQJor0pJ0LzOKyntHUp9zhslre79xvfc2BO5QAcqgkYFUJQSn4acoaplmCdXlx4K0ZCH/Se4dqkkUBEYJ24lgIDA8FHl/Auoug4aErKoQdQCwttCQhdOsu6QlUpRdknv6oWB4LFgPGVQkTldHYD0y1tsK7KuoFUzyHZQqsO40TH2WJIx1T5g+ZtQpbxISPgm6R9HR0dHRcRXvnUfBmXB+nVEzMGUS/RV9clsv6eXGevWyE5PmUawHaHokANZmLwdg/kwFv1xwftx52mAdlAwelZRigJNY88uRML5Nmj6aUaeE5ZBwfklYXgDLLQMJyA/ySM9nEWgRa24vqWtjQppHrIeMukteNWs4fUas2+ntGMg5wvmlWH3jfUZaGefXco6H7wPWlwXIDDqLR4IElIlRXlQlLTOWk1g4NYuZIYTsLWhl1H0Wi56A4U6aha+3I/Kp4PS5CctNkh7dStxLqq6M1/omr8emnbXcWJ4q1OrMGO8T1gN5CvF4nzC/IDx8PzC/rsAHs1isBKShotAkn99VDPsFKTNWkq3rCQshLTit8BYgpUMAACAASURBVD7O1tTFdJzGB+0jrZacELdJNKtGIUXXnejsUAWQG6FozZPSWRo3GVvIpFpaSjR6Wq1ZtwwwE8p5wPQ2YXgAkMzyA6Y3cqjpjVX1moQ1vDFOWhj5oSCfC+i8ALvB74c6qC7SIQmpvlPPZALKmEBTQjnI+112epX+6yZbTxV4/NyA8yuxsq2/eBlbFfa6b8TvesuoOwaqysPPcj3jSCgsnqFVnjtprV6NpKACtBJYkx7EKwB4TK71xJQ0UUKUEOzakEhluEVTaX5JmF/puI5yrqqS8OsBoF1BngpKNldIxuv91q1XthHVSibzIOMtO7mXyiTqD2UnUvq278s+gdYsmktjwroX5YSqGmaWGFB2Ov8EUCHVwsr+/SVeB2F8SFiOCacP9LvpdQW/XrC/mfHicELhhLuHHc6HPcohIy2E5RVw+ApwWjPml4T91wnnD0YvDzi/+mQ+QfcoOjo6Ojqu4olHQURfAvCl78FYviXsDq+/10Po6Ojo+HsKTx4UzPzTAH76ezCWbwkvXv1epqKd57QSVIgx+x0uuOVCZSaQp6S1kVxGREquOIHRai4AzW9WsUAmIYAll1s65uVz1YrlCioJ6SCElIjgSQWsdQVLRUldJek4Sz47LRW0z0IsEnzMQKs+zXN1t9S6YZmoHwDvZJfPQJ1FujzNtBFHg4ngaT1HlNmWvHhCXlasL0Yhf+cKKhV0LkhTRpqL5OefuMkhh66CVhPgMtFK+gJyHhNgs9BMm2R1+yu1MFIloJAS2gmu3w2Aa0IaVlDmJrcccvOt0tbfn8TdTyp9vRxFcI+H1o/YQo0mlOd5/8nCcuFa9Ho2UuLQCmRNmvAwWOgJLmR2deJUanRa8gQgoQdZE2HDJWQaOrlZPcEwIMq125ijsKF3uNMagHwuqKMkGVgdD6yGhNp6poU2x0wF3lHQw2hDu084y9pZzr8Q3U16nk3OXNc6kv0WknHSmTUkeJt8Puokx3PZf4tk6jzXqb3mneSyhMuskjzlijxUlJsV42FFWRPWm4rp4+Qhtjo0sr+OCQlVCWOtC5q0ZkETRyxJgux/rUGBqhNYDYrV1Gx62a+yfGCtQQqV/V7To989dZT6oVevH/DB8QFfvP0IiRhfPx/x1Re3+Pizezx+vEeaCpaHA9YD4fwauP0y4eELGWkFDl8rWI74ROihp46Ojo6Oq3jvyGykIKtcpKLRqh9rBjBImqg91d1qNglo7QFsFaxVyULOjGG/ou4m1ElTzZTkTichsMRK0sZJduzCIGYkIifkxApV67T4EMQbWBlpEclpWgvSSUntRFiP2VNMaWUM+wSqjOGuoE5JLb+ERatus6ZDWtXleGfWCLlnQqsSaAmwHtYApIp8JORTxXKTUXcZ1TyXgTC+LeJNPJwxZEmfzKcdsE/YfyTV4zzL3JWdVoU+sEtJW6piPjcCtPVxVkJzIAxnk0ZWU7EQUAlcSMjsqYgzVAHKVaxyYvn7gUWvRwnnOmlVN4D1hjCfZc3KXtZt3TcPUzszqUVsekO6R7QSO5/QUpxdYhrgkVsjGvUC1mPYU5NVGauV+mLFD7x6g7/Nr7AeVCJ9BNZXBctpEGKU4I22hsfmya4H9bRKAtOAQUnWchhkDTQlG9h6QG7JQsj6MiVN64ZWeEslft1lvf4KWuXrQNJPyYlh6/FskL7ZvPFgykHW3RJKWHs+s3rJth+kstgIXbhku3hMcM2zpA2WYs9oDI18BjdSPGkvbWsA5R4lqceTgJwqxsOK4+GMWhPe3o2YXyaMZuUXwnCSZADRpBIC2zyVMpE3LpNq7K2OnH/XMKu30zxkYqA68Q3kR3GSh0X3lTed0vfo98t6A9QdIx9X/MjnvoIvHj/Ev/Tyr2BPC75aXuDr5RYf5Dv8zN/9Mfzwi9/Gfzn/GPK+4AsfvMH9b34fPvqRiuFONsPD740u8beP7lF0dHR0dFxFf1B0dHR0dFzFexd64qR57jsVApw0h52AcmxkIquk8XIjxJb1wZ5fM9JZCM21QgTaJoBvCna7FQ8qnDc8KGn2ckFJA0DZ3WIj8pYXmstOEto5fSbj/EpCVnXXqlrzWVzX9WBxjFGjEiPyXPH4OYkzGNFqBOT5lYSb5tvkIoDrDTC/1BqFY0Iq0gObWMIf6y1LB69JZZWzdITLxwXlYUTNwPwK2H8kPbZpZZxfJ5Q9Id9k3H+/dMcqI2H3ccb4UcLp8wcMp4K7Hxx9DQAdw60tjLrshbDcyLE5SQgnFeD8mjE8apXvLP/PryREtNwMOL8GTj+4gm5WfPaDO3z05oiUGOO44uGQwUtCHhjDUJGSEP+c2Ik/AN6DmYqEDqlCKodNfpzaz9X7lLf+zHVsc219oo2UL9bHm0ny/wdJYPD9kCSkJOQ8tKeyhEPmuwFv5x3mtxOOHxHGO52vMWP6GNh9qGFKFZmb3lYn/OfbjN2ddH8bHouHgEw8jipLRf6+VS0v3DqjrceEsk/eoS2tUAnwhOGxYH45yOcW2Qfn1xLKSUXWlkkr0k1m3UjqXQUzASs1uXF9bT02kT6rpXgi5Jmkktv6UOezVvQXxnIkrbORvWThtPkVPESTz5B9OwHnz8h5rKOl3QuAhAH3uwXTuCIlxpAr5ppgwonS0U7CpsNDwXKTvR+19JmXNfV9kzXiPFrXQfm+WPdSC1UmwnIkzC81hGg1FFPrCe8JEmhChibcCVi3Tq2J2lV8/vUd/unP/E1UTrhJZxRO2KdFlCeQ8JtvX+OHX/w26O2AQsD9ecKr3yq4+2LG8AC8/Fszzq+nb++L9gLdo+jo6OjouIr3zqOoychJeKrc9IYxv2yVoNaEaD02S2NVyyTNhLoXqfB1D0wfA/NnK5AZy5px/NsJ6axWyQsGZcbwJrtVMb5dQXWQdDjVmKqZsPvaCfSDE/YfAqcETB8m5BPw4suif1NHsRTHNwvS44o0r6B5xfrBDfJ5UM2XLDo5SZqkzDcJBE2DJQLN7ORm4qa/YzpP5xVIi0zKcquNk5TYK8eM40ciTTycGPuvrWAaUKeE3UcV08cr1tuM6a00YNl9bcb40Qk0rxheTKhjwnRXXVJcLEBZBM7AeN/6By9Hcj2j8U7WbJgs9RPaFxtewVwHrZhXvL3fY70fAQaWYUT+2ghaCeUh47QfgbECc8L0NiHPwn8P90DaE+os3uD0VlJ5sRfLkETOqaWnElSbS34e1Lq1KuyWqiiW8vBAWCk5sTucMvJZeyAX4OzS4wDpGIZHuR5i4M3dAflrI4Z72a+n14ThgTC9AfYfis6SvffwlTN4SCi7jN3HCeN9xf4rj6Ldkwh1zJ7Omk+MeqMethLJlipbR0vCsEp+2YfZ2qOPydNva27W7nBq1v96AKp6E9PbUPV9Em93uE96DwK7j4DxzvaFVjzPwM1vVzx+Vnp951kSB2ZOGB4Z55eyL+ooySCctPJ5ZrGqD428Xo+MfGrH5iTjKZN4l7RK8yvO7dzrkfB4t8Mji1b3aTeinAYMH2eMbyVhYXhkTG+rasYBUA2m9SD3fT6L57YeMvgg+2I9tD7mw4nx+PlBvXv1qG9lXw+PgLdGKJrKzu0+EH0nTaBAS0KQCnQGFsJXv/oK//XwB1Fqwl8Yfj8+f7jHlFf8X1/9fuyGgg//z8/jfx4WvPrVhA//AOHNl1/i9/zNDzH8Y5/Di99kDPcrDr8zfqLv3e5RdHR0dHRcRX9QdHR0dHRcxfsXepqAxy/Iz2lGy6Nm4PxZlaDO2d3p9UVBOifPqcYHM3hJOCuxXI5JyN6poCwZaSfhkrID0omwrgnlWLEelbjciaDd/CJh/yEhzUnc/OmIMhLOr8RNz1VrCLQaOBVg3Qurt5tlnPU4oRwyltuE4aFoty3CcpOwsOZRZ4BTckK+Dq1ic1WXvGqdwvggoRCbJ5NQzjOw+0jc8pvf1grrueLw1RXTR2cM9wn5YUGdjshnxvTRiuHjM1Ckhza0mnx8qKhj9i5nlr+fFsCqbi18U0dx62kFMskYyk6TCwZgfikkOzghn4H5g4Lh9Rl5qMipYtY6FF6SVJkXSVCwznmACanBz2cCdN4HeUdYjkKs1wlABc5MGB5Y6lISPCxV9iLg5qTjsUpP89rCd6Qk9XAvv+dZ1ng5Avmxdbsb7uU1e1+aCfPbCft7wniv/dO1k1w+M4aHinyWHuoojOFrD3L8l/vWR/pcQEN2ZQCpECYXs7NObVXDrjY/1gdcOvBpX/MkIcJ6IyS47bt1L9c+vdUaBSVyATi5bn3Yh7dy3DxrWOpNC9FYyM4EGgFguhOZgPGBXfiyDoTdGyODgTxr/cBe9tFyK8kZqJKUsb4qqDuR12YNGa43wPKqiKy4ynK7kKKGYssqsvX0ZkQZBqCQrJd1D7zo6b3cJEzWZS5DQ8cSIit72cNTlhD38KBtBaBhsD3w+H0yB8Nbue/rIOMse+mTTtzqvmzN1p2EY73negJQCbQQ6DHjy+tnke7l+n49M4a3Evo8EfCZ/4fxt25+AJ+7Y9z82ij7tQIvf42x/6gAlbH7OGquf/voHkVHR0dHx1W8dx4FD8DyqgqhtpKTWFQA3Eop5JIBrCQpiy8W1McBWAn0YsHusKBMCeuYQYlR8gAapHySC/l5aoaQSfdixZn3AiasO7E+5zlhyGIh1Vut6lQL1as1oVYDAEwAp4zxTi0frcZeDoTdTlIDy16ODxIro+7aMZJai2ZJi7T6RfqhNax52/42PNo/xnhXhDCcEvJcpZPTCNDjgvy4YpgIVKq4AZxR9wOWF4M3lKnWS1wb3Fh6n1QJizVof4+9kq3/dNmzkMi3RfpRn6W6GIeKcSyYxhXLqvNTrYGNkrOrpmNmAkEtQauWjpXTJitfJLXTpOXrqN7PQcZqqdXEQJ01HdS8lJFRtP+2wbXDBvJe1+bhWcW3VTKn2SqHCelMSA8Z+SR6UiaDnhZJyyRm2SArVDOoAqUi3Z+RXu+ksRKA9DiDb3dwbSISMrqMzbMqB9unut9MkUC9jLTKGg5ZZflHtB7iO52TnXhOdr8BcC8y6XUn9VzT3Krto2aTrQWZ3tIsigPDQ9Ge62jntv00MKzpUB3aWkgFuSSW8FRVhtzWkIFBU5dTcs0wG/PwCKx3Gbyr0kjpJJ8d3wqJ7JppLLLrouvFfk+BmzdlhH/VRmBMQFIPyyr1ywGi4ZUYdcxNr8n/VZSpNSSSFGbZo8utpFjbfkeRvUOVkOYB04fkDbKOX2H9DgRufnvB429M2H0srsi6I1CtePnrJ6TzivQwY/87bR+/C7pH0dHR0dFxFf1B0dHR0dFxFe9d6Am5gj44SxvbOYt8750kH4+HBZQYs4nKjRW744I5M+qcsb+ZcdzPeDyPIPUn66hhjkKo58FdaZD0YGZK4ImRz1IRnqmFLCT3WQirMmkdh+XTK5k9PEqXvSZlLCRZ2WWIUF2SUIn25l33rR7EwiaWWz08hMrYgVEn8r7MnFtdRV6EIKTBrgPYfVSx+3jF+GbGonUR+bEgzSJKSMuK/LBifj1qpy8CDwk8ZO38pgkCKs+NobnOJqMMtNBF2TfJ6ir8oxCQE4vI366AIL1/KQM0FSQlsEtNsn5rkpqER0joKgHlSMCcQCt5vYtZOxb6sfkoGirgQUJAxBIeSFUqeNejhFtoBdKoXdssjDRV0MDgs8q2P2bhdZk8bOTEud1F2g97uoMLH3LSfZSTENlK/BOLONx4J/2WhXDO3lUN8wyqFfkkfdEBWZP1OKDsE9ajCEbWQcTqrMNe2TViH9BwUm71I2kBaNJj7Vt+PwiYX0jCh3dzDGtsySFQKfW0yvW6LL7WNZV98jAX0KqQrYqZVgYlgmiXk3fc4wwUDV8uNzLu9bai7itoTqjHgjQV6UZ4ThKGBFD2FdgX+T7QezK2CkizhtHmJMQwW1jQxq7hLlIBSRX/TIuE9TgD9YGkY50df8cosyao3GgtkIb51htGPYgSaD1r58RBQmR1V+U+MFHJo6kDaNhqL2FIztRCnkkTQk6E3cfyfcIJuP2tBesxY7xbMbydcft3Box3K/JJKvFxOmP8rRWoDAwZ/x97bxcr25adB31jzLlWVe197r3dcbAtxZGNDQEFE1mRgAeQCCDesBRLAdx5IRKyn0AR4Q0RYSERfh7yEDnIMi8EJLAQkAcr/IofERMlRARHkS0UlDhICBGbdPuec/auWmvNOQcP42fOOu3e7r7n3m4fMod0dPZP7aq15pqraozx/Yz8+rfYhDsi+l4i+jki+mtE9MtE9F8Q0e+y3/1LRHQjok+Gx38XEf0PRPSWiH768z6eGTNmzJjxfvG5VhRERAD+NIA/JSI/bj/7EQDfA+CvAvgKgL8I4McA/Pv2ZzcAfxTAD9u/F4NZ8PhqQ22EPWeIEEpRgCqlhiVX4BGoJYFTw8cPN7yhE47U8Oq8IbFgZ0FlCftvVEKTBHpKMdgHBtglJpQFBrAZYHvq4BRgtsDJsn8fHGOgZjoEtXYQWOfoJuRrNUoihZUxSG2aHWjVmd3Ss6cT4qN9BIodsITo6y1vNUuqK0EysD4JLr+2Y/naFbQXtEVLAr4dwFH1/9sG3lasny42UMmosc3tnnVQ0/JEmn1lVdO2Adj04UVj9urZc9hVG0hKSckDkoxKuCoCWWrCsWWkpwQ0Ci8eND33eiatAnb1xULra0C2jskqDQd4ZRGIzUjW6m0Abs865MmB07boAVNu4KWhkXp2SVbvrL7ZLcse9gEIQ7XR514nUzovbwXp1oIWCxDyc9UBUVWvPw4Bbpv+ox3p9jFoL+DtQP343F/eqom+d9CJBkGiEJQTbDEIafe1B+rRq4/YS1ktsmWBWsjbnrqjbBJi4BcXrRbZr3t1a33NlLmpOj7fGugwX6qnHbVmCNsM78S2fynOaRwIpUOLdD9LZUhR+3m9TgDMVp7cz5v6oCeQ05TNc82ovGnTf3xIP3dS77RmFuFtkSCM+P3mNOO2NpRXRhs/yObEq8V9e6hYPtpR94T2wDiOBJCgnhSIp6WhHQvapWLLKcDqemnAxwekMOrCut+zejnRYRUeG1U3E/hoWF7byIIqOH2tIn+6g6oh+c9XyG2D7Af4k49A1xveJz7viuIfA3CIyM/4D0TkF0XkzxLRDwF4BeBfhX5g+O+fROQXoB8YM2bMmDHjt1h83h8UPwzgf/0Gv/sKgP8YwJ8F8PcQ0Xd/K09MRD9KRD9bn+bnyYwZM2Z8O+PbCWb/OIAfE5FGRP85gH8awJ/8Zv9YRH4ewM+/+l3f+xOX9UCxkVGlJDXTYkGtDGa1P25VWyRbSSgloe4Jr69nEIB9y2h7glRCepsU5CqE9Q3w8GuC81cr2pIVZDoBeyGkmwTI7Rx+N74jAWpGzMdON/396bXyxrWdpOZsBFGwiU2FGkZ0aq7mymX9maBdGgrMjM5mB7sdtbecHLz1qWFcBMuzLdwBpFtDuh6xlm1JKA+MdFtAp4x6zliIUD4+YfvSAi4ZvC/waX5P36uvv75l7B8Z+Ojgp7U70ByQA46PFbg7GoM3UpO9bEDfqUFW1Uw0EjROkNyQUkOtjNYI7dMV569ZaV/UhpsE2JoeT2nddI8Pawcw4FU3H13FThVqK3/rBAOuQKu+sRRo5I1iahvtjLom1MIBhKYbId0UWE/2umyTyWrvCGF5q22l9W0zHUVCvgH8Bjh92rA8NdVWWHsqXQ/wraA+rqonAQHLAhwF+OgR9ZLBiSEpYf/SCc/fk++IE8JmQLfYfsnaQgIpIC9ZVCe0MY6akK4UU+AUzO9akXrRPkxdE8j29tjWhCn9W+5rDNevEHSqHSHmo/MO5A0gn83NhHbKaGtCPTOu36VPXk+4m25XLkB9VCAbgM2fJ0gB6DBQelDMoxJkT1jeqhGnt66SHeNyAvJV9QlpM53Rk+o6ADX10/sCoRKPOeDsBBMyK3ADv31ZzOpeTRhtfnhlyJFAu5tjGijeEuRE4BsBSOY4MCjjdwZfk/4+dCiq5l8/BdY3+h6Ur9V0TUB6PkB7QdpWpDdXSGbQp0/adto2tH0H5y+rcOY94vP+oPglAH/g3R8S0e8B8HcD+G8VxsAK4K/jW/igmDFjxowZ35n4vD8o/nsAf4yIfkJE/j0AIKJ/AMC/A+CnROTf9AcS0a8Q0feLyP/5rbzAmir+zk++iuey4M1+wtO+4rXRKj95uIFJkB6v9hqCSz7waa7gjwUfnW7YasbTvuLTNxdIY5RG4JtSNOumYPLxinXwiRhF9UFtzAEFQvcvIbyDPOtyyixgA0sYZk2sw0z2j5TCmDbC9jHrnGTuFUQ5mTfRRx00K1+qoNwUzD4rmkWi1M62NnBJCqBnoD3rzzMZ5c+gemrA8tTAbzbQfkAuq1+AGMrjcXyUg0YqSQfjCNusbhjN0QBa4g5mOtDsmSUVgBIBzQZL2RAgyaqiJe7PIWtDuhQ8XjYcJeHtmzPSMwconp8VoNf5wxQgedrstRddu7vs1wZWbd+ls5wlCdKVoupqi/o/HV+qwFnT63oQ6KFAGkGEkJaKvFaUI6HdMlrz6UgKIPOm33LVDNgVs57Rlgurev8jigxcEqE8sP7ugfDwqzqXvK0Z5XExgFwgpwwqK9p5VfvxJiBOKA9JB/ok3wNWeRod2WmXsoh6Gz0UrOeCJVfcrivqQRBTiuNB6aeyNtDBSjJ4VYBb0jWzLPn4WGyf20Ad2+vr607DdXptXc1m+5VeN959LyIGAnExSu9JM3a/Hnzo9SyPelx4LCBX2pNS3X1/taLkAzk30KWAkqARUFeJ560nU+afOsHEKzD3RivZ7MytYtg+MZrxovfi/omrzgnHx1a5PVZIFtTVSA8HozYAlwZaK5ZzwcN5x1M+4eAFO2e9n9YGXCo4N9Sz/i8A6p4gjcBrxccf3/B8XdEO1qFQjYCbDkRqizoS7K9IqbuLem2trxdzdGDkhxXtvCBvBbSfIbWCUwI+eoTwbyF6rIgIlNH0Txo99pcA/BSA3wdlQ43xp6HtKBDR3wDwxwH8ISL6v4jod3+exzVjxowZMz57fO4YhYj83wD+mW/icX9k+PoHPu/jmDFjxowZn098cMpsEcLffH6FBsLb7YSn24rtaQWx4DUA5obEgtq09bIuFc+3FRCdJVsq4/rmBLxZwBVYn0wx+6zg8+PfrKAi2F9xmG4BNsva2wy1A5rQX5sSF4DZeqebcsh5l2gFeeujroRwGoOB4T4H3Azd3CJcGulEskpIG9mUPqAdbCZz2rpKN7VyXt42rL9+oF4yqCVABPm5gF6/BXICHaZEJ6A8ZC3BHxOortg/Stgf9TWWq5oUljOhPLg2oLcLfLrYaIIYegJWDn9bBfVCqA/avnD7b2JBteOgpPOva2PctgXt7YLL1winX3cwVHD6akFbGcuTtgbzsPZUAWZrje39Z9qWsfaA6TpcRaz8eOPhs4QKmay1gWtCE2Cv2pKhtwnLG22HpX249m7GKBhM/oD8LHF56UGPd30rWN6oYreczZjubVUDwKa9vXrWAp9/2yPSecX+5TP2TzLSmQEiPH93wu3Leqx1RfQD6llQH3RKo88FlyRIWXVF5/XAvmeUU0ODCi2EndcvENFrgMqgTQH8UDBfVX+yvFFw2J8/PyEsy9viOop+n6ZNz3l908IKHSKqzk4UJpIYboVoHWax66KtF6oEHKw/K3ofSAKkEKQw2kZITwn52bQ10u/H/KzTLF1hnp8ArjqDHNBzqCvHzGrJCvKztfaAPkWvngS0sxppAgBTn0tvMo7jlrFxw3HLwDUh3WyC4JHQANRk4wpAINabgipBGmPbM+qWgU2JHCiEdFNCiGs/nKxSzqY7WQgsRsKwGerYd0gp4C99Anm+on50gSy/hVpPM2bMmDHj/3/x4VUUAA4DFpsQypFAJCAWMDfNjKDZoQiwcEXiFt5OtTJQWamNjcIi2YfQ0NEMzO2KV8AAsPU+i24LjBaHUMiyzRfm0ul3whTPF4N3jB6rvx9UxP48BWqNDmhWa9la/F8oVOQ+PzvfNFPKTwdA6qNDRZBeb5CnZ9BpBYjBRwUoB0BWLozllBQgtYrBfaN8KJDaaxtAuA4Aoato7Z97IJFVQLqGAphfEBrUzl3Mz+lgiFV9+/OK9Drh9DWt7panhvzcsH51Q33INkiGFWi3bCrAdQOTvdJoqx4c7WqtnW4GvmcAXvm4LTYrrTE2WAVwS4B59vCm659ultFVza7rAOayVRQ6F7qhZUJb9TnzTTPr5Um9tFpWpe3yegc93SBferQMWwcLlUsKgFKtrh39N0W5ezm5z5IddyiYg9JKSNywsNKPKQmwCBoUGKalYbkUHFiUYmqJvO9JHw7ERgH36tVfN29AOenacVUPonAOsMyXt6b+RWR73q4dzNMolM/c1fKyNOS1oe6pE0YYwMG9EBdo5eEUWVPxN6OPo+q10EFJunbbx7q+6ejVEKCAe1tZK4eTkleoWJXZSAeIrQBsfZ1OLKuqsQGrjFkgQqjNyAF+LYzmLRsDq0CWBl4qUm42J5uRBq8zSWo37nsyqndlrIOazuX2e3x9TbFF6jkjEYGIgYvKAdolo57fjx47K4oZM2bMmPFizA+KGTNmzJjxYnxwrafSGNdjwXZkHCUp5/hIEGmqwK6MdS2ojUEkeHs7oYmCRSINZU/As6qx07WDRMuTYH1TrYQ2AzmfwDWoeL2UJIF+zLqCNZSU+tBkPHtvP5SzTw6zdo50O3OdBz10GKydQJV0ytWhLTJvn8CmkYXxXrXZy1dB2gZEEVpiU2uQfQddzqHQFANPVTHeDQ/rqsfEuylGqZe/rm3A0sH2sJmu2rbQYzJL5iw6hdAAS6rUZRvXpK2QJGiVAanANWF9TQqCvq42T7qAnzZIZvDWwIUBA0e9bcE2O5zyPcjcVmtNHL01BR6uI2nLQNdDII20LbkrcNoSA8OUvZjkZu1FSv15dd0TfQAAIABJREFUAFPrF30tV+K7oV5+ruCtgEq2lqWADpvxnhkyGPzJiVEk2wS6DvrWxdp+CXCjvzAB5N5upV2PGw/al0vc0IS0dXJAWzZCRiQQcK5qinlTNbFfWz+n0eDRf5Z20TabGUT6PeHt1LSrgV1+LqinFPofADHhLvaOb4ph34vA9j53HYddZy6EelFgG2DwjbG8uZ9s584JaWvINxsDsDKWZ9GW2C7galMblw5m17O2k0JzkwFOpDbhSXVQVAjtJKoUF+h0PVHiiTTGcc0Kvtu0PSehCPkpMhpltNz7hq0SSmHIQXr9xBwFrO1JVdcnWqs2ATBfEYQA2ouxOgRSK/B4Bm17TNJ8n5gVxYwZM2bMeDE+uIoCALYjo1aOT3DkBk7mF1QU3HYAO6eG/cg2m0TQCnfqqc8DhtIw81U/4VWVKuFd4/OAXQXrPixhcW1eSyM9kKuYDTVFFhjzixlI6NVJDP3JPcPiAqRnhmT5OrvutAEFBqA6u7IBvDctVUoDH83mMzfAZjDLtoEeH6IScF8epbYq0AjzkOp0O83gNKPWTJ7NNt0pkVxsDaRn3elqYB7313KAHgzwrgOBxPx8innj5Gfg/NWqQ1jeHkhvb8D1htyaZt2LPm89Mepig4Bs7RTQ19fcPtHHuR142jUb2+1a+DrLwToQhwCIDbwqAIkC52AxTx6rEu0axHnZ4CavBrkAvDXgpD/wvcZHA23VSAykavPrYdxeUvDbvI7863qiqBac7KDXR3oW6ap4Fh3qZfPGSYC6M+SBlOxBAk7qMwUhiCh99rQW9UYrSckTrb+m3xwOBkcVR6qW11nT3a9M753hHtgb+HaEElvJEgTJg+3+MLMbfk+sDXmpOCoByAFOQ4C0m59UNnpvEmDj2NPlgrB/dyvxdC3AQwZ/xPq9WZ7z0UBVsH0pxbx7WQXyWLUy2/Ta6JAy6evh93kWSIXReaFgdtXKAlmAQ9BWrbDHkNxAqak6uxGIBXmptlepX8+rgvNIRr13AomD2xmgVwRqrOD8ktAyAw8X0PWGumbwR4+o54TjcdJjZ8yYMWPGFxjzg2LGjBkzZrwYH1zrSYSw7xn1YHBuNjFNlabNUNOctI7NqbefiASlMtKpovKiWogiqKu2Gupi4KMZcOmUK4TGwafXqfmfdGUpgNHYDFaWtqTzsPdXyqf3mbhpG/jV6BoFn14XltfW/mnW1nKOOAPRrhpbVS1rSe9CkrYw6kn1A6EX8GiqkG0njlndzWY1eztMtREUqmOCcelLN1XjCoi3xapzvK00Nz0GDa8d/H6SDn42axEJosVDRcBbBW8HcNuBUoGnK9LjCfRqMQ48kDdVnutrmPne7nOvyV8mePih5o7vrb0jFAptkg4+1rN0K2tbdzZAn4ugGQ8/7Oabtjq8vdHnmOv5ANYexNC+2HeEYjkrzx+4Jzb4tLYAfh08N2JDeiYIMxqrcjhai9C203Zk1GJGcwRI6yC+t6SIW1+rhLtrN2pmOvHCngjWClqpz8eu1rasYv3IYW8BoRkZQfN4Pfu+NdK2zAB2k+0VEqjp4WKvz9JnhNt9qFbqhLRV5Lc7JHFoO1BN49RsPvXQioWB/rqPyfQM9nWA6Xab+1xrO0CxzSKF1do9wdrT9uSD3oiSYD2VuAanteAoCcdDgRTVGPm6AEpiaBmAWbK72SYX0/MQQVbVRrXTAs4ZsjDqJxeb3nff/vpWY1YUM2bMmDHjxfjgKooqjP31CsqC9rSANvVkEgBb0c+9JyGkXNEagZP6CqVcVTX56Yr8xKrCNs+adANOn1bk54J2SgDYhs5QZEjCPVvOV4qvvRrwoSg6UEeBPi6mPjWgmw+Kv2FXWDs4aqrb/Ez3gJloVeA+UtkGErnVNu+a4a1vmqpgmwAGivIuOo9ZBFgXUEqQy4p2TkoJdDU4mcX5K81SXJUqrJWWKEPRFMUSx93cYlq6orsl3K1N+D9Bfw93666a8apvDqEdCctOWF8L8s3Kk9I0G00MnE5oa9bzs2qnLh1YBxAzqiWZmtYGyXhV0HIHASVrFkrJabGWwe48VAf6Mz76MKrI7mXI+mu/jkpH1kxas26Aml4HZK3ghFWtTc9X4HTC8fEJ5cxKpRYKxbCweltxlbsKV97JvgGroA51HKDdANFKOAzcboXRbkkH/1SCnBpkVRXxccuQtwvWTxn5WS3avXKC2DAmo2ZLBuiqw7D6ayMy5TtQvxoFWNQKHlBKdl37NZOke9j3kGQoOwMAtmT7iAzIRndLqBQeWXywki3Mun+s+gDo/Pek1RoVnf1OtQ3VtxNOREHyQ68De3UMparKIshG0vC154PQiCC7Us3pxiCrSvimA694971BaAfhYEETYINW1ESC7bagHQw8ZXVdaIT8rH/ra6TvL2JUY+XaLk860CjfGvhpQ7qdwNsB2TbwTUtoyaeYZ/5ZY1YUM2bMmDHjxfi6ioKIfhLAT34HjuWbivzbP/lOH8KMGTNm/G0VX/dBISI/C+BnvwPH8k3F6Qe/T+iWANZZvw78tswBSLbUAGLUXTUVOhVLT5V2azuVDs4mN3PbqlpvG8AbYJ5ZSes3Q5vBgdzUlaBhGrdLAK2ubiWbIywJoXJuKzof3n4XCkzTa4T5n7/GAIZzsdYJECaEEIkWkSSGZFa+PtvX0HaIT69zYJ5aP4cwYgNiNjRVidaLvra15Iavuahsw9tA1KAmag5y7tqf4IOUc54IrajaNd3sWmwVdDiqKQAraM17AbDE1LQAQ4eWh4OSbhboP7sDTmFtpSxoOwNLU/3EzqpIt1YBncmAf9Wr+Jxrf+0AWR3wj3VqdyA0iDqwC/1ZWwDkDCQOHU45aYvH1fw+nU0G4794Xrsurpivts46T1pbhNKAfdd933z+t4GzKKTtKJvxrCrod8/Dzk10P7vZ49g+bQIz/aPYEyB9fLpW0FHjegnd65KihSPD+hZAKgUwTGbcGeaB5mxADWjV7tPBPSGA98HQE62pnogAJNVIgZ1UQncaFcDakRW6lvZ6XBWs9rXhAoBpaI2J6lDMzK+hn2cYKgIgtsc31eygkbZgqUEKg+3veRgp4PcOH3p/uC4IjDAfpeLAvP4PX/OU4hq+T8zW04wZM2bMeDE+ODA7lKLuwVMIDQLaCWJzrKWRAkOAKrddvWq+SZ7N+6e024JTaR0IHlTHbiXuPwcsYw3QE5HZeDWhGbuBkk4btcxwpB1G5utKW6NwpsOqDaPJelYPBvgmwJkCtFOqp+jxVAGI7obF6PMTsCx6juivqec3pBtGVXXfocjK5P7348+j+rBz8GzUs8BxLnenIVr1URSERaHwbNI1aqCjaDpNHFWS0hp7dUNVFNtcqVuew6sIp052Cu5dJlv955a9lsHO3TP3OlA0pV+7vg97NuszoakqYFoubH/brwHF2hKwZJ0HfQeQE/gQU1D353Xrd/f8oaaVT8u2J3ZSckEZ6JwbQy6EUhLk4AC7AQAHoW0J+5ohByMViuFLabPXO+y13OPKM1womM1FwAmgmrp1+7BOVBtwFEDU2ruucucHFWs2kB+8Aq1b6mvfBp8zMQy76PkhoVvuD/eY+pTBsmulJfMB0NHQMoMPVfq39PWz430jxR6wf3yM9z8BWawyBaQYccH2EJNeE6+YvKoAa6UiTEA2q32xW6pqRdgt6+08Uq+adH8ZtXsd9qL4XmwAM2hd0JLx6d8TyAZmRTFjxowZM36TmB8UM2bMmDHjxfjwWk8kkFVrLRGCUNOZtecWatN8LuDkwC4CGGuNUDdGOVKoWh0Y3j9KgJyxf6Q87+NBrbK1fEWUeeUCNerbeqtExlUU4LgouiqshmnNJse1VbUSYbvdVIvg1tcAIDYzu5BZZS+9tRElpig4XFcrdUV0St2Ty1N1YldbCbwz2nlFWhwNdG7/0DKy1043e87aWwFa6lIH+rzVBHsOB9rEzsVacW5UCANAJWt9rYZzpqT1liALYICizjYmyKKaD0ocxy1rNkXvOCN4aHs5nx/oltXGtVe7aP29WLsGvkdsbresOvvYJxK2LJCs4HJdjaefKVqOkvS5qrUG1Eqe0dak65+1JcYnQluTtSMRuhwhApYUrbqx/RHtGeq/830T9wH366KAvpgOwc4x2fVhUYD2XNE2jv1GZr4nZ0LbGfWsuoV6sS02GPZVA3brxfb4q4Rs7bW2EI6LHkY1B4NyJtRLBj+eUc8Z5aT3QV0HO3UD8e9MCE2PwbmhnRrqiZFsv4u17VwHg0WALGhnQlsZ2PX+XBpQTJ3fMkPWjHpJKGcyzYVgzJHdaUD3hTMF5N7o0H5cT3Ytkh5DJaCtDbIouUYn3pHOZD9rmwi7taDtfUQWfQ9L56KANgF5rSibzmpvB4MX3fN37VsBhBlcBeUBKI9AOgjlQSf/1U8uKA8Z1M7IT4+QhdFOSR0Y8tDv+wzxhVcURFSJ6BeJ6JeI6C8T0R8hIh5+/w8S0f9IRP8HEf0lIvozRPT3f9HHNWPGjBkzvrn4dlQUVxH5EQAgou8G8B8B+ATAv0ZE3wPgPwHwB0Xkz9lj/hEAPwTgr/yGz1YY+TVjnHcNggKH9ulcHnPPLgUBIFIlnH+dsLzuoFR+BpbnhtPXCta/9QxJr9BWQto4sh9XbvZsTgceuaKagLDRTjed95z2Zspa9ZNKpt7OV31sMjWq4d1oQ/biNFguKk4OVSyZQnM3KpwB58LmJ1RUhU2tAUigYuryhYF1BdYF9XGFZEJdKNSy+rpmp7xq9tAWQHaEF5TPxfbjjHBw19e69Z/zoVi0/y3vCtxVMLJ5UCngr5ksb6ZYblAArhkYymw0UgOsVzbFOKGc+2vezR7PUGIA96yYqq4f2yzkugJE5oEkAF+VHptueuz5TKGKzTeErTYb+aGI0hgBG9TzrINyeK/gjcEH63U5+nKNdF5ZjbqavYIhUwc7ZdOVw3oeY1UXBAkxD7CidFEfOAVA50CvGXVn0JsMrv14SYBSCLdDyQT5DWN5rXOwvTpzSnZ+Apar3FGpl6eKdNM9fjyKqpFhYDepDbmSBmxPisDt1McqyIkRd95Wh9meb4y0USeL2PHQAtQLARtDdiCZ00K66bUf7xXeG6gU8N6UZCIIdb9wn2se16cSWoNSpY2iGvbyra+LbzguWgE42SXdzCesMdKV9HhLp7mqXT+jHIS29RngB2vlvr5R8o27PMTeJp8jL73iF0K++mz5Cr4eSKcEKtXORcteLoJ8ez9A+9vaehKRXzVB318kop8C8C8A+FP+IWGP+YVv5zHNmDFjxoyX49sOZovIX7fX/W4Afx+Av/TN/B0R/SgR/Wy7Xr/Iw5sxY8aMGe/EdwrM/g2RFSL6CwA+BvDfiMgfHn8nIj8P4OdPP/h9P1E+sZ4Pi3KpBWgPNRBAvhiYbXWdTvgCWmXcTiuOV2wgsJZ3vDHasuLykPD2e7MClGZQJkAHjgUoD0A7KX/aldk+7YwKwGcAxGoeBmD/SIG48ogAx8aWFWAtE28frKbgNBvharO2fQa3/tHAoR6WcrkmLbVPOdoWXKWDpNsOfj4AIiwLA5QCCHZlNqClc76J6TQkJpIlm3Kn0/CGc7f2H2Vvy+jPFJi2y9DeBV4R1uUOzLYVKCdCvSQkEciR1Vb5KACRtnRqBpXWj9v0BT7By43j8ts+eS046NWm1Z2Ga9YIwk1NAbOqmdtq7bZkRoJn7YBRWD+b2aNbsy/aJasOZp9SrH8AtolUsV3VhpwqgKwIbToa+NAWgbaNtB9DYnOaj95KUVPIfl7ihgR5aIkAoVURAQgGslL32/Ppgnyquv92Qnmlz1vPvbWVNgfRdQ+Us/79/klCXjnmepeLkRisTXZcFGCW86quCeig8ehy4P+HNb0dGwDg1BSkHvY4NYSBnywCyQ21EOoTmbkl7uL4KCE/n1FPSVvAu7ViDzXQpEZ3rgoKXOs921ab+T6YP6pFuJFTzgLsds+eneGhdub1ZOtd9fm89dQyUC8NcmqgxxKuCmlpqHvCnpPqSA5CPXcrdh1xoLb41BS0P15ZaxiM5UygdkE9Jz3GL79CfVj6PPD3G5n97a8oiOgHoXbuvwrglwD8Xv+diPxDAP4oFMOYMWPGjBm/BeLbWlEQ0d8B4GcA/LSICBH9SQB/gYj+6wGneHjxSUSBJqfUUdHsjw5LURsgKaGmFn4qZNkUDOxLg024gsPA8iRAVXvwJpo9lrNla6lnWLxqFurKSYhmlO4PlG/A8izIVx2gw5UgBkiD7X/qmbfP0h4BOABh6SwGgHu2mG89s8lXfa266v93CkynhxYHtwEsi1pdLxxVgns0NaOBttUqm0zIN1FQdQCynTo6Wq87jRiw8wFitnLQfpPRma0SGUE6IejQo0FhKpkh56w+QotZZa8JdWFgUaC2XHQGclnNJ2k3WuZqNM2sqO84MMernLbAZoZbJthU7dopyH0p06Ygr2fCLRFycRqlXRs/Vx9C1CRswZXiKmgnHSyjPkkG1jPHcam6vL+wViOEJjp72fdKVHHG8rxTOg8q8aB6AupkUCn2Vz3rz6QxsLNaYl/12lfBncW2z54mr7YERjHtILTb4BPbYRXoTOpD55G3RDHffKSHh9LZqdNe5VUCbhyqawD3/lqFIKuo2nyzme5Vj9WrbzYPN7cZd8+pWB/R+yNm3h/6XkEGMnsFGbb5gwcaF0A2X0+9EFQVzHYqa36muCZugU4+NzyR2r5XvQEqKyeed3ueZ1ICxdWqNNF7X8/TKvAELM/63pWvDem5KMW5NNB2gB4WsDTIY3pvr6dvxwfFhYh+EVpYFgD/IYA/DgAi8v8Q0T8L4N8mot8BrTL+XwD/+rfhuGbMmDFjxjcRX/gHhYi82B0TkT8P4B/9oo9jxowZM2Z8tvjwlNnNzLYEAJmtsuAOHW2JgJK03G7QOsZLu5tyn3nvYF2+KmibttaNxUSQ7HUkvwPupaFsblDfOjME9BYRtQ54q84BgOsngD7hzibUAYi2R7OWDhUtVd3uGdDjSNVUoKYYHc30AG2xcGlhw6x9HVItQmYF8UZTvdbnTfNC3SYdiPnD1azWvQTvbQIDuggxw9tNDKVhmKNtpnPo5Tg11TSIqX556y0pKi1aaQoEC3xanE8m00lywxqgrxMVBGGh6yj0mvp6q7KZ0U4SgCrvBDo6uJnciE+0jSE8HIuvhbWf1GK7mxOGvXm1vRrnY6/NDvJ+PbdDrxGBYa9VoErr2tcozhMGZtcB/ExQU72DIdKQrM1KNuc5XQkVDcJs9thAGFt6G9Rt84/eEuTDW5EESNPWiRvfAaET0VbSPQhtvAWQtU7cPjzt/X5qZgoo1gYM6/E0XgfT+2zafsGwzv7PW586MkDbTjEBkbR1SUV0ZroD/4v2v0ikv/ZgMuiKfDLlO5uuQ5XXEhbqet/0NQ0jTdv36abX3k0clRTSbcV5J12TYzgvO568ia2ftirR9F5l32M+cz1pC0oWRnLyxHvE9HqaMWPGjBkvxodXUZCClGIUywSj/LHc+eMIi2Va6nMDIcskBG0fQEsLBUbVD8YzznpC0Dw9W5ak2QxMcUwVoZqtlt1wAfg02F5TByHZgVUZjxV3dFMHhN0PJ/yeyEExo+8B4QXjCtOWSJXVmSELQ6oNlVkXfdEqkRHHesmQpQ+AbZIGMMW5BjDtjMVBZRyZbngs6boESMlOKZUAZe/szKHrqupwBkkCkw6AcT8oyQoChpwdlnnL6Imj3/tQKq+6omrrDFc9nSHbExqU3cO5+s+azSkmun+uAJWNTisLh8W8q5xbJvDReiXShmE/VSJrV8BVqbeRnTfo/KZiVdepV7AxXOrQ0eL+8wbNamVX1gcdFBc8bK0tc3/X/t73eXhMOXU7D+dKvXpIh2C3IT4xOMiyeSEjm/hAHUCrrhSHE3PA/Vr5GIGYw536/5GlY9xX1kVo/Ro4FTWA46Q0Xj6UKg8HsbnbvPNOaFZV3F1b3+Pjfrmr4BHEjrGS9P2NBO1qUN8nOg1KvcWokn7t5IWMoNP6+4a/L9QFYKLYO+J+Yn4+hG5hnrqtvXcIPmvMimLGjBkzZrwYH9zM7PTbvvSdPoQZM2bM+NsqPryZ2d//OyW0EwYGcbP2jD2mEQegRrASNSm4nG4KooUpn+ko+JAwDqveEhhAtnIxUM1BXAf5cN96CZBbegkq6L/zkpQPBL+/2XNyQThv+/NXs28e7bT1j77xGrWVgzOuimeGnFZV+l6yKmXHNgD1FlaYHFpZLqwHFJO2RmCuDT9zK+ah9fB11thAWI6PUwYDSLVzaguBqimta7P2hUCSWloHYGxqbohd/4ZoM9y11my93uWSj8CrHxsPrQ09kXe+Z0B8cp63T4Zj11YVQxYy40Kgms04mLR9ZkBkfaUTB+uJFVS1x7q9tD6XthXq2tuQ3rprw1z1uurv2LaG7hVty/iNIDaRTY9T+nm33n6KPTCsVcsIPU0zUkNbgGaEipYo2nVsQLK3UZA5WoV3OojxfoARQQaCAIwAAXRwXa+R3fe1TyPk0luN2gqz46y6fpJTmCdKIkgTwG23CXdtVQeq49oPbcluCtp/T+ZZKam3s/nQVuHYyouvq7afhQluok02aZF3QtooCAVuJkjmEOFtRW8zBUHk8JnZw32fGWJGmpB+f3/WmK2nGTNmzJjxYnx4YDYL6mPrn/QGRjnFEQ3Ag6YakSmwgFgghXFwhjCjnuxT++RgMQPIOB5JQezWASSIAdgnBbgdXB7pdg5G8qbqYM/+6xl9YIlT+Rzk8qw7dRCwnPXnXk2oxwsiawYsY8n65/VkIGISLCfNKBoAYq8UCNQ4MmFVDjegdYtjz8Za6lVQOmy+sa3pmHVF1eBVxAjqo1cdo6+PEMBO2yTLfl19njXDrSuFd5AriMUHFxm1VOeKaxbOZmV9X7EAWIZqLmGoGNArmQLIqllZs1nOYaM+HLNfm7CBJ9ylV34tWxr2QGkQUlpiy7rmfDT1eioS9GPeKiA6fzqtBD6zPYcejAKkOm/aB+vUU1f5hreSKP3av46qr5HOlLeseRzsxIVQz151KtB8N6iHe1bu4LXbod99nfR+8WrH93OzykkyRzbeUt/zHpIAqVYRJXstuzckq9cVmYo+qpUEtEXC76meJBTv9YSoEsivXdZKjiyzDrovAB/+FN8b0KzXmfrxAJBh/cILbLH3hNX2onk3RYXua1n7920VtLOgPVTdf2SvuWglypuC1ZzRFflklQ6pwl6SdjmUXsxR0dQLw4d71ZMeeD1xJxJ8xpgVxYwZM2bMeDHmB8WMGTNmzHgxPrzWUyPwM0dbgTcDsjbpfPxGvfURLSRVM6dnRn4aFNKbtkCWJ8HytuJ40NIuzNasVG4+qeowfYXbaTtoKg40qXoyX62sDz65Hq8C5x3ADa3E2rnw3qZhayd4u8Sf36e0qbmgvo6qSMWAM5sStwzlJpHyuYEAhRX01b8PAJKUq02FgEXi2MKQzs5X2PDrIdXwst71IyM/nhp1/rgDxA78rR1I1tbN2Ju4R6BbIsA48dpukNCc1MWA39MIqHYdTF3J2lwY1NmqTFerc4nWQYCXA4A5Ks/HdqETAFrW46vWQnDuvhywVplOVGtJr01b1RK6GZjdkoHz9lx1cT6/mgK2aKX0/0PbM7Q6xmlxAQJHO2pogRaAmUIdPKrcx3N1IgCJqsW9Baqv4esH9YR2LYSIXSO+21dpPM5xVrWv87t0f9YNR+jHIeP5mKrcNTx3yvSBiODrpdPybAZ6aCmGY6FhzdxpwcfND4C0Eml6C9r3eIDQsHshAyj9MXEvWFtO11u/56rT+nxSphuP+h5ONyCZ/X9bgHTSFm06tJWZb9rfSoceKB+6mGlvaMv71QSzopgxY8aMGS/Gh1dRWMZDlYB9AJTLO8ATA6kgUkNJNk/Y6bBbp7I5uCjZ6JGHBAimQLE+p9M5062Dpf5793jymdZUTYnqwJplHn0QjKBxz4acGujZTdp7BpRtqJ/Ya7P5M/E+eEhtRpHLBCIK+qPOIG4AK6BVzznOhYsO0VELZoTnkGePXDWhd2psKJ397w9VFztA3emKtmYHAAMXIw4tJdJN16yelRboa+d21hjVpz47euX4frSa9PXNRUHItAHHo4HyNnd4edbzTTYHuRSgnYDEBLH95F5eaqutv481P4yqaBWPUqAVgPf55no91GIcVm3mq64xx34wL61DAW4fLKOLiqigvOJ1im0ftNSHM/n/seZF51uPTgD5iVFPgvxEUQV7lUiN0ES9h/KTDkXKN2CHVrZomq3mZ7HzohikpLPNNdtPmyBf9flVDW33ie1J9zVzSjq1TsjIVokDVilBq1neWV//SgE+h9W/6HVrWYkIeXhMvto+GoeEGU00qLfQa+jdBqei5yvQdgW+Ad2fabNugnu5OY2YEPT5VmHEgb5HWtPn0/2t561jB3SIGfl88xvfH4dVJOlme+roxA/vKvh7Rdr0ufO1hduCzwKP+4aAagOm3idmRTFjxowZM16M+UExY8aMGTNejA+v9TTEaMbVp9uh87CNh343q9q1EdRBMWHgeFTOeV0RRmYt6yfpqIoNC2X09pZz6yVZa8kUw8KqC4BzoM0MDkQxG1lIJ8mVkwKtPnkt+fnZeURZ6dPlSNsH1cG0BEhWNbC2oBQoQ9Z2R31cQbUF39x1A66VCOBeDwt1NaB4AKUDXPVjAjrIPYC/XNQgkYY2A6ibLN6pmb3llobXXnSCnAKlYqCvtToIYQ0tDCRvUwUQ2afYOW9eTfm6/qBZG4d3O6/zuKnQwWrqxxZT0EqfRDca97lZJFdBPbMpxPWx6RBUb5v5ni3A/vFypwGRBBwPjLwJmoHzOi/9XuMwmufVtb/+3X1hx04E4IKuOD7euYlGVbY/D5mmhrX1JonuXkfNG/WYjovNzD6jT4AbJvHVS8bx4C1DvXZpl7j+bQU1WZFHAAAgAElEQVRo6/up6xT0Pon1Rd+zsXeGCX4tAUg6iTCU6xnYXxHyLdnkQ33tkgiSGOnWcDwMs8/9fcMM+lwlLWfElL3RcUCytohCW+PvA+iPDVPKZI+31lQ8l82LBxCODk648HMF6QTHDJ0pry1zQTnbz86ERED7stlT7AIgq5Zi4a7reo+YFcWMGTNmzHgxPryKggXlUQemCCu1zO2uwarklIsqXulQQAw2O7meCHwQ6gOwfErhWaM0Qk0HjgeKjLk86MxaEHB8pF+LqSWdGgfL7F1J3Fb14HEKnM5CtuNLCArdsXTgeF81Q66rAqgQYM+mvFyAwj2zpQaUB83mWlJQLOi5RhmV3WyqzWK8+z5pXkBN0EjpmOwgqQBUBWygrmel+ne4V6rDssGlexI53bItQ0bkKuECtIeeDcuqttCUTFHfCO0sKI+E9kavU7oB5UH5uK6ebYki+2pZQVVP31y1q5ThDvh5lsdVj9dB4erU0tyrSohWF1QNKM5AI6MerwBsfrHPDvfj8PNsi1YEy3NDOd/TSMtFldrhvbP6wC2BGNFAwVrdw658DivxkaqLoYIYrpGM+8QqRQxZa8tQlbMrfcfqYQFwG5TPJ6Nnu+36UKUDuldpo7DF9nsgKo4ToZ6575O1E0Na1sw+bPwzwhWgJYQiG6eGsiWkTR9XB8V9PdsccVP045VepzK8VbSTvj8cV82q6wko5hHlzgP1TFFxSgJGF4J6ArJVJwFKU//f16nviV4tho9bBuShV7XC6r7QFquOzxJ27v6eBgDp1CtiYduXtj751iu3umpFEW+P1uHIYCWxiJFf7ozPvvWYFcWMGTNmzHgx5gfFjBkzZsx4MT681lMj8MbBB/f5smhazoOAYrxmKkC+Grhp7ZPsvPrXAKxM5FA2OogFlIs+V74iDMkAoA3ztiHa/hitxdNmvPlDj4etPdKy6z+Ul+6lfEuEVMTaDITdFbHG6cfA85bifH5BhgKMaRctzZsgXxuqmFle6DdMJ1EAWNtDOd00cNMVbPVZvCPYfKd0Da63md1xP3cyYzdq0FaTAYDRCjE1K4CYW05NOfwKhFNoK9wuerS+RpM4Xr+WPoPap8UJ9dLdX7ue9Xj82nhLB4yYSSypa1ViwhqsvWhtq/zcNTvxGFtLwjvtOUKYtLW163EqrBV50t5GW8m0JKRkBjPZcxW2Xl/cKeBjfnvtegVX6tLQIqJiRItBVexAqusR6OiKbgB9OpsrjqNVpN3bNrRWxnCDwtA0De1JcW2IUAeB7Z+3fb3tBGv5lWqmkIfe22nv7ZzQFvhEu8X0BK4/cB2DAffpptco30SJHoPlt2tgwjDRWnWulE5X01GYOWLoF3bVQqTN9pW1LtlHDxTTSrhOy94D4j3oBlTTsKDpe5SvYUyy3G1PSr9GMdqg9fMl07q4Cjys+jOBK+k4Abm/zp8lZkUxY8aMGTNejA+vokDPimQR4KAAkxyU9EFFgAJY9dJsHi7AR7cj9kyyMuBUvJYIcrbfkwJPnlV4xuF+PLxrlggGaO+ZSdp7JpV2zd65DBkpECAkV+fKIQBhp9i5ihToWX4zQM8fr8poPTBXLkO6/45bcYMItFekI0FYPZGoKuXUh6G47xIb6JrMP6rdEPOiuYqphsXomRTnQEJ9trJXXLuppO3rsKKOqsDwViMDULPjqkaPFAC1WXbWtJqpAFiBe1UMA4mkq45zv84BDm4S2ahnxdT0GnZCQ88aR8o1mmdzep5t8fXrFYAD6GkXVea3BvnIUWhgeW5AE8iuFGafYeyW53kTI1uIKdr9+um1yULh+5Vqz+JdEc8Gvvv3VE1ZTtDZ2AN9mdze3R9r5+wUYq6A7IMq2DLdXMzGG04kELs3qAOyRjv2TB2pZ/EtG308W/a996opqhAniQxEACcgeDat943+34wOnXarIE/Da6ODwSCC+1BxNTKFXa9y6TRc35uSBeBefQbIDVsTX2+7fcf3HrFjr6utuc9DN8KD3/9iBJd6VkKHpN6tcLKK2NColrVidE+5utr5FAX587NAYESQDYA0IFHcZ/xOFfitxqwoZsyYMWPGizE/KGbMmDFjxovx4bWeBGot3oBKHSjycpwagGf7/CMHhDjKdC/tluehrbRoW0EVtNpKaY2iXIy2kbeecgevxNsT9nrKeRdwKIa1LG8rADtGbZXp89cVWN9qKdwywM04/vZ8LakAlVi/TldV7IatdAJaA5AVBFRlNJuKWhWzeSHkpwp5yKEa3l+pZiRb6+Z4VGDveDAwLzk4yygPNjO8ApVMcWxq5paAtBsAm4Hlra1PBkrWx/kUMMDWyyaqBXcdHRDvGpZki5CjFVVeJZQHNvU8ujagAscritZHs0lwyrfX5zxeKUBaLwrKtgWh4PbHA9aKeeeucF0IianTbR9WA6Drap3OBpv4xigXbYmUC0E2YH+lJIO20qCUZdBJdTEtAccrJTTA9kW5AGlRwN81NTIca8wxtzZTOSNMEZFNvwOADopWB7fezvDWX6idpZ8rcN8W8td0Yki7AWztsJZ1XdOtt0xdL8FF7cZdS1QdcLfWqLdSY8a1XRMkAe3WMnNdzKiNaXouQbDYh/ZZ1b3XleJ9Lrwk3cOA7QMfAcCmbbAenbfSHHgPVfhwfq7Ujxaqta9i1rVrfGx6pO+baLvanuFDj4ENjG/2vOmw8yjWOSsdzI8pjE6AWGzfLP47hnC3Ufe98FljVhQzZsyYMePF+PAqCgLaKuCjK2P56NlPXRXkJqPIAvbJbRkDF1JvGQOeA3AahIvlQshXzfKdAtfM+vvytxre/A7WjKFA1dYGEjrox1XVki0bOAmzsN474JrNytyzkXxTkLicNfP1yiNtRum1DCKbUlyyWkpzkQAWx+FFedODSjbMJL/ZIWtC2gj1nAz8ZyxPzaoghlurj7bQwnr8ThvmQwxE7l9zERQQ8hVBNw4VuSla6Wxr1KCgt2WAACLL8q/VC0vLtHQzr3MAQglp0+PhQ6z6QYC++WZgs2Wz9Wz0SK88B2WxA6zF5pF71uiePNUVuStw+nXdP+ViVYuB2MKawfkxuOK5rgBVQUvcwdej03vZ6dBmqZ52oL7iTgPNSqHkOmSisMzUKoZqg66ar1lQO/v3AV43RMbqRIP4Gh3odEq2Vy8xm92yZaeX3s8VV1DVAWRXBkcVUCXugWSeTqGgd3v2d66NPi+QbHSAE0iEgHbp59qS3tOp9grYB465ytqHe7VMnUZb9T6sq7kXsJ6XD0Gj1iv2kYJcTwj1uZMGko0rcPKLA8eN+trzDiC/UwFmgHejxe69yvD1loTwz3KlPVc9v7ra1807HtoJWZ4aeKHwpUqHIL8tuH73ek81/wwxK4oZM2bMmPFizA+KGTNmzJjxYnx4rSfRqVfaiunTxQArAxvQjj6tbCy5qPapcHfGcVYippuALqKTpwpiEhkEWJ60TLx9iWPSFBftinip55z0agZo5KZuSTUBbtQXpTah/6x2sM3baeMEPlhZDeN+q8bA2k4YeNLexrHjQGXVQlwyhBVcjzneBpC3dZii1oyXfUU38bMy249XzRgl1tWnZ4XdMoaW2nXQVdjx8a6tFaH7tUs358O7Ql51HtoaEKRbQ7lwmBx6yw1QcgJEYhqev9aotPb2oBAgVu47MBj6CtsTUb5f9WudJtYNClXvQdF2ch4/VwHvajWedunmjw5e2tdcXUvQcLzKveXAug/rStHKGPcojLufNnuuol1TOaxFWYZ2RQFk7S0Sn8Dm+4xsFjrvuvb5aqQOIwm46WK+mgalCIqYqZ61UQED8JeubfCZ2T5FzoHyuvZWE1cxsNv279HbdrzrngyQ2M4frvC359K51XR/vWwa4WIamrQJ0k0gbrXOQzvSgHbXLMS24XvQ2N8LyNT7rhUZ3QOcjBHgtt2D3sp0nYW+zyDmYAeJY2gV+pRFf34m6JS90lus5eKiDnvOQ0wTMlx7BrYvL9FafZ+YFcWMGTNmzHgxPryKAlDAagDwfNjP19knu4LSVdDDAB2fN0z2+OwKU7fvNfpkOwzwMgDPgTgH5fzn/neq+u6q4LoMFLysVY3T73wecl0JUkwtWu2YPJs3QDUyDpt1XN1DqBkovqiSOm3AcVLFss/MbSeG7M0oqYy2mh05eTVBRhHtSlSlv+rzu5rUhy9JAsSIAm6B7MAne5blWaSvlymBYxb02jNfIc3AygVob9wLiUDSUCRZNi6ol2QeShK+XkLds0qrNjvWYR8IevZ253ljgKMr7UEIX6h60p+7X1TaoAgl9wzQqbahhiYlI6wHuu2002/PZFmeVXLwAUjcK8lFs8266hArsUosrNul70EHUD0Td3qyg6W+Rz1b9vnnLcOIHR08bWsHyH0vBOhs69JSf06Q2alfpT/OqdyDxbaw7i+/r3zwlzAg0iutGArlexwAWIJaHsOyUidK+H5qq7oQBNA8XF9VNFu1nHpF78fWAfH+d+PAKmLYZKBOJ7ZGhj6nXa9wG0i9ChmV/jF0jPu1CQ+1wSPMiRIYXsMdDsbqxa8xu+dT69W+V9sQCR83ku4E8FljVhQzZsyYMePFmB8UM2bMmDHjxfhCPiiI6MeISIjo77Xvf4CIrkT0i0T0y0T0M0TE9nMhon9x+NufJqI/9OILtM7BdsCSHfDy5/EyzYHhOvytl8c0/DNVqgOVwtYq8LKXOsDsQDnX/joergL1KVktUweyRnWnl5OjAR35c9hjBqAreOHorbSYY41+3NXmGbes7aV6dqNAmBU37iy6mwGRfl4OPMes7NStu2OO7zstEEH/OtoW1jqDtSbGtsM4e9zbFn4OcKA9UajLdTKdtpx8HbvZm55LvG6iMExzIL5lbQH2x/d2h6+NX+PRIjuUwjS0YbwV4H+a79uEd2s17MO45uh7wq972uQOsO723P0x3mJgb8Wgv268znBtHASOPWt7Oey4t2HvtU6gCJM75+m33r7BsO7UJHQg4VCAfmxtoWi5jiriMO9M/bGuctaNZMe7u9kl4n7354+Z3L4H/L6irrfwcNJF2uT+ulkbKB2diOBKaSceBEDt2hG/hr5GpV9TXy9AW0KAjSCwdQ9luN8Pqbed/Lzaet+2U3NC9NavGxRi2GcOxBP195amLcS6sjoZnPQ+ep/4oiqKrwD4BQA/Pvzsr4nIjwD4PQB+N4Dfbz//VQB/mIjeU2Q+Y8aMGTO+iPjcPyiI6BWAfxjAP4/7DwoAgIgUAH8OwN9lP/o1AP8dgH/um36RUcULwP2XPEulISN2EDgGlnhGSR20AhD+S5GRUs8WWqKYXaxZvL2mfdLzCB5axhyeNbjPngDN0DTz13PRQTUKyDlN0v+uLQaquup0GETTgXUK62wQxfFQM4piEbSF9RiMPirmNeUgnQLIQ6UzAHDjIKE4Rz8m6VThkYrqQ2/GoTDjsB/PHn3WuF9HH7ZETb23qGomKKxqbKrSB+eIHw9FpqfzgfV5Q/0tmuWN+2GsQP2Yx30S9OTS/93tIc8+h5/32cdKWx6HBPnPuUinFts88NETSBgBPMa6D5XrqOT1Yx5t3eM441j6frqzref+vGnXx9bTfYXCvg6tH1uAyqVfp1g7Gc/V9ryRDXwglauzlZIs8VxdRW2Z/o2Upr73yn2kOfuxB0XXn3O3jH64t6OCYauOHORO/e/G9bnrElingYd1DF8svq9eAAPHexEfrhD+/KE+536dRgpwVJQY3sOGvevvW07bDyJAVZv6mP9u1+kO4H6P+CIqit8P4L8Skb8K4KtE9HvHXxLRA4B/AsBfGX78bwH4l4ko4RsEEf0oEf1su16/0UNmzJgxY8YXEF/EB8VXAPycff1z9j0A/BAR/SKA/xnAnxGR/9L/QER+BcD/AuAPfqMnFZGfF5Gf5MvlCzjkGTNmzJjxjeJz1VEQ0XcB+McB/DARCQCHqP5ddIziG8UfA/CfAviffrPXaclEyoM52Z2ewsoxPnR63WhSF0Ame5kPs50e9BLeyrKyMSafDeX1aGJ3D14D1Aj5Jh24a7gv+0nnGXvJr4CgQI7eQnGALt3s9Gp/bS7KjR45867OdCCeqwAHkJ8rWmakW4EkBh8NbWGcPlUuPNtz9PXRFtjyLIMWpJsA+jkHAWDguo/tp+bP9w447OfiivO0qV38qK711wiAFkDaKuqqxnlcBG1HN3MrXTGNCiRfA1POS7KWB0HVvK3/ixbFAMYKm8Uz3+8n11tEO8kfn4bnEgdyTT+TAWz+OLprlej6DgwH6S2/aC064NkQ+hpX6EsGWsOdBsBns7e1ty1Gwz0/j/F3rpiWYnby1r5otl7e3gtNj7c1nDThYDSMNJC79qeuhHLqWgOy6Yva/qV+ndm2vZMMGGHiGVPh/H7jbnsO6IQ4tkmXJECrvTVaT92NoCVtS5WzWf878WTQXbVVFfcxk3ww8hu1P65ZiX9+XfxcDD/2+0AGzRVgYPaiLhDloR+DlP7cgL4+HAS3NeVCQSDR56Igk+i9JrHH1MDx/YBs4POvKP4AgP9ARL5fRH5ARH4ngF8B8H2/2R+KyP8O4JcB/FOf8zHNmDFjxoz3iM9bmf0VKN4wxn8G4F/5Jv/+3wDwv730gKCmHgaEMkAHgtoKdJA5v9X/uai61imuXLpdNx/6qZ5vBjRWoJx0oE9dunU5BxDVvW48Wta/98pD6bgCIlVEumLVwVFVKEt87TN/AYnsNu3AIdTnDLMDj+afA0G6kapjCXH8Qgpe5WtTv5wiIPIZ1AY8ktikHYTHUR5Utqrk1LVxsPt4oFhLoQ4wCgtgtFuuEkSCtHeVe0s60CiUqs08oFw5b9Vf2oyuaB5P+aloBnlOgNEx09ZARZCZ1YbZKhUugrSpx5IQgMuwZubTRAJUy65C0Ux9xjmJejs50J5uBqzuHWTlIqgLYXnWqqUAQIFVkKqIz7eG5Rl4/u0Jy1v9GXt1txCWZ0ZdSQFJAIdVRn7u+Sah2NcMUoAzgfY+MMoHJbm/UjkD62sEZTPoulb5nT7V65BvQHV1swHj7muUbgjKaVQmSatLdzLgXask93+iIlEtOZBdT/r75anaXk3Y3K9rB9yfiysgN61+vZJN1Y6vArxR+B6RGEg8gPhO3+Zd91NUtnsnmOSr7plySfpcdv+4D1U9dRq8VrTdOyreYyycACHeVUidZszJ308QA8jI7hf3ifJKriU93tq0wlxf9/es8Ivy1zTKcl3Nx8r2mtrb6/ro9bHhXhcO63EIWbU9VMCfMT7XDwoR+X2/wc/+BIA/8Q0e/zcA/PDw/V/GF0fZnTFjxowZnyHmm/KMGTNmzHgxPjhTQElAeVTDuwCIHWAjDEpZFwIYEHXSEnA0Q6MK0NlKZvgMawPPyHQNVhKOE68U0OsAkbcJvIT311ZdBHVVtj4acMAzjM20P9AWAkKlairrk54GFT+WDh7XE1CMn67goWkhGlAetAXDJw7r7XpOdryEdlLFZgDUBAMm9Xj3R20/kWgrTsE+PU4h+9/X0taoJuoW6gb4+T+fYY0GyALUvV9PSUo6cMAwLXqO5ZKUa89AW1Momttqx5kouPggwvHY13pUkXuLgqwMBzrYOuptWgJwQhiuueleaEOk77FiuhPfU83WWK+rEiOamT4G0SIR2sKmoyEcZpmugKutUXX7d4prj2s3laxr175IAmAgvaRuzujkDd+b5dJJEQX3YKlkqOW6EzJcK2QT9AjeApPYc20B+EH3h5tJ1lPXWugcbZ0dzsbvlww0HvY5KRDfVkCs7RQTAof7zjUQfr53OiW7zzO0BRhklZHQshPKhVF9bru1g6u1yqrPTXdtVAbkJEibvg8ka3dRAbD39w8Hp+t5WE/prWRqCMPI1gDY7PZQZi8KwsuukxidJKBjBBBaIW+J1rPttVVvVicW6NqoLmt9a+cCXV93bXBDzPeJWVHMmDFjxowX44OrKHSwB8XgEKdUhu9N2BxTeCXx8D+AUIkuz5odq824Ucqcjrn3qsUBoXQAtcKsrg3cO5RCGF4wTXoGegwzuT0zqpaBSM9C/XV92MiYPXmlhNSzlewq2VF5SzZQyDycqKm1dTtpLnB8tKCt3GdcXzyL7ZboQTu09KHlDriOa+O/I9HhM17tjDRRoJ83F6CiZ4zhsQTNzEIZ7ZTVd4WkZn3dVvWv8eqmZQAnU56KUoYbAzXfXx8s9+Cs76OgoTr92YHxo9MafW+FH5RRKl11Pa6JK3V9DrOfR10oKiMFcge1LHVltqqNxdZRoroAdTIFFYDScG5+3KmTHjzTd/V1fu77xEHeZust0gHbmP1tma8D5UHNdoW06L2Qb4LtYwoANt2sKmLcDbbySnJ0Jxgt5nmgQpM9fhzMlG6WbJNm1jam2+aLkw68uvZr6JXN8QAb2tTAF7OrbwNh5KbXoq0KLpcH933Sa+fgsVepTkgJ/zdbXxag2e9dGe/gvw90cup+gNQVACiGRtGhlTYd/XVGJboPYVPXAEEl6h5VzZwAqtKJ1YdL/1BY7+HxveazxKwoZsyYMWPGizE/KGbMmDFjxovxwX1QhAWzH/lQBt4ptYdwANMBMDesqyfqINY7FtHFJpKROCjZp8qVi7UyKmLS1p1aG7hTbwYw5QAr9Di5qvEdH85F73+r6mprkw0lv7YRJNoB3TpbBlM76YpQAnhrSLdqJm4AHRLtN9dFuCU64Er1fpxR8rrtOVmLxNp2AO7mQY926K5RcKBubA/o1Dh7nTacjz8PuzBGNSLp1qJd5Mem69qn3N2ZGR6+NsPfeNvIlawDWMpFWyqhkh1U+mHVPVhih25kUBMr4MsDeUH3EA3H6krnZi2xULFbO1IJBXb9fU0MbG9LP58RlFa7cnRVNMbX7/subKmHvdqW/n3a5L4NV/r5hmEd9bX3/dZ1Rg7YdmtyQNdK127s1SF0NRie09ugvt6u2na1dbQnB+V8XFc/P3vutAvyc1Obcd9ORkhpa29RxiGN+8XV0APQ72aJ3m7ztfcWlbcjvSVJGH5u7z3eknY1d7nodbub2w0EMN/JELg/3uG9xO//8bX9NZX4gfeKD+6DYsaMGTNmfHvjwwOz/ZO6oM/HbQqgeZYx+jkB91mmA8ZOL3M/IDJ1NSWbx6xPpVTQyHgMoLTMRfwT3zKNfDUAvElkYCNVz7PCcWjRCJSG55BnqZ4hD5lWPSvwNlqk05DB9/Ptmav69HBkHl6FjdEWBclwUcRNs9lOJw1g1uY505gZekWWnSp6nyGNmaZXWuVi12JRVTFXoDQ9ibQDEsAqW+ZFKDbT2+mkLVOApp41OX0yXs/WX+mX6ksEe1y54K4ijcExVl2MalnPAJ0mXU8U9MRy6aQKtwCvtof08fpYKmzZLEXV6FVqXQfqpWWoTqNk32+2nmpLb9fZKiCvllsGcO57wmfGtxU626b1LJnI7iF7HvVK6jOznVIOAWQHSqZYq2L7xK2s26L34Fh9wCpOMfIBhr18d328E0DDuQ+VxEjq8GzfZ4h7Zd9WIL9WAJtloKguhP3jFBUY70rC8Mycqs2qH7y/orKvw3tJ6vebVzJ3VZR3JLwK9GuVDSC3Y66+p7yCdqJK6jTWOhAT/PxAWukzoVfQrPePK7x9b46q9XJSMDsGnH3GmBXFjBkzZsx4MeYHxYwZM2bMeDE+uNaTKlQF9UJ3wM3YShnLQRDQam/j+KxdwEpNMxisJ2C5alnXEkBW2kK0lA1rbSDsnUcVsqtAqyknHeyUrCVsSw6iq0IYcK47GfhMAdT6Yx3sDFDYdQhW0rdsJm+r/t/PnUK9S81ALmsVjaCzq5pTNV2E8debtV98XbkIGqnamGA6haFUhwCUADJTOzmTGuXtXXFKBWo6j3eyE0FMkxv54vmq2gjeG2Rh8N6QiPU1z9pqSpAweTseuikd70C9DK0E17s0vcbHxVqOdo71ZHvDj8H46bx3UBfQ/5OTFuy4K3cLc6BrDyTp9W/ipoCC5dpQK6GcTUvh3PymLcsw6hum5oldqxHA9LWMNoy3VHM/rrYYWcDBf2t1OGivGxChYwm77BHEt/ZWWIIPgLjrQNwVwA0GxVtisPPy1l6AuYKydBBZlcT9eb3dUk+CCiA/9/aVq6G9ramkBNXysOkm2qk/L1idC+qT9tmaW6Cz2b97D5iB49GMQ+3cvf3reo5o6Q3kglGXI4MV+gji+zl5a4mGPddOAjooZo63VS3Y/SaRQQ9TLkBuQPV22+FKfgSxZbQaH18Xx7B/PmPMimLGjBkzZrwYH1xFofOQybLOngF4FhVqTx+EY5+wDvQE5dQHBwGRieZrQ8uMfCPkZ1U7joBsOjRzXd70zMzBLqdK8pNS8uqqnjJ82Nxfo5T6wB7eJbI4aqKArg3+EVJgvZ4oLNE9I1ieBT68ZBz2s7xtqCdF/9RO2oBoIgir1XLLachYTT1s4UpSz56T2XJHdUZAdsVy0SFJXukcr6hbobv616qotAPF6aWuom8DbVZ6lpbsermKmZpmglQ0a3QKpKph1a8nfI/Y1PReoS0EDgDTbMCzV3pAtexb8nANDz23lk39brRVt7n2IT/jECrfP9Q68KuVGqEuFDO1JXW6qFrXC9is6ssDRSXg1YRavJMqbh2YHgD2mC1t/kOeZedrt+H3fStmVR/0ZruP6grw1u+VtGklV88Uc6xdZazrp9UxHxSW3W3RiqmteqyAZ85uba+VKB9esfZ7A1alqC0/sH+MUGIDFL5VVHTvFQPX6wosMVioW5E7vZl3JUiA9bmWZ0G5AOunRn4ggLa+X5QOb+8h6z2Y7u8V5KC09Crf18295IJC7TPM9TTu6L73FS6Z/bxVGEX3Cx/9ns9mh7+8tXW46XtHWymq7+VZ+p61Wzo/NwgxONvgsWEswmeJWVHMmDFjxowXY35QzJgxY8aMF+OD+6BwFfRoRAd0060AcFzDMJjrOWjks5rdVM+BauXGU2WWDbgAABO3SURBVICEdXj+eO3/r71zD7a1rOv457vWvhxBBIIsE/DYiJompWJe8gJaDkLeJmaE0sQwvMuYl3RKB7MZU6dozElFbbDUpGhIJS6WgkMpKCjnCEaGRoLmqAkiwuHsvdavP57f73mfvc7aa++zzzl77c35fWbWrLWe97J+z/u+633e53cd0EVssrR2b41I7ZdpeCSGk5lHjBaD2mA2VD9lu0VPdR5GQfPU3KEmCJVOVRtZ16cw0A/me9UnvxiGi+oipqKD+T4IFud7nkZapb+zRd7hTJFjOBe/H5bLzoC4OK/qM1/SSIuFA1QNlpFWvSak8+NaYys8xqFGF0esiU/NS9WuMkXWoPh+x7IiY/m9SOVd+qVqCF44oFfTmtdoVq87PfREjtVI28Ss1HTvbbR2xJpYE08xbLaDGj9T+zKS1HGXWBWPVg6VVpWPYnyPLAE1GtdTike8Rk3dPtfJNIi099ZdJ+15q6nWtbRPrSKiytIvarCahp9u2zinwzl1Eb+zUS+7ayPULO5A0cYNDebKOSrpubtjsSQOpEkuuaTGdBvL0PQp4hHaFOPDRqFe/m/qzmP8h1uVdByMXnN9GFX1FpHrbeR1G6Ee5z/o+r/0vIVjQeuEUOO7bKkcJa6pUUd66vv47fIfWfrenufBfM/VfkVtuKdsuoEiSZIkWV8230ART0Yxc2hmDWGojlw+4U5Xo6DVPL3Etk3UZ81hU11eu0I+att9vailTbisunFu4E9H0BnMW/faEkmq6gpLNZCpe4r1mU3kAQqXuMV7NTL59oNIuc3Sp99i6PVCMeBpiEs96vJk033vDdyds98Y5yLH1LDbb+TbwcqTSn/B3DGgGP9rzp6YLXj/wkgLPgOapRj84olsENHIfpAkZu8aQk/0dw5LbfMFcyNgqY8dhmHMvK51MVTGeaoRqo1raRizw4ha3TmbmUCNjm6MlzWKvpkltOmmq+vlnOpMrpWhHo9eF1Xe5X+iS5u/07rrshrpm30010StE2/dca7uriFTuLv6cYho7/r0PBczwW79cqKpuYzCDTz61To5gOcq8kwHsXzoM8CafyhmG33v67Dbd8w24xppI+pDTvk1HbOnmMnHTKQua1x4Y7ZQZOtkqTPOplxALVxlnftwzFbiHNX/PqU9crDh2y9JOR+OKou7Xv9xjY6msQ+HnJpDqtEu1IwUQ/+PNC7TAy+iVe9TdLLWHGIzjXBrYPMNFEmSJMm6kgNFkiRJMpHNN1DYyJTN1Rd1WugGytavH7opWW+R6s8MjWpkoZlyLpZp6Wja6phaluRpdHEWoholTZ6qWt33mvTNI7FLamnVKnPFyFmSlUXiu6AmK/Mz1VZBq6mUPU15Nah5e0l9LFDXl95iFwVcdtgZ76FTy1R/cTcEq1HXQFFZ1GPSGjxHto0+1JTrjUojzkecH+tTqwmaGxV7O4duVLQlx3n0nMR1MWgM3W1UdX/BqmomlrUJD/s7uutlOOeXhxqVTKPKKL9lVa0V7aH+C7Wl3K99MFdiDUIdNJj1GtKu2qzy+G/22rgRjz2oRlxXx8zcQVWb1HTqw64trpWIzenVamje56FXcPM4hYhFCCNupOIf9mHLbUM0gNm7rDtnwiv5eer7YXdtRMW8/k4/5r1S4a/E/RR1Z8/TYkecUjXYNin1QwWoocdFhLqnuUYj3fewudYiviCurTju9Tj3VZM2hvrN+l0cTJx3m2m2DccXlqrGhs31FMtgqYoq/pdt1cG4b7WV/yIpYI3ijrgI/y9Emvk2u0Q4Y5Trrq1uR42ebx1n1srmGyiSJEmSdWXTRWaDG+w8rwyLLHlyDQPikuIt4UrXeImNRte26YWHczHD8MhNzxNTo78bd0565aGgLWJU0iqX3w032uGMu7cthrte56PYPfFoydNPGOcWDuyeRAZzpWZ4PGksesrt6GfZX4l+jdTO5Xj0y5NqX8zcPSRyWg1noNcvrq6LW6iurEBNhR0urTVyvB8zMdWnITy/FVDTjOtuYKZ7UhyGAbsxOEf/W0eEcryETAyG0Cfk7QzFfcwNlFFYyut/D3wW0PPj7VGyOw9SzWMVTgDV0SEMqH2fTSw010wT4V8N+z5j6A38wbDX7YdwG50pBteINi/HRZ3LcL8sn9lBdSmOdZa4FPdh58HymUk3e9l5SInejXU1AKlzeohTMpjvamj3Fqi5o4SnEY88W+6EMbMDbEszAx/CjkN7JdrcdzuYhZnGDXY45w4cNOe2V65zuVtq9HE4py7Vf2PQbZ/ioZkp+jlYUqgr+rAIw0bWOGcDn31Ug3M4AWwBzYiomx0yRB6w+mTeaiKamVIYw9sI7X4TDW29ck4GzX5HizxVB4p2v8PuWMpnemVmWdbt7+xmVCUHGthANQV5yB+12ofzxTGlLei1p+SMIkmSJJlIDhRJkiTJRDan6qnnKgKfHlZDVRhY3X85jE1Rz3bohj/zafjCgT6FZKnhC/Pp692qSeUWt8CsR2sP5t345ioE+tS040Uu1TTP1Qd/Bmyh29bi97y6Vvx2qM66SFjo3U1NNmaNymRxi6s2fPuYig629Dp/8TCmNVNQU0SHF9WS9a0a6CM6eTBXpsBR07lq7Vq1mssTyepKCmfq40dUYrOZzu89YjJCJRKV3RCwpcSJhCGyHIMeXayAWNziCRNnVdQ8EX/CUpmGs9CLpJG9rm0w7/tyI3WrSmwjrkMumy/qhDYZXxzr6KPNwnChXAe96KMbqSPZXPRr0ERVm8TCAY3qUU2kfyOzBt05j6js3gIsHlDOUSyPxHTDJp4hIqL7BpHBejgLw8aQjMeR9AQLfr5D5TOYwZ0Puv7Uqna+7jCi35s4hv6OEn3dW7AS8R8OAX1KJTzvS1zXQ+/zcNbTffeKCtVmOnVib8HPjcd9qAfD+ZLEEDqjdr0eI5Zph0fzh3zWJCisVROp11Ooh+I813Ni5VxrsdwThv2uSmKojwZxzYf6qjV8x3lvVNzx/5SrZntNxHapyljOW00tPqeqAkfl9/u9cn7a+2F1IOkB7jyxJ+SMIkmSJJmIzGxpg3QGcMZ0xFkVvwhcN20h9oDDgR9MW4g9IOWfLptZ/s0sO2x++R9iZgetZcNdBoqNjqSrzezYacuxVlL+6ZLyT4/NLDvs3/Kn6ilJkiSZSA4USZIkyUQ240BxzrQF2ENS/umS8k+PzSw77MfybzobRZIkSbK+bMYZRZIkSbKO5ECRJEmSTGRDDxSS+pK+IunCMcvmJZ0n6UZJV0nauv4S7soKMj9Z0pclLUo6eczy+0j6tqT3rI+0u/z+JNl/X9LXJG2X9BlJD2iWvUPSdf563vpKvUTGZeVv1jlZkkk61r//iqRr/bVN0nPXT+JdZJt0/E+T9P1G1hd7+/FN27WSdkh6zvpLv6L8Zzcyfl3Sbc2ySyTdNum8rQcryH+UpMt8+XZJJzbLjpH0BUnXS/qqpC3rK/kust7kclwr6eoxyyXp3X7v3C7pUSvtc6On8DgT+A/gPmOWnQ7camYPknQK8A5gajephkkyfws4DXjdMtu+DfjcvhFrVUyS/SvAsWZ2p6SXAe8EnifpJOBRwC8D88DnJF1sZrevl9ANk+RH0kHAq4GrmubrKP1alHQ/YJukT5lFkpV1ZaL8wHlm9sq2wcwuoxx7JP0UcCPw6X0p5ASWld/MXhOfJb0KeGSz+F3AAcBL9rWAKzDp+P8R8Pdm9l5JDwMuArZKmgE+ArzAzLZJOgxYGLP9enO8mS0XHPgM4Gh/PRZ4r78vy4adUUg6AjgJ+OAyqzwb+LB/Ph94mhRJf6bDSjKb2U1mtp2anWnJto8GfoYp/clXIftlZnanf70SOMI/Pwz4nJktmtlPgG3ACfta3lFWcb1AGYjfCeyIBjO7sxkUPJnz+rNK+VfiZODi5jytG7sp/6nA38UXM/sM8ON9JNqqWIX8RjeAHAx8xz8/HdhuZtsAzOz/zGy0iMFG49nA31jhSuAQf0halg07UAB/AbyBMTdV5/7AzQD+R/8RcNj6iLYsK8k8Fkk94M+A1+8LoVbJ7sh+OnCxf94GPEPSAZIOB44Hjtw3Ik5kovySHgkcaWbj1AqPlXQ98FXgpVOaTazm+P+mqwrOlzTuGJ9CcwNeZ1Z1/bjK8oHAZ9dDqN1gJfnPAp4v6RbKbOJV3v5gwCRd6mrlN+xzSVfGgE9LukYlJdMo9d7p3OJty7IhBwpJvwF8z8yumbTamLap+fquUubleDlwkZndvOKa+4DdkV3S84FjKeoCzOzTlD/O5yk3qS8A63qjXUl+H4jPBl47brmZXWVmDwceA7xpvXXMqzz+nwK2mtkxwL/SzaZjH/cDHgFcus8EXYbdvPZPAc7fSE/dq5T/VOBcMzsCOBH4W7+uZoAnAr/t78+V9LR9LfMK/KqZPYqiYnqFpCePLN/9e6eZbbgX8HbKKHcT8F3gTuAjI+tcCjzeP89QknVpI8vcrHsucHLz/aMU+8VN3o/bgT/daLIDv0bR4d53wr4+Bpy4kY49RVXwA19+E0X19B2KbWJ0X5eNa98Ix79Zvw/8aKTtTOCc9ZR7LfJTbF1PGNN+HHDhRpUfuJ4yI43v3wTuSxn4zm3a3wy8fhr9WKZvZwGvG2l7P3Bq8/0/gftN3M+0O7KKjo69gIBXAO/zz6dQDE1Tl3eSzM3yJQPFyLLTgPdsNNkpxsdvAEePtPeBw/zzMRTj8MxGk39knctjMKCoQWb88wN8ADl8o8nf/pGB5wJXjiy/kmLAnIrcqzn+wEP8ZrzLA900B4pVHv+LgdP88y/4dSLgUODLFGP8DGW2d9IU5T8QOKj5/HnghJF1TvL+CHgc8MWV9rvRvZ6WIOmPgavN7JPAhyjTvxuBH1IGiw1HK7OkxwAXUC6uZ0p6qxWVx4Zk5Hi/C7g38A/uM/AtM3sWMAtc4W23A8+36ej4d2FE/uV4IvBGSVEC6uW2vLfIujIi/6slPYui1vsh5YEi1ttKsQtN02NuF8Yc/1OBj5vfrZr1rgAeCtzbbQCnm9m6q9BGGZH/tcAHJL2GoqY5zftxq6Q/B77k7ReZ2T9PTejiEHOB/x9ngI+Z2SWSXgpgZu+jqIpPpHjI3Qm8aKWdZgqPJEmSZCIb0pidJEmSbBxyoEiSJEkmkgNFkiRJMpEcKJIkSZKJ5ECRJEmSTCQHiuQeiaTjVLLEnjVtWXYHSXOS/kvSmlwsJT3a+3363pYt2X/JgSLZlEja6jfEc6cty17m1cCDgLesZWMraSj+CfgTSffem4Il+y85UCT3VL5IiaCdSm2PtSDpQOAPgX+xteUMC94O/Cxl0EmSPSYHiuQeiZX04TdslCjrVfJbwCGUFC9rxsy+CNwAvERSfy/Ilezn5ECRbDrc7vDf/vWFroKK12m+zlgbhaTLvX1W0lskfUOlKtwNkn6vWe+lXiXsLkm3SHqrZwsdJ89jPfX3dyXtlHSzpPdL+rnd7NrpwE6K6mj0Nw6S9GaVKoK3S/qxy36e1zIZ5ePAUZREjkmyR2yqXE9J4lxOefI+k1IPo72xXrvKfXycUtXrIkpFspOBczzn0zHAC4ELgc8Az6LYDO6kVFKsSHoR8AHgbuCTlDz/RwMvpuTzepyZfWslYSQdTEnf/iUbKTzkBbkuAZ5ASeP+QUrOpyMpSeyuAEZVVf/u77/OFFKPJ/cwpp2tMV/5WssL2EpJwnbuMsuP8+VnjbRf7u1fAg5p2n+e8jR/K2W2cv9m2SGUNOXfp8mMSylas5OSXO3+I7/zVGAAXLDK/pzgcv3lmGWP8GW77IuiFTh0TPvBvs2KmUHzla+VXql6SvZX3mhmt8UXM/sm8G+UQeFtZvbtZtltlMJBh7O0EtjLKNlzz2zX920+S5lhPFOlVvdKHOXv/zthnbtGG8xsaGa3jmn/EaXuxlGjy5Jkd0nVU7K/cvWYtqiDPM7jKAaCI4D/8c+P9/eneAr5Ue5Lqdfx4GX22RJlfHe56QNfo6jUTvVSop+gDGpXm9nOCfv8ISXtdJLsETlQJPsl/sQ9StTRmLRstmmLm/tKtc5XE88Qs4VdyrCa2UDSUyl2kpPp7CQ/lvRh4E1mdseYfd6LMbOQJNldUvWUJGsnBpSDzUwTXqspKPQ9fz9s3EIzu9XMXmNmR9IZy28AXgm8d3R999A6pNlvkqyZHCiSzcrA36cZJ3Clvz9pL+xru78/dKUVzexGM/sQ8BTgDuDZY1Z7CKXU5Wq9wJJkWXKgSDYrt1K8eqZprH0PxbX2bEkPHl3oeZtWO4hcT/GqetyY/TxQ0riSuYcC84xXL8V+Llvl7yfJsqSNItmUmNkdkq4CniTpo8DXKbOMT5rZ9slb7zUZbpD0u8BfA9dLusTlmKUMYE+i3PxXM0swSRcAZ0h6uJld3yz+JUod5GuA6yhG95+mzCRmGYntcJ5OOR6fWGv/kiTIgSLZzLwAOJsSg3AqRdVyC50aZ59jZh+RtA14LXA85Qb9E8rN/HzgvN3Y3V8BZwC/A/xB0341JX/TUyh9PZQyAF0DvNvMLm534sF7zwEuNLOb19CtJFmCzGzaMiRJ4ki6lDKDeKCZrcljSdKrgHcDTzazK/amfMn+SdookmRj8TpKYN/L17KxpHsBbwL+MQeJZG+Rqqck2UCY2Vfd7rGaaO5xbAXOYQ8z0CZJS6qekiRJkomk6ilJkiSZSA4USZIkyURyoEiSJEkmkgNFkiRJMpEcKJIkSZKJ5ECRJEmSTOT/AYCVcOtCHQ0tAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "window = np.where(np.logical_and(lfp[\"time\"] < 5.0, lfp[\"time\"] >= 4.0))[0]\n", "\n", "fig, ax = plt.subplots()\n", "ax.pcolormesh(lfp[{\"time\": window}].T)\n", "\n", "ax.set_yticks(intervals)\n", "ax.set_yticks(interval_midpoints, minor=True)\n", "ax.set_yticklabels(structure_acronyms, minor=True)\n", "plt.tick_params(\"y\", which=\"major\", labelleft=False, length=40)\n", "\n", "num_time_labels = 8\n", "time_label_indices = np.around(np.linspace(1, len(window), num_time_labels)).astype(int) - 1\n", "time_labels = [ f\"{val:1.3}\" for val in lfp[\"time\"].values[window][time_label_indices]]\n", "ax.set_xticks(time_label_indices + 0.5)\n", "ax.set_xticklabels(time_labels)\n", "ax.set_xlabel(\"time (s)\", fontsize=20)\n", "\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Current source density\n", "\n", "We precompute current source density for each probe." ] }, { "cell_type": "code", "execution_count": 36, "metadata": { "local_metadata": { "scrolled": false }, "remote_metadata": {} }, "outputs": [ { "data": { "text/plain": [ "\n", "array([[-15929.946206, -9764.690525, -3800.635136, ..., -3489.058296,\n", " 4490.245594, 12683.655668],\n", " [ 4926.68166 , 1219.233312, -2377.205218, ..., 395.49239 ,\n", " -2357.373563, -5173.46221 ],\n", " [ 8688.152839, 2851.906588, -2829.810515, ..., -1258.750536,\n", " -4710.397921, -8222.475055],\n", " ...,\n", " [ 795.133354, -375.730633, -1540.358552, ..., -1500.276021,\n", " -1208.604462, -970.134722],\n", " [ 39999.951669, 45568.256509, 51358.347642, ..., -42702.919159,\n", " -41541.349744, -40075.328791],\n", " [-43228.19425 , -44941.339 , -46869.879312, ..., 43678.786448,\n", " 43072.463254, 42324.693548]])\n", "Coordinates:\n", " * virtual_channel_index (virtual_channel_index) int64 0 1 2 3 ... 381 382 383\n", " * time (time) float64 -0.1 -0.0996 -0.0992 ... 0.2492 0.2496\n", " vertical_position (virtual_channel_index) uint64 0 10 20 ... 3820 3830\n", " horizontal_position (virtual_channel_index) uint64 24 24 24 ... 24 24 24" ] }, "execution_count": 36, "metadata": {}, "output_type": "execute_result" } ], "source": [ "csd = session.get_current_source_density(probe_id)\n", "csd" ] }, { "cell_type": "code", "execution_count": 37, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZ8AAAGACAYAAAByYm/aAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzsvWusbctyHvRVjzHnWmvvs8899wXXubZEJAeJxw+HOI9fKLJCCAjJ+QEkAoEDka6IIiUSEGEjOSYG/0BEQUIER5ZiYiOIYywi7IjIcjBWCHkhg2Ph8HLsOPaNrdx7zz33nP1Ya84xuvjRXd3V1dVjzrn3uufYrNXSWnPOMfo1uqvrq6qurkHMjMf0mB7TY3pMj+nDTOGj7sBjekyP6TE9poeXHsHnMT2mx/SYHtOHnh7B5zE9psf0mB7Th54ewecxPabH9Jge04eeHsHnMT2mx/SYHtOHnh7B5zE9psf0mB7Th54ewecxPabH9Jge04eeHsHnMT2mx/SYHtOHnh7B5zE9psf0mB7Th54ewecxPabH9Jge04ee5o+6Ax9Vmp495fmTHx9nYHqNWnOoonOLnspX7tcQSDQow0020leHbZHOMYyyRCfu91kvSudGd/Ly0Yn7bDK9aSQpAkDcfC/zoQbTn4uuY+c1uJWVzefJ5mhw3SlPA1renOMNett85FGlJ8bJIfNhRp3n1Hi9abL9uY/2zin31VqjJh3+7ue/yMyfftN6Hiz4zJ/8OD7z7X+oBRligCmtO0a6d2pCLUOCqpKcwvkeSbnRIiXJm/KQykuBax1SLAKc+8vqmaQceX0xfWrah1PfKQDQbeoqDZDr+/ZeWzA3oOejVGKYY2HEBOb2d2luxAT0XNu8GlwCgycGBQATg0IETQwKDCLO45Xa5zgYuzL/7P+W5vXYd+NOQKxtuOOC9npTPff3m4wEcMjPKXTXZd2i7Z7mmnFwaN6jWbe5wXg1bThd5ZgfIvp9Puv5TgoSlYbK3AD9/FAvRLKdH80nACCYMfFoOrdjw3VWAcmsGeEvuv/2kk0E/MK3fOsvbOQ4Oz1Y8AHgDD4AYjAoEYjM4onJADYAxxBZQ3QOY9GEQ7LoCaVPAMBr7tRwLdQbaUHmZ+o61ANbX9eJZPOQwwTsM+bGiBTT9hIhDYgMGrEPIJo5MptpHTPJpn/ewrXMQ49TBBgBHBP42GGtoKGZEBS9tAWYaAhAXcdzPUIfzDxgZor5uwZ2Z2yauhX967EgzR1V2YiGVlnT6KVSuSMENd2kSkMlj65qJOCQqtsFnnM6ajutJlj6FWTsCBK8uRE4+2XoAkkrTNi+2q6odrzyncAFdIQDk8eWvXR4NtLDBR/KBCKScnNPCPryOt3LHjCpBcGKdnViRRxEtj90WnuSdjQxqvaIEiPhkBZQWTBwJPaTSfI7aGQTcwEpAaD2tmUWPF4kdtV6DMVKyxtAWzFMgwf3GgYTsKb7HH2GUj4dGmtpIjNr0ozMPpCpV8qSyqEYBI00oqafG1KvoaFGm1SNkjPtjSlyi1l2/W5p2QVw3XVP0Mk3udC9bUR9vRh0DGqVnxZJVNvEbTNDGqRm/hrgL9ecbo7GdyQEW96g2zpnru4xPVzwAZIqCwZZ4j6bKAeMwSOQjjENgK/k0VIu58WfgajBsAQgxUSiyheGkcXezlKV+0V6IY8knIFU2vY5ZzxFxIKkFiAajUFd78RCqosxXy/A6bRdzUBygdt7pltA6kcxnUXK/UpzhkjgCIAJFJHGV8xV1NZfkmGSqtVmYkQg6J7Fo88gz9VqGHUMrajc5tfChi2bnt1j+tTU5dFvFaZq267s0AhO9XsHOqa+Kjw59SGXE0Zt8KKnpa1kG+D2qwX4IELSgBZl7HWNejybZs3Ya6BwwTPXsdHlUqazTAxo7lRdb5geNvgMJC651xCKK2Bx/jA3iXqib4irEhxBLahm4nlYB4Nke2r8TLlu4UFbWz7p8YX7D+r0JM9hhV5/zP3M6RnZ3NQwzUb89esg/YWLFrWVigKlTBK6XGtyayVl0tI0cZ1jVp/C0Jl6ENoCJMWARNulU0xSBAe1vyL9I2gzqzOnhraL9gJV1mJWmRpuyozSUKg6MUelIwPgkbaZ2zbKvDamwjrPHQ6fFKaovSeA0ABQKzxW7HMWjOX3nWVhY0Ctxu2BjGlP00OXzeVJcn3EAODzgTdIDxd81AJkNKsv3fY26i3BWqGlMFCGBpi+bH/fXcwdqAlIcbu4HeCUugkEJs2M4DKACkBeUs8wlISd5C16XaUCoNqMYjpU8zTSXofUtt6225zrpG7cyHxWRBet0d0voNwtkUIb5uB0TVchc9h00AEh5Pk4xawVjer9s2bPo+N8SjRp+qP7WYEQgQsAndRqc/2NUFUqPfEsmhELDQzoqzdD27oMw9ZeJ+c8g/SnW2eVVtneF2CQDpZKUOii1ex7vnN28gDEZrH7qZrutGmwqc98F+n14g6eTg8XfCxj2UpetoYnVRCrUmcviQAOM9tqR/Ya1P26huribjaHNZPOvYI25aAHumpqQpesObsteEr8pdMABLM4GoajF/IWp6kgJloU0EqXnSTYCrB5fqgtZ1shFlEBov1wyPMvz0qoWg+p8bPjn/tSHAOUV57Qj/D+U8lnMKbfjhOIBuWN2jv6acm7r7dI0OeuL1sPA4gteLUOEIN6T3l0nt0d8sltpBScqw1YcJVrSqjp6pZMntOL17AGuc2+W5Ac1LdZx5ulhws+gBlMLX1zAyTkruhxtafMP7Uh2iYkojFBZmDytZWWsMQUNNpLINgN5dpW0YisYwOj0RSGyQJQJynCZSqNKdD0SXWg6+wIOLoNaFMtO1y+cVCQrmZQQKDyvRE2RAsR77KRq7J4QMUMQjHT2qUL3Ixr57LsFWEHpDcFLG7HIrdbtPw2c75/Jqf3uhgNPXZ0mMH6lPZTnsMA56n2vXsOOJT2Nx/VqBea/lzhzNK70O2GEGfbOplPJ51Zlbf13jPwAA8efAYSIympayQxbfD85r6WsLsF2TPWVkNyCKGRkiTPFhLKp2YeejESELkC0Dmpae5CAJLfUIxjCBgKgDy3qtx87dNWP+xYmgXlMYA899aElfZ/UAAIqmudFkqmPpuCtC3azkiqt32UNg1DU8xOu7Tb5EnGXj4NOu44eIypgFrtcwMegJlzvUj6c1pQY1w7Vulu6MygtNGO7oe0Tu1XSyOmjc6teUiChtdYC8iQTsxaHXem7bSmlc11PZJunabuGYAeLvgwwCuV710iVFfkTuRBT8xyHf0i9g8Keu2Zhc7o2pa9KB4uXvSrUTNVTwKX3WQjpEGq8jbOC60n8BodcKvtUNOt6olHLT+y5iq5scq9gZRuDw+W/qp+lvpq29KX9jAfqX60Y1a04ewpqd2jqRu7DdApfclODyE/QyPA2LE2dbG6qRk29BgpcyQsLVIz30XgsX02wCPtuV5pFjykisIIlZDD9qa57gklRZDZAJ7SqEOMdsxOpREDb3jABVy5PLMjoGg684BMNPuuOQ9AHMG1eRgzBhvrtunvPaaHCz7ASZoZb8KrFUtdgSZLCxJniSJN9rKfxIaBSD3kLCTDBJsKWRE9O5maBbDdt45RjuzMW/VckkbMsblv+wRfgvXA8jUW2KZH5DnPTQJoAMKIaYzq84DnNVMDBL3k3AhBFnhO9NV3phl8b+o4A7ybOmkDcNCvlbPH2blvhbKuLXstDyihHVtPiNXlFPBXrbsp/Bppo9xF+3Rvlh42+Gjp/o3TxuofLdIL2vU9VxqRvGVCjhbT/NAL0Ol6p3mQqbhh2n4dr7s2Om3LczXV9Y+0GJscibo/K5IydodftTDxuozejpn6XgBIXxzl9yTXe011jIv3nGZ6m0JLPT5Q72nVtmti3AWY+bEa+EgzcpMD6lt5T9Ju1na1KXJr78zOpRovuF8dYZNxAfB4gu4ZdOON66Y58fXTwwUfQg2LcpJZ9WVHpqzTzgaVcQ5DgGjJyN4/tWB1n89RtBTjBrYYt2b6pq+aJyjlqumapefCW5VZ0xK5HmOX0ZifXD/JrlHznLUNR3Ox2RgDBtDPd+Pq3PVPAYrMP5nfomVoc6jtzFa6lElsgYBmhpbpNTSqhIFNL4DMsHNB99Es6LjmJ3Wvud5m9M5tefTdRZ+QQXFpUfdxoPkM58BKRhsSG/fOTpsRH3QfG6FTX3R4iJ5WWcvnrIl7SA8XfIDuhHijXZySdD0C9OiK7QX0jAdA51HntWklzk6SO/Eb2JD2ztAAR04QpYIEEmfZ4cVbSXeUTJ5SJud5XZPAVn87pjIWCDwBYeTm7Lt1k8kDH4QEkIcA5DyXyyQGz2Lvn5x4w7Qs8Aza7DsnZUVrABrzpwYe11HgJIGiM6c6y+qUZsxI/XKjZuhHyabwTiMcHYz2GmuSaajz3nTmQd/y1j/pDCf6UoQH2yRvCymvmR4u+BBj2keAGCFwp4XoMCv1hkPYA6mslOskfgV4cl8YmYRxUfWoklUy2UqNaWOc2Y/FVYFB52sczSwYk2UWZ1KoMKCmU229/Sc7mTOTj465R2ez41IYW9exuuhHEnfJp67bdhypvKebxOBYnCjO3nPqQbC97AkyA4m7ALut22F01slFC2COMFYjc0s/yZ9Hph5jrMOH1LOVSuiDCmy2yNCkq+evrOHUF99CIs+m1qVe8x1wwlSgufnGmrepAxhC40nq5R/hjhoLN8qHFYwewecekwCPiXFF4EzHZBZT/h7Dpn8/F5BqM2yZ5Db3c+RaxwDgLyQvGcbUMOoOCKsEqaXExqLSOD3gjMXm3RrkHQ6TI4nqU4hbi9BqqJuSqWYGJ1acmpdheB6dV+7lceaoAsSKw8GgO+enjXEHhDM79wZzoOhuuKfmrIf+cGudv+5IgQgROR9pq0S6gibEkZekc4qOSY+568DQhqG6KBlg1mujak1bkzcCnUFbmm7vGQiaZISK5oD2Pbb7sMFHkl44RerpiaYeKuNeA4Aqx3553V45g2FNIwI8npB/qdmpO+cARUBW+kW3KId16qSkVC0Nlzq0RG3vNUzIdkZ/bfvqh45RDIz7Ym1/vedyfpPXb5NfMx6P0XXlyHxX8dxEZL9kmi1vtwxiCMYjyckp53kGlvYq0y1u6M5Gedt0pZPGxCj3DfDYspuv4BCaKzQtfbC02T5I3V1hDNeZHV8139a9vBEqbHWnAMS779UhvOhU6oQPc48GgvLFQs9l6WGDDxNi9NehFyOrXNcAswFATbITzO1COhXJ100XuQZbsHFAxLncXOPEGNKLuYRBoC56h2HUuG1GNCaMmdCIMVK/KHRoo5bxGCl+6/naDudPqovbkeqbvM01aj+7/Stu82oN0vPk69KJB3AYI6CG9ZSJRvdtsx3NhTOIwroCO0KYw0R1INSzXn64kTR9NAe17fyXrtcLBYDOmfNzeD4DTZSOEeiM2tJp6z47ec4evhb4N9u6Z23rAYNPDosPckOrSEqSnPqdgaGG2e/r9WppNIBSlxVTx8Dj7tHo6gqj1JzZEP1oMQ00jOY714YbM6WS7jxpyTKjrh1kEBbG5S2GM5LeQ2uCu8rzXSLFWRPKGVJm2acdaVt+Q+0vYVZbzM/W6wKgfLamwK7+rlzboKW5bplogNZRQbpO6k75aRRJIdWphL1zk9SjxtF/qZwSdsRMt2Xac9vK+43nkq6eN/05GipvfWotfyQwntMXEXibcv7B5IvG/4z0cMGHgbj2r3d0Q5EYieKkeaypEJW4NaENHBJsg5uh6V2AyAA0AJ6qbWWqdSRRyWev1zBeZkAullTbleFKx8MF2N7rXqWgJWkvunhX2UZiaUP61JazjhoEAgfumvKCiwqDc4WKc4DnkuRJxs39/sYpJjp0Y/aA3hN+NkC6O1CtGd9Wv8inByk3NtmptaQP2Z6TLA3otb2ZH6+nAY3qs/XoNkZOSFrQ9eos9H/G2L9GerjgAwBLAh+9Z50wZWOUt1w5nUluAkxq2zBLWBmqRbNGsbVH2Ye7gfPdSs4bjN5rQ7z/FBEyq0CrFB0wg0vMw/aYKgiquprXXDjT4AG/hLjRrrH1nI1iYnooLENuusl1LmWeVH7Oc8B5rCrDVa/wduvvH6gjNSvMaEawBcjed+aeGXq07e6t1HInju3UfLptmVO98Z73XZLZdhuJ3Ne+e2vOYeY61qnnfde13QhcbV82X4GggOeSdmodDlP3xrrQgZ5HJ5+9dwosFG200cORl9d9SkB9erjgw2iAAADc97OYMvV7zeOtZ5m48v52GFOObptYtN2OqE6fvZEyvabifrcLabNOc/mE917D4D3pVz9g14+q6ruAZcdeM9XsKcZRgYGuGlkbusBs0Hr2tf0QEmkPsrIz5oYLND/1aj8zeebLrrgRTM6V5J2qBYS9KAOeh1jCe61qeM+QG2v6Qz3D9IDWgF3Tjlcfm7iMtm1NH64nHJQWLRWQyVMFtVJHXts6sKpu47XMVxZwB8Kl+xDlssqnv3YCkC/43Xd8t4cLPkBhYJVmOirONwzTPSUJUlF0CpGMDr3V+lUBJVFd7OF2VvYz6yySJBlidd4a2giNerHa5rgnbkZyM9bMwpMcdd2c9+wyEhAyAHFiGGcLbQOgHSbKU+IAT7fvJEzfBWL7XHLPZ44ld4MtZIjR9CNf8+MLNrX2l7QN0KNB8j3EtklWza0SvJoumH2q0pUtvucJhWUfynDtrp5Kd/qlfLVqG71bT2jNZ886cdSWghNMe+v5tsyEQ9o1N060X5RSmR6PV8k6u0dlqN/0+BATEV0T0d8kor9FRD9DRH8sX/8zRPTzRPRT+e8b8nUiov+MiH6WiH6aiP4pVde3ENH/m/++5bU7pb2VGm+kTM9nSpBWOGs+iU9jSmFk3P/ZelXbYroiSmYo0gdoXYau//LVbBKTvyTFUZuN0d+v+nplLgNJswxS+UNbtqkHpm4xX1J66Vj5LvcGktso9UOA5tCsAhoxuXXmT9Q8IPSmy0G+5k86Y3+/TpI+qL+qIZs/ty/6uqE9dZ3Ud7Nc2iTNReQ569cZxyxQRAKtdW45tqDLrBkktXXIvcb01QzoPaR+TkbazGbg2SYjzu/qufR9Tl0FcG0bQL8+7zd91JrPHYBvYubnRLQD8FeI6C/me3+EmX/I5P/nAPyG/PdbAXw3gN9KRJ8A8B0AvhFpmH6SiH6Ymb+82XpeZE1ssY10GjD0d0fqb8ozOBCoEWUvkNhrNbVuEXjOqsP0TwMkIdvl9T392znsp8tvSO5NX6EkrlLGSMdOt72Q/cWTK5v2mOGHR3H60D2D6orGUABAUMBTrovoKOXq+Fxk7it9YrQdzIMk2oaMWUNjA9qVPnQSvH3W9uI5bu/pk0FRaUC63QFD85wsur3QjHUcqFuXwyNKBqDIzMspBqr3NU+nVljzYvk193KRbj/Ia+oUoz/L/CU0hJaUlCClheFarO1QteCkAveJQR8p+HDaEHmef+7y39bzfTOA78/l/joRvUNEXwPgtwP4MWZ+FwCI6McA/C4Af3ZYE1Xm4k/mQKo9M50XLotbRjpikmd0TahJE/vmgTxbt+F1TYauPTqLeTeA0nAGk00YhV7Aheujvd50wzBMRn4zKJc9oP651EO7z9zWXzzYAAd0mszF5HcW81K8YZzB9DHTzEWmj9zOFvB0Rayk67YnTJ0SIHMrsHQHLB3gOSeVfaTX3W84t5gIXVyNieXWUPLPkyPPTqYM5LZdRx4qq+vk3XOaPidpofRUHYxK8/nCuYL566SPWvMBEU0AfhLA1wP4k8z8N4joDwD4LiL6owD+RwDfysx3AD4L4BdV8V/K10bXt9PEhtDIZ0ZkPi/Gf2eWKUubjaeYIdKuXfNbd0MxVo4t8BTvouaZDCDoyhnJ5IGapXMXjoYoXZCsixP25L4wUk3cepGQutbUh2rqKeVqX6s5DpCXAQ7HT77bYWjGvbiO+Jka4YGKluTuidkGPaHD9ofVFzf6QU+/Zd41nTX1mkrYAlODGM3zuGe2ct0kb2W1TXhyHPW/NcMrPejmjod1j1/l0LdvMrbTctbyVkSSh6l3boAv4BT6tbSp+lvOHtn750qoqgypPCNab/qq39DKmwrwm6SPHHyYeQXwDUT0DoA/T0T/JIBvA/ArAPYAvgfAvwfgOzFgcRvXm0REnwPwOQCYPvlOj+beKGvAEXpwpIBRmP1m4znXp71jilmGUQ69+u3bR1KMyAGhejYl52U4hOcMmywkk7+sB8sNZNPYm4UhA66PUC5uAa3bd7Vwc/sEOTis+izPrkHS7evpvrlu5VpoEIAYeVl1jTnMsemHJ5qeSE0WJUBYWrEgoYFHgWlxIy68sIKQ3c8Yn0mrY3bqGEEaKq5CRNMGK8aNOo9s7jfPSW15dzO268k2P9fJ0qYHzvq6WSuuxyihH8zyXENiOaOjLci6qSFTPjlnb5I+UocDnZj5PQA/AeB3MfMvc0p3AP5LAL8lZ/slAF+nin0tgL+/cd228T3M/I3M/I3Ts6cA0GzQdwxHA09OjUumytPUo5LN37hlyjW9KQzu6va5r7pmBNUKOLkSRt3k1RuI0ZTRzNRbvKNk85wSBSwfbp5XxiD/aemwccLwypq6M4jWDWgyYzTog+mfpo9eo7FgnAvZuVCP1moYXnmnDl3PqK+6DnHEiPrZFT3Y/kLd6+73qdtIl3EaOTkQ1JyOU4mkQCivPIFc6zK37Z8elwrGzEgWAY8utv5GaeRtYa83YGj6jwF/seulVmbaOtXPM4QXr+3ReL5h+qi93T6dNR4Q0Q2A3wHg/8r7OCAiAvC7AfwfucgPA/jXs9fbbwPwFWb+ZQA/CuB3EtHHiejjAH5nvnYyWa+ufpQdyeSCNMp/MjjioP023+C+BpZYs/heQuiApxWuziTYYf82frsgi47hdwBkgUoxt+6UvXr29EUzAv3F+Rsu+hPJMvSmLds2sLm6TzE9N7+0mec4UitojNrQ9zdknbJeTGoO3I7AYgRCci2kv+qpKWDEQ1rphZe2/QI2mv7NvR4kNv7sM12SrJDr1PVace026euCcjZZwe4eQeijNrt9DYDvy/s+AcAPMvNfIKIfJ6JPIz3qTwH4t3L+/wHAPw/gZwG8BPBvAAAzv0tE/yGA/zXn+05xPthMlgFYabj9ku9X+3i3oW/LO4QqIFfOAmzZ0kdJE0PuU+MlBqDRXiT7SBocuQxz/e6GiOnqQkuc5FxzC7Vlzl58ul5GoiD1Xp9uPaphcvvqNXGqL2LK0fsL3tx7SY1v1wklDJQLm+NI6oM7IcJ9O6fXl848pBw3bBHuz8Zs7w2Z57NmMA0g3aET3QeLkHbATxLdOJ0ULntw02OefluEO1HnuTTT3afx/UuFpS6/qexcmr4gfdTebj8N4Dc6179pkJ8B/MHBve8F8L0XdSCr3e6htuHGJilh9sLJZ/2VFN4Zgj5RtllzhTf1ANSGzFBtbBGRaA/ddfPd6498N1qHC8oew81524CrA82hu5Z/KF2eZP/HMoVmnLkCnjvfg98jR4tGexi0a5P0sxs3cgCTUNyHNU06/StRNUS6J2q1EykTqaWV7lkGAIFEx957dljMftK3IdBzU2d7HgmVHkZri1UdzTVVZ9N/7sfZSwowXBC3SdFS30d21kt6JuEDTYfc/p27Dsx1bzFfIgzWil4bz0fpo9Z8PtrEdXGWdM4A28V0EUF4C0Eki1PS7ak2MqcatU3qbwQeks/77uU559kHm61dGbvYTo7FCEktJx2Bu5VQB32zrYp0rwfBMmlr57d7JB4wN9+pfQRTfdOeN3/nSKmjfNY7ztukV2F79JkmQIFFs3eIVljyNId8fxhhYPSspmv9fTX/ze9BnQyMQjU0r0mwt61Qoy/asdbn6Ej1p+S7VPg6N20xO+5vsb53v+jzsMHHJgJ8+7JKdjGdqK8tY6V8Q5FCp5233IXJYyreQuHBdy9/7dGpDCb7gAnL+OnxHBxATD8coOgymTzuszgrViRQVAZ6TiqHWKW8F5zvnLR5FssAZ73hA5hhgP2plRNd9DzKgIG7rZ7bVkOAAqDuXUIWEPKnF1+tOSBrjyLobnhaglwv2nAFDBKPOltG0+U5AGRTl90RCDWdixDR8Z52bJtPL+m1dWrtauFrCNjmewHE+wOghw0+VN/DIb876ajkzf/OYexdO/LFIeZz9ly2K611N7eNuWFUxQbjus9UIxkoqdECjzGTSaDXUs4bpwYL7QOdwRzMwi4MbsAMR+nkgV5p4+S8SoU9c1Y32zq3aAjW7DRoTrcj8z/SDEbXbHQKNafCy13GBrRmzxGPK21aZHQqbC61oNN8bwQH9QyqXu9IXAUg3ZZi5jauXKdJoM5d/p7ondrIHOcAj7TdXTMP0lzb6Ndmuj++8LDBJ0ARnVwUhtcPchuldiRxe9xtQzofpWE2RyLq+jOoj9B25xTwnM0oTzS85YqtJOv0pQ/0yjDM0ZRt63Y6fRI8qB8LHWzy1JhBQIsGfVIXLxEetQZik2Lw6feG5HuO00TTHpcxSIthIMioOfMOBLvRklVb7kHcATOswK7G2PMe6ebHrGf1vQmBVOpVdUl5rgE1Nw+gDs+8bU+6pXd3PM9JrqDSA88wGv1Wd8/lBRekhw0+ssgcqchLEi25vCmz3mjr7CZJiVBWmnGwqnu1AJtGRtJQJ1UKVat6tojIAs/rpq6siWRwInH3HLncVp8acFVM6VQZYTpag2A0UbZ13K6hdyOb35e4y3ZeXy1dGinjNMDpTp1zQtAKHnb82alfAY+4Kp8OKXWGGM8VFLq29Fw19ZpxGfH6AiCDjpa1kcet1MMqS1/WjTRe6FB1StGlDWHTTd8lQor0XX+WNreLDSOeW6H8noEHeODgYwNPWobvRS3QZhl7r9wfMniRJOETl27b3mSTB1CmLLTMwZN87br3JBsjJXZMoOmPAlTbUVtH03+vXTUXVlOS59J2eyk4GmcrQY8YmfzOzLNhorEyiyHgeL9N9V0fpT3LLLpzL7aBEcM0TMIB/v75zZx4QocGZqfKzkwqeyiEsnfhaqsNf7Pj6j2jGizrvbgFil7yBIittKVJKBAcmrctADWmRXnxYBZk2amcUyvwAAAgAElEQVRl61nc9XuioPv8Zh3o65p230QYHaQHDT5NNFpCCYzoHTht3X9VolrPUFPpGh78PmNRuLZny2jl02PAlhlrJqdAAzBgPO6RqqhnoNWuLm0PpPemvx4jtsxRAblXn174dlHZrsudEe+zeYeS8wAIRmM/SjT4MQDu4W99ayQMNIVlrEYMCeXZy8FMfd0CTgeguh4YkqF+rOnEQ9m6NrJvChBd8gWqPhtVADxVpwhZZm+r8bb1xvtNkzfPJ/hPH2mecTbtXpAeNPhY7SYlaqRhe6t8GkbZBWY8QwJrr1kPGNPmqGzpB42J5Ezg6bqkDhHqa12dXsfsYosyRk4HLZNyFzp6jcyNza87q67b/nXjOGCQQMtwva55Yzp4BrftUbtb6SxG0AoEW687L4z+DLD1XmnRxdoTgYHgCGa6DdOmBQm7H6WvbSVSX7x4aB0ZcntP12GEspSFWsnvjLntQjQRQEiHzUsXy3s8UMfiEhNu6czgmeVz4MVXvqsYiSAxqd4vMj5w8DETkCele7eIZM1/1USEMdOzE3zi1HMrAel7A6kL2GZAWyBkM+r13vVrKwoDXIXHbX+UzwFA294oXl4bvFMW9ICBbka0dL6rOWyEAoubluGeq9l4zN+TSE8eVN1gMkVz0BrsSDVw2mz6x/513Tf5roGnvI4iCUZVSHOA0IC86+WoA4KdI6zpiyOJXxrz7rvCWgaNDtigxlzXn/J1bzWVqQ1cxsENLux5M1qA7JIB8ebzxKstOj6UnX7g9OMN0sMFH0b32oAGcMwEEAAElOML/bkFU7c9s1IorV3ErkeQ11eHd3TnYLa0H7fSMy4TfKlV3e9+sDqboRYckfIqGoCRNfv1bZzoh2hWQ8DIFwbCYbmoNSamrs0OdLb6eQ4gWeEFaGhIvWSg72tT0GoOg2yjPljTC6CAzwCQmZ/+NQlq3k+6oZu16CUFamURumtDDbwHUG77o/ZMniHd6HyGxows2XlRigbk0SXQjvMlvF/zsXJtENHFFOs1XwVA95QeLvgAjYYDoAcdO3Ex+eBzoRstJuuKt6Xlk1LkQNrthPduk9qRjjYlZe+SAhoCXJOFLsjmXmEK5u2ZXtqi4zNofHgY105LGYfBpOh7FsTQC8WbgS49id72aysZAJA6isCj9x49t3I3OVLwiT654Jor0AdXOwGoGZNcYkTrrvBhL6g6iRuBJMWc2xI01PVznQx0u6r8ltfj0CRn1SY2whfQWlGaSiySq08rqAyf2akHzhgDzfNqT7yu/XtMDxp8EH0tp6TBpFJMb7es78xp3Uxdfm0XcSZk/wAgt/m6uvx+uamTvjdEN49gNTPpGJfD1PSeEAEsDLKpwxEH88fJszW4jJmVvnTfB6vWHRpvIz09U2Mi1Eywew05OmGia9dK/91zy5dMb4H9OfCSBUP9HOUaQala2HrG07xoEJDU9sEKBkMab98r1JTv6jUCwCkzky3qgSgL3fV0W6JjeCapZrnV8SuvKIy5npLPSjqqL2c+Q+2eEzGE2HmXQV9xmZJL27wgPWzwsWmLOajkWsa4XbulSo9pNY1szG4nBZbW+hujPrtSoRVN1adrLpQVs8FJuv2zvIjCYGBcsTff4VbKlGtbRZsKBj/7pAdlI7MHXsKUC9bWlwKeXLAjaRUDwWWQb3S0p5TVJDYCnoaX9szdjQgwfEaHYF2u7zxYw9f9QSivuPakf21yvo/U9YXan4ACOc6PeoZ60Alpsj68PgzAVj//JYJoyc+btJWlwDwng77dQ3rY4EPKzmqu1+84e/A3o2PbSRe02qrfJRAHIBsV3yzc15GYuiZHnPKCxTbyOpNkscsFmy1uvF1fk+/UmJwcL6uSOFLx1sbsGcPWRCIHeq2oXLtgcgfeU40pSzt5kLmPJLG7plSWf5ZZUfPRJUfDGWbUZivJ2o1HvtEwbRXheyP10exPFNC0zfpC7q/+avrZabFbJnQttHYbayf6prqoedFW/EiZeze6/D2mBw4+qNJSWWgYg885m6JQ9DECnlKvBpJzJndLM/P6nB9sq2pPAVECqx9Q8oLU7FGUf31/h30yEuc5vHbYX11XDyCX17dRzlOoRutYD4Wmv0Z74UxClul7WsTrawBnvUuJgCaCtfTVaiMY/HYUJL+QLf8ahKjJzyhibuBavV5PpU4L2ejfhpxQ4sQNTezOwHZNOZrZGalzJtKYqb1KeUS8r58eLvgQsosjJdNQvtZNtuWVnGlkS+q3Zx5UPVaKhPrVE47HuU4kTbQagLzkagucv15AZO4ZGTLf7aJxVqPVcBoJ1wf+xvJhx9ytW7XxRqBq5s8yV0/gcBP1tCJ1dAILFRBKbZ75ACMgyFPgOYQ0m+uulnNOuxt0d9LEPRA6hmC/0akRXZ9i9s3aV4LcCGS9pebIWl33vDIakM+SS1XjHsA6DhRt3rqQrEt446V6jza4hws+QNV81ELfjGTMYtffYAKOtjOSJt2wPOVC+df3eSu9KW1sSGjDBT7SxLxzVE2Zwv3aihjd2FrPROmPFsj6k9lSGZ2eq9FzN4/Qce0+o513R35oTYoOvWlBRTGv7iCiN8Zed5tuaiakmWmb2fMe3HSZFs3EzNPwYK7lyoUeVFc8GpDysnZVMdPAIJ2jXfRZu7pH96yCMACqs7Qu8wwub2KM56Qz5eWqR2fhpGMGgF7rtS5npIcNPiF50OgYb5vuzExgzieS5U2N9gBYXhT6cJ1sRLvumZrRaOZkCdwFw8HNrXLngpP0b8vlU1faLDZSzyLXqQKDNgtZby19yLdpgppupezUL7Cub6ovds5s+PoRiLqXFaPUY0KKphQ9DcOoqLKnXuFAGfAKPUVCx0Qs02s2ttWzmDNuRCrfgNnw0DTlCA2q7rYSc0/mQPV3eExBgxoxKFB2aMk3t3hkob3+uhvFQ+h4qz71PJtpS/ApdW0LLKP+NntwW8KTPD+jnXs1JhXQE/9hLcl9FfDnQYNPmWg9+BeU7QNvVgIaxkiTxWdU25QxV+HWjYEkYpi3/nSybKathTTaAL2g/v7ApKlnBDxosvR90kLDiIGX8VefwmjJNupJ5X13m/HOY+JFRm/ClnjnxxTTGbnsa+/h5sVqA1KomZ150gDAzaV2gB2puAmz0gkObR2uk6OnNei5sG1bwBi5+DkgUu56YyXVnbPHZYG9qQD983hlh9pJzTSKqm8jfWx6fjrg6vW1E4byXPUaaS50DshemB40+PhSj81C7T3Lo8yrFchKNB2zqpNZjus5UpQ1cbjvPvF+K+mw1TDMp8dEvaSZgqcdnAM8g67XQ5P5+kXgZ4QFb5N+VI/VVrc6PKpLM5VRXVyfSYPOSAPugEeDlld/oT+nDzbsk51/DJi997zKiyy1ZiTijgHWul0wPcWwm7r6RymAZD3ytjSGM5P7bhvbrupbuebJLqWclSLHIGP5QUM3WbsZg5DpoBUSAWy5Tjfrye7TenzjDdPDBh8NAHAkVKBZ1N3rFgzB6XAikk/Kta64ajFzbd+m01LZCc6/xRhHEijgMLIR0qGld+5vu4+mJa2RNDlIm7b+brFRI5HXdcfld302zUm2Oq9vk/pMD5Okx1Zw2ApPVOhPC5cOYLndsgWaPGZwNegQ6Y8x8IyASu5ZIUvTlEN3IsjpvfF2PltBx2qzpTzg0423fk8kN58IiXacPRIZARCc34ArRLkCKfT8t/Rz8sCsnjf9W4F2F6XC7gV+COlhgw9QJly+Ay1Bdi92U/lKMsTYvGJBA9VQQG4n23+L6mi1Ka2k/DTSvSVGOM8y2ts5J7G3KlU9W+OlL59q05hJTSf69kaLlJwFN+pY91hjyVHyt/S0kZ+AcnZFRwMQOowbczLoemOy7d63oQoHAmJlQkNPQc5MqghWTh7bt/JsNpOqw6NPTnV3UcKp3oN+JE3GLsCfK0jYzg4IUYPMSGjaWOebcQAVzbB9hq5O2hAUdGfRCMVtJO7B+5ZM2dPtvH560ODTLu5t6dRd7EbSFi2GmWoZVp+lrAEB+/OUZGN61z4Cdf3yRTK9coVz2cUxYs6Dha5vZ+ZH+dk7V2iPJ3qLobvP7YIaSml13F0vKVssok+n0NDdp8hAYr30CjjosvmCBqymLvluQchhDu6rPUxFzbhyeVtri629wOIqzxvDDjjz0zFsdng+tfe8ykfXI/pAwbrKIaNFnYdzkgdAFnSsBWFLaPLKQQEz6r3TtGTaUOsk5ZfDwRsgqGhy2N97Sg8afFoGjBMSrQceqqx81QTEAKJDNEJcmugaAmpEwVGH6iOMmM25yd0vMQyAT/VnUC7vOpMuajG/AV/TfzKdMAvKT46wcKLL6dMBAD0vF9TTuIbbOgYus24f5LKmz27jX1U2fO7Bc3Tjj36ML5V29VKBAkW5ZoSPClC9tJ4uUxFm3MbsOlPMvz6aJ+2otAWwdo1tLkvnRnfJqcAKSRqArCPOKbZwar6MgFCKOu71Tb33nF4LfIhoD+BTAF4x85fvt0sfQdqSMk8mJ79aBKyk4IYx27ML1hVZg5CrgOTM50ilXZ4BkRmG1r+8baNOKasZB6nnG7ltNlLnFuD1Dzq218v38wNKDvPaedkon/qk+mE963RypUr1CgUtFzmC0dCiNkx6DrW0dF7RS1Nr/mtpwnUVVt6dm8KFB9j6tytA6N9qLk6tk3OFDi9tus2bdT3iOeVIQLtHAxitx/a3aC+DMEjdmscJOnjdQdhOZ4EPET0D8HsB/DMA/mkAn1b3FgA/DeDHAfx3zPw3vgr9/PCSo+5290cLwJF8SZn2OpXXlGulNNsP20/5Z8XWERWdIKAB8ACKkWxWp4BHly+M05GkWY2JWhStjXrcr3NSE6iZ4AOIPVtib+e+nf0yLcsEtRu1Z4I5UaUXOmxzw92VvvUYOwypaawyrS7C+Jlp+OJB8906ZwzrMX1oT91vJELPqLVGUxrCSMY5L5W6HDrfauM12hvSsW5DOuAKVFoIlksnBLmvQtoEHyL6LIBvB/CvAniaL78H4P8G8C6AGwCfBPANAH4TgH+XiH4KwB9n5j/71er0h5qsXV+nRhVWIKM0n5LvnMWrcaR4UG3kk8xF2sm/vcMVJzWksaS27TnUgpT+TF0bPAN6qfdsifdkn6RM7o8tfEp48Dubh1i4JtfPc7XlLc/D3IbrPi7tktJ4Bu66w8gC1vVZmXRqHqm3dqjMzX1yohPDdSqCeUsnIhnkfjdCE3wNxAWKE0B2loaA/tlGYHPpcGbtR753bXlam/ebsK0V2WT524XC31Yagg8R/TEA/w6AKwA/BuAHAPwvzPx3nLxPAPwWAP8sElD910T0hwF8jpl/+t56+1Enb69nJDUb+ylvMQyTTgbzZEPRHdY4ROVqTk4FRWHxCJNaIh4Aln719mnwvAx0pP6TafR8Z5c5v1jHyPXY5N/j+SxqVTqtP5qnAqSD/hbhw4ChYR41SsFIIlBRllWe+4gr6b0OoR5D0H2oJZyLXsXpw76YrWiYznX5WrxSeQxAGnjc51dz6OWR6yP+cG7aNOWhv+dpwoyN15zoTGrulfXmw3qT6R8B8KcA/CfM/MtblTDzSwA/AeAniOjfB/AvAPgPAPxuJJPcr87kMWXAWdR5QevNY+vNNDB1yPEeV1q1IGPt0Z60xvnf0PV68HPkMdVedKvpNDztraeYSWUiDKYEQDrMzKkDlycTS/4tlPDmwWRRz7L5Goyt6j3puRqrTDtOd2V9y4YSVeY5CnFfvks1SrNuz4SYVwgwgcreI5Xnq74xiZ7aox41X6JRR/IdTZ0FKulmwegBnemK7dpU49TTDJcXpHmOEpsb60Br+rO0otugWqLr7+gWTH0jzdQW0bzhFMk3eczgR+OsIMuXkRro+isCggHjTK+XeeJupy3w+Xpm/vuXVsjMDOBHAPwIEX3mtXv2YSQPNLQXWsmngcaR0kY2dgAUUJnZBs3Wysxvd4HnFeJ54I0Aa1NddpiBdj0eOUd4YyX1Bai9kup1JExl6+Clz/lV/g4MRpIzmjFq34WDbvzKXIWcoQF8v4u+Vxi3gCCL2J7bQaULCjU0jzVxyVj7Mcgyc4m52SgdqfQh7u517KiCHVXI1M8qEAY9d6hj1gRwHaUydVznSZcbyQxKoGvMjML9GrqWMRKgPA2O9nUQmwKQaqO7uCXzeMLOVht9J40FxJGSuvY1v5DFN3jtuaVtjzflDpyySL5uGoLP6wCPU8evvGkdX7XEqOqkJmIzC1sb0el6zd86nlBWb08ws4F0Zu83/S7MhFvicQmV/HZHSQEMgFZq0tkUE+vKCgMN2dsv9Au+1tkzvnZBtPm9OevKN9eoxWXzfOkGg0MKGkt5rihwb8bR/ZeijRcXKhGwCkK7oqz63psttRMmBoWI4JmOcjve43IkxEhgChl40B9OVeAkDjDNkRLnOYsAPFAFWiCXTjr1UF5TIgCdU04BT8bx1lXfMEytYafffTds9bWdUSbVNxEgdMNbZdUzlDpUnSfN9HJTA4UCVi+6itBR+S1DLWe5PKD0xumEgHxJ/MtT6WGf82mkX1b/2/vkEYs3Cfa+ovJmgVObbxRQsGTR/JkB0pG1jZtyD2KKYAn1eU8sPOsy3O3xNh3siqdrMQMvCxPL39lQv5F0yzVvPWrw6Rrt8+u6AbRzSflyQLb9125RYNCUI1RLk9L3gQkzKO0FyMCwBkRGAgY9/tLOlIBnmldMUwKfYLSc6sihHi33ZVkDYgxYVyCS7J/Iw+XxigRaqRk/2etg/U6rs0yzdbz7dVGFkVoVFw1YNGY3fmJBmJSvO6Kg92XU5Dcaowb/jSQmydZjrqefGmizkxhaIUaDqgCMthwQlY8OeLxx1CQmwKJNr3pMpX8GoEq3mX2aHSVv3Wlnh3tMF4MPEX0KwD8G4GsB7Lw8zPz9b9ivDyc1E0/NPn6xi2opw0hcsMTebMwlabpWWBd8yaNMPcLkvD0Ia+ePkUABiCvaAgrIOp+DmJlNhL/YvDUrzEqD9BYQ5/EgKD5xKmngyQyn2qS9vEbq9MBR9Y8YaV4Y/iIPAE8KMPNCp4kxTTFpJUriZCRQYQWUMkdkgIMDYSUG89SbdgIDgRHmiGmOuNot2M0r5hAxhdgBUDdsTFhjwDEGLGvA4ThjjQFgwhqpRllYCbQk8KEVQMy8kgiYAJrqGDRJ8bReKKd+fej50gKVrKsiBHnPIuUqjZF+XQTllwaQylfWTFpDFGIHzjDV1nuc6U1rEC3BFa2LUwXltQ+FqevGVDmHhjmvC09bdPmM0KLWqpVmp9eegKi79sUyokHIpsG6/zDS2eBDRFcA/gSAfxPAfpQNqetngQ8RXQP4y0gedTOAH2Lm7yCiX4/kXfcJAP8bgH+NmQ+5D9+P5Nb9JQC/h5n/bq7r2wD8fgArgD/EzD96sn3DjDQQlUmLDmMDksRIaBaMZdIkEptqpJFo86IJAxNPXWtcJVUmUFBaj2GCIC6mG93Wuoa6L9AByUhroMK4W4ZvN6fz4BGSmn+G9Gnb4Vil9KYtsnlV+xZgYK+lOikibbjrOhTwxF36rs0WISTwmaeIaUqFmZG0jJgYf93TSWM9hZRfxj9GmS+uUrYkYoQpYt6t2M8rbvZHPNkdsJtW7MOKQIw5pHZjnp+o5ikyYeGAV8sOxzUhx3GZEFdC2nDL2k4Gn3BEBSB5/ik//9yOd51PNZeW8SlQb/ayNB0IzQP12Y0JSl+qD6dBAYUZc2yZsGinVuNs6nRImzKoxKLxYcCY60NzVIeNB4kFNAX8c/sk3mVuIbg0T3rPVEDFWk+Ex6hr2pVeYuiJpiQWk7Z5wwvOEUrvKV2i+fxxAH8AwP8J4M8B+DyA5Q3bvwPwTcz8nIh2AP4KEf1FAP82gP+UmX+AiP4UEqh8d/78MjN/PRH9XgD/MYDfQ0T/ONIh2H8CwK8D8JeI6B9l5vXsnjCV+FAkjJAV0zJZKXuKsDB6TUQAMGXmM615HwHlU1ZGMbOEiClUSU6SXAuoWtHKSdJdY8C6hrSANP2FRE4hS4KBGDEzwHUJWGMWcaM1bai+aeYeUU02BlxLEWHkWYtjWSgCqrKAkIi9j/qcx3ul2l4dprE/R6zMlNbUZ4oo0j0t6XdY6jXpNweA58R412sCAhADlTGc5xVPrg+4nhfsp6WM42GdcVgmHNYJyzoh5sUcAmOeVlzNa9Fc1hhAxGmeRIXgLHRMjHm/4q2bOzzdH/DJ65d4e3eLm+mAm+mIq7BgUl4fK9Jcx+zWtTLhLs54sVzh5bLHF2+f4MXhCu/HgOUuMepwIIQ7wvwqg8+SxkJoOk4Az4S4B+KO8u80XzwnqykmQDRCVxOV9SJyFilNp3hTca9BaTorIJYySf9qnak6nqUvWSPNWmNQApdNorXq/ZKYrQdrSMx4TZuSZT2wmCrL8FMLynJJ/xawFy0zlsvJAjIyrQvtc1NVo4mDgDDFtC8oloX8LJy92TzTmn5RZskjYymal4yLFTJNXffp5SbpEvD5l5Hcpn8zMx/vo/HsGfc8/9zlPwbwTQD+lXz9+5Dctr8bwDfn7wDwQwD+c0qvYPxmAD/AzHcAfp6Ifhbp3NFf22zfEdJlISFLyxZ8ZP5EciYtwYlUCSRX4yBMVnPqamIjBTwiXevFMmVpWq7FvDAjp83sSIwAIKInOqmLcp7MFyRHZfha+xFpF6gEmInRgqsFBm32brz7lOSWW06saCRFanNETPmIK8i3eVVzGixjmosk7QNhzfOoFnjMimCgbL5UgSmJEpjspxX7acH1vCCAEZH3VOYkBDBHMIfSHQF7PWd6S060O6ZsnguMXYi4mhY8mQ94Ot/hyXTEW9MtdrRiRysCRUQOWEGILMCTPu/ijAmMQBEvlx2OcULI2hLlfZ6wUAKduwQ8Yc10CiBMQFxQ53jKtBVEwOK6pVEkahn4gSQPlU+Ys5LG22Kq4kxvdf3VueDA1VwopJXXkADPFHopUe/XtWuIAIS0hkTj5QyRmr4bBixMXzEN/TxCnkYbJD1eGh8apDHPHLSJjptnbawgSHRc3KlRQaJGK6902Jv0KyC3L7y8ICzVG6RLwOcpgB+7L+CRREQTgJ8E8PUA/iSAvwPgPWYWreqXAHw2f/8sgF8EAGZeiOgrSBEWPgvgr6tqdZmNxvO7yoFW7RXpy5EAiKVcYmjCe4T5kSYCzRS75+YCCEExK7kXkBhUARBiUDa7BUrAUwgLVZIRohzuF7D9swAEdIjcD1vz3d3LFLARk4FWmLaqJ8XYRvXmNinU7x1PiOZPCQapX4qZcf/IU957mUPETOlziQFTiFg4dPtw3niLhB2zcwitVABV9o2AzEDB2NGKmdY89xG7jBITrdgBWI3pZqKIFQmYrucFL5e1aMtCnxQT4JS/YxWoyv5fHr8oskfeCyoSMsuAF86WBS9ANvc0CZVXW+e518DVewQ609zQZGKkIKS9GqEB9DRuf2vLQc2TgAeI6bGydtr7Em4nUsIVWJ5JCU7eGmGVTZvnM/BQlHxpzNPjONpMYVgogjDQnudhRjLPc7+XPHQx1wKhJefLhuesdAn4/AyAr7nvDmTT2DcQ0TsA/jySM0OXLX96QzASwzpuQESfA/A5AJg++U5ZIBzzhmJju4YiqnEaMl/bi41qkimgmsgCgBUE4gi7D1yfxVSofkaQiESYQpZmsaE69yPVMBoRCAuAaGlP7msp1wOeApRUQF8qEOlWFls9uMuN6aWVvlUHZDFSMuNwbJkDA8mjjWsRbdoYzV8x0TBhiQELZ3On+osxsTZek1BwDFUTWiOlfZglgJeQNv7F1TkGxJVwjAGHdcLtusOrdZ+0mxnY8YQjzdiFJINNeZKCUsUDRUyIGbQSQIaQTFIxcNFg2M6bmvNippQ/LZiYpOexDCUhuZJL/gAgt233i8p+TaEfVm1RAbKigds+FCCs88PZCjB0gXeSf7C4H5uaQSFkoXFu6E6XYaH5rfU2oLnGgnBGKmMg3q9N4SwYaMnAzu0m75KJ0+B9QedOpEv3fP5M3kv5f+6vCykx83tE9BMAfhuAd4hoztrP1wKQM0e/BODrAPwSEc0APoYUY06uS9JldBvfA+B7AODqH/naetA6CAABZR8n/+4IwUycaD7FnKoXYSkjBJIJNQAxu94GRvJSQizmM2tG055PwgwbTaf85W6R4Ggo0mITxkRLbbJ41DMhiLmFK/OOtL0ySp3nLZ0ibYY0aHknKLs953GMqrmmz6nbnFA61UEErBm8Oe/3MtL+CinGirwGA8C7tOfD2eOrMFZG8iBbEvSXvRsOuD3usMSAwzHv+axUzRZ5fo7ZBLSsAYfDDD5MoENAWKiYZeIhYKEZr/a7ouUuHLAPK66Xa+zCin1YkvktRIQMMoG4aEQRhCNPxRyXTH7ZRXxm8MxpP2chrGve+wKK2Q2E4nQge3YyNtlnwWgxXCMJBAZi3sAOSggTgcM7WlCEkUqThUdnhs0xATkRN0F5bapenwSOlc6FthINpT1VVjS5RkKMef8sO42MzrJZWi7Lp1k7KKAppsq0xvOAZNNlW6/XluIl2rMNSlNBcngRE1lkSvQXQz5PZhaI017hA0qcdw/myvPpbYUL1vc56WzwYeb/loi+BsD/TET/BZIX2lcGef/yOXUS0acBHDPw3AD4HUhOBP8TgH8RyePtWwD897nID+fffy3f/3FmZiL6YQD/DRH9CSSHg98A4G9uN45GGmex+04ArZQ2Xr1x1pRkCUtJQCzSHzJtcjrzUVw2AyEiYsFUNqXbsUkb1uu0NuaDtNegQAdI/c7XIGY3sYHL4UZZyPm5KW8kFy1BP15oz7Yk5pLt0FZ6UtqPSLyJ8QyIVBYnAc15hQnZjMbAJKf2qQGMjvCZgCkJChwAkjpCnsPMFEn2fHRRcbGegLhj8CSMJDG/ZZnwAnvcHrnso8SonD2OGXjKgmesE2OZuHDiuDBPy2sAACAASURBVBL4MAGvAsIxIBzSMyW35nQo9FW4wrJMuFtmvD9fY54idtOKiWJydgjJ/fp6OmYwirgKC+aQEOQuzjjEGUsmtomSBx2vhPWGwCENCAdq9sEajTJ7vHHInn8zpzGZGZg4aaVTFgxCLAyLWTTNVJHEbhtpHTbUEnEKwySuXSwOJ6JNKe2hatuZxjNIrTxB9lFLO7kPS0hmUk3f4oHIQHWZz8zbM7OnCtXlLcmfMu1SDi/Flj849EvIb7E1ABDqbek3iTOHaDoMxDWAMwDplxgmoVHMboq2o0x66YQxOeY5EguEFSY+Is0HAD6OtPfzR0/kG1mLbPoaAN+X930CgB9k5r9ARH8bwA8Q0X8E4H8H8Kdz/j8N4L/KDgXvInm4gZl/hoh+EMDfRvLA+4NnebopCUZssRzUooLD9Nh3vS728VK3WgzZ5bUIHNYc5RJ2uh6mCAr5k1qXbJFg0p5CYmbV/XdCOlhf6ycCwpQYSq2j7XsQ4DELumkTaNR8/dzBLiIWfKIK9iJRAwizEHV7oFNvgNbNVIfyMyOKa5ZiV8JqvPhKl/TjNAylLixiQjxMuLubcJA9mlVthOfxpZiVAusxmLGHFmDOn0GdrwGQoilMhDgH8DSDJ+DlxHhRNG+Ap8T8eR9BMyPsV+yuFsxTxPX+iP20FpAScy0z4Wq34OPhFdYbwvFjyRvvuExYlil53S2ZUWVw1+dSmJBAJkdbKHOR54MmLt5l09TvU+rPql20gUPtsQGGzB2yBoMixcundowhBnhJC3cVNYypnwdKAkUX3mq0dot3q9oD1uQiYJ0dRsBUvVclz8RAEfq4aHS6HRia1sqFdpPODngQRhSXDDKZ/mQOOdNo8/yZmRXvU68f0pR44gV1Q6wRMmYyIBuCxeukS875fBuA70A6X/PnkMxab+RqnSNe/0bn+s8heavZ67cA/qVBXd8F4Lsu6kCZkCyNh3Yzz+5XQN0qhfMizn1Id6gyde33X6opLqhOfxQjZALWkLQl+Uwn4lsxvgBPrMRZu5saKq7P2V0ziGpvF1ngymwUWATFNIBkUhLVXwCo0b6a2HAKgFQ7KO2gHNC0bufCpKIyKzbPru/nzX0xd+jntAd89b5BbJhdSO6ydwHhLiAcCdMdyt5IN2VlnvPfgsbDrnW5RZJoxZzbMAQlsYYEUHEPxP2EuAPWa8bddcTtPuLlfkXY1TNC0xSxC0lDnqcVN7tDcpRQHmBLDFhiwDFOZb9qyZrccZmy6RfKEYab+ZU5m6eIeVrT+Sfi4t0nTjFAMj2uoiVyOhflJZm7NcS8dxbL/oU4acQlJIYvTJZRXPGLYCBCQHMwFcV8XEzpUPeMwOcBTsMfZK7lBkFZE5R2MMUiNGotT1VThFvdTrc/qsyBRchcs3SStb7i3p3z1WfPaz7W73b/Dcg0mbcCSHigHhcNOsEXRt8kXaL5fA7AzwH4Tczsmtt+bSfuiFLie/mxr6hKaSI1oZYvUvIhA8/SH8zUkjSAvFi0lIhqd58YUWz5EzVSiCzYunGLKs1B1R2SFxVN9TR+aqeCjLisavfOiSogiJS9xoA1f4p0W+zpkbCuodGMtImtRARQRK0PaO6ntXibyfOtWZJmTnsdwXAKcYOWg5hTiEU72OVDm9J3oDLIY5xwWCbcHnfp/M7LHXidQGs6HzPdAvPLfD5mhWJmKOCtXbvnO0Y4MqYDQDFFuYg7IM6EdQfwRNVDMgLhyMkLbeHikZfMgSn/ek1Y98ByQ1ieTIj7Cev1jHXHWK4i7q5WTLuI3X7Bfrfg6RXj6e6At3YHvL17Vc8M5TlembDECUcOeLXucbvu8Py4x8tlh5VDGR9mwmGZcIwTjsuUrKGBSxSG/bxgl02C2iMQSEB3iOkslICdnptUP3J/AiYmxBibPDGm7+sUUoiiY3La4Jg1IVlT+eAsLZQ0TL3GAhUhTjRtmb9mDkndK2WBqjH1QkuzVSp7hhM34ZJEkNOJUcEkEUEV7OZs3ZC1tMaA5TgBMWk+YCpAXEBHR1SQNgoPswiHvD+qwDSb8pJ3HOoen9J0Lombd0m6BHw+A+C7/38FPJkZllQGmAuDlhArZT4Vw282/ESwyMQsUpuADMV03kLaIQByAr+RWIjropBuEmXbO8A7RtzlM0SiKpd9GO0pRlUaBFL5bL9nyqeDMgCI5GpdUwV89vOCiRIzF8CykjQzNaFe9GG+xjRHSOaJPJZ64e3mtLl+PR/LSf80TFTasyacxsyX0z6XfWt3h5vpiKfTHa5Cq6QfecKrdYe7OOP94w3evb3Bi8MV3ouEQyQQTwhHYLoFdi+AcGBMx6rBpE369GxhZYQFmF9G7F5ETHcrwt2annsXsNxMiFcBxyehRlPIwDO/ipjuGNOrBeEQ0z6BmOWuJiw3E9Y94fhWwPEpYb0ClieEdU9YrwPWm4B1z1ifBCxXAfMUgStgHxZ8ev8cH5tf4VPzB3gS7goAyfO/iFd4vl7j3eUp3jvelP2jyFRA6W6d8eqQgIkonUuapxVX04LracF+WnE9HTFTOq8EAMc44eWyx2GacLvOWIrgQIiogkQiSy5ni8o5qpwiE47TlLQzzFX7zUyYVkoHaZeqcYomWolEAEcBUQEkmU8qICSOFzQlQZCtaU3VL6Y4jgSaGZiTMDXNK3a7fNg4tDRawV1oGI3WWg4zLzMO64RXQAIgoAUeORBvn1f6SGjRVH7KTelTpOIkUdzelbUgCd8AnHX2pukS8Pk5AO/cew8+qtSpqcoMlLWdUP76CAQijS8U0iFFqSrni2uyrazZhY5WVHOB6oPeD0gLoh7yA+qcJ4bEaX8jhgImspKK+QcoYERL/uS8wOYEPpFicn4A6qFEQtFwdJqz5pCYzII525GWLCUf4lSAYVpnHGkqY5OOyCtTIKFoQBrMZZx3WaJ+ujsUpgYAkZObs7Qjmo+EoJnzvkeg9P1mOuJmOuDju5f42PQKH5te4mm4wy6j/4qA27jDy3iFD+I1vnh8hs9P7+Dd+QnulgnrMiVPdU5MbbpjzLeM6Y4LsyogwsiaDmP3fMH8lQPCqzvQ7RFgBl/tEd6+xvJkl2K9xbS5n7SkiN37C6YXR0zPb4FXt8Aa08nXMAHXe+ye7BGvZhyf7XB8NmO5oQpCN8DxEBCvGEucsUTCq92Kw3ViVldhwcfnF/jM7iv4RHiO67Bgj8rgXvAOH8Rr/IPlbXxx9zZexj1ernvc8Q7Plz324SmeH1MkLQnhM4VY6EHm6Ol8wD4sBeCXOGEXVrxad5hDxGGdSjigJQYEcHGQkLWkPTi1UHEISYNiJhzXjPxLBQFaq9YZ9IFZ31jRaDwlpl/x9KPq/cfIO9dtRTbyCQHJQSMzezmgnASpZJ4E4ApJ3XhmTXKJAS+XHV4e98WCECkFqC1go797yV73NBZhMnKYmyQ6SS6iPB07s/U9pEvA57sBfAcRfeZX9asSLknCFEMRFVrth7hoBEHMQmhD3QSasGTCkpPWRJyl/3zcprSnQAbVXFPOWkg8J1HphcgVgMQdgfbZjTYLRK70kzWtov0ERpwJMQJxH3BcA9bdijBF8G7Fbl4Rg/Iuy30ojghg7LP7r6SkkUyFqdyuK+6WGSvn8y3i/cdZUqOsxVFsgq7KvsF+XnAzH/HW7oDrDCBAAp+77NF1WCvJziExv6uw4GY6Ykcr3pru8In5OT42vcRnd1/GJ8NLfHpa8RbN2FGOgcYrXvKCdyPhg7jH31s+gU/M/xA+v38Hh5gY3VdezIi7AJ5RDgiGhfPBYkZcsvTIwHQXMd1G7N57hfDuB8DLV+BXtwAR6NlbCBNhCoT1yYQ4Uw75wwh3EfMHdwjvvwK/+2XE95+Dl3yGmwLC9RXCkycI11eYnz3F/u1rrDcZhK4DDs8I8zPCck0IxwnLXcArAt7dLZhDxGeu38dd3CEg4mk44Ckt+FgAnlAawyMOeMmv8OnpOb4wv48X8QrvrU/xMu7x7vRWBvcbAMBtmMu+UJqTyogCGFdhwZNwSMAWCHNMtHIzHfFq3WGJSQs60IRbrmbTgNasbQWKNOcT3p9WvE/XON5lDQghz4UxiYkZVJlDNVg02s+Ui0xQno/pcxVbVCBIZPYCdoyidQhtECG73WeWoqwKM9U9MQEh+T5TxJP5WMYqUMTCE75yuEEgxu0yJ83P8n1CEj5lfQ1SFV65O4PVWEZYKgWKdEgoQnhx+tlwf780XQI+PwLgtwP4q0T0nUhRCUau1n/vzbv21U9F9VUakN7kk+CDaw7HkWI2RgTm5iyOxJUSNTtVpdAgE3zZwzHXxbNF7un9hEaKU2CUzGpcMdNKOqVMXiQ5f4o/BWBK0hQArBOD1rw5r/ZZCIwgXktIkmvgMJTiJF87xgqAFLiPUmuiSP07Fs1nQkTdFwjMiBxKvh2tuA5HPAkHPA13eBbu8CSseEITnoQ9gjp8NWEtBzdt+xIpWVyQ40zlk1ZPpEY6EwUkCSIEYL8DTRNwfYV4vcd6PWO5IqxX2QV8BXgXwLsJmCfQPIP2u3xuhUGBUvmQCQdIAsoaQQsnU5/sd8jfAvCRcDjOeHnc473jDd6anuLd+S1c0xHHcAvgDjEsCACOYNyy8hrTc4l6wNZeC2Ac1jpX+7AirNkBIXuaWHCSa0sUJ4TcZog5RFDLmMteUq5vPyctIs4RcYop9twygWauThGU18eKFNtO5kb7vcpaIfUnkUqsECf3u3XYEzGJgJj3gBc5OrHMWCVaBkVEAz4IKOvqyAETCEcl0BUTpdcvSH95qAE15w6D8gAEkteejFnzMLX++3Yy0OkS8Pl5lCkurs9e4gvr/eiSQvOkaXC5zpGSsE5pcdbDmmnjNSpwklRNcgJeMoNoJZUi9FNS7cUjStT/ucbUKlQgXXPAq+oQ+bJaXJy1On3uCIxkO57qyehIAevahn0nSozmGKfE7MCIE5VwMACqOUwtFn3wtbTHQHpvS5XWmjw5yWa11J2uTZ3ZTfJGJsSJMIcVEzGOfEj7CkiL+ciEW14R4gETEY4cccsr3o2EL61P8F58gi8sb+OLx7fw3vEJXhz3ZYO9RL3eIx3SXAnhSFUtBJIAIG7Tuwl8cwWaQgKjaUJ8+wbHj1/h+NaEw7OAdU/V9IOA6ckOYMa0vo2w26XTx+ua6p9n4PoK2M2INzvwfkLcTeCZkhlWzLNqCCmmM0q3S9rL+kJY8GS6AwB8EF7hxfQSz/iuBC295RkfxGu8H2/wMl4l01veC3q17nGIMw7KQ057xa15TgAk8ytPKTxQNutFDpWRcprX45r+1hgK0E8bAoloB7uQtPN1DVjnfCB7TV5yolHzhDac0jErLYTOGUHWTrOH1/ypvVfitN+CLEDmaBwiU5V5yHxjLa+4iPmcXsBEEYvxGBONPzJhHyYc4lxMks+Pe7w87nE4TliXUN3jZYHbMfMwQoNWOYOHuqeT+UQBXqDwDX3swa3vHtIlIPH9uNemfxUk4fCCCZm6dPjxlSdQiOX8TwiEGKok1zgaoAJPFMoGKvDATF4mIhYVPiTClui9iccxAlE6yU9qcQTZ88lVanVYq84xHTRDUGWU1CRurRSyt1p+sYswhpUClmzvlz2eOcQqzYJwyMzkbk0mgmWtG8pbFCNjJ/Z+2UO7XdNma2FiyuFAe2TNFHGYkzlHTIAzrbgKyXR1TUccecYt3+I6i7+3POFFfIJ341v4wvIM761P8CuHd/D5Vx/DF2+f4v1X17i724GOianyBKw7FFv/NAGUTTLEqF5HCFie7jFNAbRegUNI5s23d7h7Z8LxCeH4NGlSALBeEdYdgXiH9TpgdzUj3D0BLbEOTAgFbOJuwnoVwDvCchVK+TjXA6JiHoqZ+b13d51jxkUc44wn0x3emV7iSTiU/a8jz3gZ93gRr3DkCV9ZnuBV3ONLhyd473CD23XGq2Xnuk5PYcZtSK90uJp3eLnsy+sgJAzQEqfk+Ran8vqHuyWZzrSWK1pBIC77QpJHezBOU0SYs0v2LtH2OjHCnJx/KHvBhbWuFVoAVsFlC/1JZIe5mtvSZ1qD+uCxhN8qB8fLGlb5svkiLgELMWLWgHTwUxvMkwi4nXbFK1NA/dVhh7tlxuEwYz1MYAnNpIXQE1pJeV4RUuWMn5TLdVAxt+VrZ1go7iNdEuHg930V+/GRpIQ7mhNXHaIc5gJAMYXEn+aYPbgU0wfKxr2EvljW5B5azrqQebGctJ1fM02cDoJxlkrihGyTTSaXSMkMA2StaKqnz2v3K1VW06HuJBfVO3VYr8JsKsjRFhJmtVLaGglLmNwzHcs6pThmsR5qZDlvY1MxTSTtQaIMrzG59kZO9cgcFC+p/FwafAIx5mPaKzrECbe7XTENvZyucBt3xQy3owWRA15k6f6LyzN86fAW3l+u8cXbp/jSq6d4cbfHi+dXWG9nhEMO9DgB8QpYKM1XnFGCdYoZNOwI68qY9gQSoN4FLNeEwzPC4W1gvQGW68SoaCWsr9LvuA+Ybgnz7YTpcJVMoxFFuypnfmbU7+K6fY18FqiGCQLS3sPdccYHd9cFvJ+ve9xMR7w13eHJdGiEh2OccMc7HGPAi/UKL5Y93jvc4IPDFZZ1wrHEsatvTo2ZeU4h4m6ZME/JG/JqWkpAVknicn13nDvX7ciEPaezPjqI7pI1IwEf0YKFkfPEWOe0ucOZfsQLjJYEROGOEKZ85mqpWlEm+eZ9RgV0dkpIE0uB7I1YZi8kntcWZxMWg7BiSiY2QnFC0q990M4Vt2pPmYgRYwrttC4By+0MrCkuYBEwAxfBtdNOSPEBUc+gNR5uzuxI4FjvILB+3mEw0jdIvzbMY1/FVOYKORSF3JDrYhoSJSafl0n3UM6qSCBPiCupnHNBYho0c40izFmFF41EmhQCmWr94n0idmsNPDw7Z5C4PbUOcF0giljrobZkaosllE1m7NnjTzQSHc5dXLAB1Hej5PcLMao2xcaWXExvOU965mwiW9JG/2Gti2KVE++K8Bntwg3E2M0zDkuS0A9rcqHehwVfmJ5hDmuJibbwhJfrDq/WHd4/3uC9u2u8PO7x/PYKL1/tsd5NwMsZ4ZhceGVO1uvEnOIOCLu0LVbe2cIiYdYNaJ5SmfUKOD4Djm9HxOsI2q9peJeA5eWE6Y6wvJXamu6ygwijOKEoPmKItmpkcZ+Z6FyZBa8By2HC82lfGP/zXdJKrqcUmkebTkVrPMQJL5cdXi07PL+7wt1xbiIUyNECTdsUGId8Pktevmedc+Q82OE4lXNgQAL0Oa6IkZrXh0s5rRnJuRdpUw5aC+Dqk//xSKAlpDNVR0JcqH+nUx7DOAExO/DwxNkjFFU446T1luCpoh2IACcKvhboOB9aLhVkM6WxOFSmkr1rdWimJR145mPIEVLq3Le0wO110VzklgGscnaxGGXE+5Qhe906KopOw8DEr5kePPjU9270AQCZs7QR6+IDWiIC1RA4FNQJbTkUJodUZzTxo7TNuAnvoq1nOc4ZJGwOUl7Oh9nKYVGlStuwN000g9xnHc6fmVK4EgGesrhU3VJU9cO+UkDa0/dYb0jkRQwgLcyQzirFJUVuWELVduQ0u4RWkYVtw/ED6forYjzfpReLfWF+qzmsByTGZSMhrMeAeJzS4r4LmO4I8zG/dI0zc98z+BrNHhypTX7tD1/OYF0xsI+Ynx5wc33EZ996jl/39H08m29xMx2xxAnvHW/wD27fwvPDFd5/dY3jMuF2CYhLElqwpCgLOFIJRhqOSNqYBAhlNC/EE1qmuwBeCHGa8OLljJcz4yvzE4S5vjFX5kcfMhZQON7N4CUAh1Ajd0xcGauEcpE5Qt6yFM3axILro4MoGgPjGOYa8805zG0PIwuNpGgLSzmcLC7NayTcHXZYMwCvOUICFiovK5R1yTsGzRG0i5h2axP1o0S+kOgXq95zgRLmcjguocmsJRXBK2tsLEMhgKBeOCd1rmadkkR00CQvw5e1LvleMpKsvzxW8oLEAjyocR/LvCitxwGYcrbqntMl4XW+98yszMy//zX78+GnvJlYZtV9wUi+LOEq6twCyF5ZhGoai5oypJ1MFJyZuFxWhJwKo51oCRFSCsihr6oek/Kyi0RgSiY/kb0kpE7qW9oY4LJXgdJXHZKd8rmiNSof/wzEZb+9YSyKEUtYfP08Mh5loeb28oLj0j9KJob8IjQZo+IqOuk2Ud4SGbOtfZ0C7vJ4pbNWleE0B3DzWyenFSDRPLJZpnR3B8R9BG7WYiuX8D2szmxRZs7z1YKbqwVP9gd86ukLvLN/ha+7+TI+e/VlPAu3uA5HHHnCF5Zn+PzVx/He8QbvPXmS9lWOO9wuyfT16m6HZZmSW/FhAhYC3wVwQHJ4IDT7F7LPQTnKNK8pT3FK2EUsNs4Z6nciTnSxEnAXQEcqETmYMviKNiBMUYWzEY05CQmozi2ixZPhXUXYojr3lp7UgtBhpbTmLudp9lMKMyTBeInSa+PvAldNLYdPqpoAMM0rwhyxy0cNdDin8qr0SFhpQqRYtT0yp/6z2SpFk9TSozoEKvQf2/Er7/AhJA9LVZw0L7AgHqm8dK4AW4nYWoewRC+xwhuUQOsBi5fvntMlms/vO3FfWC0jve76V3fKDI3yAauSMrGwdQ4AKgEB7Suo88SW+FF2DWnCkThKIkoHXUA0CNPVJo+tT4AgL0gAazmkAxdI20FAkdRorVxCPPNoymOhTleT6q5I/U1/ipcQyvMUE4CUFQ9DE7qExKSVNYzSTdnz4LZu4voYoBxVImsoOOZ6migSqq188FdC51CsdccdI14l4Nk/PRQGBSCbKavXl0RmeLq/wyeuXuGt3S3+4asP8In5Bb52/y4+O38Z13RM7/vhUDb9v7K/wZf2z/By3eGD4zVerinMzQe7K7w67vAiXOFAjBimAiqRub5mXEXrDkt6fl7qMybw4RRZe1KavUxzBnQGyl5JOCTgCfLKyFA341NYJ87gjWrGipUmCgDlCBDNZnw5tGg4rERrHggzCADHJLGJ5C4hmlJkgFhedb5mP+IlBIQQizlXgCTGag2YclSNq3kph8glbNSyBtCaDiRjXgFMTXy4JgZbpqfSdRFwBsADRolJh5inK6R1Ngpf0/D/vE+DwrsyP8n7qJzpWAcitrHZSgzGljXVMQea/F+NdAn4/PrB9XcA/GYA3w7grwL41jft1IeVaOLGwQNAnWWDAM0rBlgRkUjWBJS4bCJRBi4VU8jvPilqA9eGFUMsnxmcOmm1IfIctj3fHkooskBy/+vZGyjzFhpwSNhVyyFrJLTUPAnAkV/PIJ0gMNIzku5z8+dEBi9SfD0cK0xWXFkJWatqnCVyfepZC6jcUQUXkTC1e3IGr7KfVlzdkcxnNyt2T4742NNXeOvqDm/lgJ06zZQY3810xLP5Fh+fX+LZdItPze/j7ekWn5m+gnfCHa6IEQHccsDKz3GYJ+xpwQTGy2mPq7Dgg+Ua+7AvdR+XCcfjBKwMic1HNiituBbLGIn4l+cHoAoE8txiYs6aUfIwSQAW7qh51TZPeU4nIM6czh2hjp1I72X/KxNPcVfOHmJC/2zpGaJNyL+WHiDzTfmVJMwICGCK1axMNdpFoHQGrx7y5Ca6tnjQhRz7bwopfFQ5OhCqO3kxTSOkw9iMy7UABTzyvdC+FYjkGqlPcoQGVZayoJz2q8lUkPOU6Cx6/VNjRpfKSnQDs0Ab56V7Spd4u/3C4NYvAPhbRPSjAH4awF/C9jmgXx0pS2JEaN/EiPxdx5PXm49Q5pvCrPUCSn9Jc0hEULxHAs47IVz2hBRIaXpSJr0ayTrdLHbqSA0By/OUe6LNlE1YBUgkfeBqapAoDBqksmsvkzClDLR5n6a8xEvsWOrZyiKUBVmcMVA284smAgGPbGrwxqxoAwKSwHRL5dXR8lwxv7zDxuyShR13eQP6OmK+OeLJzR0+9fQFPnH1Ep/aP8fNdMSEWAKu7rJr945WPAu3eDa9wjUd8TTc4Skd8CwccEWMPREOSqDZ04orOuJJSGdwjmHCXZhxDFMK0kmx0g3U3JMAMeq4yXcUmaUVUrIbdt2Cy7SgXiInEblD/oMee/kMpExkCuyka5apKqJlUHbMQdV0mvHXgIQqgMk5tUjlfU+JgaJoNHIQU/4C0mvmp6BeNxFQzodN+d5uSq8s1/kQ01hNMWANDOYEbHK2J4q3nNIc2qC+CmCswFXmqgpVYtosa1wPHeq9TjPE4Lqs44C0tsuhdzR5BHi0KTHBlwWd+kw2Yv6bpntzOGDmXySiHwHwh/FrAnwYYZftuBSqZAJUBlzECykjogO1gCCAIgtIGDFVe7UcYiVKm+wa3PTh1HQhv+BJbSIiaxN6M7NoJ2s9pa7fhSKJiYxrZVpkxXRYtDg1PgIEtZLyeggNFBDcU30vwQpBVggrdRepuZy/sN5jdWESKhCxarfpq0jga96cP8pn3aAHIZkRJwVCRVjInk9XnPZ5rlZc/X/kvW2sdlt3FnSNOde99/Oe9i2lldJaKuVHBTUxoMT+qG1KtQFJSP2KESPYaiwkEqNpDLWY0rRFS0RIfxC0AmmbIIgVQoNNapU06I+22oJRJBgiCKUfWHj7dc55nn2vNYc/xrjGGHPea+9znnP26Tn1Xcnz7L3ve33MNeeY4xrf437Hx1+8wj9w/yZ++Yufw2ff/TQ+vb+Fe7niTg40GbiTAy/EQpfv5MDFtZmLWAWFDsUVgqtajtFb44K39A4vxwVjqSxQKy7cJPmdMKOpWj7nqjC+GlZcWt/E/dQz+ytgyZkgVuihjiEEmzNN9uxa9erm6/KtQMRzFYug58KQACoNQ80Hd/W6gmzhRZBprm3WgqpM7Kyg826OCCxIOa/4EBOAwjnPn/4+4eZS/4/+4fgwT19dXyqYfZ3+uZlNiy+nmNGEoeE+jmg1TuAJoZVDlIh8rWW1S5yI3wAAIABJREFUAmArAD3T8dzRbj8J6yL6kT+aKO5fmGE7HIulYVNEh/SMzzcpp2UHy+IHyZ0Pi0a7WDLcdrF+K6yPNDwkmQ20AATxhFbSihhUpF9KKzIKITQv9bP7zehwrkRSo2iQmyZ6DZ0xdL+XXYD5vJHErW5e07S5+L0dDIPZ6c29ayn8BKFyjjNNdX8Ehvu8N/NlTKazPX0VBJz2gOitE5qP+yOEUWKR5+Etp984gPsDLz71Ab/0U97CL/tYAs+vvPspfO72CXy8PeDT24ELBC+8XtwBxSsdeFPNtPZSN1xV8NPjY3ipGx50w8+Nj+GtYcBzwMoCHRAcbiba2oH7ZtWid214se14uGO1BzfxXwXo9q76yqPzSjIh1zc0x+EVkxbwggB6ILL74/sOS3IGMqEyCnBqtA6ooCWb3YvReKlxl6X0sZgZDRlIg/m89ZBhcCUDttfcR3W4EPbWIejbwMt+weZmtJt7iBWtZRFPmuqO0XDFmksmkbN23Xu0dmC6hYUmz9rAkwy5glCZf23DowHreQB7f3FeIt9omi+NvB32DSIAirrwqUB0T1aFsPJIDYZCPoeRCzXoaLKSPKPGw+PZwMe7kX4ZHqn39lE86EDedFiSWvPQTF9lacN6c7QM3R1qFaHtnwNFL8xeDLD6ZaBvB+7v9mj2xXLyD9cefUoARFx95MdIAmAwhRoYQclwuIZUomymXh/8WEn0hYKeUqGLpApe5mA1YYiPgZuGDtmo/FsB7czUwnvXkihl3Cz7IQDA1s/qTveW97PwYzO1EXykAlo1TQlC6wvJ2p/F5MLWPWfFVYdDBVftUUOuQ3GB4A3ZcC8bBhRXPfAKA1cVXLXh5dhwRfek1nu86RW0X40LDojXM7O6ZpADb/RXZvbZrJYdEy2PIehN8VKAvSn00jBeNeDaYqKi2GVdP8l3rJ89dszmnTInBUTq+gUY5UqGqbmaAoNGpodR0sbkxK9HNR0KtX2PEo1Sd2xoeDSMbWDvNR/NzuHf5HTMIzrUKnVHHyp/SeaW7UfPvLXJL2I5cAzqESdQZghaCDQJzX+GSSvnjQA+hbAfuVljvxJ4eJ74rdnqpeusjbn/r5rRdQgigIqWDk7yJJTa+wyW8vFztYDhcx6vE2r9JU/c4/MAfBWAXwvgjz7DuD7wQwSRDwLYxF93xVV6FPITL4lhYZgIzWUXxdEUrUuCEGnDCYLRUS8uV+tV0w3orl42Zj8a9tYSZADLXlex5LgqLSnczICUKLmxVSPs15znkibEIC4CmVSMPD+CYZTzeFExh00mFdeCpGhKEZHl/2nTmXbPnq85Li1/B98MQHGfEp2jIwGnP2DKZq/mjsm8RODho+n78FwYOq730fDmfo+faW/gp/sb+Hh/Gx2KN+QlLjLQceBQxRUDL1Xxpt7h5djwlt7hQbdo28DeOVdlu4MrLtAoBTRU0DfF/bDGb6xw3EQt6XO7x9ubhWDvvUOvHYc0qDSP1itzTxPlUtGZ5reUvjEBTbQWcCCerIKr0OFVObi2UEC7az7ku04zDMRJM6rGMyl8TBFvRTDi+lNAYRAM/atKWjjEauo19VbwLgi1rMahpYhcFDkdEpGLrKJR88GqEMjqHypAxzBTN4mKZuwG0LgoTCVwezHnC80TxGuFkhC8zERGrT+Ah6ADeJtznbsaLya0JG7+Likkcm+zhTbHBaRmRKuOC51cjBtf6fs4Xkfz+X48LisDNvy/COA/eD8D+oU+2AoYQBDsUYhu69nLB3AmKgo5FEOc2HvmvohkCOdlO3B/2aNfhz3PGMqDdLTWI9sbSKIfUpJA+TkGpDWTzunDcSKRumFr8lqAjRY/1DIBVT0pwDP1LVml6uVyhlJr+WwCknbyfZG0haa1+oxlnGteiy6MMUxtxQwVIPmYknfDhHN+2NDr5+UOn+hvYEDMjyMD121DE8VbesUbYm0fXqngZ/UeP318DC/1gpd6sbpy44I3xz1ejYv5edRMbOYX2vFCrlFn7UW74kE3vGjXiIB70a/4+esL3PcdP7/d49W+4a1+h+t14JDNlLpuWl/0hRoW4afd/04lKYMMChAxwi+K2i5mnkoLkx9G5znMqMT8fhGuzW0JF1ZgjJJBJBLcuQg9LgRGcIyxddMuak+gJtbQTRSD+1UQYATk/gIQpYLWXkKkp1rZobUEHva/GrAoDfW8N5UGFfXPHYBEy/6sa6AxViFwo5U9IMno1/wc/32tVFD3uFbgiYfaKTVFJCu6FIlP06UQka30H8kjvr33eLwO+HxjjnI6BoBPAPghVf2hZxnVL8DBitRK4oYB0WU7IEcp+X5yRImZNsyJUDpzrl052V6YJhx02wTYAOzWbG5UYlBBE5mkMKMJiY0e0WtcjZFEMmVN+8a/KYshTFwlMSWHDuJyM9gk9azAlbdzm/gjlElGUr8n098UQ8R8OcVEps4oKy5KkeKnaCya7Hj9CfDFfVree0SRVuTc+nEcDS/3LRjTW/sFr44NV+34+9un4mcvL/Bp/SU+3t6287XhLb2PAp3UcB50i7+HWmDIRSw67iJHNLnronhQK4T6Qq54qRe80R7wRnvAz28v8aJ/Cn6673hrv6DLwFv9Dm8PNxk9WGIlzVNtV9Oe3acTGkxD1ICr5rXh5Xmmas7VHObmSw3BBCbYePRZEAFptAI/5nmlsIEKYkcJyxfSS1lDpHZBvSIklypoDU2TVmHS6IpDLJqtO6hEBQP/OQ0QZWz+iFo2yOhIbe59/6oMDDQ0OCChBd3VMGUJ7XpExQHz5bop2fmRtvTrTOZ2F3BPTWAECAJaXYOwqSIj7OpB4CcfYZ28iJotguwzHa8Tav0Nz/bUj8Ch8AKYXhtqdVQG49c0jdHvwyKLtZxMbTrXm6L7ZzTd1FpoPKacjPjMPmiAtxXGfL4UIgVSAl39MdNNy89KuKIRnSOeoAae4oSXJhuXUENbMQpWuSVklRkb47nl+5Tk6CvyZxfwJJM0cyIiJDgYU92Uy7uGFWLReqJNwoYoTaPe4TUcwC6YvHqw0OdXe8fPPdzjzat1+vy0y9v4qbtP9SKdr3DxpJjqFwKAJsPaCmiPIAMA3oV1uBY8QqNqGBEx90KvuJMdFzmsEKhr6C/6nRf1JEB6hoo2AwmI5+YgAb7n7yyiGZoNtSGCjldrCJNmCO1yA/w0g6HdcrPJ18Z16Mt66bzeNweZrZuzIqWAYDExR39eTxCSTiETAFidnuAD6Gi3uS712T7uGq7M6tSqgjYE+wHgaBgNENrdbENmkEIFAc9zmttTp4DHpF8JeixaSREYYpgr/6iJ7tR2Jlt7AaC8KgbICvshMNa1Onne+zk+aWu76RC8/dYdWh94uVkkTHdp5hgN+8MWIYk311bQ6YrN60KJmCakqtlMyo81dDYi34rNeT3S7uwbRe0+tLGDvqYCPFoJthCrenkYqRnngBOZRdqJN+GCiu+hJFYy52BYvFgwOUPj/TY/owBdTgbCnj2ccY0B4Npu6l2pULMRb5ecEVU3YEtm9gQIU9OJfB4WavXCkmF6vXZcj83W3/0pf68Bf8tLsnSnGZZ32frAC+/CyvbSd23HxQGGx0UG9m5N8V41M8VRC+p+XoM1ZruXK9CBi+xRzbvJyH5HrMfW3Py2C/Ta0JyZDM+NifDyDRgvBsbdDDBRf7DB6n5JCjY6BNoby3ojzLKkP2gyqcqoov4d0pdUQDA0L67jGQBUbZsCEj/QHAOZpXrX0VEL73aFDsUxbGYnjWGVTs4ke0ke0EQ9MdXWaT9a7umjGci3I03mJwBXzYF8rxryXNehlvCpfCijXy2QgEJpVM2u0bkuHY7dz9Ui0DrvSBWtzAXvIUjrBz94puOTFnygwLh2L+Y4cEQ4tAURHF5YUfd2qlGoM13ZhjUG3cbkqmDQwlqqPNRmIEIfSSThJJUk3FEcybzm9HWoTawmEyA0j6nsTfX/eNSOKqzBnMI2rQgwUkKegKbc+3RI1LAqGNZr6DSNkGkBLmogFOqOvxvtz4dYMUgPu36UaVVgWrQi7ep9W0p18CjSmkxBB6yq8C7W28cz/od0q1Pp4zb7/UC7DNzd73jjxQPutx1vOAjdtSP6H7Ga9MfGFW8dF9y3Hfdtn8CHv19k93I8ZrJ7Ncx8t48e2jPTAZq/gyViElQEY7OKCKLGkPXOC5++OIJZTQ718COYoMSEZcPzBhzqJpvCLEuU40oTVbNPIQQzAITiovNaStHMVhriryXnLKV1ZLWH4T+bIKJ1bgSvhXbOzBHv8oh5pGhGc5w5uuZHcAgxhgUVF7KuRVenaivrGOp5SiHX56Tuq8m8WHhMaEmIyhL0XcVNn+l4FHxE5H8D8PWq+ude96Yi8lkAfg+AH1PV3/8+xvfBHQrogzkExhCMxhIaHid/bZC9maS9mAZU4OYJCeGBTkqeMJjouTJH2qHrOBapKD4fbYr5v9k0/FcY/VSBmOeSEbTClSWfpy6dChBOyAGJwoU8PwCujoV7Nf75F3Rad83n12lwTaxtY5YC17kmiB8mDAxWJ2YVBE0JLcbD98YCUO7E1abARYFw+vq6SDqqtfSGkQfJatZheuJ7qrdbULx8Y8P12nG5HHj7/oJLOzxgxXx+7HNjJXmO6NLZvKLBfd9x13a80a/YvCX44Wa7N/f7qP/28rC+OOGXFH8Pr8enQITfR8NBBx987EC/O7IlQRF8WPW6moh1iOUYQYBDozZalYZrlGOsQUOYhsO3Fv61RwSYycaMBJ5iIpzXFQk8I/PNWK+RjF2rSZk0HASWwUJnTD9OU/PDHirm54X3lholsRMIGqIAabXmmm3j4vesVdfXUO6Yy3XPLGMXgkih3YjIAxDh1Y8dvrduBLXY69xf7x2Qnzqe0nw+AeDPishfA/DtAP60qv6Nx04WkXtYns9vB/AVAB4A/OvPN9RnPtSYihnPjUkOD8XUQyAPzZMWaeYpDIy25A5zzDVrGSwjqz9HxMiacyOKsTBkXb7n+LRErkXvdXoLq4QCpAS/zQA2PzvPl4mIPV+owTUek5inchrB3HUGIiCTVY/lHL/fme2aUnZ38FkzzWM/+BgOr1A9WN5+wDtXCqcrzUecP9eipAB4OHJ7mjUq6M85E+J+L+YQZZ04hnNDvLnbxez/+wCOu459b2hdo47Y7A/M6szRSro5+PQDb2xXvOhXfKx7ErQKXh7WKfSt/WLtlfeeTfsAjxgrdf4keZ02Ax65G9heXHFxMzFNv2wMJwC6gyXbLOxHw9jsGcO1DD0E2AuwV0AQRW3xbc+3f1ZVYglcKYxuOpy+Qvsh336KDzojvalDxjG6jzOqz5fz7NYV3U5ur2Zq02bBC8eRZnMOrXYsreDSfP6eLNYp+YsqTPihv4mmOEngUgqeIDDdyoQ59lsgYmWRGz7RMqT8dmzPdzwKPqr6pSLyLwP4ZgD/CYD/WER+AsD/CuDHYeD0AsBnAvg1AP5xABcAVxhYfb2q/t3nH/IzHYosXDncnuwJk+JmHtYJm2pdiWDAoolY1DMzixHVoaW0vY1NKm7KCoYMMOQU8L/515hBzxrPaTpty6kQhH1bmPHs77WanW6Iv4CRDgAdHmVjWtCtWQKxAUjhsQdqlIFolv/oFRT86+J4tYZwR4SxxhLRHo4Mfx9uFh3DK1jTHk9zUc/AEGZoV3t59rThoPP9+czJDl+ka/GOmLV6gsB8Kcc9oM3aHpi2kBIp571qWPEsP3of2Dw8/2OXHXfbjvu+RyHTh6N7m/KOl/tmRUd3T4QsJhFhC/auYL8dNEW7O8w0eLfjxd0ec0qHuc3NiCoBXYblsrlzfXd6UsD6/Qisanhl4OJ04yghnhQ65Q5VrhgcG4+bc8vnERyzClQnEjtySia/UQTZ8Pl+vzCjLxpH9a8MaSZgHAjg1rKOzasosDHeUKCrtSWpwmYNjzafjY9pssfJJJSKjOg3xNBt4TvEOWWu/L+p1iMniHOoAvYfCtmQwT/1fgsPea7jSZ+Pqn4XgO8SkS+HtUn4DQB+y8mpB4C/DOC/BfDHVPX/fb4hfnAHtRIRmLO22kuLPbl2QAzzqJuUtCFDnXfrQTOZaCYnnm/CLuHwrTkYcYw514YmBHXGEpTiUiRBp21jYr5BwFoYXf0dABP+yLiB/F547iQC+fnO7FkbzwDIOYHni8imMaapRFG9X5nTVSu4ieTxeWCliONokatRw9zXZ9X8jpji8Vh+B2ZzRZgPZSqHEtZH14JaQzR8G9oi8Te014Lj6pueYcsqwL4BD24K/Jl76x9Ek+QNMHogTHbDLHkfbZgI6PMlzYIj7i97BEewtMxLtXylaNLpc9Fl4G47ABzRH+faO65dowTVuHYDW6d5MvbhNDrqCwfz93nbPbiFvNC19qhfVoAnaIGVO1jVgxKPeP6PM/haqSISNKc1zrWN/Qmk9u9gyDkNWXAIxjCNNsvU+H0azIzp+UDZkdUYI7WIBJ/UitIcDtROx+wxpi502nPy3lWrqtuk+poPb1AIFfOXFkEKCk/aLkCEpMd54ZDm0sczUF77eFcBB6r6fQC+DwBE5FcD+IdgGs/bAP4ugL+iqj/7fMP6hT3CMYkEoJAAvEEX80fCdu0td9lgi43WRJOpTMCzSGUTTy+S2qlJQdJUEZJcMUlQu6jSylkhxACelSlMz0rJysR6Xi/5fdUeoFnSg5soHPd6/owi1R1o6BjYD+u/gtYgJ5PAkvdWYV+BoiWtwBIlVfi48j3zp3Z0b7qWG/lR009EUQFymILM3CIZzJPBnDPk698OWHO2ImFGhXAyAZ+z4x7Qzf1a3cyzYSYspkE29EsTptFEawlWIsYQmyjuLjvutwOXng3Tsv25BMMazSMwm2IoI0CtNBQ2RLTlaMaB6OMc6qWeSqj2DT2rGCf2RneT1u4Mv7ZbCMZPLSruZWCbjnL3r3iOUQJP3V8LAPG2QSA+j+rvSNpH7qdo++4Cy6RNw4IKbE49SUJyfqmFxOOWscRzJPdnAIXLc2eBNZEDWARLgNpOm+pPTuvw1KFFm534hO+DZ/T9vHa0m6r+NQB/7dlG8GEe85pNn1MNby6EhO+mLaG5XaNzZD0MzHIThpZDyYwblRusEpl7QCdTRPW1+BjDdCTJcE6j4fzetSAi3zzVfpkY9pO2ddRni+VPaIv8EprtagZ2DfuccisUOLQDYv1rRpuBg7/3phMoTUEamhGDQPO5kKheHBFsCojIkwnE8W5lHrSpJQdvcIe7f+UAQvAZF2rDDpQKC4woxVNRhJNaENRaYQsGEzqbhGY7dQXlsLTQY4cHh1goNn1Nl82K2lqnzz38ag9H99IyLYrqshDlTg2ytfBd9KYYGNjcJxq4Mg6oN4BhV9rwTVYT2zAJXjxRsUraNM0GHYeEXUBI1eirERi433x+Ku06kOU9g2L8xyP745QQlksn81WhD9dkdXgTugJUtUyPfYb4rv796FjKeRVsAnR0vtesHScASXn9WAPJz6TOTxGQAIDNAZ+cq/dwfPKGWjtTqRuhSk3c6JErUSsjbxpmJfpsIjNZxeP9F95dGUlN5KsbJJSFk/BGd9aGZCiYNyjHcEYdilKzCUl9FKsofatg1TqU6tUkBSEAL3r6RKkO+JhKFJvfJ8rOFz+MivnOWK74aHmfqsXtMms0a8JvViS2NWMmOtrwIp5e/btKoPF+eYTbyueY5pJMTjUmCkEJBjEAso6fOSdcuqjafRTgWYqoigDS7dzh5ZOiYniDgd9RBJJqOhUujH3XxEo8VeBhhY3r6Lh6IAH9RfQLiACHz+/WB/rIQp1dFNoZiOB74yJZ7NyvjyjGiKaT9In6KMeQ0GSrNSAEMQourvWZX1UTdCahzIS1yYpQo+MKTYapDjChK6hgOWg+rgyaNOv7qFZGUY8APJbcvkhmXQGvaP7B8+s5Zwze9w1ZQiS5l+tqoExYa0bRZDi/MOFG1OiVtRI5P1EncD1cQHiu45MXfKDQi5uMyESapkZz8RVTwdjc3uwajgFP+lcGmnXz3AgweithUXIVX3CChkxDQlTujSRPpMZTgSecDjN4TTlD3DiUkgfCFwFJaVFPwQUBhhNgLbRnACRWVsQj5Jh/YoCGBPcCPuk8s3OGtmBgmEAGs9Pen8nvGa1loe0uhXcDI/YEbe242dDr5n9SovMxWTkg8eTY8l6eO6Sbpl9omjuENBkSJb+P+5fHDQNlkpE0zXpo1LIrBrXyDJ8nmssY5i2iONQ0nd19ZdHhk/8AmJRjWmiXLCeTUXkAMNC7nX+4z4hckXlH0mbw0UOATt+gRhVpajkEeWo0BB5pZhMPemoZ5m0kSZrk/eoiL39Pv+tEm+eLXnwrBJ0axBMqBEL72T0BuGokk1ZWv6t7aRnnVCGEwOPgxiCn02eg3Hsxx83PclpFFWjgYOUWEQqlNCdXH/UzHJ+84COAXtzZU3JFCCr9MtycZBtnHC27ZTZrREfJp2F4Y7ABbCVXJXwJRUNpCHPcWqOJbRPCkc+hysIb4zqdGPGkhvtGDv8NJVBu3LZsWo4hRKB8hxiLSoKibzzTDtTDV4tprGw03jc27ro5hN/7BQvgBOD6u0fVYh9qjXxTB6JmXBKbCtpFIVqYofLn4xKeOaA51+KarL9Mw2T/Zi6Thg8wOUdInTmdyWQ5rW35905AuDKThZHVXBOa2gg8D0e3dgEj5ysFAkQpmmsz7QnIVtTWIRToDVAdBlxdoToy5FsMMBiZBdVsdKi0EphPJKLPqpnM37GGFpMmIsCAv/urgxp71QbVqDGuRRHaprkrgsg6rcrkax9r8evqatZTRC+wicZ9f6QJMe9dwZH7JiLf2jxUVcHY/feigcX3IcjyoeVFcvvmOPh30aTNTOw5fqT7ELrSzfBcxycv+DRFf2Nf7Psajd9oL2d73VoFtzItBaCbAHrcMLMzlXsNda4+keFmENZRu5HiJvGYTn8npGoWANwB66HdLtFUaVso6ZKZ6Xzv+nkET1D6RIOOA4BV8s3xSLwLQXACnHiP/NsifNrMpPkaZXOnAxoYLAFTJLaxt3CuUvvUAYzLgCpwd/Eul0Oi7fJasoRmxAZ4xQBjkooSAqQOQRN4LugS5YDIYH3cZbeFDd7BJnxGJW9UFSFxsmSM2a3KXFX/CjABqyrCr3MdDde949V1s4i1xQzKcesw06W6+bL3gbvLHkA2yn0BB7duNdOmAp3xohbePkJ7caZ2SXqUci7pmoLNei/xtc35vn1kBCLU/2u0lszCiwCzL0d9jkXCKsC5EspdPu+0fgBGg7q3tJL4mHUbZj48C8TwPxRprbBkYU2A8g1BH44cAuwZIh7FVLvvwbonS2qGoNLKCZA4nwgQ5T1cqHq3XV/f7fFJCz4iwHZJc0wU9HTJunmL3S4Dm0ukrXVYolmfnHu5UW6jrMbKdHELSOcDnDUjI36dvlvL9MwhdL7JmaEckox/6xIjzUEz+CA3CW3H/oUOt8MPyWecHPOY/D6T+YG/1w2f0qBtlBxHvEbzjbpKkfVwYB2ej9J6w3GU/J8iFGh5BQE8mstDZ10gSG2vvqC9f0SdBUhjtrMDp6YK8pQEH/VQes3vVTI4xSVPTll12OsU2GE0Z9GD3ZqeAZEXtF/7zFxuBiYu/TYr5+bnbX1A3RLAMPca1ksTFvNVBmpC5PKMs/WvX097CGZODcGkeGs47xQEivByenCPVs25fGfKsX8YtKioeyO0LgJP02mbga/Gf42C3gmYlmevpbcIjLHv3QITwMNoSacFml9tfxahqK2T6wP0vXRjNQGwapvsljpFzj7D8aGCj4h8HoDvBPDZMBb3bar6rSLyDQD+bQDMF/o6Vf0ev+Y/hOUcHQD+XVX9Xv/8NwH4VpjR+o+q6re84/Nb+hDqwQQyYEC6WGgvgN4GjpFdJtcY++ZmgpQQFWAi2qIK6/S7MembpNBprjwPwX+fnPmDklFh3pM4yXvAu02ibFrMWpFgAqmqLYW07z6J5fYxtuk6B7YIhqi+KlB68wfXTSs+rvKYlHhLzkLRWBQESgKFhK2cUVwAolNjYPnkY7L8DHN9jIxm5Drx3fxvCY0h51Hq/NJUVCRQBprQDBKtqQn6hdFa/gtSeiYvrMy45Xj0EGsyx8g0Zxj7YV16jwf2U/AXWdYv5uRoMZUE7eZMbTDIo0Rx1ShGe+2WjNmL4hKogk6CmZ3TPYHn0crTQNJwBR7eu/w+Cz7IPRLrbnRofhVJ0LkRyjT9kq0A2RpBOe0Z/l4W7uR1Vt8QzfPkD3zXqd+WIEzojJLUJan15llSaH55Vh08/W61FNPTNuHXOz5szWcH8DWq+iMi8nEAPywi3+ff/SFV/QP1ZBH5RwH8qwD+MQD/IID/QUT+Yf/6DwP4cgA/CuB/EZHvVtX/83UGE2CiZnpo0rAfiq0vnUwZKeRMtXm4KJ3tN714VgkRSVBZf6omDQJnjMHmoCS/KWbgqtFxfou62SAZ3aeqmMunIzfHY/TljJVhuWsdttCY6vXlHfN7zRBaNAOlgdvnVoZy+kV+Z2A8gC19c5zXcVjuyqQpqmCVRNNXYgAU5fcvCE3uZv2GaVhiN5gBlFMaicT+/MhpwRSZ5Up0vJMKIsqRAJPReMkEK8mEU9pNaBEV6AmHem2hhQr7Ja2MOXJTTLvZJQvnch7MRLysSgWjnFTQQb76OUzDpWaUH9J5D5F4j5kWiMB8cJFQ6KNoOoHLDV3GHFJzUQAskeUTXehsiiJtCTyR0CzVT4gMAgmBYr7fNA/TmE4+A/fcfAu+w/pnPCoIqj70kedw6zOCVgx0yG/UwW+se/59HB8q+Kjqj8NK9UBVf05E/iqAz33ikq8A8KdU9RWAvyEifx3AP+Xf/XVV/b8BQET+lJ/7JPiMo6VjDYiw05DUfQH23iZFIDYyTTeM7tlGSsmYGVYNi7wJiSShVPAQagvJME/ncIjlkjAP6Vw9/oXUAAAgAElEQVSInEEIalLSaqMPKbH8zo240nBlGPzOJfMIOa/nl3G0PoKZjmNAIVBtaY0Zy32X66vkNkmvjfdr07U6bM0YqFDHtkYF8p4sk2KfI8xNlPa5vuMof7cMww4woWRap2vRdIp5fZlPMjbcLGqG2heu7Ex7DGthOnqCz1Shm4zds+cDhHgnroHTyBBNMFWA1dYzyOCERh1wIMV3ETRTAHMSVPxH2Qe5R+oA+QDxOdZ5zqdE15nhrjlkEU0JAZp1C7YxcJI5Nl0EKJweNTx/Nuux7t7JC68f3ax3kUZiuTVpZx1L8BmdyKO+981z/W8GjAT4+PkDj/Og93q8FviIyGcA+DdhDP+XgnGZ86Gq+s+87kBE5PMB/DoAPwjgiwD8LhH57bBacl+jqp+AAdMPlMt+FAlWf3v5/Aufeh4d/NWmO1Wi9vU5vNo1F4aSbkSbiNVuat6hlAwrQOwJkwGBw3rpFPBoANsf3ABJIbaMVMLUcXSNpkopq25EycisOjyXGmfnqJ0XU0VJzrWgMPVBwVa+weQJ7gowT6Cq8gxasFBi3/SM9HnCDDlNCd/Z7RCDc7sws2NIFmqMa8pcihXTbJ5cWXu3qIpHitXWy8BwFD3QLVSsuRTtjIavHc+pgFOByedzElSHeGgxL/RTI/gipVLmdEQoPTVLZ2S6C2Rv4S+ItWX+WNzc/3lVbCvC2ljtJfZAAkI6y1dgj3ml8LVwu5vzY7C+b7gBqsZUmWjTVNjh4/OI0tCup8Hkc+sYgnb5vgRHRsGGdCDzjWhBCCGzSBFF85lecRLiJPaqltvOglMFbgR/mDTrqv0Ck/YT6QvN9yHfV07mxu9Vq5unGZ2A9nwA9K7BR0R+DYDvB/DL8CjuA3hX7OLm3p8Kqwv376nqz4rIHwHwTX6vbwLwn8FA7+y5ijRsPDkOEflqAF8NAP0zP9169iAXV2uEUlnsoydXkCG2ganhdMsXGr1Zu9716dwdJMi6SYdYA7XdsuABB57a2KyWtOCvlalqFjANyW+ViDkOmhLIuJwotef1mSQ4RwTVZEFqJyyiGoTJig8OJKml+O+RPDhCqmrdwnQP963QbwGVZJj+PAGgR2KfvZ4DozObTu1mNGugNUzij03DSKpu7ximsDKHZm4APnax4p6XfmCoYDs2POybldUvx3XvuF46Hh42o5XDQr9ZUqd23Jwac1Xa5DnuSKZfyOiiAGkD5G4ApZafDq+1NhC9jkx9S6bEtsjtwKRZ6gBUWkY+OV2y5pcK3PzYoiUONSybz0JTcKY20Sem8YfWSn+QF8/l3lMXiqgZVytEPkeTtkoL+2CqTnNSSjBVM3fmkp2sQxuzidNp30L5EVKDDp+CoydIVLPsGq0aA7F7hAnNwVyanEfDVXQlsCKC/hM0Ymga508V37UA89mY+P5yCzzHaFHMN4SbZzheR/P5AwA+C8C3APg2AH9bVY+nL3nnQ0QuMOD5E6r6ZwBAVX+yfP9fAvjz/uePAvi8cvmvAPBj/vtjn8ehqt/mY8f9r/oVOgHPqWqPZOIkmIix500x1Ya7iY6JjVNf2iQtDaopX+kiHZ0ck+O7YoxomhuCiEnhfm7zHcVN3ObSJOxkSca8RtRpmFsKxfNyzY1081IxeBSfSz63NVPto4ZeCTZAfC6Bv+IBBqou4XbL5bnRZgYy/BVIrU6tfhm1suidJLDeTk3xctuivhmAaGXNo2b/b24fvzYrvjm6BpNmiRPsApTKBlUZsNIxRiyTklDmln8PFzDaZqV0Iomz9Xnt60EMozBQvyo0N9edc3pmxGM1nwUNpoBSnxs0UrW2atb1S0OwYBkYYCLrmCv4/graBajpnOWCrZotGXbs0fmryR8LELw8UHsgnPprgAV/p4ky1mvx88U1FVT4Uz2KtI5tMdEDmMy3U+TZImcCMw+K9Y3P5v1oz8mcpslXDUw+vg9F8wHwxQD+O1X9uud6uIgIgD8G4K+q6h8sn3+O+4MA4F8A8H/4798N4L8SkT8ICzj4AgA/BJv2LxCRXwXg78CCEv61dzcIPtMWV8mUy/c1F0cAiz7ihWs4MKUO3pcEU0wBWQ6HhSMlma5gqUu1SJUna09tJ7QeLCGUPClegqLQcn/fyGvvEF4WgWRkSpNWhWRKY56XeH41UYwsFRJzx3XguDjmysDUJTrJvAZtZvqUliHYYdLcmxX23AvH6mqN0bYsvGoagwGedsVVFC+L2aaaiGoPnou3Td61ocvAy6bYt6yZFgmwh1g76iUHJNZ5+ONZbYN0UOfUxyabaT3bZiV0BoMqdKQ26vePOnP+P8O1y4cBALlOC+Pyygy61wWzNRDXcrXSQAEdZdVkwGrQFc2I65QVqzksieWvvDiqGwRtFeBZTGxMlq7aS7wQMAtV9Xv/rkZABrMP3rDsqQrM67rWPeA0qgxZrEIbyufxEvV+mHLd+HGNJrWx87JSpQA8hwFH9rzVnxxBBYeEhqTqNOxugQ8LfATv4MB/D8cXAfhtAP53EfnL/tnXAfitIvJrYfP4NwH8DgBQ1b8iIn/ax7ED+HeofYnI7wLwvTAr9h9X1b/yjk+vUknP/AE7KE0Vhn8I0N0cxMZzziRutRudiFDc1DOZAxQYm0DJrRVRwkJWu3UFINTNBI+0wy2RTgwhXyuGOElSs/TIzVt3jwjrjbnWthKiemmOgWUuy7OdGYeZbwUgAgeZIDUeSpnh25I0QzhTVs+9iGe5SbM9tGj+ZuslGBe1zlOiELXCnyFtNoXqhleC8O1sfaAXzYfAwxYFQ8X+3o5I6rQgBbH8mqNjf+jpL2TeUwGAGk0Xa+tgG877TdHvDmz3B17cXyP83wSCjkMBtBYyRjBQ5oBQs1qk5dgKAzeKAVSs/H7VuMsa2LP8fWjaoibD3KfmjxKAFagnrac2TnTkqbRBmlMCXghwS0Hcyepg56+fh6mVX5VQcNtDAmUzIiwMV3hhmYuq0ZCmq++Ih/tqAn+LsHqmjcXzgHNfloMI71kFX40TFjBzOmO+XJzm8zgOgWhGMkak4uHMZaWN93G8Dvj8MIBf/XyPBlT1fwbOuBS+54lrfh+A33fy+fc8dd3NIdXpPX9eIz7WMi46Gka3n4jBOzFOBFy0HAcEcWdevvFwpiERKQYg/C71+vllc6yAEybFxBvOgfn6MACX9605Q8GE3P6O8r0W6WfdkARaMkvF7Vh4PwUGS2DX8an/wTDhwsDSZ5JDycgyA8WpUrgiGgK2B6A9FObWALm6FuA7VaqE3gRDgYEND151YtsO3F12D0Kw9tdbG7hrB7Y2rJZcO7Bvu1XE8PnZR8PDseFh73h5uUQDOFYDmJP8FvAB5mgvsc6v9y+uuL/b8Sl3DwE+gOWZPYjiuHZMaqUvrDQHnoYMYlgA8OzguRrmuJxHJlHWwBJhBGYBsqoYoFYO2FspuFrGTEEhhDiX1IUGa98z6xYugBFRbNPLoMj8+V4MGDABCwAam18XrUJ9mzuBKUAnPjXA1bd7W1zXLo1I7pM5r9gm5Z4s1pt5Xf7zJkk89ZrTfka8ZuILCbJTFCxBrQLlMx2vAz7fCOB7ReRLVfX7n3UUH8qhqV1UO74z+1pOPnIlhvXrGJtEW+eaPFdbK9ChzVj50C5Q+P5mmpA58rI+VmhKLAmCWyYFj6hS4DYo4exYfFEpet5My01Oxm2lBZduKwgufh0hkFSc0nKPOq51qMODKMiUFKjN1+gbyPc1BmD5M5ISpjfLag+I9tccQ+uIRMx5zA5Ow9Z37IIrgHFnO743Rcfs6qQviJWaqR01GdhHx8PoeHlseHu/4GHf8HD00Kimqdc5T4atmtW/680KfX7K/QPuth0f266hdYkoXrUNIsC1axRarWH9oQ5FJGYiw43yIAgWTcCJYBPSxUDkK4WgQtNZaaIHagLBw1qYFFmGSIZYpW/Y+rIxW+3TA9d4KNwEWS1MvJqR6n7IkGxyfyS9syitC2cWWtzyNIIc94M6CKne+lEpbK4WES3BRpo/c3MhgYmHa1DSZssJ+UaAxrqdCwDVL5QCHMfMlyrPz5PlZm4f5S/v4Xgd8Pk8AH8OwH8vIn8Spgn99NmJqvqdzzC2D/Yoi1jBoftntZ1wJYZD53wPJpweR8NU1blnWfs1uZFr2USxeUvjWjdr2jzlIBOieWagmZmraiS8biHEiHJZNqkgi5hGoirt8H7uWKNwaAYrkvNkPVhCpEN647iKJvPax/C25g4WCSj+Douvie0L2hUZ7eX7nUz2BpMF0G7a0rh07LvgeNHwShGh9CKKXRv20XA3Dmxi7Qte9Cvu2oGP9QdcnBMfEOyj4+3jguG/DxUM3HZYBRCa04OfBxh9UMu6a4f17fEF2kfHG9sVD3cdb97d4a3rHR6Ojodrj6rfkW9WKwbQlHKk9Cwo60ltk+Vcdpk0GUuQnRl8gPjIiC42FxyQ8B0FvZQoP5r8wrzn68DqEBoClOse9BPRBLvQ6BpAoAutxrljYbLiczL5bYoVo1hDeJOngh7q/h+jFkHl58j9u+BBCKxFUCYNtubpAzRJ8lqaLKWAn87fR+jiOmc1gnWkbBd1HT8k8Pl2pBzz2/zfyj44ox998Almba9EZZ55HqbpYCqvw6NJNrHiUcvfTI9ZJNmq3o8GNGhItDyHwHYQFMLWnswekDS3DRoi5mrYNrA6tltJJ3IpeH+GUBdVfrJeOJHWW4V5BHY/udGy1klxprbmMHBofr/ptekmEmdmlJJDKi9/13DSqs1oTiEGQbH845z4nmy7z99ufj49TBPZW4NIRx8Nu3Q8HBYRdz/c5NZ3NBkYMrA1G2iTgfu+41DBXdsxvODbGfjs2jC04U4txLsJzXxH9OXhtQPWQG4TATqw645dTeMZXbDDACe4SHP/InOSaH5xO5Ay+pFJzj5/0YcoJKcivNTlI31wOkMzQjB6Alycz3X38aRpz6Xzeo5k8VV7gOSixWLfSuzqn6++2ThvMk058MQgAek+tna7z2vQw03+zHJM+W/xWswymguM2vnreEs497Kd40VXYcq/mPywHMM6XFpWipXgObWderwO+HzVBzOED+8wJ65rIjS/NUBhDtzGshJh+vLrFNZueGQTMy21nbIUhYRwMWXDO0D0bWCIorkTv0HRBTikOfB48UbkOG4BzwbGMEn/hiPJcxkFxg0dIn6ZkIFMWF2ZIs+rgCGYN308DMsG0Py53Lfw0nxMAFo9PSOXYlKPvEc1iwB5Pcr9pLm1YfFdnGk/Wj4LCd6j1657v1mH1iwp9XrpeLnteBgdd+3AXduxVgM2rSUSZeKz+F4VO8MLBQ4uBj5dFFfXiEzz6su9zQRIc/EZ87o5BCHIWNKkT13DLR0g5+Ysl8VOJ61Nr5gHzaYUWkIj8XWFnudDCcHshN7qzypM5cjy/6ohLLdKjWwRsJACUGg/8Q4IDWcKgT459Iawlu/4yHin3DNMGB0DN7xgBSCt94jvKxpzU6xzuWhE5R0fzV16j8e7Bh9V/Y7ne+xH4UhThP3pzN2Jm1m+uzQXDG8JpTYxW52WETVS7LzRtKsk+U2Z4cW/I045T5nheK5JjHJDgLEThEBVQGrVOIB5s5bNFUOr2sWj01qkN79+/h5J4Jjp30w5SeRakiTDDOQN+2QAIhalRmCZXoOMCjl2GbDK0dX89shRm2fFtKjgcOBh18oMHABe9oGXlw332443PUH1Rd+xeYV0+oXs98wdAoDmGg6AKWDB/m4YovZTgYfRw5e0ak5nmhSAMPmEg13pXyIjtImKtQAsQIGpUJI/raurponzZo1zYm9IqmrNTgapySjY4CxOqoyPCcKLwz0z+PNBtbrEDQYRdMLHSvC7PS+ELP5KeizANJdoyvmeXpLfFc1FyudTRQ4XEE0ZJfCU+4vgRqqARzLi5KjgHILjMjEEJ5owCz9RL1d0lpT7fo4Pu7Doh3coMnwwPqJdV8LeG/4KzAAU0UkFdLAQHkMa4xpqFE5IQxtYRHc/BuB5EIc7ikOr0pL0pWQc8+twnNG/5+QI81sQoYQP2sbtP5dktpCkan7KUwCEwlAqaKvPx7TpJbUUmjO9xA96mlhk+CY9ypia/82Q3vLsLEHDD5HBCgMYR8HXkedM9+iwHjzRR0eyagI12LLu16a4Xja83A5s24HLdngb6wMiikuzsOzNu4tmYIJ9RmBa/UHNhZkHAANe5ketMdwxrD5hBa7oV6TZqbR2LKUWFxy1MNjJHMbw3gagWXRgCAj9VhIO8+tyLz7DmhlqglCst+LGJ9mS8fP7EDIWSwTqc3mtV3a+MYVX4In1LhJQZcpF4IowfUb28b4U/Mi4p8ng5f7/Yg6sQDUnqGrsubhdBW2CLf/kvq/BGHVu6p1KoEV+VqaB812n7bGo2/d5vDb4iMgbAP5FWB22TwfwMwB+BMCfVdU3n3d4H+ChgDLfpKjB8eu7mOiprlkBKQCh3VRpyT4vz2tWjkcH8FIRwQlaGMdTvdrTqajByBtGVDa+oZZ3AI0piU00bNixOZpApTR+47AWLSfzhxYAGF5J2y/P+fPznLFY8ig896rsOGcaw6+TCJDAjRQbNerWKeAz/boArhqdBaTWUyX8XaD7ZuP2MPB2+LVkJN1A6IHN3y4KbF5OqGezwtaGBbT04TlDA5vnDDXcJgkTjNgG+9AWdeZo9mPyKwNiHq6bNUG8en5R2PKdCZY5m5qtQaNqY8hKHRnd1tQ00HDAc8406aaXBE+C3mGWAobQAyhN0BKA9DAfW+zNShM3TPDkeYdA0Wa/xaRil383xMGfMp8nFo1Hs++0BzaxuTjmHBy/GR470gIhGfTg85hzWywVk2SA1LgEUeeu4mjs4wrMqil4TKDkP7t6A7qYuPkVnuAfr3u8bmHR3wzgOwB8Bm6H9IdE5KtU9c+fXvxRPGgyCXpJ6ULL56dSAuZFVteYwuZbQC0S3TBfSwYwjoZjL/dXTFLrqlFNN/EcocjIbkz09IGcEE6GsOqp9FgTYs15lc+XrktkUBlO3KuCTpVI/fUURuDVX1Q33JrnhNyoKgIJxqC3jNTvRVOMrJJfjtaY4YDVjzv0NgKP4EqGwuKvBXTajims2IBKMDY17WBT6GbldnRTq/3WrDSOtNvOub1lMmu16x9DvBW2YD+6CSb+nQA3vaQouBz7nNgaUW2VRkmzjQzN18VD1uGmSjtHo4bfTQJ085qAbWRtQCDqgo3dnW49Tc8RklzXuolVg6hBL6sgY2fO17vWQk1EaME4822UNZ5Mbo8JaBQya0kd/wy7CR1G2+9GPViIrKwLULatGL3HJXwe/PwGMHgjc5D4EuU5/B5Iy8djYyrnTtdx/z2j+vM6hUX/CQB/BiYT/QkAfwHWDuFzAHwZgN8K4LtE5ItU9YefbYQf8FFpcgIbEtFZ1Eedf2duMkz60XJ93k9mDYG3L76XcQhMvCwM1aVGoBB1pVuXyFeti36gyYykSyY41POD/HeCTkmKjQrdcYm1K5j8P+sxzdGsrivzNxTQaleQfCZNChMA2gvkfbVsCNBPsaAs78f5IIMspw1K4JuapE1Nym+x7uGqKVkCq/2M0O8S9NCulvQ6NoFeHIhcykdXHJsV8xzdQGjfGvo2IvKRmgyAyC+bKmpXSRlA89JC5J1K4PF3NE2ihMhPa5jRnmHSKQnGGZ9i2oc4wNS1Zf5J6x7wUBK4BwGxaRSnnFqYL5U/TNMu7RTqGuSQg16lZQh80JwCWa7mhFgrkE2mYRQkWo76ec1h8r2uisn3aO9SHjkJevm8EAhGnqjAZGKcTIG+v2M/VeCA3vqj+EwkWN2AVAGw3DcIfkSN6RGv0ns6Xkfz+T02Snyxqv7A8t23i8gfhlW9/joA/9LzDO+DPU6FIRIfM5HXqBcuCAkoGF8h9CpZIq+dHkxzgjMthZuTavJbtfOiEB+H6vZn06ycq7vkOke/+fnl72AqmImOBMfeN+CQZAHQJ+2SC5jV4Q+4bwu5kfj9NI4cy03odlzy9EaoxR2nnAt/tjnUrTdNeNNrzkddx+rfKaY+ajxSE2KBCFSQAeghGB3QDdBuvhPsCnQDJ+nWQXMcA0cfODbzB219RO5XrRVXk0djSlTNn2J8AmtV7zB1FbqsEWXURtfyNTmPTluu8VDDATDNK/sgMUnb5sJz4lyTG33ugkpaW/2j07ve7AeEuY3BQYCvSdmn4hF7t9p60t20px/bs9Nkl9+LD0iArMzAW6zr5HxjCpog8IQZtMhYJ2OQVuZBTwoUL9fUfUx2VUPkpyT4df/BQXwYf/lQNB9YYdH/5gR4AACq+oMi8l0AfuOzjOwX8LjRyp1Qb8rgU7Vt5YLCkE2if5eLM0lbkhIQ7/kY6FTJzIFmsBSILHkMslyH+bskShIfktnzsgpYBXRvwkmXTTvZmaVcz9yStlx8Mp74vfykVJhjmse8Am6ADjdUnRsB1MLmwATh7O5apD1WrqAvYD0WSRZwMJLUGhsjzA4HIYW1ExjN/B6bJxl79GRz4OESGji1jIxa3rGmDYTf47CCpmZWRIJpGWfc43Ddh/k94PuWn54sulbu4BiazL4nKd+pKi4yVwqpvFLKNZFA3RTjSDCNIALX4qnxVN8k/Z/imn9Ejg3STdHw+G7vl5+q2NjchPmUXBY5VHz7VRu1IQIo+VbL/dSfFTlH6/MWEMo0Df/YNcOg1WX/9+hf5gLsYACW3NDN+zleB3x+CeaGbWfH3wLwae99OB+BozoBCTxFHa6OvQo8PE61qRUQTp979uUqNtm4sp6VhJQ00NyXU4iG9H3CkONn3SwT6OR1k6RNrWF9UcnzH020c4krmfXtPdbj5p5FC7rR0lxcZFTRCpxS7lPvK4K0eNJk4yYf7jeTav1+TS34Apa136q/7iyEm/yN6+aN2tDtd0vmFKgOa9yGAfUwP67lGBkiTS2g2vFpbqlReKHxsELBzbiKYNPUqoALhSiEgJBm3QxuqZpKkI/MfWBq1FVvdr2VAhJzn5Xx0F+Vfi5L9FaPjlRRrwhdBYoxCRWzJC+uvY1c6wDuFBxPk05jUDg/ps+dHsMHdCt0TdfRVDxyrm+BB1PlhpB58gUnl1MKcotwpJleUb8Kmi4EUfdSWC1Q30cKHTzP8Trg82PIltWPHb8e3hb7I38Q+bXk/RqtAirRdMuqITsT7iXZswMQjcz5MMcARWJ85LlnBK9Fa5nChJfdEERaIqzC/AYLCDi7bnneecFS+2CqGbUwceBxcLnpHLm+sz5x3qI5aEiqLPZ4np1O4Kktsq3PfALQ2XjV/1Ofd2Noyaim0GTWIkOzTT8QkjVgfoyoPceCmkvoN4AMKecABhDBEwOpBRWfR+vJyDOkX+KzsPjyPgSdIdZKImqnIWm+jiPmssyv+Hhcw2frikTRvMbOT41yqJi7sUjbtSSRBVOcJ0zXgxqYrZG/V0jqmIUOYPKDMWdOOqLZXhUmQrhcrA+xD2OPnmzWGGDOPViFIdZGwx8b1pLHgKzejz8fWSOOM4Q/jnmsN+EcwZ8tYL4hhefZQpLrU4WzYDXvOPj3drwO+HwPgN8pIl8L4D+tjeREpAH49wH8swD+8+cd4gd1yBzrT8LmZ8Mdym7Xp/0++H8QaiU8IFaWxFvwSFcOuxxkJtW6M1Um4I0W9VdcSgppiA7jSjMhNdl/Zlo5Ycqx4R14xroL0u57lkj6qNYzPf/2iChBQeaiBHPD6aY5M2/IyfzYeyXDUyB8Cuu9ZvMNQd1+r/1kagQjHdtZ+BRz2DafQWB9bC873UW3VogLwBl+X80ltwiC0htHolL3WYO4AMKFMYbWU/NZSPBljk6HX4B+Nt1aqHgrn69RiFM6giJAJP/hlIZqTh3NknE/PotmpnjXIgnF9UjgKQJendvp2ZX2g47KZ4IlZHqdK9yCYNxm/qxsg2nOcoy3hEWaTUGvBKgUULQ/83mrXy3AvID/cx2vAz7fBOCfh7Uz+B0i8j/BtJzPBvBPA/h8AD8B4Jufd4gf4HFGcEjAkcJETNAQYLjKPGBfVNPFmmsSqn9+bL84GZ0yobohC1EG4rkpqGUdN46fABcAxGune5QnPaIVcBiRAV99UUSJZeyTj+ddHOeSF5I5lnkN08F6LU1mj4zlZsPzZ2FqfN4EOnxNAlDcoHJp/kvpxaRrzUQ/0gTXZlqn/CwYvtrcMgCFGesZbiuIjpnLXMS92ayOvqvqtyx0zOaDFYQClMqaWGSVxhxlUApuDpE50KCOsZrjAA8JLzepSbKxRvFec3QclL6hDKwxn1gyThWg9foe5V8BF4bpBw9YmG8+c33ZR37n3w48c25Scv9oU1F5yNnDKoj7/rgRYopZMa0MUtopJCJnLT+A5jWzhPiekBzPk37dZzhep7zOT4jIFwH4LwB8OYBfuZzyfQB+Z+lA+pE/6oYEkISnyByD2LDI30vhzWJ5mCTSrEElM3GSOPCIBOkazC0zZAkeu4lAwj9x6ghczQpAGcdrUBE3ZL1OKkEn0N3YhKskVvfTwuCqo1l5Ah8h83U1wiqvzX92W5vDtTZfBbQoNaMm+bFeVsiXlREV0JhNV4qp1lhDVGIwX447xglGUQzVmSYZAQFQMQkUCgvHDgHGhZ6ziuDC+T7K92eM1PlglHMSZHfTACPNJF0PMsASWbbWqzPgmQMOpjlfzvXpmv7mZyPWoGg9Pvb4qWZKinM8qjA3l4af6HYAQJjzGLF4JG3Mk7p8Vpj7HJBRnnMDPDrtE/PFNCf4eZ8+GUQK2DvfjGkBz6KlzhcjeEWGz/s/ttdAatiTv/U1BMt3e7xWkqmq/k0Av1FEPhdW4eCXwCoc/CVV/TvPP7wP+FhBxz+TymhQeGgFGs/rqXtw2o80ha2EkGucTJafUzqqTC7oVfI6v4CaAqWn6flBMGcAh4lZT19xKgTGIN30dKqmxX2QknGVxIsGIyv1kgEVf0BEOqkgWkjHXPEZFRONLloAACAASURBVOx0npJ4B82amCfMtwIPx0rdqoLkZHLwnjMhlDTOeZYACr+b+5wyAkpTkCGzg2RFhzLvAkSCsFDTaQlI7HN0th5VA74BnpM1VEroXdNHEQ9CVh7w6La+ZYuQVkL1AUS1hks7ZmURqeG0dTFO6O94DS5XTW5ZuoqgWqJAH70BsrrFsc7XPF2ztrGMu8515RXOSKZWDDDRkYA1N4Is15a9X+8bj5+0k0f25yPvXG84gRCANLvlO1E7ftRK8h6P91TbzYHmFx/YrEdlTtOGQUgqWlY9Cl5WEIqL5sVnMCWjWm4OZ863e82lDndqz1LfCZHDo4CGFiJBUukZZoRZ8GRcQIBJxBAtmo4BH80wmPsi1ffw8YWUfTKOKceAQ9ZhzvdiOmTSqyyS9fROy33DdIPcVMwvmXwI/FVlAk+2Dw4/ijen8xnI+V0EX2quocXGe2Ey5caaOsjTr9UGDPQPlBYHmMxDEf4fiFUm44QRqtNFtDhwUBkdlmTbuQ68RiPJsXl5IPan6u2WodPkxmrarLRwjBYtSXjvVWsCEPlM6z0n31tMpgsMLnzB1yoqBTA4RSxE/XHTcgJWbSECYBYsF/Jn+PajODntwaeOsrcCrKYJOOVPrrr6ZZIKVNwzAQN1r6+Apogaejn3MpVgEkGWPVro/P0en7yFRUWhdxZJkB0dAWoQGjNTVusRaSiA5OygJLowp/ylMvW8r5luZM6H0Xpdeaao12PCRHBn6nL1Iz2q4tNc4QQ+tdz1+zKzXDyp8Ey7m5JYMT+vgo4A0UNJAQtBbkeAhJRn1lwSIJnWGjrdnEuz1MwR5pl2CzxFco0pHmKhx4dAri0aqkVJJq9zxmKZNFGdTGUwN4s8S/BhKwgdguEvSqBqlG6deCa6K2a3G4WG4yDQRNWNQucCi9y8U+hlQC6m1axRiDGXPSsvbP3Wp9NcCzfwySoFTx1henOQagCuXj7o8MKtACzarx2RcDod09rP5jlqs9YipUgA6+HrMPnmxK91Tfbc7Iac+EpPJ6+ddR4XBOF1FBrXaiA33L7us0X4KBp0+kKXxN0AWyRtVdNvPLf87RMSQUzPeDwKPiLyx/3Vvk5Vf9L/fjeHquq/9Syj+4AP3Xz1CToj/5xNPgtA+PlxXgUhIABselaRKB89SEQnjJw30eXv8LPU+xfgObW9SxLpPLh1sIhNEcy95tQUM1sdb81eB5KJrdFxa+5NNaMxyCB8Oy3PrZJzjYqqz+PP2pLmxnewzot/F6Y2JpiWmm6TLOI5I3YLN9xVweKJpa7PIzBV+qKWROA5m+cYR+FRLDlE381Ed6XerHYHnk3RLwN9O2b6Rp7b1vXDbEJLsLfnR0VtNdCvY25uhuvLPqCWFDlNcW/1MQAqYxI0bnxyZ1M+vYucfFb+Pbpny3ey/HzkeRFwgpNnTjfHEzxhufZkjEChjbIvuW8nQUFhic2y3Ij8TPP32/d65OHv43hK8/lKf9rvB/CT/ve7ORTARx98BJCthHGpemkVTWkCuGXuJK5q9iBjLhtBy+/1mdPPs+/KEdIbFsZJ7YybjU7hwtQnU9bNjTFLO0/hoZvfJoB4hBlOyZ1ntskyppiKYkJbQeR8TiR8o3zWKNfZcmmE9vKaVRs7A53p3AAbSR/gyfnUbJTcr2ijiZz2T5kbpMurEWh4ejHLBbBIfv+YUkHAiefVnzzc3KZdIdsIk1rNmeGc3tzf577BfDMG7rMwwHYO1DTrfZooDgg6hpnjRE0Id7oZY24HUYUThQNm5PIkvcyCRxnwwnhvDp8rlaWagODGxI7H7ntzzzphzrBXxr7uCV2vK+OdHiXn53BMbiatAmI1I4cPt97Dx3kKPMUUbkN8XgB6Cnx+lf/8O8vf//84BGjbCGkiS6tU8XNm5DVaKjm/FI4GMArnJnwznls3xDtIxwrcaDrlnrMDE49uiptqB4JbxHkMp040ivl7gJticuT7hqL5YvLJlHu9GyfmnDPCJFIEkyJDon2ardBr1NQ6D2fvPgESGT+/OwNcfvEYepN5NZ8M+glEbgrWCjd4EVoqjkGRrR2QPyfmKOq9jBDhvfF8gldTYPPItc3aPBj4lKKe/v4EgEFTjceiDQceEQHaML4n1sqBoMMiqDEVRQsb0tHb8DWztbOK3a20EEHsu+rDGzaE2W8X9DYzda5jXdNp3Xge0xa6plC3tm+YGH3O93SfehBQVG4Lh/p+DWGBl+icUlDB4YZwnwCexqrwdT68nBFDqysBVeCZzLiLCcasgI9IPu/heBR8VPX/eervX/yHbb74i0yMNv1HVNdMuCpSQQElDYCwDZS229sjJdyZKRojmhc5hqAolZcp7WvaqUsvjnVcN6aDeTqePlZFQUFDE6YM9DIfNEOl7+YMvGT6XXE71kgQ9Y/GaPEcAp5Nh5vZOgUFffQ59Z3Xv2/VBf/6JGeLknIw/8KURBXo8zlsMCg3DMnnTspUP7YmZI7xvOXzmsPTkjGpV6QGq1L3rFzOOWClgONoMQetD6hYfbZR9sfWvQxQNyAZMNBhBe4YLoHKj+YMkOa62gKCz8/UAgopNiFSaGSKcquadp2TOo9nayqwwJ6eJW9UYL2YVvBZn8EvZPmO3yxM/caevgwnzNnvtBfr+8RY6IdN4FkjT8/UuMgPq37E5fb8Q6U+/P0fr9NS4esBfL+q/sUnzvliAL9BVb/xOQb3QR4imB3lqhgiGdYqc50jxGkyMdjJjOMMb2LCsTnKw6s0fZDaKqDoLQOatK7lZWJMJVdEira2En6M/ylCKt+LA1xoTTwlx32WG8CoIIvI0QRVH9cqVK734JdV6wzT3rgtsileeSCk9+X+N+9SnpnvzPkppHFSDkiBnFNn8GT8FjJOSdH3vbp0PdTL3fjceC24KrA8anZxcGGDu5s21gWMZo1HU5JvOtdE8/k6/Nl07E8Jm6NBGjA8qtHm2q7LUHm7luAzivayRrcd8BYQBXwYYl9biNR1AnJdp9JHAUA+17f44peX/boup6lu0ApcpTpBrIMu15T7ijOCFV/qqWeaWUSTVQtLfOn3WIW2+nkRbKpv9SbBeq0aMtHbyiN0Hm7d02d5U+/xeJ1ot2/wf4+CD4AvAfB7AXzkwQfA5MSeN9JanbeUNwFO7eFAAlFdeJoRDm+oNWkIQ0rlYRSH9sx8Hz0ompQaYVSNq/P1Jov7ZiIwmwDq+4kGU1/RYvWbhOkriFQR0vxoZyWoTt5pHtdN2RWv+jxpgKKRF6TSLFLOpdGIpuvDQ9ILeHnZGQ2OjXkzAu4j8XdwrQEh7c5jbWWOAg9W2/uw8F/2tJHoI4QI42Y+UYZl53tGg7pmPyMcvTKVAkYViCgV87CqAEharMx8FBNMfYdgeGyIh6hwPVjipoJBVETQifZjfc8sC2VSx0iGSk137M32zVUge0sZyHOPpCTN1mNK0C1agzYA3n+oJoZODPx0HyaNxyeFYcc+r8JLmUfxMRttIvsZca9oAaKzR0vSV84fwsTGv5kyAMhcIcPn4UbwWf1CsRcWs+D7PJ471Np7Hv7iOAg8U3a8M5FWchZ4HB7q+Vj9TK5ZbyPCTw81J+p172kHdwlkHA0HNYJWTDDjEYKrzyLPqRuAAEOGU88lgRVTXzCXYBAnoMdcI0pYmK+v5waDZbFVtk+IccaIyu+30mD8WfwEPJX9aWgqUJccmaBKCdki5ezekz/DS9aMwyqB8/xg2oUxprnMc16Kg34Fxcck7jUviQyUjd50s46dWsri6OHz559H/UABtMNyczxarWru05qg0MAkOTtTjBBbZ0ZHC+YsBdjr/5wLG4f7gkQxejKzEAw4XoJeCEeVOHUGILmdx6rFJiP1HkWlVUQQfqzhQleVVgMc/fye4yBIy6r1nBynZm3xB6qWNg4+jOp783dv3WmqPG9gQLSFifbRYwUfzg8SrEMQqBriOx1VgFk/f0Twfi/Hc4PPPwngp575nh/MIRV47CMyidY0MrVr3kJ3W/VYVoZyBoFr6wc2GUEA19Hxsm247n12qsIl4eDWzlTrRiF9p/B7I2lpE7DXCV/mlEQIUEUCjMRDYMpTCWDieNgcTTFv4GWcYWaCmdtisznh3kTVEPRrmZp45xUNnBl7V04oMhGYmg9B2Qd7Vu5lqICVboYIGgbG4UyzFcZRx+YO+u3uiJyXNYy9JkrST2UlZ4a3FPCQ4qPh2jRAiNoQijZEabURHIevAaPVNoVsmnTDNAEKMGdMQonQNWTfQW+vFRzme1SaYy8rOcTG0RSczEnD9sulF/NVSV4k8xcHKCuF477LM02oMvizpN9YNxd+SIiVhDiomucSgpIBD7W5G4f9yZH+X0A0hZhw6DedGvZV8A6zZ9fo/prPa6g+5ZtnAjdgrWV+pghApUBzUhPu7P1k+Xn23TMdT4KPiPyF5aOvFJEvPTm1A/g8WL23P/k8Q/vgDzKHGnmVyXI6Jc3V3IWbMF2/toldc993vOg7mij20fAwekrhQyOk1CTwFpvuMYVgOsif6/cswXLy3WpOI/BI7TvTxHNA8sIwZaiHEYOlQBBmoslhXkGSe95Bi+OepOol8idqidUNWudELWpoyrvx64W2vTo/FCREb7LyGeZr5wkONDQZbnrinDgDA8IM0/rAZTtw2Q7c9WMSTKLjqCM4TbO9DXSnC557bZZ1fww2THOfijijQIv1YbsM1vJTB0LpCunUfByAPbvflqtwGjIlv09E3wHJmA4B24TzMoJONctEZXfXaqVJ3GruxulC3YC1H/GbSr2fz63Vj2O4epHkgeLTC7UgSh1Vxi5k+gTY+MolrCLcVVOTQo17ERBoRnxE45gEDk1ToDH5TEuodFTlp3yO/et9YOtH8CHLdTLAHj5nNc3iJkl8WmeUAAzEnoFKgDSA5DfTixWaWNZgssS8AyC/zvFOms+Xlt8VwOf7v/UYAP4egP8a1lrhI38IEnhaIbTKLC7tuGFaALAXFYESLgBsYkzuhYPP1g7so2MbI5Lodiiu6AAGxhCz80p/MoJxJZS0WyOIuRo7Y3OHfV7yT4WdS0aT9rubB1EqnTScMqg1UovPZui3IG3WFXSyv4w9X52ZWb4SYpNOgMzn1TpcAjC/JgIayjtYUAnXMYWMQxS7/74fze4zZHJkZ9FPGzzL+2zdgOeNy0OAWwgmmPNUbAxGS2vVZmyAHDoHNpCu6LugWaiCiXjRSgKQ89oMMkFanYLJ5oSkRkomijnq8uxwbSH5XLnvUdcowYvrp/yM7wEkrUqOMeahrcMogoa/56r987tZY9Ogo7QbxxTO54azFhGM8U4lnCKHSZF05zQPf48Eg9sppR/LWo5791AAIkcEX/C+YVL214pgDL9PHRMgWWZIyz6rADgNJCgi5mwKtOC8PB/mxPEk+KgmlxWRAeAbfjFEsr3bY/XrnOW0NFFsBKB+YKjgooLdgWgCnzawtYG7fuBFvxr4iDGeh9FxHYdHFlkSpNlkWzC7aYEpyFO6odQ4PDhB42Noz5pkIZ2SMl1Snsr0hDC5UFQFkIX4zNlNbcFPbzgtyPgopToAyS7ZpE9NEh8brKSRGHMzaR/L7irAW8Zbn101nq0f2PrA3Xa4GTXX+To6ugwcm5V02Y9umouvx7F3jH0GETL33gYu/cDmvr167Grgs4+GQxOIjqI1Xz0UeT96RIZNwBdmpbmkT/omMAHiYGiy3OZsTFqmUDjQsoiY6CFNMgXEANO8Rgow9rsswIPyrGSasxBR7i8wLWyQmTozd0GkPDyXmMCsMI2qBp2whQIDK3yOQIFozPeqZrBQcltqy1VguInYownxLMhCMkjJ3tlNcyj70IGnNdOmu4ycLxdUo6WGr2mY1YakgOfjZ5AIhpgJlWt/8q434IJcd2E4Pso5vC/H8kzH6/h8vgrAX3q+R3/4h0kvS/k0V8WP0YAGdB2nxMejghSQ/p8BwT46dm32b1gSndWukvD9DPZeKUz1RgCtEizpogzHGIr/zggppMCs863A8M4wK5eyK9WCNdl/yfSAMI+xyV7VwuJ8mojK5phqu2kZ50inetzGB/GYMJ7PwRTJJV7tgSZUC/xIQAJonXLNVwfEGSVzWA40l4DbTfhMraowKvMFbrL9AfiatzDJ0eezH55U6dF7Y/coviMd6e2A+7fyXZndL2U8OTj+K8ynSvmcUKJKndu2nFfAgoEcFjK/nBPv69p1HYtrNmfCSDWv3kTwSB3f+p0DFZ/FcQfNOS0UOgjtuwh0HBpBUJB7uWo41FRrhKtVY2geLZiRizH2KMQpOX/KB6Ig8vRalqi7PCe02gAfmXxWWrXjKsRqGc8COjdBHWUMXlQwgyM41MYleWpDvt7xOv18vuPZnvoROSJbvlZthWVg8/tWwCUS4opZBViIFSb1vsQFAOz3Y8Pb+wUv9w370SLw4Nh7hlrXENDlCNv7WExd73Q4rfKff+Shn4WpxUOW5xepUClltfLOKlasksyOlxctIcw7Njnc5fmMYFJIRlWBdRnSJGy7k5il/1v3UjEOLKxJRgds+OKLNhOCRzNC6OrJlAG2czVlwBjRdfQQSiqN8Htm7D8cPXJfDobdj4Zjt3UfTOZ0pz+GWPvrgfgJlWgMFv2CfL7UJ6Xmc02mlommzgUoFaQ/bz0KwwZmHJm1Y0sArWCgheFN9Ee6oJ+vCDXh5+OYbgZLvwoxVINupJFGS8Qa4FqVD8qfG/5IN2GuGhDXMR4xgQIjFh149mIrbJnfRUAIrWF42oKamTjo0jWjASkWkfKz8gZF8gsH/CmwYtq/SEGx67R/q1CSteGWf8DNnDxGQ+/leKqw6Jf4rz+kqi/L3+94PJWI+lE5FJYQZ31J5gkVMb/MwAD2DaNLRK8BRjz0+zRR9LIgQwUPo+PBmdOrfcN1dLx9veDVdcNxtMj5Oa4tfRhLPoc9KMEmzFsTk4dLNHXwhf4mIiIISAGgch783pT+tIAWbS0lCoiRaBKqz3yrIk/l42PMKbHJfNHjR9lg8X4dBjweiVbrlGV4ta3Jrs2KWgZDSQDqorAWDiNMWOJaEdDMXFJMKTTPGRNTc3tUzcoB5np0XHf7N9S7bbpZbezNJNW93fiyZLeAkPCN+Tyqq+k0V9Lhr0v4/Aw8y/xN6JHfhRnnjLe4sKLQOcpRFpJtmTwc0nIBoFi7+E6jlYOtBW+kcwHbG1rwhZVGBIp349pV8KI/zOZA8vkUXHqhnaIlByhMeTP2/maW9QhFrqEA2pF+S8VkTjezosb6sKLDGIIrrOQQrSNTIq1rOwShCLoB949kQnFdP6EmCMtjKkJGJlevE/zOUX7PdTyl+Xw/bHj/CID/q/z9bo7+zqd8yIczJT0EetOfxDb9IQ26mZ/nWMrFhxreBhpSqqZmdB2m3bzaLcT6Ye8mKdHUcghwNJN2q9+kLDx/DY2HzISgExs5EUlDYsdcn6qAUEQF8SEVfJyBTQtdAKZmxq/HmvsS9mlu/krolMqo7fgjTiXrKrEVYLXimJV5nDn3zYRVI9xyvMVM1gaaCrRXcPKEVZXJCT3g6z8axmRuNSqg1rMzv2vvBjx7SeTcm4GLt2oIoCm/T1ougcHnNPI2qJmFirL84/wVMDhFGAongRzzUk0AdKIGpQ8ieZoyqupk7YwxIq5JYr8dWoyDj+3ULkbsB3HNh74UO19D4w2fWNO0BhJ4LgPb5YjoM+7zBoQZbMrPo7mcwHPlwPy9fawZfZdfR+kg3xM6BNe9Y+sjE9KH8Ql1k/zUwXbIFGLOG1sUZJ1HRhEioiNZ8w3UvIYN8jZZ/HmTSR87ngKfb4RN208tfz/bISKfB+A7AXw2bOd+m6p+q4h8Bixy7vMB/E0A/4qqfkKsQNS3AvjNAN4C8JWq+iN+r38DwH/kt/7md2MmZKMpRZtovsrsQwVHP7B1QS/9RGpiYeum/dAc9+rY8Grf8Oq64Xrt6bz2XJLIIHeJdzI58cEcAx3GxWkcZVXWkMliZgJS4tQKQASv6jio9xhGlOITIYqMWCpRQUy0DEmz3EZ9bqfWClUa53sIksj5XZVSUQA2JNe8HVtMc2P1Uv5l+FodAHZp6QOiZAvF5gEUvQ10GEBt1Zx6FEFAMgSfuTe02J7l+1gQg/v5rs2l5Bbh4qbdLODjvX5W0+pNnyCXqE+TkdePioBSy/8AyHDgm+sKwHCu671WNqAZDDOZTKsQs9DprcBdqccSbaPaNK8Ps5w67eX9uodHC3I9WBBVCv1IhyclK8QLq253Fj6/5m9ZfboWhWyBBJRoMkhTqdo+MzwsOWJV0IMGjVPzP44Mzef2PPb0BRKAgleMWVgJcFfYM5ukMOomSIhGImvVfKhdzTlKT6D/uo7v83iqsOg3PPX3Mx07gK9R1R8RkY8D+GER+T5Y+4b/UVW/RUS+FsDXAvjdAP45AF/g/74QwB8B8IUOVr8XwK+Hrd8Pi8h3q+onHnuwqi2yBCNN6Zv1rQgwjPs35jaHaF98nQ9XNx72jjdf3eHtN++hDx14q5vj+BB2XraDUhJNA4xII+GQsQwYU/Jro7xKtD5OrYfvNYlaq5Qrt7/PgqyDTM3JUXh5DiNwaWotlT1S564fwdgB4OHoePmwmcR/NaaLVyYhTg3VysPtM84FLG+JxR3ZAqBociKa2eE91+Y4Gq6D0mlybZrjujdEu7tYHtZd3/Fi27HJCJMpzWZAMjKbW5nC7AELr7/0Y3p3qGk/+9GwP3SMV5tpuLuEFhvzsAva7u9/zMupPf+NiyWWsroB0cBo1KWEXmQKMr2mwKYAW2CzLcEhwF6itEgS/FPJOAuBHAkwlTbEPw/tPNYQaB1RnigDUGSht5PwaeE1/kKeWAtfc+mKvh2xpqTD6KCqplE8XDefkAO6UeJxOvCcrTfurnjj8oA7Tw4HLGrx5b7h4djwsHe82reoVHK4EFbzjCz5F2lt8DlUp9Wg8+FxfWIRa8chOMJQJAlO/jPyr3aZaYZ5YM3p4855iOgcWOD7hF1oL9sRGuHhUZcsJKsUdFeWIUq7x7OqHx9qJ1NV/XEAP+6//5yI/FUAnwvgK5A5Rt8BM/n9bv/8O9WcND8gIp8uIp/j536fqv59AHAA+014MuFVQhAJLaYATw2zjZbWXTzU08thYHjODkLNfjg6Hh42jFcd7a2O/ragXaU42xFFIbUrsMm8wQgEUJf8MGssbqfGthY+fIQqzjb2/PXC8fz5JH6XsKXByqj4OQKgN8VdP3C3ZT5URIHBmLUeDbiaE709SMnxyWWwk/0PcQluAekAnpa1sBhgwFOHRxDu1x4+Fc6bdjHmJR5OC6ti8WLb8cZ2xV3bMRgmXfx5NXrx4eh4eWzYvemZiL9/OyaTXg2xjjD6ou0+ZvWKdSranoWgK/SiGJcKxHZyhoCr0cDmI3aTHJpJ+Nv9jr6NbH2wm29BtFYcWInDacLXSyozpEBF0KR2XmncQ/1HFyuG2gE0yRbVKgG6/D0nJPcI69jpnUI3e7UmA+iIJM0X2467bY9mddfDzN6tDehoBoJgJ1wTQO63HfeXHR+/e4VP3R5w1/cZfDYLEnqrX9Cb4lq64I7WMLwFQ5gRNwYvcO6Mdyg8mpP7jb8Mu3jy5RCkOA/cf55iIYcLK9UMj/KT2+hE8My8ohH0q+rRncOY4A1pVn40j+x9H69T1boDuFfVt5bPvwwGCm/BzGZ/470MREQ+H8CvA/CDAH65AxNU9cdF5LP8tM8F8LfLZT/qnz32+fqMrwbw1QDQP/PTw7ZJJ3LWQ4KFvXoQAGtYmY9TgQ1g1eKuGuA1huDhuuF46JC3O9pLwfaWEw2llJZS4YBE7gxLpwjDaUGTAzUOhDQYDKgS+tlB4mcodz2qyS5MYwgmY1KXS+iAPy+jcADEJq7JuMdoeIABzzga9NrQHhr6SwefyEGaHx3CocCy5jk+4bw48GzZ8pnaDvg8deB56Fn7i+96AQYGulN8b4p7B55P3V7hY/0BAAyAfHCbJKjso+PN4+7/Y+/dY7Xrtrug35jrefZ+v++cnp5ijR5akl4sXlBSjdpEDNagpH9AUYQEIXhrrfSKAUlogwGphcYUiIFKKFAbI/ZY06q1Vku0GChSKYZii5hYLfYqvZ/Tc9537/2sNYd/jPEbY8y51vO+3/6+/X3nnNaZ7P3svZ615pqXMcf9Ajw8wx1O6Co4eUDx66cHz2ZhUtND8ZYMBF72yOxyjGtJmAtk4nDSzwiio2eF3hjHPyTjJOEJYu3KQPdCxGKVSm9uVtycLd7pYVtwL2dzfFBBZF4ngpkkm5qSSVbnvC+wn9U+w22+5c9AiBZBPwPdJTlKSu0CyIogYlQvq6vHthuBLsB2619pcyZNgDNCVXZzWnFbsooAxgiKLJ7w1TUVLiGdPVD42bLivTcv8HHnO7y+XHByCrjqgufbGS+2Mz50eYYPLhterGeoCu4AbKfFHEAoZgZTlPCozrRhQxJ4JOwDyOSylGyUEh+CeJApGYj9RKiJKrTtCU8w0Ty3IPPSsMpLyAlhC46PoFd53DfTHiP5fA2ALxSRv0dVPwAAIvJbAPw55Pg/X0T+MVX94WudHDUReTeAbwbwb6vqB2vtj/nWg2tHPBuvjxdUvw7A1wHA7ad+stlOwUji5EIizxaBwZIQoKPlwV+MQPUOiKTedr0s0MuC9iBY7gXLHYL49JMdql5HWDg8cc48dOVEwnQCKAebyHhelXBPVRufIRGkOD1JUgGjRDI0dpOzXRFzkxPQfU2qDYVGfko8m5oYvz00yH1DuxcnPuXQzEiKwyrxJuqSHjnLtphh+HTaImcaYBLPxVVI/dKAh1TxAYA2Cd043edPyxaE573n53j3cp8qGzQscJdtx6p3/Qw8AHfLOaSjkxjxedfpASfZcN9Pdn3ro3MDVU2VoML2pDVztANMyo19XoB+o+g3RnjwbMNy3oYceDWwkTa43sW32jZZFsVy7HInawAAIABJREFU3vDa7QWvnS84tw13q4cBrM1Vk+klF6bHmfCoE4kHg4nlzn7aCiwPCKmHMB7pCn0fg4CcjRBRXbfcAad775scPayffgLaramUpIt5ogPopxawT2/FRXpIoJTuGHelAmOSThteO1/wrvMDbtqGd5/v8Wy54L3nF/iE03O8vtzjmVwAABc94Xm/wfPtBj/rAeMfareRwWLdNmPsmmlDTA2Y+RwjfmsTR9wSHmoBE/B1XgXt0tAefA+aS3mEWz+foill1rRWQ5yeFLzgF7XDs6nIK4lHjYuKaw3kiJ+0PYb4/GoAf4GEx9vvB/BzAH4nzGngDwP4XXhEih0ROcMIz59T1W/xy39HRN7nUs/7APyEX/8RWA45tk8G8GN+/bOn6//Tq96dkg9s05UHukSZ+6bbvV40qzWkjiH70u4utA8N7ZLcIRHuoEIDgqvHQuOnuUOGwb+l6k39/gAuxjQQcVP9UjzftotjJnJXwKCTDjWP63pDb78V/bKPvQFGaHvhoCQ58Orld1kXrA8L9NJwcsKz3AHLfS5btWeE4EXvJ8K5ZNAg08ksS8fNeYvM4ZtaLiy6MsPVfO3SLBOEwGwldGf3tTq3Da+fHvCu0z0+4fwc717ucJbNkrx6a9KxoOOiJ5xlw4fb7ZDRoInipq14rRlyaqJ4vt4G4Yk7xZmLIslx37pzvdoa2gWJfJz46G2H3HQstyvO5y0I7tabMTpdwvguzd3G1QzeqoK26A7pNv/u7nTGdtF0ZtQSQhjqHocTh4m22j6eXgCnDwPLg+J0bxumRVJhrkFx6aAv9ux2NgIkamfj9AI4PVcsD4rlwe5XAbZbQT8LLu8SrJvBSbtIZtVwux73gdlF7NiM3phLs8J3z04rPv7mDu+5ucOz5YL3nO7w2nLBLzl9GB+/PMfr7R7P2kh8Przc4ratWKA4SQ+b4GVdYoNpd7o9r743rgHpCmmC3jweKFQX3oKgCOQCtHtnMhfB1kzqvcZWB2HnJeIW/tDgRBq3mX173RZLcqvwuDOkitjx3CChCSzgGsbMPiUFegzx+WUA/mf+IyKfBuDvB/AHVfU/9Wu/GmZreUPEx73X/iyAv6Wqf7R89a0A/lUAX+2f/3W5/iUi8n6Yw8EHnEB9B4A/JCKf4Pf9WgBf/soBuORTo9gtvbxE1ty0cWgcdFNXGJIa0pY70WoXGfTglQkODpx6bGYoXhTtpBDXUfdVzMbSYPri7li5AmNRuVAia0tyxX21DA6ypRQA6MBNgfMl8XHVR9aS8Xvjf5trTbJK4/ylL7hbT7h7OKM/LJC7xQjPvXPJF4RaoReuODInFNUE14m2nkzC2COpZxPFwwpsTp21294sTN/jOgUVpBrK26l13LQVry8XvHu5w3uX5zg7pd0KAQKAO1VcdDE7AxCu1gwyPbXNCJdI3pPGu4wWX5DqGe7TZnaxvsAN4hrJQ/Wmo92axHN7u+LZzQWLq5Uu7r5NBBIg0dTrwpj+trlNhMluny1r7NXSzFmjA8GA5OIX7tolb9lc1fZg+3l+rjjdKZZ7K6XdF6CtDf1sxM8IjDMnZ+CiArkFNnesWB6A84cUNz/fsdx170ehi2B9bcF220ySaoKNThkhxRNhSqw394OBmlSfihOnm2XFu88P+ISb53h9ueA9ywu8vtzjvctzfPzyHM/kghux9XnQE86y4tYloft+wgbBh9ZbU1ueDXU2SVXezWkNZxURGBPmwK3S0Fe4h2FB8EoNg8T56JRwTjAmQmBSS2g9kHs+EJ3M9BGNpgNXQa9LA3BKKb+3YLiv0RV6tap0L0PyNO0xxOc9AD5Y/v9VsOH+9+Xa3wTwzz6iz18F4LcD+D4R+V6/9hUwovNNIvJ5AH4IwG/2774d5mb9AzAb078OAKr6MyLylQC+x+/7g3Q+eGlzzskM477yEXuDzPDrnwLf9G5hpdoBubRMgQLXEl3SDbLfOFJs9nc/A9sztb+fdeC1Fcu543y74uRBbuvWsC4LLn64uhMz2nuqsZlFqOjxdVp6pnDBAnQH7AcjXt1dPEMHTWIZudaKRESR3j8DJ3v/D5cFwI2rOQT3D2dzLX9+Rvv5BcvzhtPzJDyNqffPMMOxc8FV9dZPwHbr6qabDvHgv+WU3mrnklFaZCmxF74XlNxcyqJ3ma4Wlb5uFgC69sVzrrUgODRYP6jZdS56wge21/CB9TX8v3cfj5988S48v9xAFbg52YTM/rPhoZ/wM/ev44P3z3D/cMJGm5PnyqK96tntBa/dXCKo8GFb8OL+jPXhBHVVnLSO83nD7Y15473r5h7PlhUdgp9/uMVz3ODF3dmQiu+Xef65hO3cqtnGdJeJ4dzM02s9bdjagnAooPsuck+YXQHwtVxd4nHCs9x7vI07z0RZgw60VQFVW//WBjfh5d4Iz80HVix3K9qDr+fNYiqnpdgqZYQT2jIv64I7Z7wqE/Tgnm5bF5wWxdmdEj7ufOcqtgcjOO2Cj2t3uJENHQ0f7rfY0HDXz7joCRdd0NVixM5iziXPTisezhf38tSwHd0sG9be8NxtQ7bmCy4AuiqAZSBASjW3282q7WyjOOqxO13MZ7yf6R2ZmgwysPQIDbvTZjeoazP62nB/aXhYUjLUiehECh/YeyM1VWOWiKdrjyE+Pw7gU8v//xyAFwD+13Lt3TD36TfUVPW7cCxYAsCvObhfAXzxlb6+HsDXv9F3gyo2mFSDwj3L0RpTLUGjKCWK1b3ZCtceRMtdIOPvs7nMbs+KHv92w+m84fa8RnBcVwlPrr60UGlYPwXAyO1IiV9pHegt6tVIGVdMpUg+okidviOekM4476IepE6sbw2rI/4w9j8s6JcFuGuQB/HqrAidf3cCtp2B7VkSoBhPUTfhpkNO6dkWW6CZXRz+f635kkZuR5iTlNfXhnVdcLee8aH1NqSW5/0mJB8AuOiCu37Gqgs+eHmGn19v8VN3r+Pn7l7Dw8XmTUL/0BecWsfDtuDn75/h7nKKwNKAMZd4TqcNz84XvOvmHjeeqPZ+M070rngh0Ubx7LSaO/iy4tR6eNptxTYJzSBnKUFC5Fi7mvfXXTvFeGMNfa9Bw3ghPJF9IJwAxKSbBegnwXYLe5CMwyLYbo1okPj0k50H2nD6SdIeRKbmJOg3RjW1Af12wfpaw/qa9bc502YItuxxN87dmCDG5Rjx2TyNFeDhMUUtfK9nnHXDnXmhYNOGpXds2mzf9Yz7fsZFl7j2Yjvjw9stHvoSDg3MWF5VfnxP9foUcSsKbX8BzAaTgW8Kk5cBuq56pmC62LmRklZIxdZmrkOkoCdjBjBb/kDsPUoHCuQ/biPV0Ms+bXsM8fluAJ8rIr8OwB2A3wSLxbmUez4NwI8+4fje3haSDwqSKpzWTBYpMvuz0t0AyxxctQtHuJsfln5yHf5ienzcdLSbDeezcaAMbiPHZFwrvLxvC8+aTKCpgVzyp4wBBSkXRMJ8aHn6p3F7MGL1VgoAd7dXAdwV3QJoaSvTSwNcEqTnDpodFo/X83Vw6e+M9PYr49SbDjkr2mlLwuNEZt0WPDSNYFDmWMu5uit6WM6LxOYc4HpZ8PzhjJ++ex0P24Ln6y2eLZdQmQGIpLAP/YQPXW7wYj3jAy+e4fmLW89UYYbmh3XBh883huR7sxRKa0O/kPDkwbW0P4qbkzk7kPjQQM79X8SCWenBdSoOHQ+Fq++XZhH2CuOKvS4QyzHHvipwv53QIbgTQ7IP62lYMxJ+2SQkbLr+hxR/ViMUt8C62Ya1W6A5kjcPPUnY0ZSmw3vv5Mh1NYBbXzNpqD1LJmu7aVhfF6y3gsvrwPaaaw1OBX7hxMclv94b7uWU6mC3CS2LJY6lhHm3nfGh9QaXbtLNWSyj9KYN9/2EF9sNXvRzrFeFh4e+4EOXG9xvJ1w2mzP3hQTpbrPYoNXd/rfiZTrEjNF9uqiZWfco7aHFrb4VhkoLY8j+osSGJsgJIoQkYrIgGR9IfCCA1Jw0HLMz43RWICw9VXsM8flDMJdq2l86gK/ilyLyHpjR//1PNbi3u9W8WfUj/nbDHMWB1IEj7CN0LAjHBKqpCEDOrelJ40duOtppw+lmw83Z1G2L9MGWEMxQU1MELQZFWYjKkMxQcA0YEliGzbEpcHIu6UQJBslBkvsVi6Mg0EfQK2FRkLaK7gTRvXiqCrJd0mV0u0G6j56K5HfbnVuzLyPWyt2p2+L2L197q2vfXYd+wuaBrcyTRymH9hLu09C6pUPpDXhxZyLph083Q2G4OT/bulmKpIfLCQ/3Fr/FxI5dgH6/4L7dJNBsJW4GZCAQp7bmDuO7TmL2CDarKdUj6JEI7m474W494/nDDR4eTkZ4wpHE7ZEdgGcGyEj9BS8uHgALhOREo7mIRswKXXwTmQHMOqEnNYnV7Q/bGWgl/xwRqBaYrK711bmkXYhsBdtNi3d3d8mmtLO9nqpqPWsyQI5Uuyf3JMINGyzb2b572BactxM+eLlFV8HNsuLGXTm7WsHHu+0cxOVhPaVNrwSvPqwnbGrZK1id9r6dkvis58huMmT4GFqRfoD0bjQnRGw38HOKIDyAZ2dAHzNOK4lK0YYcNdfUJGJxFanHYIUzE0GVhMolzE41X9E6vNX2mKzW3ycinwVzAACA/1xVv6fc8isB/Hl8rFQyVUl3UrbixhrpCKhio6cUxVg3aEs1hAJ2/wkhCtNVVs+mRpISq3JaLEI7ipz1Fun2GZ0fSRKlJydTJJ2KZCxtv0SqfrjrGA8so92ZVcFKRRuCTGnNiaSrvfguunuHtLTZwYq6M+GiLaFqw8lpdzOiQ3Uabk3dyAJatNkALh144KgCnrY+Y6+oBtg2DyCk0ZT7yDisJQ9RVW3IJtCL4CInlxSyjgqAUXr0w21STAPu3ZMusgoD6S2BwKxRcbTZ3mci1vQsWtXUH7MdhsbxU+sR8EjC8+GHW7y4nHB3d8Z2f4I8GPGhQRrN1qtJp78BoIVA+1qHVOzfUaLWEwA4XC0aEpTSaH62JKqUXuV1CaYrlqDFMuR5qU2RjgurI1x1Y7qr5pQhCQuc4ACdTFM1qKunufFzF8GahOtF0cU8zi7rghdyhojiYVuGLPWXzdSwd+sJd/dnCxNYqVoDFveuzMSyNsFl6diWLfZv6xK5HLctA5GD1tSFqRKPnw/1qrD91nEGS3pPTOdy2oakqZHNQ8e+K1hS/R4pkEi8HI8QhirjpI73wq74xO1RGQ5U9fsA/DtXvvsuAN/1FIN6pxodBciZQ2DGcAI5NHI3ARhjYEpalObF3QDEodfFkG1/fYOcO063hdBI4bC7oLsOft3MfTZVNoigQsYQzE39AHb4e3tJYOkcoT7rIwcFmBSg9nene/ZixEHOHTfP1igZzXHeX0643Lu6x437cskMDoETmh+gxeMVzh3LsxWvvXbBa7cXvPv2HrfO6a+9RRLW2rbecHcxNYh2oK9LuGlvfhCHRIlcr1M3qOY5V1hOtYuER5dcGrA2KwjmDhks0Bf0tRi3heDQJxjw/4f4lLOpnsypRNDRIxZk85LpH7q/wdbbECTLmCK6DdOl+2474X474YN3z/Dh57e43J2A5yeIq3vJPHQHPHOddWJSJMDuaf+ZJkkE4QhhA6gITkPCNU+pblDDmBsxmBHmU6tMmz/DhdNyLfIb3i1mE+zuVn5Oz77maYBAGKXdbGvhuWUcPyIvong5isoURL9NsV2ABzGb0Iv7c5yb3hmPtkDvF8/C0Tzo1ftZFOtZ8XBWT1PkwBASeseL4mG6XVqWyYDuEnpSX0ZELycjkKHfXGBE56xui85lZSzRs5uLF6DTkMLuH84RtzWkTKL2JpIeImPtTjJoPjJotmylh3307nq5a5LVm2hvOr2Oq9k+Hubu/MFX3f9R1yZOQOBEZ+KATcSn3gDJSRcVnD1QPqWcv2ZAE0n9vDEr8sVvtASUnoCU9UHoZimZRQFA+OTzbwCRPZqJCCsAiuvvo7hW95iDpgmXLvWwNMH5ZE4Qt6c1xqdaapigrF+fOCpKW2cFbje0c8ftaxd83Gv3eNfNPd5zc4+btkXKGhpxa1qee5xGYkvOFoi4q669LArXW4u0aEjKCHNzZ5FyCN02ZXY7DOqjwdOvECFKwXTQ2EX4OzEwqboyCxJE8rKawwJTnbBsO1ytsnoG7t7NGeHucsb9wwnr/QJ9aGlnZAlrdel1FVjOsGb2mgASk/YGl3v3kpIqTUjC774ZPNL1vZ0s4JdZA3bVO0GpPCXIh8sJ69qwiqIvi8e0KNrthpvbFa898/xqS4+s4PeXU8SN9UtLmAMlO1tXcRtKxnIFnjfi2w3DViaNJU1wv8SaWgqosp/NVU6q0E29rIUCZ3M7tnPnjKS7zWexN0cXwCBRBzA15JlB8VYjsSpwrcgzrSrBnDRkrslofs+AyyZm6tCHQMbPGHPp69gb6821RxEfT7HzewB8Pornm4j8IIA/A+BrVPUNe7t9VDRNQEOVLkNPA8s04KETCSyI77VcD2N9GO1nGTiJhxaI7FseBhqRw6e/p80DIGCliJyxRuZOXNVMYVAkR0tAV0/lg0S2NZDz5GWiz8uGBsVFFjwsi8WFTA4LRMpct4hhOlu6+vPtitsbcxd+9/kBr58eLJGnL2QTxYMsYe8i8o0l8/lysEpGsobRB7HXJPZEhgp7lwDK5J2OJAcphipWSUZUpRDn6XDuQKki7/ITa95LFmPPO7a0Zu7j6sZrkVDXbNqM8HhZBkvfT4cO2D4LAFWIiMd/uATUdYglChf0cItDIGZd4PaEgvAqfE2MBSXxkzvK3J7WQIAz8VmKarQ1xUMzwrv5+5eTSdnPbi94z7M73C4rbtpmzh7bgg+3W9wvC17gBislOEHZDIc5ZsBmKIFgtFf2knOw23nDampUeXCiE+XdEW76gDEYtE+pwBOIetopFWwMWiPzF2eBcYFAFKwMJxSHM98jBglHrA7IWEpI/EwAum4Nl2UZ8ikmEI6EJ2w5sUbj0tU1PCxtUc/cFbh/s+0xud1uYDE9/4wP6Ydh7tfvA/ApMOeDzxGRX6uqD087zLehHSESLdwqEYfCuUjERohoRHBjyT7SbrInPIkwPedZRdhAqMnCiKyI9O+Khr51iKumKnDF3y7tVDVh2K2KjYjunpyD1EHEPf64aJShXryeURM6O+Qa1TVVHijWEPH4nBsnZvTcYmMKlObiJ6uAztViucDibGQYRYOjS0QTxeBEfR0VoqY6EpFSCRKhc+ffARaa+FYLPHC5qSTU7mouRxD95LaKRSfPwtznDQ29K1oTqLtrt7Pispmzwea9Wz0oj1ehZ1skZq2ExDOml3gcevYBjkxXybQ5DhtElJxj1GYr9qJdAGLF+eLR/W3MszfDDgBsjXs6usovp47bmwuenVa8drpYvAyl4kaPshus22KShTJTgKbaDuI1fvzACsLultw7QhLqWwtCIRulJmQ2h4nZCCkhzjDSrlSYUZZKCfiRsq4VuOqR45mkl6IgtBOmMi5BxGKS29oWd8d3GFZ6+LWR8MRL/Kclceb1kWHSUM0PA+yWIOip22Mkn98F82b7NlgZhP+TX4jIpwP4IwB+vd/31U84xrevBaUn1pp3TYc09aHFqJzgHBvRzDiaJQ/8GbWS3Zm4VEZA0ZLSh2I7yvNWRaZeGIYZz7IAFVub55ScvQFbxSbjfV0tSpyVWgOZ8KeNHFUArxMgcdfiNhV4W7tlC2AST3Juq6taaP8aHAliro4waeshAeKhkUQ4AhtT8xglE2yc4HZ3LXbOv589wPJKnBeJFJ01uksagL/ft6YzdomeWSwFIbb3AkP6KmZzcwOcZZgWV9vAJLV1a0Z43AFlyOlFHqnnp4oMxJDGf2avoF3OkKlYKpvKWRM2iqvtIedL2xKN3SoQlawZNxEhe0SjvPnSOrzKfARGk7FhxgjCG5mQh7OlbdKuKWm0ZBLAbDfkDJqa/a8a/HluCUP0xCuEVRf7v6pemeR0kH79XRqcia/pyMv5OUfCZXGWiJucUZ2TkgaB1HgdoA2bKIATtl4yunutqCpZ5eQkJHhjiMoB8bMcNmGZA1C58bnmT9UeQ3x+K4DvB/AvqA5lqKCq/5eI/EYA3wvgt+FjgfhIiQeZAM6+hwNMB04U9X07gwjBpJMCSPTaGVyaAT/Arm4Lm0weckY7V/uJQsBoUbrQHjYlcpFR5QaESoyAFIiZHCJv5DX/v/eGTXuUix4C5uqBFnLM5DiBKN0rvB+hTnvoGR8BIGw9D32xrAPaLI5lS4+hHSfHeKvYFkpsEgghkGzM1dWM3Q6fjdGDJs/udOFrX1VxAQtA5FyzdWMkv4z1lk4a0g8ixf50oMuaaxd0EVtv3+6MaWruebUAFV58TGGD0hwmEZ2q2Pu5SfXEzmDE9eoyLvURBw0ix4auaZtRRbgeA0ZUumi8tzIZC703YAk/o2yFMtSg4dQ2nNqGm6Vh1RU364bTsvlZ4RmyPY96M3F205Y1qLC0rv+4lurMS2g0HDGb+s72NVR5IfZmHwPDUgmQu6lTGpvPMFWyQ2ZyEvzKjPo7LNOWnSF6awLw0AcS16HzfJhSDyX9iB9KwjhkTNfCiMT6HnBmb7I9hvj8fQD++Ex42FS1i8h/B+BLn2Rkb3cTQG86sBQ9rSDURdIyfb3p0GHZBrpnTt7KRhdx3wDVvVVaj3xtAA/ALF44Z1SIB5GBbL75q4wSDIlkmwAW5e+JQ9sBkvdD1VT0i0R8IosbNFtEh/cD0T4IkBuxmcOMB793cyxolxs8bCec2zYMg/VXHrYlPHd6l6wA29POUwuaEWnIIlB4fjG6BVONMW877RK+1xCg09FEkWqYCyJeif1puP5q2v+qswVy/nruUaY5PMd8LwIRuuRgQZAGPF1TmthWq4BKNVEdB2CqmTbX0gEgUsZD6du5WoJrIEOXEgIsybzEjfm9quZ6dCvGSIZqmSTs5lVfTwH7HhDs82BQNZ/besOL9RwE6hmAJuZuftMsb9r5ZEGk29IKrCLhuGgwwrmmEh3OyQmXVKZxkVjXWBuUdZrOXBVcqvai7jN4rsnI1lIh8TAycW6JeTM7XfMChD4OZzJV1aqrNgBepXdQjw6D8/8dR1UVMws1klDXnING/MqGkvBc4X/fTHsM8XmApc95WXsXgMsr7vmoacIIbgGYuFOLOzR12sYR2TN9bRkrE2K2hhrLvFVKtUXPVA3Yge12u/8vwTIfqXpANQ0w2CiyAwnuLHXVxuHszCXe16jOHQ3Eu9e7/QXdA2B7Ro8HQAMpQcUhTc6J0dHb1nBxIsZofr4DAC6eLJMxEn0rLuNxqBB/56EXqLj+XxSilVi1VHX4e3bz5cJxj3jAuh++Kv0QETEI1/clavEA9l0bOe86BuX2VTzlUvHWy/9d4noyB4XBUcmYmoY9TiDXPiNSGfth+paZ6z6ySss0Zt4/jx0AmgpUeyb7VIOBkH4k49QABFxcsGBtG9bW0NTioWqqmhzA0d88t0fEXoIYEIkn41D6JqGlzZZEp6zbQGMIOvN4yMwoTIMxH/Cpb6qoTRW74LDx/mkdwjHB9y5U1WWPJJjkQkyppZi0GUfzsPfLNNG31h5DfP43AL9JRP6Aqv7k/KWIfCIs5c7feKrBva3NKf9QroCfBOCyKaLksjXVPGUjBAju8qjgmaqpV0QEmy4OIBMWelkjjrwCzJZLywnPbOcJ3S3Ck2q3FhgPLY2YWxd0WcJQHC7ds23kyqEgImVE/dZ0KMXA97AQX/dYCXr40f41VAKtcQwm7iTnTztG5S4nd+zhUM1cIuMvHDGPunk1qWYo5EfDvd9HiS9iZpCSLwDxvavqH5aECG3OsG91g5BqEpg0ricJ1SyAlNDC47IEGFcYd6Iz5AkkcoYWZKWFYCXCnGGFn3G1A6oNJ/TIMh2ZNwA0t3nZubB3N2dKHvqCtmkUhnvoizkcuIo2YZBsfC5RGmiTiAMyZJ7IYomZ84zrQjxe7ZfzWTNcUAlcoUAF4e8I+LCWCKakuXdmW7pJw5VhEXjwqQazkHtZ9q0SnkJ8BimW10ManohraZkzsTz3xO0xxOdPwFLn/FUR+fcB/AWYt9vfC3NE+H0A/m4AX/bEY3z7mm9gGoQJEI6k50UXRgPraKgnx+VcBJOCWmqOtBCvm6V2kdYh2vZqsIP3jWMtnCv2n9ro0TQ+w39sfmOfRBc6I2EkAPKTEkl4i00EKM5acJo62DRWWOXXfoC4Vo/C3zwhJ7QgjKoKAgbDOecbdh66H7uUFw4GdY21jrEuRllPAVgG2tY2114qMifMlESPrLUUzhlTG7wVw3svRxlEW8u++JCFdicIsACdbtYRl4IoWW02Kg01aOwRkR/tUVQl0VOLsKLjenABq2bgiHdSlYhM2MJD0+yInCPVjIDlXmOGAGDBxSdD4nPpCy49M3+oF2ojfFREHZ6QsdcSarZAxmFbxd79vGGPawciMhFxYNKClCbOCA1IvqxdMCiJL6JQ5GLMhTFaGnFZqFI1z/2Ocvg+lqDcQbXu44gKwTvGsTwzENHCyD1Be0x6nW8Skc8E8Hvh1UCnJgD+A1X9pqca3NvdBv1/BRxfdHr0DMFW8VztKJGNuPFOUK75e5obtbtMezgAh7FxA7wLBtVJ/QxOjR35AXwVtxJZYYLoHj8Qbpy+FloBeu6TjJ+SAZXgQBlUqzoGxBG5UvoJFZZ7nsWhLrawmKo6gVg047DKog3z4h7X9arrjjKvqk6s6z4jkOYEjs4g4b2m43s4T835BVGhi/ZmxIQ2uNkVn0SNxDTgQwy5aeXeS1JKSmqU8qX0Ja1kKIAxVV1b2LN2zFEdToX5SZKtc7ZKv5owoJx2Eh5APebLVLw1qadVDU11rCV1bWOlYX+0BnHHflJKp7Rc1W3hXCIIe0hwNFOrTErVeMSUNP+RcluoOFMNSsJDx4i2aDCEM6YnAAAgAElEQVSqWxe0Zh5t0hy22edOnasxNo2AYwlwCUcT/h0EWsfEwQNzNjE9hEXwPL8CsTyiPTa9zleIyLcC+DwA/yg8wwGAvw7g61X1rzzZyD5CrXLQxv02k3TKpuQBm6mWM8AOL/VeJpPsA0bC3n7CbnkLkV0hFm9YW1eI6EAMJ5fK+v4ZkfQgws2JQ0HQs1qhvNMOeckJF4RpRE7xSJ/X1f+akHBoOMr7LN6DHSV14gGN9C8qEHcTjpiHQsyiv8ol8vLkYso1Sm+q+QHEOh16OZalB2ZkXGCnzJ8pcVSmoTdk5gInmNrgtklkFoMYPALxpa0BKO6DYwuOonLABlRNNEqBAGZz26mEy1yG7Bwwm5wFosJhvA0Z4ulNR8k44uFKtgYRPQBFrmPdDxk+B1drlVBlgkTIped4PrvN/RANSVGFzIOMzEd87hH3nJ+RwabiatEgiCQ8LqmyaCQnSXwVr1GA1Wj3L/Vxz18d4ZWje56oPTq9jqp+N6y8wi+c5txrLR4nnp5k2zQ3gAimACxcXWMxFnavbkxvr9hOHr/gkd7hzeTxOCwJHBwKsOe2d15teYgGNRs5HVdTWT/kVhxZeMZo2l0qR3rkfBAEt14UmN3DEWrYIfn3BlcbyIDISQBRPjlNQ+7dit3BHDuCVjliCi4X/i66OGv5bPACdBoJGIdy305E14cFfVksJQ33oCIojqlO3OeomwBNwu4TElBUvqWta/9cSHFsTT1PmqIvkyNGcK6O0BsJnm2M2QLaYPOJcTPGiJ55FXtWxsP3OHKCcZwMVq4xZ81TJrG0gWOPCktAnxi0hJ/eGQgJqCqaariWLy09uDYVtPL8oVROSdDPh5zcs7CoCJUqBnVNQi/cu4iFQ3iqhYCtSiiGM1ffjVS98oZB6tGCH3iLZE41gcWYNZN4mUS40y29et9KGcBMHLiParkDBzf+Oexiz9eNrfQtYgxLh+PF+v21599Ee9O53X7BtLqYROjOSQlkH1TleLyqJKSKIwowgDC44qYhCfHZvRfXlbHtOI9CqILLlOBYqzFe3HhcpZrmyHgptijpRSVyxP1wKI5oVTXiHczOpAPSDuCfRPRad6gVkcbUeqQwDvCLhoqJfWodm9eDGVVTcJdRIzyn02ZBjUsGuW7d1DiAlXWGtJwy95TbedSqh1TNhlHmPgRp+j5EPsAZITR4kkk1qYxIz/d3UHkMthfs9ikzbeu89GNT2No6x8ysG1ZyQiJRZ0gWxc3btAEpAc8Mi0zbTsJT7Vg5N41l6ypYfGFqVg1VAbYFp6VjdUKtLPXgtrVI8unZNLh+vQt6c6IqzZ1RTNpiyXV7Xga1ZXxyvSuzQNzwMuIU/ZRzoXGR9N+DVxu2i+XxowSajECuFYUwMmTqarlgKSTXcj4XWudSLobrfPViK4xEraVVbA8Hk31z7dHER0T+aVj56lnt9h97ZuuPkeZcK9woCJRN48GaTHmBYMYDF/aNyqE0c9VVGd1Eq+rKOPYrrMSO6JTPwQA/Hf7CcaUhtCBJPzjVC8907YT1vTdcVTFJg/XnKYdkcwkHyfBRCqnrRMLDHGCD5BOccje7kBfQ654Sh9jECIQCmoZrYebuOGBuwG0aRfrOnhoIMDXOpZRy2C6KrpZvTKDB6VO1RQ2TAulWXew2PP52+CWkh8HYW4JX45rvg7rKMFWTZc2IR8X2cgcp/oxQguaizBLbEcJwJBcxIpR4PIatlrsOB4/FK6ZKg57V3egnTz3dvzW8zqqE7QwLiRJhglkQmFOQ67RpJmTVLr5OGiqq03nzwnH2PDUM26Lom5iEJQJBD8Quzdefuf1IK8JT0DYhOH+q06q3me1Uzjnpfy5CtV363tueC1QsQal0zewZZAS6JDMZa0eY4Pyv4I/K4IStJ78T7lVlojgbX/Ne+goUciSFvsn22MSifxzAF2GPGj8TwL8mIl+rqh8z3m5EGLExVa9DnWgFshCtU8/Ly7tGIOvG5jC4bqecHnRJB33YTfk/vXRQON35GSI33aOd0UhMYHJ9B+OQhnuzY3HELtqC8xpsUZyOA3T8HQgaIX0BiPgPYIw3yhQ+VCck0CvE0torTGUSKso8YK0xOaoRnpvTisUXbWsNsi3YTs0zKPhhp1u148j5jEknAUJxush5hc1HEV5UVRIdvAMJG5Gix+FQD2BJHEnud3rcb024wMG+7zpFIn8USSfyCm7iSTZlsI3IAuimYElmdRtax2gTVQBVDRS20BnW53UmkyJZmlq64kFOUba8nchtwD3FrODbaekh2QNI937xYNjNsieEwV9NVS7SPKZLQo0XP3DC7+c4mJKjI1vOMukU/4m8cQQupUOMGDFXBbNjQ5OJSXUwgoApADSzEV613dQxBX7L8eT+5zkVjIwhs4bYXHjODub9JtusVLraRORLAXwxgB+EST6fCuA1//w3/PoXi8gXP93w3uZG5FsJTfWjJ6aoRKgQqkjfHz/In7rpwWHIwGRIBYrqfXIETAUAUYY2/NRgR94qk5fN0TJI2kWObmkkVCAByTXYBZZyvK9omfMLYXeakVa69GogYa43E3cq8RCJht/LxJasCsqkplaiuofklwbflwy20Le4dOXvGFCRRjKgESOxCGaieF1Ffj7kflYEdKXF2Mp6HP7Ujvz9Wt+rZTxO0OrfFZbZR3UL72Uv+aqo6DmsExJRT+eCOd5qtddaAXZZOpbT5qrVPhAe7jdLkS9OjNoQ08SzajYxZqzQco7phhxu6LGurwDuYJx0uJSwgdBckElR/0GRQDER/TjflIY6Bg1Kruk8HmR8UG1VEvsItcdIPr8DwI8B+MdV9efK9f8HwDe4F9z3wSSjr326Ib5DrXqWCJEcEvnBuW4GFgzIakSStR1GDgNB6JTR6S9xa+UroBPsk7DV/+f5uLdTNWRXVcerWpvu0QrsxD8FuZkO+WD4WjljU6MAiLLf4U2nEqrJHcLiOyvBHjIQ5M1V1RlOFQA2tYSlrE9UY5lkXuOXIXsZ79Eq2ZT4p0oUDpkKyXfqcD85aIef4Fanfkh4qWqjuojpWsjJSr5vjDMaVWsctAa3ke/LVD06ILMhyLSq1lCknZ3Ef7ymNRM2CZntWfEcpeMFEGl86lh4lHZZEYamuYkuZacUP57Zl0cuHE3E3+ASU0jS/KmPOBHSlC1e3qKfXHOZNAc5jsIYkvF4yZoMdjnA88UlkTMl0dNRq8cQn08D8HUT4Ymmqj8jIt8M4N98kpG93U3FUuWwCaxs9AGbO3iR8A/CLd0eyV2Vg05EOkg87F6c8JwAaOrdaxs4k3D91sBBiUEmgGKQ2sm8gNppixo3gB3Ky7oMKgrTkWf6E1MVGnYnUK6rFbwLd1e39cCdA3Byx4oG4KzAuSenCXheOLXKoi7lMG6DHj7DIZoIK1VTQXCaeulnRJ42M54LVmm4X0/YtOHiqflV4fnjFlwuCy73J6uU+dAglyKplMMNgQd1IkqM48SbCEPOiXrJg0G4ILLmJe4/Dcq8Rk9BX/sKakGceA+R76JQ6dDTGGQq5w7m6qqwGEtJdTMcsTaYOq26jZ90zAAgPv/bDtx0tBuTPFo8s/ea3Dk9FEYuAkNjTCjqsoY7PXuMj9X1uaxLOIpQQm+ullu3fQmOmtetd9unIWsGEqkO9rLKJHAeQyCqhN0liEwfnx/SKdErdOYUxdc7slGkg1J87wzWgAf8uWAmiRfC1ngwF/ZFAsTWCpPtX/W1RQowrlXAnbiH5RO1xxCfn4bld3tZewDwU29+OO9wq95N9XPQXZUv6qY6BFJtx/QYA9wSadRDeXAgASKB8ctAVjpF6e9a4WhI1BY1l+OS6ifuVrq+5mPhTk2k6WIMo9K1S0SXh07aX1vjT+B/w7N6t0L0FAUxdc+YsDIb7/W18QECJD68tyJ2jgNwYgZcxAzUq7vtbJ4/rm9iRJQ1ci6yr3dT3++qS9YpCuO/j4UZH4ZyGBwLx1jnQvdeJ1qhx5/nzA4YONbF3s25C6JKLZ8VMc+vitz1iLCz0U18XvrOV2vUzcFJgdsOKVVMq0QdXlLxWQiQ+HyR46pq1bl44MPWsKlVMt08u7cFfKuZO9y1OFR9dFmuZ9T3aHB4KJz8EHh69Jx/0ksx1rh59oFriLhKGlTDBwHy7ycpclDB2yKEw8tMxAebU+AVGVNeHQ1NKpyUcSD3sEpWWtSwQQg/QpLPfwXgc0XkK1R1lzzUi819rt/30d/UORpuwsSJWSvAOVxWWHqdPETkxo4jvZHu1aXrGIhHqR8CjgPDgDcKos13JEdJu8hy7sGdDjE9MEnHpiz5mp5id6QZkonwFG+9eLdzd1gc7y4K0PWVsRdlTaK/jig7PLiuF6SfBCAPRqgF6iGkhKWwBK6SiSzF56vd8sYNVSzdyD6nC6KnE99B5Bv1eXzRIvvwFNAX9oGSiif4A4FVnIUHZebQ9/vPzelMMmvHv+aPIwJnHrkIQFS3t4CwVzAWkaM7dRzZBOiFp3CCe1a084bl1M19vUpK3N/A0UmAYmbT+QqtlyQRA8xRgNLO5XKyJLN0+24Kce8Pi0MpTAyJTz1HPKZEqFxL7td8f91A35eIdwLSk1AlztxVfCxkKh1pS16PjAdlD1GIcWVU93TkAE/1CmBI5qzqfyvRqZ+1W+UZR5ZpUSe4T0p6Hkd8vgLAPwngfxCRLwfwV1RVxUKy/ykAfxjAz/p9HxNNNtfHllTqKR0XLmkmPgSmlvYTO6IIAMiYnuafBTiiaX5KAZwKqISd6hpycI/EFxopO0h4GNPTi6svEYUWYA81IYhQkliYS2ob10MK0uIlR2RBeCpS8/cyyDbVdxjWhnaOcF9POj+2cniSGCeR31gtjnPwSrFzunqTWso7hOOwv/Wk4eSQCUWtzyHtvT87Ex5lMGrd04ZYx7AJ7OZX/nbEIN2Rlj/EdPyLr3UNqN26u+zGRNivFHZacc3tiMGzRIjLTcdytro6tWw27XfCPQHAGK0kQAf9T0QHMK+5rWcRvfVhSaIS6ltxGiBBmHRtFqM0STGxF77QocIiQSkag7rWQTPn+9xFPDJlXJnbwBQpz1kZzwEhGBgJkADl+RoDkPnJvw/eL+P/Na1Pam0w4Kda3XV0YJrSOj1Bewzx+V4AN7Cy2X8JwCoiPwXgE0s/Pw7gb8gIbaqqn/4EY33a5hQ+XXkBg1aHKOo658qg1JcLEOoQR6iRlQOO7JwLT5F/AvR5Ix3iKxCGq7KO9x0FuUW8RIMlKmxjFdFBxebEpRor6fdf84qNKot5LSpA59hl0VD17R0dkpjlu2Q6+36gmqtqjjBzJTp1Pdm/Mr6pMAE1eHJLwjN7CUZfgvCAGrMFIDnm4g0Wa1wJT0Om9+H6N0CEkoUagajvlKkvlHcGEXFp2wnPUry9uN6WV20arwqynLL6Gk4csHVQ4MneczpvWXW0aWFUijNArF8GCR+q+w5ad2RKNdtK1aireuXUbQrN441UvOxGg168/PxEUGzty7mbVEuxbwE8ZY0dLmpIwxvi/Ek0fD9lsT0G1bWDRO+98l6q4HwPYjkFGAvH2fh2aZ14Hsv/Gmo93RG53JtyvmkDc688DVxXmKwnaI8hPg1Wq+eHpus/Nv1/iFI/Khs5G19roTJdkZmbBz2+fc+yyeq5qDa1mJdeORPvvxrtAnE3Im1MqzMBYVM03+1Kz4+81GZjqzjhqRzq/hkSrOwjiAPLBPS9ZBKHuo3ATMeLZdnbmMidURIc1B1T98P+DIcUSXgLd1sFyMHesrZUs3iZ0CHuxscwHCifNt24o4QBdfc+KDImwSUqRimQBLlwmoM6hBxxl7TZ8P2t3F/Xojbv0xgMdVfjHnvZuxnkuzqDVWC7rh0JWDWS5zt6SM7L0nE+bUZ4oNimEujxiCS8Gf5+YwRoc2cUZqC43J+gawMeWlQDZbn2vmZwLJ08hEyFVkZAMvWQYf0ZjMemAgtiPnZDnvP72cXpeQWU9q2qTitVjYfzWLdedCAyAfKOD4KJRE9HnRWIisotJj5MUoAI/wiGkLBIGGS+PCfghzGET9wek9X6U97GcXzkGwkRnGkp+s4ERkkuwD29dPN91AN9aN3cXrgsIqAdQhkvDoGgBXB3r9HRbTrtT/tpsq+MpcnDUL2gUmLI+YeO+gCp0qst0pscjNG69cnHfHBQfyiHMPg9V+QdFBPlIPn+9fwuGAhKOryPhOeIlXU+Q5H3KKUIKRxitRlEvxoMDZqGVBMqLNR7y9iB4wJmdY5XmiJLFBxlp4hElV3GCQ/EXcdPIJgIC9jdcG5b0Q7vF64GL3NSNr0rDjMyTitiveq6xlqMcFVVTjsicY2Rwfi+o/ukwk7F5TMT5LA1qExjHKk9MDVtbrLM61/Vzd3vq1kupnPNAbWm2FxlQwcIEtgEKF7TZDSqBB4S6xhntVubCDv5yKndfsE2QzRuQJyQ04CgiP8IJJDQvl1tRPJVelKPrC5OC+Mz9qMq5k4q6YZ65NBQ8zoJEsiY0NRU/ArAuMveJjU/CZy7VB5NhyogKYA4BH8KPJBv8lwqY4yD4fngtMPKCAzcY3kh1VcoRtm4R+PgxLXKuVcGoqrGKPlUpFUXL9a/2FfIaJTFCNWdIt2cSaA8bqO+pyL+wStuJrQV0Q0bcLAhiizDjSxXUSXZWPsgCAVpL85oMTffjOgc7mjjqVI0s040yVxn1V0aYkIE+g7HDks9S+fsy4g3ohxEqK+qKjc4GJ9WlEOXA4IwLp09p/uLHD4JoBihjWcKgUFd1okIUlJW7AlQ9iOIyqoCqO9hQy951QRoPbxmj5gLhRRNQ5GqypoPEs885tplI4wUau2MFJnPp2q/uInPIVEZkdQMlHGvHyxABm4p2oxAClIVmL+89onL8Y0PrmkCuKrSmFVpbbgHQXhGtVu3bMEd6IX6sJfeAFFPn7P52CrnRK8oKcAMhKogShjMh5oHRMwrrsPeYd8fqGS0LBjf1fJdWg5N1P85oppcx56S60B4KmNRtoj7KwpTR8AJcyv7zNgPFiYL2ioem0FJA5bBWJB7zWwGRwSlsugVgVbERhf5bvu06QJp3QQu7sHUdUi1mlyudJjTjBPGal/LzA8GT4v0IDYdgIh4cKenZgJ2ey+ut6yemGyRUWMglgqgWbXbRdGjPK0E4xNIVu1+oYdl3UAdYWRP+SbESnir99U1T14zr0WM1qiiC/6nIwLICZ4k9nwu8ukxjkqNaHU0SKyZQpWpdAibsj8zldBIrtGrGxkUeAJk2am1B43HoargzbVf3MSHzQ99cjGC+cCP9+czoVOu3Ba/PkDC1lwNEVHs2W2oZ/wARUAbgEqEdjaegjSYOua0dE8xYznU6AjSxeqj1OdV6TAhoWNWd8ioUkhNOcL3iUtXRE471WCo9GDcNBxx8MDVSYJzH7n2JGxcF6oCXffffTCus8+fsl8lxU0Qo1gEHd2dnQGRpkZgBBlHUQiTVDsSYIPzsdDNtgocAEb1n787cZvD1YzsBiBx0NkcUTWFtBbX21RawIblsObzyq6KA83k4DETMDaTdiz/GlqDSA/uvQYtAyY1heOC5PMi6tkMEDn+NhWrdtsEetosa/PSHCnXukGJxG3+SGa97k+c5bqxZWI8o4QTMoP1XvYR8FHS3qDsY3mvwPd9KdvITCZ8t6ZnGbwQnHQPSkVPIhUxzEaA4gzTA/XA5pZDv7KDOv3jzicRXlEZHckzeBUg3mT7/4kPgMCKM6c5EZTaCIj8e+aiA9IGpOo2o675nQN1Hp5EEpGNOr5/eUocEp7McWWfTdS40N4Mj0otIEYamBKVnSDHfPSK4liL5GPP0kha8sMFJzsehpibj8GmJYMqxZ5z4sxDz3eQEAVhVkQIuBOHgb2uDERBSCHZjqs3bGAQop6xYPGEumt2ddOuc+RBjU4SubPvQeUWkyIBo22xjK7MRR22zIuJcTx1X1owBFzPCuPBGNMexbUDksOdmiUOLYRJ7N0LJZ9gRpyRkSycSGaIxCZgkpIUOfltAZZugc1LN+LjyTal5for5wR6f9kaMGZK6QWm7vE4E/Ai+diUcp9C4j1CtGXtAoYqXPXxXnZiIMGYMe+YsUYbonRFxFWJBPpIW44T2nK2almLgdngNHFNq5DMSIj5LVd3P3WHrSeUeoBf7MSn5nJimzZrkGCuMRLqXAuSkeL9M7znQxiAJcwXDskRNHjAcYTbMoioORV7biY8+YyNdeue0Xk3D3NzzYBYGcc5tUp4ZPeeNDEP3n+aAaalJwP+ooqpiyYz4PthFjEVHqb+wx5TMzQzf1l4u5V1d5foYR+aDqAQrx+Ihl9qZd99DysM5L6Wd3gnO/g6Wm9ndIbLMn4fz/oem2GvhwG/IptBCNfph907c5CxX81KHBRroQl5WWY9pavpDDXj2FvbvGRCx0l62dOGS28m+Wye60/HoOxK+IZMIfV8OELOFEfTBs57QKbFnw3EPp3ZQ63dERzU83yUKLguPBk8fq/JVAXncTC32LaIZ+KaY6eRMLDIgNUaBMxxMvg1GdFco6rq5juesn1EiY+IfD2AXwfgJ1T1H/ZrfwCWH+4n/bavUNVv9+++HFbCewPwZar6HX79cwD8hwAWAH9GVb/61S/XITVLXi7c6mx0mxCgPWwdaFP3uy+QW4Bn2DciqOLdVD3IWN6YdpQ2IeVKeAKhuxNB7w3arEIkupU+6CpYPYHnw+WEzXOp7bmiOfgziQ911qzQavMQyJJUpBfkE3FOQRjEOdISN5QvDmCXuh5liSvHPQzZ1WsRCEsX6KhQiknVNjECjih04d++xtXzzEHCCFfO3RZc4/tAOsBAvJi76yhx5UB85v1AjjmICpApfjz4lR5tACKmaPA6Kx5RwnkS2YoO6tRK6MXX2xgKc69muU0Gg/Yu7iY9MkW1NTEvvL6Yl9aNCrbCGF22BWu3VDrr1rCtLVLlhPr1wOY3xItNmSqotYglbfXTlZsTsVfCHfexBA7XRnisDpfD/jnzEaXM6SgxOc2QFgzjoF2V+1Hd9wkmB3BSW0rqkgSoanZe0vaes8CwkE9IgD7Sks83APgTAP6T6fofU9WvqRdE5B8C8FsA/AoAvxSWaeGX+9dfC+CfB/AjAL5HRL5VVf/3V72c8RQDoiPgVh0HEUlBGsMzTrCEXnAOSMkJTTvm7xyAURKJ1DQpNfW/vatOoACiOxFsXSBbM7Wav5d1TXpvWP1g61Y4y4mQoosFY/J/cohqyCt0603RxQuJCZEPMhtu5V5VhninQKqVC23cE+5LOXgFAwzXifSYhn5NwmP1aDBwqbEVJDpNoQsiCwHT6w97HuPX6Eu7mrRb9iOITGFWoiDZ7EbtBLdVArc74OX/4hVFgtNOPRLGjmuVTTQdPETUbAdS5ahEcgF3QYhycqqCrQNdliA0A/HpmUTX7ude+WezSqStKS7LgtOyBSG5rAu23rA+nDJbwSy9TExJOOUQnlx9VdVh8X4SAvGz2gzrB+Kf9Zuuao4kmlWlVfe7rnftx/dIuaaLxjrvztoiOVfihcVSU3E/guD6PoyJUfkgBrgL9bnnZhyk45mYVrWsr+2QmaRMeEgR9hbbR5T4qOpfFJFPeYO3/wYA71fVewA/KCI/AEv3AwA/oKr/NwCIyPv93pcTH0GmSinrKc7xhKFYkYA/BP9p7QqBnSsc81f0X4lXQbDBcWnYY4R2m2JbURUL2pNRlxtRzt30wiuQ7r/qajYnOn1t4WVzVMYhDm8xpCtVYl2g6rp4KOgWGiFxJD6bjMG1RBI1q0BdJ3GiU7ICDHWVprZDGJAhSM6ID5wTnifofbgbb3wuagZicqksQzEgHQmumsR1EFoqdysjcZn3+RqCD2JKYqTp/VgzWNQiaoOLMzCowahqEenoXaw0dZXQgSL16OAuP7tt85moEuoSNMs+61aAfcZdYj71bemelWGJfrfV4dJTFeEiaFthfhwwBw0F4jJog7MUSeOeR46+RcIJwM63YWEhkTlgEAdmYac3x56xiOd8jwsziWk9be7Iktl1fxdbp7bobl+hxvB1Ktqd4a2eg8N72qSWniSgIDz1s7HfHtkwYozVTfYtto+05HOtfYmI/CsA/hqA362qPwvgkwB8d7nnR/waAPzwdP2z3tBbQlUxIQDRMF5W4lOJ0KH6Bxg5WBSkU1wVBxflSZVXPcaWppE2PoYMuDAy2lQyRRCgaBAgUtxv64Lt4kSHUgElBcUooek+GFOcGJtTWktf/wbUss8h6fA9Rf+edpfRWyiJgbi0IRYNzv9bDg0+JHKng2PDJuXH/m/M10Zuj1tKiafBVFiehdtKXPQgPszYEOrOItEld83DX5F4cqyDDt3/ttiZvqtFszkzwNIWqsis4lQ/FfhgmXAa8mmDWb1kBbMGiAq6uKu4ohR3S8RO6akSnjo2IIkO7UCbZwiP5LBb9hlgXRFd80qyi2IrGxqR9ZeGtiGzjBfvQogRD52YRapRdzWJfM+NKRDz8aHn5mKfCoOzcENnk/IphRmq8wnmNRmVSoRawS10fZ/Psqqgn3pIjdUrsC09iuDVyqyGn4xDVjG1+uA8UAgQnKZ2d8SZJaCB8NBjlGfe3a6HsA4Vz8j+NO0q8REZUMRjmqrqWyFqfxLAV/q7vxLAH4FVSj2atWKKlyzXd01EvgDAFwDA8ne9d8hxNDypSM+pye4TqrHKDSlTiPitJXZl5lRrDMY17xECHANEa7lpn0cCu8cawYlR70aYgHTH7F46gGqpkECYKTgXKAdBWwlv8PfrZhcis0MOItevyz6zQLglY8z2UNZVvSw3CaIuQM0gHUMUEirkzRFMWpgG/xEtAEFDMAkPgwGpHiHn75mbiYzNllEQhXOAVFHMzhfCvZ/2mN5e59M2OIVUe9nWJWwqqtuOmSFMnFpWZc1nSXgQHmcWX5VZzZuPW4vO8IjwzFIZpamunkmaVThXZztptpoAACAASURBVGSmWkaD2gxEiBISrsFZUZmtgrYiPwtBCaIjuJrmRuq+o+wzGTPCMG1gLkkcqaLseWc6q+0lvrPrzVVkIclyntNezTFN8D1gMUWua+ANf55qd+svGQqret+h2tJEMI2PRLU1j5nqxjgy/iyYJ8d3eXacmYWtXxApEqgnai8jEn8ROEbib2dT1b/Dv0XkTwP4Nv/3RwD8snLrJyPzyl27Pvf9dQC+DgBuP+2TdUd4ahMg9KmaFxWwA+Hc004crxwF4GKumppZ9uoM8DVI7pYcrPhhocsqDciGsAxJbWhoqpGxuhp8iRywMeniFWIAcogjZ0kvLs4rbuxG+BjRr5KunsYxacbETJySij9T15nvhyMaJ+aWmkb3N5TYmbjmHK6VPrB96ZJebuwi1WxAZz4sOhmoEe7wOBIU7rPnegNQj23hvu706NxPIpSCELvbEpTOGsX4zgDOpmazI/Fo4nE1AQepaqtG4q1LVIalJJXPuBSkY5FD20NPRTDBZm2h0sFLzo3PMfdHSxC2z7u4Dw+Sdi77bjGlSDJBR2q3yZuNWEsK/SvPABNTggnWAwbKetR31Oe8X8LKtbZTj8IzmKBhdQegcNSRJEYMnRhj3zwej/SiOwPcxWy93Rk5h80mCbPKwGIgmMlQuzlhirXhGSdT+YQU4SrxUdXPfrrXvPEmIu9T1R/3f/9FAN/vf38rgP9MRP4ozOHgMwD8VRhIfIaIfCqAH4U5JfzWV76IEk6FRhIOfh96GomDaRHhRBKJAQd3Rj4bnVpgp4hiE9mVpq5DAgwBWt9t5+mGeK8jKTEkFQi9EDBwGC5ViI9FIYN0xvuoXpgJwaDPdttM5USro4QSYk/Nzy6lJYBlBEwVVOZd+grdviATbHIwZQwhqRABoxwSvksmjg7Z55BPrmdcEXe0b8xoYJIdXYq7FzU7rD900Kq9hnu3Lc2ryZrqrKpWgFSvbEW/vrSO3hx2ND0LmegzjPfdKn72nkk/CyRiqKXEORTHERXbn24K1oGLb7GHtn69OYais0aIKGXLNNdgGEyukCHEDpNyF2PQdSnMkW/zIP0QXgUYKJfme/k+LTCjznBoha86pnr+Of6OUFkOAZjw4E8xNRm0oWsyBFw3Eut5n7nXLCG/rUvaEqnZOAFdpwzivo8Mnag2I5uvudnLhN+kaarhnIHLcunOhcTf8z7ZdT384s21j7Sr9TcC+GwAnygiPwLg9wP4bBH5TNjW/20A/xYAqOrfFJFvgjkSrAC+WNXptsiXAPgOmDnx61X1b76R9weHXf4fiQ6COyR2EyQBCs4rALZwDzFJA4C+djCRGRHfNe4xuLvNMmVX/fuRKmeABz+lUoBIm3jJZb9Vcu7VoycONCUBm1xwgBBkdl6qImicb6VMdxNbAuqZFwE2uE558hIjcpgBvhCjea665LvJjYphgtyGTSwupQuw6b7eTiy2f3oWA/EpQxq6mFMF16i7UX2Igxo6SSI39K85X/E17GtDWxTb1oJrHh6ZpKVNWsnTV5ZDll0Nn3Ur3md8p89r9HQkQjPJjm756C1yClapqrWOmjKnLT0i75U2pXkByLzNbSJURKLSEWUvhgDe5POSCBVGybr0PvvBK+h4EERLUwU7N47Zg8GNsUsCF7ROjSh1NbjoBw4yO/uff4aWg2pcVmINJx8E7EvrA7NEte9AeCixuNYB7goUklgwcfByGDB7V6ca0uc4ncHwVgxwPMZZb6Z9pL3d/uWDy3/2Jfd/FYCvOrj+7QC+/fEDSG5h0AMdER7e3wsBOngmM/ISYbtRHw3bxZCmFkSbIn0lLkawgvtRlxZEQ9qxeV+ZV0gJ1G2r0T0JGurcU5kbD+MyH+jyosIthrGVnnluHxHYgRRR9NaMCKmMReOqV2AlPtdaHU/1HnK7hKkrxvtsfWSP5NzGkxdkXAO4EzJT16gzC763uqW34G7IWvqcufF632IxL7ootksb4pvYz87Osyha2xs7Uq2SqOFIOmOftVRGzJlccG9A23yLzEg/5wwEqAIC2mIUnyl+BrVQ3YOjMU/fS5wdgZ4EWF1dWW0MMn9qwI9J6QjbH4lEEp+ChA+er+sUkhacAPkZNlFH4j4r9eDIvi2jNC3ZodC1e1bJTXsS4QJq50wWuKNIG+xc4fTCNeMLtcTzmIeFyexOlOq4gpgIJ2PndrQD5hpxuZ6yPZr4iMj7APwamKfZ7cEtqqpf+VYH9s40pzqViMztKkIhu41DwpMir7rxTsJ4pwUQRhdcmLQgiVSpgtvoZAAMdYOMiByxb4XYNFd9NR5If6fmBKmaqGlM+MXIaWMIgmuliuZCBwk1Tj2Wp4txVzPhiTWoC12I/7wtfhjCqB/OCD4HVydExoEGM4K34y2e6FK2LhbHIwKFWJJVXmf9GLr1FsZkt/hXWqgCNw0Xc712sokcN1dzITnnwc5WCHFVq+2k+erVJBrSSkjCRGpAqN+WQeWLHTww/5841j6S6JOD3n83x4d1aSYtVwI5Ex57slySKY5Mh6O71/NO4yPM6XiNNtuRKS33iUS9oV3Quq+vuvU+4ChEOCTeoNTXYzbWT3fJssDZ4Kk4nJM8XzFuDzSnfSgEOC37KAC9UGQa4k4b8YTtUcRHRP49AL93eq5MKf7+GCE+wDh8B7KjGR0hB3JDBy0AUAt3FJyhjFyX/5ix3ggVuXbG8FDqCY8hf3+kP9mJK/YZisUyD4GM9pTZe49zq93x/2ZfRrG74hG2FO7SpC2Phq/qqomjDwLM12rGFAzN7wvJp8xzVJ5eaRMBA0Ykkd+V/4vqBcCQCHIoInd0YOd31KFQ7dgICxgRLNeiXLfKp2Of6vsApYDg4yThYeE+vs+5anLxY/9kaJIoz9Hu/N5grjn85RrWOJOByMc+HRMfGta754mL+jRLji09U3Mcvgg+Z2MUzPmyAu8BvdL988dcCI7PffRF7s7nG6ovThahOZG4mNfIvIj/vcuoUIhTeudVIigj7FYRm0SN+IIq8Ekiz4PD++bFevvaGyY+IvLbAPy7AL4TllHgm2EZCv48zG7zeQD+CwB/6qkH+bY14pWBK/NNbgY5zNnGNiDpCV4P9aJE+sUYqgTEUCFVRIgRmIFD1cUwB38ukPkE5Lt0OYAbd3vEswwlepXIy09PBUpJicfcx/vOy6fTYKp2aBqQruIEeCe2c164TFVfkB/vFQwR3+Ed1IvqYhXIanEnEfFeiYNoIfg6BrYWaSoQqO+dKiJ1i/Rij6i2JKr0JFWXuwJx3LP6Yy/MPSUzUhkNABFTRWZhqQAQNyECQnsSzIFQ+pxZjdYYCB+3SrrrL+5Z444v4WJdYnzqWtXA3MFBBvn/oaen72PYozy1Tj0LLBeez0mqFmccGSqqJFpcd+Ue8ozMSxj7VvaMTirEE0f7h6kPyfiggWCS6BRmdGDsJJ1pwqYqI+GJjAiAq/R0ZCICbs2Ve9dizDNemSbzErTzFO0xks8XwtydP0dVV0/t/bdV9f0A3i8i/yWA/xbANz79MN/+Vrm1jNmR6Z7poZn7OgLGSoc0PzUApHAvB88NXnRTf9mxj9llgMrMhB491BGE+YLUPaWKqqTHUgXQiryvNLqHk6PsNa1H3JNzoecdPczshldA+7xOMxfI+KKivtiNU8onudNAxhqSXb6zMCGtqFGIRGq/zJhQGYgJeUkd7zXGsj4/TX+U1lISHAg4pxAIa+JyK/Gtf3MuDpyh1lXF5tKOxfc09LW469K2KA0qHaG+K0PJYReCBaQHYc2+sfqYmyYe7R4oOyDyJD6RL3CeY0yK8yrEvMIm90bK86WfqrpLrUbZivqqSjQL8ROOM0QhdpDvYkoeMCVPMJRVCzKBDvufYGbveYsRDuZ5YppYXctrsPoW2mOIzz8C4BtVdS3XFv6hqt8hIt8B4PcA+G+eaHzvTFOABv7rXAHSzKPTbtAuwgNf21XDwsEwQm9+fZyHX2oSngoolQOm1FW7TzVJ/n8IqDOwTgQlaLCiIKwkNL3n+gTCgo/L1YB8PlQNKtF/vCHexWSXSDWd2zIia/XhASuHPRCv3byr0FrmBJdSiRCpItGoUInMmEBkU1WQRyqjGr0/NyK7o0bJIRiHvGamiWkPD/qmZHZoluK6A2Z/aQArDyahkEifFOoe5f77ns0Ia+adiuqYfdYMHBwLZ6ObDCUF4OMbHHwGhsP2ZnYYqpLsjjHkmGs3lWMEUuU7ziYIWSgJKnyVOUcsDuGovod7Up15SPCQxLyemTGXIA7axHjEueIWHABgLPJEhJ64PYb4nAH8dPn/BYCPn+75fgC/460O6h1tiuBud4Z7xQikkkA2AI4DtFQgl4P7rl3iGA7E3lGiCQxzfTpa02FgB3T885rhd/y7HGzACSlyHVQCQUl9rhCPXjjSoU+UqUxc++BmjIlQtWI3ivlJjGdmAJRrWLnLo+Xzgzi7wwbHGZ6DjqMUruPXXF7PkFDdZAfutyxjriH2AzpS6xYYrGqWSixFsIfheY6CYc2D2HcZnAkEpn4rtMeJDkJ1FUxYgd2EvzL0SeKwseb92aeMRKSMVyOlDPbw7c+MMTj1rHDBMUbpHwHCNRtP1VAcSaW7PxKOYg0c49NB47pnWYnti6XQPDpt2Ci8YeqgMu2Lr9PAdNdJvQSWnqA9hvj8OID3lf9/CMCvnO75JFgMzsdGGxZ8WuiS52gnZ8fzE8GZCVJ0Xbjgwr0c0pCCJNM1WjOCeRBtjoc+IPEyhuCeirolvV6I0OU6LDsSJudut2sYWvlOcr/sL+MREgHQEGpeeNPY63jsYqYEGbjN0YEh1kJIsO32ivteKYQWhCF1zYrti26wAzMiMMKz5L7KtNZESADM9T2yUowLfnjm67U2jzOW6eA5vj/3fgBnkTRol8eImFR1sD0e2x/HFw/3FE57fCKJXQZJ7nG/qap4FqSs5TFROx5WnuNgUnCdzhz1I/5YdXIdCM0w6NwbHteApTKx3ftl+pmbAINafX7fTPBfMb+rtOXl/O2TtccQn78OU72xfSeALxCR3w7gW2BOB/8SgL/8ZKN7O5vCs/DiKkba0Yf5vsptH/Rvnfgv0VH9MqiA7IFMbZ+eQ2wMGBy4l5AgyhgOERA8HdA0MT/4szqD3Hrmtyvzt+CPiBHq2kL1U9cp1GyUepxbHopgCTwrgowLvZuLIzAh11o2hstI5FmY3R0yvkpUbWzwlEHD4Z8RWB1SVZ3EmhLbFM4SZa/jU4Po7tRvh8htQlwFOHtPaXcghiTwbhOqtoict0I9aLQmRo0303aHwmzTmO7fzJ5odV2r5mAmXNmvLbgIgniHYEaw785MtHlffT7LFWIyEB37+6VEZ973Qqlp94vy8vHMBLyKJDS7d+l4f2VaeS9DA/wc5mvy3M5rel3iLe+7RvDm9g4QHuA4Kee19m0AfoWnsQGArwbwAZjH2wdh6W8EwO97ygG+rU0lgFH6/ifFeuyBaEYWM8cyXKMqxuEg7AK8n4fXDn5rJeW+E6Ko2SKVSGEAFHKmOw6V46hZATASBpYergiG79tbVBGEJRDeNZEiCJCUQ1YOW0hDGD/ju/JTCdcBAhLBaHupP3W9X8ZdFoI5/D3MXYB5zn7NYCnHqrMEfY3IzGMJuNBCSCZALGtkbtWy64OMzlgnqeC/a8zTFQxdvQ+Hz0Orew73qsemlj9I+DxzwQDCO2YA0z4WWB2kzfLcTPxkv2RD38Ae/ue9JMwG3E4wew2HFOKmDif8ofrx8CzPLfp9BVDPcP8SXLUf9BECfOvtDUs+qvoNMELD/39YRP4JAL8bwKfDUuH8R6r6fU87xLe35VpfQww6/j9/f7QpMn6S4xwIz8QN1zowuzQczu1UAyHjgKizfak33MxtxWUpdhcMnjl7INURoZSANmf2IHWRCnFKRL4fX0oH18ZeCWK5h+/nNV9bqop26pVir9pJK9X+QfvfcOBHYiMzvNR+2TWlDgGUUfKNN9bJ1muYkClGDluBcIwBCeMBYzD0lXu/i+W6+pzm52Qn4NzqOKKLupfIob2a8JTxtpQwcq/rfPbdVCkw36VlP6fXTuugBSZkXr+j52Q/12E+FdYg+zGXc1Djr/gOVTXm1zUMO5WdIs/VzIjxnbO0PRyiuV3BcfO8Zlh9i+0tpddR1R8E8CVPNJaPrlbX+Y1wSMM13X2/K0RXkZR/RoDe0VhwcJiLfeXQVnKEzWfui95aPt9dAlMB9Ijt9GcjiA460KS4Zx6TTP2UeQFXzsZLrg8D8vQKJA50iebBlXqvXxjMBnFDpXLza5KYDvRj6po2loEIcR6NBOGA8JS/5zx+JWQ4r/U9EbDXJ+OSNooKg9O45crz87zK90DC4uickffvgop5rX5/QDDfUOBw6fPofyVilrre+Z7RVqb5zOGL9ghaD/cdgBZvv/m5gJlydgosCeFV8gXzauwIz/Du8q4JnhDzPMARB7jnpRLXE7SP1mJy71hzAYK/xo0MdVkBoCNurf4r2ANc3DNeH/zyB6AuqU5A4jISneM2H+QD5FGAP/4XHbis/fnT7GuevwM/OeFq6zn0mJvmunvTAYM2IM+j5+vBKoQyj+yIWOIOIrqJE75KeI7GP6/rDrFLvJkutgS1V7KaMt6SHo/jbQEXu3eTo5j7u8IFv2LaRxkPDsdx1GT//d4ozvFi3EoA1yS2q2N6SRsyZHB5QsIbCVT8OcNgnM3xkViL6OIAaQzMWd3P3KtwvqAkPkk+A+Epz8UNEzGpGpRdq/fO8DZrAJ6wvWGbj4j8ZhH5ThH5pVe+/yQR+R9F5Dc+3fDe5ub63CE1e7ETZPAhPJAP+fdwzW0wC5/FZG/gDw73b5deRs2IXH+o0x9TqeOYC3/pj8RBCx2zSuisI2NATYVTERam9yClrvpcxl/ko7Q1jI4Vexw4curlJ8ZyMJ5r1+t3sd+jDeTQI23Yq3JfqxkSDn6O1mhW0V2zswzzeHWbbXw12n/wBBvGN811AJ4cX9jp/NrICOXfwzi67OBnlMox9vcymnFka+T4OIEy11cTtroO5ZyWazLtZYXXeIbf+zUpy7wf5/Xrg9Q0wGe575pqLb4HdozoEWN2tb1kA8qev4GO3lR7jOTz+QDeq6rXCrX9qIi8x+/7lqcY3NvaBEYsANhKT4sbXj8TQByJugM3iWPpwZFzPoTB3pLw9ZJNPjqLWvoswDi4hA73Ywe02jXrlTAC+6gdHQyqlcix1rEOc8Zg15rVAHK4ptfawfrW8ZFt7iUY72X9lT2c07EEx65qiVn93cwEcch0B1iNL5UDMBvGMCFort/VmKyqAoxXlhfMCE6BUS86vk8PYOcakaAENqiAasqYSaofvPCO1mwm9EfIdv477DmaY40XYoDzgaFpU0d0Q1c95LOG8c342LNfxBz14D7dT4hES3VynY6zJXYuIUH0hoBTwvgY3BSfs1ZllGIq4kHZ+yNqDcww9lTtsRkOvu0V9/w1AL/+zQ/nHW6eSh7AyGUVohMGX+WB8427Boxs3N+ZEx0A1G4YVCkH7VUp6kckk8GyV22MnB/F9YG4zg+8Auoqcpq8ggbbT12vcjgGoJ9tS8N5KN8Rv11TxXCfxOd3hIQ59jrFo7M5Ywbm/Ju+m93fmW7/1Yd2ejkRucDUoG1v3A+EH3FCGNb42D5WkPpL1G3BfMyxV6XNMSXH0yKCjKfY2f7eGVmWcY23v/yc1OdSgpsIz7W1mZmn6Kfsy1W1b+Eq5qXl+2fVWNh6kfuiRU0cGoqipq1wP6zNyziro3Zt/6c5TAT8qdtjiM8vAfATr7jnpwF84psfzjvd5sORwDUnSByyDAAvPQT7CHzvdBdZXbHyEctk1yvy2RmCY+jkhK4wt3yeUtdu/sMry1CusarYE5fCZc7IeNemg5T0Qnf3pVfXwWAPL9Vg3AOkEoedY8x7GecTaGDg/MvhJAGv3ygi0p7pU6bbEqHshz3dB0ByPEEMKkJQCbXpRPd9UAWej/axzD+QJCXZIwn4aK3piZVY9vq8Ap7KRWfwhtIi9dHOek31HVPnV3ilUbWlAwLfT6gSBjnuR0t8zwEBMk/LfZdB7ysBqswYP12K0ur9Fsg/z3+F31iXOiBNfPVKujTgqHHcnDPH8dQJDx5DfH4KVrr6Ze0zAPzcmx/OO9yGc5AbVVO48/sR6V/ZiZlL47XpkOf9Mhz4fR/IVBrlda8kQMiDsIuy9wFIADWfv4ZoXsFqHhCZ3RNEKpXglLmQwMzeXcCM/L0zLfOZ+rP3H2SD2I05DxWxgxQkv+O4+dyE2HcJPVlLiMh7cBLR3IKZlh7ASI5HD9YAQy67updpPBa/TITlyG9+lz8fy1L3qyJsHfeqvm9UBeG4DUSI7ymE5yi4WgwRd1REOz4/9BkIeWKCdgzDSxgZHpw+rg+1CuGxeNDinRMRCgK0e5/OFzjxuKJC9XESaGeVPDDaXxrSl/3/Sp/BCTflMPbPPDXhAR5HfP4ygM8VkX9AVf+P+UsR+QcB/AZ8rCUVBXaI/Qgu9+quGXuMnEcV+3eP7XoZEdUY1+KcqI5j27nc0pul9Bx5m0iA6jDryTxACq8kOsOr3ggRG8d66CJ7BOA7wj991/bPBcdXD1dFTvMDdJiQumbzPfs51cSPgfRiPgcrqHWfiZHG7xn3Yf9S5z8TQ45ZSuAtsr+ABa0C6e75cPUdyhLYs+ru4GNs2tTmc6N1nBMzNY+/wpojVAZTk6ioiuWW6yiFA/MsDtqJur9unwubX3x/cPjKGNjn4KLt6ywBNx5SUPL6XW3DwmcownGTWL/B/qnlp97NLYvz0fL+mNRxPNaj2qBSfAv9HLTHZDj4Ghix+i4R+TIR+eUi8i7//J0A/hIsy/XXPOkI3+ZGzmvgwK7qhvkQfw4gw//VgWvCCOhTqwGR9Rm9AnhH/aTUoOP4Cvdavcx2Hngz4RFMsUnX3z0EJQ5jyp8dAog5vlGWSspaTJi9EuuDx166l2Xo4nWB+INefqqBHxjhpVVCNK7FoGH1fd5JnVfGM0omUz9XnnspzzAYoWdEPM2RBHl4/56iDudnhi/ouPbsH97XtWGKofnhXKIQm6bTD3Z/x1xrUPerYOEVTcq6xHx2N+wvDfu92/cyqNmBhPBSykZUb1e23RkqsMYz9lLP1TrQyqTyp2YJeQvrN7fHZDj4HhH5IlghuT/mP7VtAL5QVf+XpxveO9gK5xONeHJCOrsNqId0trvskC8O996u74EoxHzvb1cHvo7fv09VAy9OXCLHMADx/l67Okkd/HMI5sRw8HbzHaaVB4ILoXKdOztOb2MvscOYY9b6zLU2I9Echk2f38t+OygRVdsf1/tojZhvLtQfVN3UfajPiHkdateJaSZyKs8EcsUenjh2Iu25oF2FdR/WkKeu9L+LLy4qndb6CN/+YdIbHH75TBlfF1dbMVcfn2/YVNHKPPdZ0cvYD5kNDSlJh3Ef3Fu/R2H+CnyIwFzzZ1qtPF4yEp3J9jMJPy6cSv4z9Zn9lDErrCggnJD0JMiH3oiDkwRSdTusgU9Ayv9zq+BwTfvwFtqjgkxV9U+LyHcB+CIAnwXgvTAbz3cD+JOq+reedHTvVKuHccb/R0jlZTaG4mUl3PyZ2xD/tUMaE0IfDiwyoefMcIkmoCkRsWB/YvASMbxwl/X+AO4DwJOcPVAOJL87gtXh1XnDsatnuWdej4nYh4vxNWSj8+eIaOkqHrT5cOxEGuREy1cDEsiDnVki8uVS48oCwejkSTcRAs61IBFpQJDcqhoZkEa5dgSHwhT/2MPLbv61U0316aGNoGYEx0jkMV5jxnLCz1aTZOq8tvB7SwhxrM04ziEtzQx3FZ4G2Kr9HDBdL2sx18QBRyBtprOyX9O7tAFysBfMbG+2vLqgMnwkR1HmR26YcFAp8xE+qXOq118BIo9pj85w4ATmS59uCB/BRmS84woO2iGXxQ/NDSXnVwjPXid9DdEigKQSoQDWXrE7oo8gKIcEqLxTsJdkrs3x/2PvXUNty7LzsG/MtfY591Z1t7olWaIj2XQSDBE2BIIchYQEBYOxhbAgxA4mDpIx6I9NCNEPKdhEshyCID9ihYCJQoTUCX4RI1sE2bLiSLZDEIgYGzskDiIo1gu3Wo/uqrp1z9l7zZEf4zG/Mdfa595bdW6pWpVJ3TrnrDXXfI453mNMPvRH9WcuKpwngAkZ6agc63LYHtXjPg7pJB3UfvAe0zIBe2IuIJUgENcaPIh/2fPHCfI+m3AcaGpoQb2EjCXL4CglGgYRiQMGZWxwuaJ54KEHJjARsKKmZZ5jZjhmRP0KJbNeJDI+RooZY/Sig8jwzXBwYEcs/RwSIZQ9PR7/HpZeanwhSR7wgFc/nRiEQ8+51IQ4fMxMBQPEQ5LKTFSuvD/MkvBI5SOfXudqeRmAIQIDTETIS/HGYWIHIhrcJHOJgeRYX5yclTfqSKu0tUPa4+AV75+DedYEpcQhsnrhkBBfA3Zqj+OPjpDqEU3iZ2xb0snNeOaMheof1NEGv7LYEXE56HUgAwnQQewHxFbGvypF18nOHnLpPEKwFB0bcTsgQtH+g8SSfk7rEz8l1FS0VpkTr8vo399lg8FJT8xE7G2RVpKwXhuwTGOdmRAiymqVSgaHGHqRAGaAOOh6Z2dljKxJOFitWNdhek7d8bus8iAx0LIvZRo+trG2QDqD7GCHiFJ/MRK7JuWUd7xtr8h8PFSuEh8R+R3+6y+q6kZ/v7Co6j993yP7QIoMxI3qmvhQlmjmzo4Qx8t6l8xuomZoJS4wU9/oAD7Ys3Igjg71DDCJCAp2q/XLY0mCkd53gaV3iBCDKM6cLf1+eMiBff3CbQEhpezrS17IVvpq4Zckozn26BJAlCLLZ+QyjScZgImLHfYK74e8wsodN2wwRyBmGcSF4eZge6yfYDxiPfxl2nwO4JZtLTPhgCbhkdbNy8y/V4Xd4xP90Viy7iiSPAAAIABJREFUrZBWFNOiVMJzaC88QmRO7AI+ijZKUO1WRSLbq6hTrXkUG3WtBCMQIOzM1o7w4OBvntsRwxHA2+l8HCH9IB68v6B14fvHFOYN2SrnlLZPhatxsYcpPqIsMU7TKhqV11Aeknx+zofzdQD+b/r7RUVf0O6HpwSSxUByhmAeANL8Ln4dOvMHveToUO4MpwwQO8BDuo2yIdEArMYcPOhWqbLn4iYbwpjbnvBwO1cPXxCgaIeRzcGaXhWWDuwd1txB34kAaRwvWVjNUR056lUWzOWnfYsDhnneGPsXa513McUnaldS75BwEqH6uM43fkgJzrR2a0LaQ6Srg4JGfRGUTB7ow5F/r94iRsDb18lGE22/VGHiGISH0vREhgdNWxh/S9JvMgKAOoEt4QhaYXkfc2PAmMPeEZwr4742TWIokjjGOT5qlwlP07ofAugGiBAjqBjr4nVKIHoR23jA9deH8F3Ckq/7C/PxvWJ5iEh81of5henv3zqFD2Ye4APv89nDjDmu+LYpVIhrmTdsVkNEUwEcohagmJyP96tBGMe1wzkG/yFdajDiwUEpIjvEuEPm1CdVUCDUgvC53dIHvz9Aqj6/oo4mhurQVnSELGZV06x+FE4GS/Kpulec/54eUZEcktRvY7jE2UPrwXMipDrP3V9HXc+ZpyRCGOFp5s7NV4sLiudeaUelSqBu71HAYIaRDttreDl5Lf29dkBF0Sm6NqSePo8Pta2Rz0yuI+ayLtM6vQiTxBr4Odjl3JvmVPuXwdkUpoDaTsaDh8iL9NAg5fo86Pw9SAxeFpOKE4Gwmc2eg078RZDpmOKbIqnr1CiOntPf14jSB0F8VPXbHvr7t1yZxfcAXME+oIw4LvvTAD3E/bJnIe1MAYhFQgDMk22DIZMD1077UKfGMegNIZR6MJgLJkJ3rQRyz5906HeweECUEjNMSGmqU4YwIyg/NTKP+egskGeQtkpUyrR2ySR9HC+KX/B12CEQuRY/HlwHrH63AECOfO9by/ghJY494WdGDpN9i1P3zAToWjlWWyLVfp1UvWnreUj17AR4lvqO+rD13c9pP0iqH1WC8Mw8YcHDCm0VTvbu/geE5YDxemgdB2NGcMrMEI099v+FKvhy1iS5Mk4oW0M9DN/sA6Xtpe3LS1KIa4RnnstrKl8a6rHXWQ4R+kFEM0kAERTKhsRkYAcTaSU4ViZggsqdARYl5akyTMVAgBeHnKW0GVB0Orm7d3V+Q1z3OV5DNAUxHwA1cepZ64gblmlO0/uiPmJbykOuQo5E0i4gABYdfSUiuNLGjkO9UjWXfZ/HrLjMBlILxENqC41XKoAHsUrk8HI8v3MG8W8AlDQ6RoC8noz+ro37cN9yaQTohD+D6HCG6sMPebzX6xWj+MsURqxpc3mger5n4nKNYarM0hz7dtXrVYkwxX5d3bAXlPnsHnU3qU+Lc0W2Q7gjzngwYYi7tYT6mog//8znVOc12nqivDTxEZENwPeo6p99oM6fAvBnVPVLg6hNxtprwWGz0ZG5j6QnmkxLFZIUdRMPOLFUpwSBaqxykpcCggjm26mwUqKTg3EdYdtAclERr3S2rowumwaOufTZ62avs65NcV0A9RryFsSEuduDUXGXVO8qvRMiQMF6z1zA0RxjKxyxa5eak01jrA8je/Z6FEJ8qsdreoiAZ3zpXHbpY7L17YalDqv8iOGObUQ+ryrtH8SxUUM7fvCIQ58J4ywZz4S3nOfxbAcjswozJpeHm8cA7FRTV7bw2A5z/bvS7hWY370IZlI5U/4BU1l+vzLgQ8n0canRqxCJF/Agpd6XSAmERazpHBzGh4Y2PXT5icRZ3I+6AWeCYTCdDwkh+bTtYAJQ7+NQfzsB6RGjc+RqnNJP2otqX6V0Wqe56IEKgAmmxP+mNd018wpgQ3VrUOvx4eCElSx99US6te8Ah6K+mJBOwEtR1VD7u7nNeEKiyT2RKv0dTkjL94fZEnb2iwdKIClFTaZ5MCx0gqVYvxjLkU0CYm7tTFwPmKG5s5DK03mAmYJpnfbOA8fTvLY3gpEVoTiLeEcGC1LbTTdzjEsdCRaPPFlnuLnKSBXGVKb3FIR8xCgRASqM5JXzdcRoXeWBJhva+y2PLaF8CsDzR27z9RQBeTgNYJCQhgrxwXjABCgfH+1WIGwtn+1cKBdAOoY7pT8/5BRpGGMexibuXY5noJ0+6+5FJDqQiPc1w1dxipjalANIPQ7o9L7i2wNu+nh+9JPaLYemqNgwOPlw4ADQFkUj1V9Xce+hYCLE51P366gc3W/DhG2uq84hpy2lydirnLfs5xXrkZTGx7aEHUTRll7njsk99gpoArFOg+jYM643iEUSnHSmQEo/mkyVlLHk+oSr+Mx0zXAyF6nwJdM7ALubZas3J8DS6aFqOZlDxwe9Yc+pAdLGwqRphm1w89B5sKzWizKfaanf5RnqqBIT4Z9susBQ7H3sp4x9m8azH3T985AwPaJs8SDxEZF/a3r0mYNngCUU/R0A/n0A/+SRxvaBlZcVnfP1Tno54GTkSt38BgOhBiFUcofe9XkMDLU/nQjQNJcD4lGkiCvIYMD7qDs0EjtKdRwywwTngFu9fhB1rNNROewMZW0PP6Mm98Rkqjtxouk+63V3efOmsYRKNtOciY5rynWqO31brmYIWJoID8NGyZhwVJJ4S3l26FKPA+SWV7dXuLFUOhN8zXs6zXWWgMo2PGRz4L1N8LD/7wIwD4hhWRwdhEdD7S0TgMok4WLApsbvaY+9fkirajnOKu0Vtx+kSoxoHabLGgPZMTE8v53KHdfH+pDm97HLiySfn0IFoW/1f0dFYKD5HY8ystddmEN+ibqFJWHCAuc2wXpWek91j436TG30ePNDupEr59GRYbi/1ndIpLU73DmEA7XcNMRdl2PEtckrh0DCsi5x5o6J1vCbmBDHNPaibnuZkm1LmZJO480dlbp/2TUCEV3jDEuXxyW5dHXkd0RdHflP/QRnPwje9MmOiMQ8ZfcMMGIyc8e5NfGs7Cs1w0gzmAvBDrYeLpPaltsCHt7fHRMoSbT4yE4fHSw1eYnOc3CYqWdvSlH1kDqKGTZgImB6HUZKHbnOSAW3esT3PNT4gap2z3QdwN4jlhcRn+/FmPZ/CuDvwAjSXDbYLaY/eXTXz4e3XMPmOD7EYt/w9cbxbp8PizImCAqXu9f3xoF7YDx+qK5yWepqrTgHBKxa4nmmaan1n35b0eQMaIykgyuNX+ezdyR90XeDU63Ty2keEdAHfz8gEoV4yfDqIoLWXfpglSdErrsu+z6HygUYZz9te0wwUetHP6+SAaC4WMPtdA+KgsQUxRiPUvRorIsvX5/fy6GUM4gDrS8zOPNNn3q0oQSjYcznb1KVdoWIvazdgQF6XrIDAsQSYMm0nvMLBkVqG3QmD2Px6B3YJXyeFw/vCD5eUK57ah4Q+HxHOOGIISzn7SXX/SXLg8RHVb8n+xX5VgA/oqr/1WN1LiI/COCbAXxOVX+3P/tyAH8ZwGdgWRX+sKr+upjy9/sBfBOAZwC+TVX/Po3tT3uz/5mq/vBLDWB2Jz3AfPOGhit1XrcspHJjpBuAyhxLIU4Yh4MPqlCduTCynYtqfno85umAR9eKVO0kWjs6+ALT3U+Aq/RTeE47aqD1mwmQUyphjn53idl8aJgtm+c8jTPWnqflag8mCiGNdBW0pYP19OmkoB6gyXaiJEAVqWS9iehcYWPHuw5zx94k4SoZHlfzSpHCD5rtlANtu+JhFlJv8XjDMUESDBfvhQhEjCESnTLSzw+nKXrfkUeOq8a9PHsOpi5RJdJS3u0kwheVg30pntTUxhFByOzlMZ6i5fDzJbZnxbNxR6AqvNWxHY2ZcA/XlbmLelZmD95DZvOh949QXsXh4IcA/Poj9/9DAP5rWPaEKN8F4G+r6veJyHf5398J4A/Arun+nbDrHP48gG9wYvXdAL4etmT/u4j8qKo+PNZEuvxs/nv/nG+XBDC83ab2hmfbBBQ7jivqO/AmJyj1gxdtfhzGxcfHByfakT1XDLBKge6RYeCNwLcme2aUiYqvhRHBA+JyjeMatfzFAXcdw2L7yu7dflmyZTLwDoZBMqgy9xB+X8qiABqk9Wy3x2VzUxBm4pdQhwF7hkQFuwzcjCQDVqiubAJcRj+2hTrudokrGK5588HzswUhC2arqJR4jCjebMJITciwvyiwxhoxAaRErQVZoyLkfEF985pEhoqDNng/gUF0hH5/qfIQ7WdOyteoXNnB6wL42kg9stSWScfWprqGYpcFJT99gAgdjTXr0Lgm21J46qU9Od6XwGte7Gl9XgPhAV6N+PwpAH/uMTtX1b8rIp+ZHn8LgG/0338Ypub7Tn/+WbVcJT8tIp8UkU973Z9Q1V8DABH5CQC/H8BffOEAHrD5HOq9DauaWqDR335gk1MkwnMoNQcCpSuD+QAPIzPyvRxJLlxe9tBR/eynVXidOT0BxuVgAeRMQAoh0P1YZCxVGSwhy9KfP5M5qh3WV+RKKyl0qGXmGIu0ElxmENwgPJsA981++tz6SaE3HdLEM0444bk0yMWIgmx1kXQhBM3IvKNKF4JUheqqLuHJwBtOKNpF8ndrXzy7gULRIQuwrB1t6ViXjnXZsDRF9znfnVdczgu2S7M2gpDFGDnxpnuvSfcxXyo86wLojY/11NFuN6w3G5bWdypKERTPQviedNqDeKa6j8dvvsfNv4/vem9jf9WYgUxVNNm0MgNDeK/GnpSBYrxkBkEFEsRt0N7cz53GhLNksOTLtFmsnq4m1WVGBtjaz50NYnblfAgzOOP7UM/amdQypmzC2w0inzbHwAnzofoQEJ9fBPCJ1zOMUr5aVX8ZAFT1l0Xkq/z51wD4ear3C/7s2vMXliOV8iHRyb+x5xaBPLBgztKB51BnKpIpUmyehIS5v92AD9pj7vtlSw6Do8lpfsTNZv3gsiduOOvtOCWd/q7cHBPdfZxG5eSr1GJEu4liWXoiqCiBeI3DhCHVOKg8pVhuJypyNgQtmzEXtpUCrM3zwgn0IpA7Iz7tbPudW9CIOIxpGCLfCEYAa38VU11t41mubYxji2+FYGeMXdzjbV06ntyccWodS+voKth6w9YbtAu2eX2ntR7cAY13E7TNttHSHZrKKOa6rB2ndUuCt2tWFI1goEOSAO3Wn54DQXyGxNmcidh87r03aNAVtuMB5Y+MYwsbZQ4OE4xWVp/tUYVfUt8XnXBH5LlzJgLlGz4rPgGlTQyiV47GIAZpI9IDRhV0V9J++nW+ZYu8LWZ+fY13dV8T4QFejfj8CIA/KCJPVfXd1zWgB8rRMugDz/cNiHw7gG8HgOXLP1nfvYjoxAgCKCPwkrihoSN3YAyuIxE0IZru4nfAYD9KiUET0vCoQxWdk6t5MZRc937xF2xon4hPTaWi08rXb2ZJbtcezaFdQVwQEGExbj76DMITiC/WraugKdClGQLemiN1d8bYESDbJLk0tItAzkF8AKgYQ9p15FI7C9p9g5yB5d6QNDCIT18BXWiujqxkC0IER1K+1xJSFQbTkg36WhAiZLudNFN7rUvH7emCJ+sFp7bhtGy49IZzX3C/LbhsbcBgs/nA899FDl1hpwA1Qtk25Pxyr/uYmDTFad1wahvWpY/1nPeR1polnw4pzxkMZslJVbB1e9Zh13eHFJTj45+vUmZkG3DGNjCAtBtIBiGbiLuhuowzHzaceUuVUlvl33UMxV28BHhPE7x25I9sNYW53DN+qem/hlFfQ3kV4vPdAP5NAH9NRL5DVf/xaxrTPxORT7vU82kAn/PnvwDgt1O9rwXwS/78G6fnP3XUsKr+AIAfAIDbz3zt3s+RjXYPAXQQmKhHhCfhLrgjVr0FEgjRNv6x/QjUNug513cuSg4Qd/azG/Oxe3ASCrkCkD7fkWuKuKSjdgAyPB9E33tpzHXNwwfQWk+OuqsAW8t1bM0knqUp1gj+E0Pi57441w1034xw8875B0LYXJq5CNo90IKgiP/UBr1oqiXlLFjuBO0MtLMjZzWCowvMtrIIIXW4NDXWcVZpppqOAp7RYKrBBkuc6gO2TAGAepBpSB+36wVP1jNulg0NJhWqikkQrp7si8u43mYm7IQzPgojhjGoHogWFsWXnm+xQ8g9OC0xQWDrR7pSvwUeg+g0B65MsCEjuemssku4mBgIloj3KjXKKPJQufaaiT4wrmyItZnOp3STeu2ETEzOIXss+W2RkGgADrVjkFRljueK+LGoJxOcle+F6/iaHtA2GsprKa9CfP4hgBsA/wqAfygiz2GEYYfCVfVffB9j+lFYLNH3+c+/Ts//pIj8JZjDwRecQP04gP9cRD7l9X4fgP/khb3M3A4/Z4DmDZTp51GzB+8GQao7LH08lxDZdWqI1CIa6pHWC9DNBkZ7XrnOQx/mmeBMkgi7FFv1wcalEwK/J1sW22VyDECuqYjuuNsooe9vQVh6g87cLpUmWtQ2AHZ/x3xizGbrcRXavaDdCZZ7QC4+Pld39dWRigLt7EQqiE/YwYL4KFKrEod5cMv2zIUtV9OpGe8XNYISxLEB0u2qA2kyMgksCj0p5KajnYzwPFkvOC0bbpYNqxhRzrRBtC+yBJMxdP0Jx5tA+zJgEBgSV+xZMFNkZyiqMgQxGVLoWHfJPbFg2/puVsX1VBuMfVNXJVbbz9hPG7QPNuD54BqGeraJ1fe9K2plrfFvZU2QVR4sRftBqvVsRqkf/i7GxIymOlMShIeLWMov/ptbK1WPiPvRwcpnL5jkeyyvQnwagDOA+ZbSa/T1hUVE/iJMavlKEfkFmHT1fQD+ioj8ce/rD3n1H4O5Wf8szNX6jwGAqv6aiPxZAD/j9b43nA8e7vwl3rGkMb/jjREUG871dg922AkSX8tcubkJkTRA1dVJwtwR1ZE9sF1ViTCxCILhXdfMvXXuYcgXHVWCgC1LT7sME5ewwwjGARjq6hFF3uhd2MNUh7HZkNBom9Vu29Zw2VoasrW7DYj+QQFsDbhvkHsjPss90O6MqABGhGQD2oL08pPLkHjaZWxnd6TU/KYEzpUnpJ7RZkSqn9QcGsKpYakOFKl67YK+VeIjq2K5veB02vDk5owbV7cF8r/0Zuo2bdgii4IAsnRL5dQUbe0peUKBy3kxgtUNroyYEiPEXLTbrratYdsazq1BtgWLS6O5D0EoMGw6R2rfgItrJb5j54TIDtG3VjzckttnZF+anvqJ88VE9UUlMpGUZnV/9Iu6HXUNs28cEp743Kr5JiVB1INxOtMgerBndQ3YI/GA4k1ty/75I9KhlyY+qvqZx+s22/wjV1793oO6CuBPXGnnBwH84Cv3v8ZmTZtAkgD8+t5dTjZWu/k3O+AiLuowxmI+Czvu7CBnmzjH7F5NyclOKrPR5uDidmPw+kF4FrpOuYwHSD08gETy0gw5og89U4xjcbVZEIaN4mKCiEggE5dEwhX00iai1QXbxRCNGejtQD4n1V2mqzlyt1XyYnIPshaqtrOg3QHLcyMoIdHoPaDvItVU85lMFZj/jvR+rHuri73vK9BvjejgjQ3t9oL11LGuGxqtfRPFIn1n94jfm6gRGzGVY3fE/uxyMjvPZcXdZcH5suByMaIiTbHemHPA09sznqyX3Jf7y4Jn9zd43k7YlsWI5yrQk69VIMHm5wUALoLt+Yp3NsHz0wnranafsdeCy7YY4d/a9ZiouRRdlhMdznlIsMznqzA/RxcEejvlOnI+D04AZDobYHucV827oloda44n5hXejBmzFHX9J0mnRS2/ezh9K3KQmUUHsZtRWZwRUoVzH7E35eLAWO85L9yOmL+/8qVx9cHrKAKPU6jPrIwNa4uWWA87EC1jNjIwMTe4Is2QEkSJo62d7QkVv0gD/+BCUtrwK7bVFeqpE2dV1oFePBGB65U12xT0fiQ51WXi9oonWijmNDjgsHELejcngCAy2ZZzyAnogh2h125EJYMuO61TLKmrtnbuz37gxAl5OAC0s9lucj2XYUMO77RUlwFJhPoaiBjpbp9qNuyfqRjS1pOiP+nAbcf69IynT844raYuW9xLbXG1WajQbpYNN+2S6rTmYtSlL+gQPN9OePt8g/O24J37G9xvC+7uT7hcWkoFIibprMuGJzcXvHlzj6frGU0U95vZx859wXldABVsKtBF0J1IHyKfLtBzQ1egXxq2U8N56cOZqzdsZxMD9UKSW+zFdItuLnJh3uQw9U8MIz8Tx7ncHkkah0lDAmY5Q3eZI1ERAQjATUXaaA5ByIrDEYZdbWGqJiOJ8KRNKfFepNber8s8GQypJ8db1yGlatImZOaNzDE4CE8SN14fwZDCHqm8Z+LjNpaPqerPv7Dyh7EITBVBfwMohKS5K2twnUN33cemAaliahORCoTLSLoQhN3m66A3gNUTeqb5ePzSNd2gLWOypiRyNbgP9FzgwYhqqixSvUnO2z7ZQvXhKrdQZ422bKDd/KHRlVR4rqrR+Zv4fQrQLWlfugAb0CJmJjhyPtfxjm4G1ZBanEuVLqYu2waBUTHCs7nNpl0w1GvBYHidfgNsT4YUY1JNdZGe4UkXi+3Qm47l6QXr7YaPPb3DGzf3ODWz2TSYFLO2jgbFk+WMtW34xPocH1vucNsueOL6wLMu+MLlKd7ebnFxj7Z37m/wxXef4HK/YrtfoOeAS+s/vOJulg23ywVPlovDseDcXdpqHVgdBBeTfHYIieOAzgJcFqAptnNDXzRjasJ1HRvQWG0Y0kDYuog5YBtmInIKjA2+qpTUTMR67xHjTtrX8WxHeHjvyD6T8OQMqwRDSg4bcBtiMKVJnIpjh02QCWK1TY2BFgeHmGuZBz3ncZfJj+c1CJkIT2hxuD9fk9S6eGNysFTvp7wS8RGRjwH4M7Ds1b8NNszV330DzGbzpyPtzYe7OBARxzFsCPDUKsCy9BJIFzaHLjJsFK42WRfjXgFgc517cvxJgKqqyThUtauVg43z8dmGOzCkpIVBhAJI4Klx0iiJSnQOmJXyLgDRRXMJ9ZvntxrgB7KhtHHlckpsVr9r8/x3wwU3VGYpxQQyO4ibsL+DmPj7jox/aReSTNzzKKSUmWCk/SLa3cyNONyvdAW2GycmgpSKljug3fuZT7UZcPlYR79R4I0N4rYtm1uDnikdjsOUrgo5daw3G954eo8npzM+8eQ53ljPRnBIqlmlY20bbtsFt+2CT6zP8ZWnt/Dx9hxvtjsAwDv9FoARofu+4O27W3zx3Se4e+sWeL6g3Ul6U/ZTh9524MaJkavtQlV3vy04bwu2Ppio9WZ4rsWaRTBnPzfouVkwakg0bu9QV09DxfxhLkHoSRpYxImxwZr6lfF24BjxDsLD35cUQmKu6go1b7yQWFhFnufkwK5UtBDxPRHDuThDGtJM2s2AZMK6YFyy5+20lTJkgJg0laImZIk/nE5sE2kscc4KvXH2rriy0oklfFHa36naXkBV5MVVXrW8yk2mXwbgfwXwuwD8AwCfB/B1VOUfwVyx/wiADz/xCQLDEo8/j0PKuvhR3JWVuImIN1nbkJKkA4sAm9tmmPjE35u4yklbkTASEJkb8u8lOOywYwAJQOP6aZRvcspFHecV1XkaAXQDwmumO8cWXmsh7WR6GW6jDNPHJQqJKO3gnJ0zFFKfZfQ/Hcpw85XkfGnbthGDEk4B4c5clqsQH0OO4sQnCHlfjKhsb3Zsb24QtwFu9w3buwuWd8P12pwELm8o8PEzTk8v+Pibz3G7XrC0jvvLiufnFc/vTrjcL7k+4Q59c3PBzemCjz+5w9P1jI+d7nHTDMmHKi3corks0nGSDSe54I12h46Ge10AAO9uJ/zG3RN84dlT3L99g/YbJyzvShLMvgDbGw0bgH5rDNNla7i7rLiXBZs2PD+fcL8tuD+v6XEWsMwBvFsXnC8L7pcVFz0Bm6sxz4D4/Tf2+cgTlwxC0DJxlWUXdFVg9aBVpYDrANUIcOUYKQRhCEInJj0hYBYpZXAIwi5uThxPi6YjiTIBKAFH9TuIaUJk8fUJiboNO0xkW0hVF52fncTDfRLxGQyhVwxiER8TsVBgZCjZebnHWQS0N3SEanTYQEuWl8SBRNBQifJh1pH3WF41vc7vgiX0/KyIfDcs0zUAQFWficjfwYGzwIexCDCICq8/qZyizClBOqmfxIG4q9cT7LksbtvtDyUeIomEbXa1IaGcvr6JEYs0norlIrNBj9Tw3i5PuEpCRMSYO2rBlXrqjTYORN/aMOjPYv90OKS5/ScInks54iq0+D1iZSAxSCI8F+wQD69ZBkOyfcbbEj5X83Y4Aus3wPZU0T++4cmXPcftydRRd+cVd2/foN+spuITmIvzx874+CfexSffeBeffuMtvLHeYRHFW+cn+OL5Fr/67E28/fwm91YA3JwueOPmjCfrGW+e7vFkNRsOYGqvixribzIyAjxvWxKnk2zoLrl1NLy1PcHn7j+OX7n7OH71nTdx94VbLG+tuPl1wfIusJwdp5wcHhaz/5wvC+7amm7Ol63h/rym15qI2TcXDx59ejrj1DaIKDZtuL+s+CKA7bygn83bIqTQ2WMrmQF2MW8Yt4U24+iN6ZmkjJRyq+RbVGG8pxELleowclknuB7fqNtHDbkrHPlHItODo1ty1rVBeELNLl1cE2J7JBjndjCuRzf+Ige4z1xAxDhwC9tgShNSojiKjbYZU6lOnVSUNBADtw0POB9LHyr/tEkdSYTvo7wK8fl3APy4qn72gTr/L4Df8/6G9MEUhYnLac/PdbVn3VUXZyz5wTDSDQ8eEcX9spp6zj1+inPCkcjv/W+Xhu28mMom7BjB0YXtZSG3WACQhq0vCAWs6JA2hCWRnI4GTRsdTwZSVm0YVUbq5ZWJx0UG8eEo+WCQwhmAJTAZvyIOEEs1/jLECoIeAAAgAElEQVQCM1l1BgwJpp/MxuKRipDNsgyE63PG3EQQpdSfugx6GZJMf3ODvHHBb/uKt/CZL/t1fOrmGZp0vHO5xS89+wQ+/86buD+vUBWc1g2fevMZvubNL+Crbt/C19z+Bt5od9jQ8Pnzx/Gr5zexSsdpeQP3lwUiwGnZ8MbpPiWdJh2XvuDZ5YS37m9xt61493zKdEC5Zc6k3CybOQicznhjPePSG94+3+BX3v4Y3n77CfTzt3j6+YbTW8DtFxTrHSCbYrsRXJ4G8hLcnxbcyw3Oz+246+Z57BzmtAFys2G53SA3itv1gk/cPscnTndY24au5tywLm/iV3rDXRfoc1tc6WQfY5sXxlqn7Y33eaqT/3T8nqo8h4ORSdullQXQU4esinbasKxDPd67oF/a3ssuVNMqw67pkgwfnWqDHJJJSIOce84kD4WsMNsXqqfi1qf8c3EYrvRXpLVg9EJFPWkCyvkKTQOrEF166l2GZOTnMFM7BY5gqfGYDl9lrN9LeRXi87UA/uoL6rwN4Mve+3A+wBJEJP4krhmo3EMx3Pt3aYMRAJuit4bN9cBzgOfsshxt9ktLwiOR9LFpDqPbPdBQJQ6KjMC7+eRkGKimzAad3EoPiI82G5w4cbM08F6fPM2KATQOCBsrNaSVCYrd4Gl3toy2GKa7B9VJM87YjP1uuF81x9LP4lkJaPxu+FYnojubRBiCT4rl6QVPnt7jk0/fxadunuGTp2c4yYany9njZBqerTfYVHBq3SSXxXKobRA81xO6Ntz1Ffd9xUVbCa4UUbLrGOG57wveur/FF++e4Pn9ivv7NZNjliJAWxRfOG1pT9y64HxecX7nBLyz4vY3jPCcngHrczUioKbeSnuYE/p+FmBbzLPx3CwxahCLkwKn6sIb9qebdkHXhq4Np2ZjaUt3BwOT+plJz0LEJtSe8fMwvoQYJA1EKEgbSSE6sbeJLKtEFGrPohoOrUO0ncyWqUZZva4KdBm4QYCaa+6KBCCiWKifsK+peiolCWYuFmycjZ1W4r0UYqARchbbifqQ+NKhQICZnnDWE247Unw9VnkV4vMWgK96QZ1/HmYL+hIoHqMSRXGdqgdAhJpq5tr9IG592EqO2i15ztTVWOw+HIgbBiyyGoFi9VcYCSMlCoCUflIkTwIhifxZ8kgJxOsXm0uHZdx1W0d+p6gusy+zwhpHgCU3X69uzwPRFK5MDFFFIktdFHrbISfFsm65DnoZLr353dpNvcNEj/Xvi9vylo43ntzjjZt7fPLmOZ4u97htF5zcSPHx9Q7Pbp9jaR3nvphHmnR0bXi2ndDwJgAz/P/a/Zv44vmJSTOXFVsXJxY2qQ5JwvPscsI79zd45/kNzncr+vPVJJDgagM+mtkLL8s6GJbNvMyWdxuW54L1HWC9A9p5wFXYsVJKjKXw9sXbkJBQmzE3AS4vt7H+XRCTZggtgjzT3hYSj+e7K4QnBA3n1k1lXREbMy9KaqHg7g1kB9IeQc/DwSXtoQ7MIi4dTRJMxCkBcV57ObcRszYHTZdlIaITxKo5U6iI8TGXCJJcIpv9nglJl+6wAfG7+JMpJduO4vE2OIQ871FJfQPip7e7C3rPtXmc8irE52cAfLOIfFxV35pfeh62bwLwPz3W4F5rURC3SVzHTqKgAMVAwhz/IGp5nRaFOMDqphNQONKeZdlO6jL+h1CnYdhg2LbCxMqbT7fIyIIMJLeYXCXNAcDQp2c77jHXk2861jEXjkhQqKATPC2QTt/4WAYHSwQo1mux+SmQrsLtZrN4ldOWkfTb1jKIMQ7L4kGbLH2KI5fW1Ll3xc16wdP1jCfLBW+s98MLTMz+ctvMJdkCOK2diza8fbnF8+2EL7SnqY56+3yDZ+cbvPX81tR0AG6cSD6/rJlv7dnlhOeXE57dmwqs363Au5HUlPaT8q+lENvdBnYxT7zl3rzxbC3FPPZO7mhwK9ieIJ8xnsk8hEnoNCVE9hTragSzQXHRhufbivttRe8ecStKruwYzIMMgqOLjUeneDpJxkcHXLIkHO0Q8WGiw/BkedWcSfOsF3NsWMBGXqHRBqF4mWKB2CPwt5OBpapLkZ6xnGxV4/eVUuPQd8WDNWy5qPMUX1MRuDej1jU6IAoDrwzmzDqhn80dP3p4zYZem9ZeMTkZPU55FeLz/QD+BoAf8+zQWUTk6wD8twCeAHi0m05feyE1EUAUfkLU6T7JfxPCjgvmQkV1yJF43do/DoFmSCYy1FMECBn7wvWBwdnG+GU60JjGrqjERZB9hWSX6rl4f+CkMTAknIgEJ4VaN74NtZiY90zJMwYU99LM3nyzYVk6bk6X4uIaaVwWNwDfLCPLcpTICrC0jifLBWvruGkb1mbBnKe2mS0GN7jFZXh+tQ1rW9BEcekNzy8rnl/cbqKCizZzTrisuD+vOJ+XRHbm1WXquijPLye8ez6Zqu1+Ae4a2l0rAa8QV5s1hS6eOKnDCNTFHCzaPdKLrJ8MKW0w9Ve6jt8A21Nge6LQG00CYBxwMAlOKNZuzgaEMO9dUrtow6U3J5xrEvzUtbXIzu3bzcG4C0xVGhJY2IWcYACuEu6mvsuYHVc9p3qNESEwzqHD+YhvG7mC08GFeBqJ53kE7KnCtBZCZ4UdiuYS2bVVcZg2KNVzPsjeBKtT+00iBs8GUeL/fM4mRU5ENiSRDmioxYOACup5Q6zLdN75WJRnMtZmsVRWhgsovpGJ2COVV0mv8+Mi8j0AvgfAP4bleYOIfB7Ap2BL8J2q+r893vBeY1FYzAJLAsDODsKwd1XiJKIUHm+lBODwzjk3YRykVD10AMwG4NJqczyggrCHd1C6twZQMTGU+p1Gk8SMZRdK3mjAuC7AXVPTeDzpiNWU5uMOm2i/uMN674Ji0M21kppvLlzfOffbqQ01R+Q4i8zOAEYGZahnC9jcZrNhlQ1dG87a8M7lBm/pEwBIggR4JgEVJzwnPLs/4e7+ZB5i55ZqU700v3/H16MBdzcd96eO+/sVy/LUvMa2ZnnUnrvEc26W1PTssUdAuoR3ifW2PzoUTf2ahxtbuu0JRvqeGzVC5NkUdFHITYcsHctq0bR9E6srzQj84oTHL4ZrzRDNuTc8O9/gbjP08Px8wt1lwbN3b3F+d7Vzw9dJ+N6Kjz8dRE7IC/ZEYXYmJzztwgAoxTW+nwCsfvjSqUWzwzxKKsgM07MKDCgALWpeoQCw9QFXgDn+XPJ8zFKzMQK9S4ZeGIxL5s5j9Zyq3Qu1SRverWLqvZu2QXXL77mNrpZZgonR7LxkRJ/etf14M4jdpUFsDZoOOUFEMIQr35fAFWwXNSeRl0GA7628UpCpqn6viPw9AP8hgH8NwFfAhv9jAP5LVf1fHnV0r7nsbCQkphbECRhSJDUIcySMeIv9BaNOBHAO1ow2MkRoH0MSQR6j95nuqRMczP3RWSUOFZXIBCdETgTzsILBBbwNt88UhOBrwzYGGzatQ6h1PFAviU18H4SHYosi0SYHx122BarDqzASWnIJohPBlE0UzRFPxNVsEnaYFc8uJ9x382qMoM/Im3bfl7wb5/684ny/YotgS/cYa5cR35LSoRphOqvgEgiru5fZnavatrEHaboIacSzJ+hiiynk6Tc8I5EJSvutAjcdctqwrBaBv6wj7mzrzZDsJqb+6UgXZdY6b70BThgWsdizSNuzXcK+JiSNGEGL9g7HLyDXZ8l6hY+aGPeQepJhIcYm3YPD84vPb2mjSg9ZJxk/oKiSrjFCTqg3IioBX0XtxhvphW9lba1jLuEMFExiuGlHQl1eEPF4KHGuOALcKy5wtaOfxR4MKMLehCrBxBIlnpHhnBDxVG1e2Mcpr5xeR1V/EsBPvoaxfPAlAJeCNWc9aXqE8Gezx85MCJjLcEBWwRD5uQ9CujGGAXgHnMasA4/DFIdZFIgYG68fCAHpoeTvnMBqPwAu12sXj6MG45bTFdzrZgyE6Yrzfpicgvh7mL59OjBzbjw5OKwW5GoyTcalNE9xo5FZYRCbQAxBiO5lwdo6Lr1lMPClN9z3Be+cb3B/GfE267Jl8s6uliTzsjVcLgu2+2aSjqePiYBZdjWW5tyr3xekzd31uX5cUz3DUMMg8IumBKBdsC0K2QR6wiA+qxOdpxcsNxtOpw0nTlYKUxHdn1fcA9g8N1mJsVEPLUDDWQW92dq1ZjbMsycoTY65OYyJw0M4FfSQXtwz0cev4sRJncj4niHWLJiiRt+uCri9j/PADanc1yoQZZw5PicBx3lmKpyX1DKheg9G0OHQ8LHk2e1znsdi8xn2HE522jwTxuxRB2B3NXg5EwT7u3lNpWQiWZwALQrRboRHKKtIdh64T8vaiTs2KAZD+chCD4BXy3DwSVX9jccfwoekqFzbVyuCisSnd4V128W6ONFxoOa+ChIw1im/iT6DK2KReFa5QV19Z5Cc38Y3uvpBXjj9iI0zvYJAsO3IQjNQUFNNk3mraMzzHTGRTNWQywhaTeknTwot48Ql8mVy3W0oJf7C1SFh41lbH6l0YFx86ORDPfeuJ+2MhJqXbcG75zWj/MPz6eZ0wc2ymf1jsyzRm6sx5CLpqix9EJ5cu83W1vZ8rEPW1QmH5F4FY0PPg9FZ1B0x1CUfh5uTEZ/lZsPNzQVPb/1SOVLHXLYFl9bRQhXUKJuGWqqkfjYwaovZKGwtWhJ1W29YPsT0UHP7xeru8d0QX3d1m7lw92Ek9x8NsPSDtGapdnPCo6deCM+R7SVhLLjDqMKwNUsmJc5owP9w0hFXDfvZjKY2a9Dc/3dDsdaEsqtvY4+21iCLYlt72tVi/DMBi3a4Ti4QkLAc0+vhZRgquJyn2oV9HqvXL214I8ZaCXJvFFrtQ7FgMY0Z5z1CeRXJ55dF5EcB/DCAv6mq/UUffCmWRPYRZ5CGWc0YErAeu3yMROgcma1uhJc0xo9NluRCvYHC5aAaX+PvPJBDuhCHqmJzcinHor975qRKNRbnZwsukKSyiKqOwUYE+az2G6lEqF/3+LO4IRn66ahHWCcOVByOmgQRY02cQw8CJALLwOwSz8Ulm5qHzySmKOy1dPHI//N5sWDfLpnJ/Hyz4HJzhohJWhkoGJkZaO9VDDHziQhOvMXdPx4YmzBBrsg74kPwlKrPgMEAlVDXhR2seXaC1nE6sHvFehSpuYsh1Q6gLYYoN3XJTUrQJsQ9CRdnBC4Gl9rEovojUeuq5uF2a8GfkbxXm01CN0Fvze4WYoIBpLSDk2bevEPCk7AyRSPP9dTDKRSDaWE873AeueSA6Tz2CqOI5wz/cd7iSCtGYtVg3Bagrx26NmyTJ+Yu/dU0311+xkIfpGgNlqVDZcQhSVM0dPPghCdDFndkssYz04FsntGA4/hcEpW1vxbV26sQn5+DXez27wL4nIj8DwA+q6r/6NFH9QGVcUWxI26gApEO+NampkIIZB5tELIO+oHppzhngRmQAEDc1VGNgBTPGd7wQFDu/ZUSB5wbdtEqkBVEnVjAEoWulpdqoXiGyM6diULpkJrrZYzVCZADeY2HGIemFEZyouRooHlFRaigg9Dwv2uBfONOH6fh2pJ73KRh6z2NwuEJt/U28q3RWLeLEZR+XjxhJtBd7ZNb4Deoxn1CO4QZTIoKIquzKNzl3aL/lzuYp5rbUnQBtltYFulwV+a1AgghwIhBpOaf9R+u5jHPPye2TmTiUrdzb7hsS2ZYzy3q4/voOwhA9z1piyGzxXO+GdyIEe6m6Mti4B/hByEdn7oxOkswOuJShRjzdhqxagmvrmLkNDk5zaCBgoQfvrCQY3ECNi/ONPRNirE+fyLOuJAnWLhDO4FTiusbuu1xHoEkRuHOnbFUsSZNoeelrO2OUPrZLu2iwlrWI0oU/n2y2EK2paOnK7kRkEUUmwesQ4hJUmOaQmuSGRTite+frIMR2I3nfZRX8Xb7OhH5PQC+DcC/B+A7APzHIvIPYNLQX1DVL5EAUxiwnIKyYADW5EGSmV9hz8MDC3AAjvfdciZJYtPRVQJTcOy8wU6UBOMQAhh3hhDnmQcvsnH7ya3SCyFzP8QcwR1xCJzk1NK79KJ7PgomqwF2/jP6VYJLQtAJtE4022JuvT4lA/ypL5NYskYdJ0tpgLnpbhbcG8RxToYamSSKbt+RRDgM5B1BTnw29TpuV9BN7PbTmGsMIWwoATeuV293dkmdbGIX1Z2d+Ii7Qocrctg5FlqA8Aa7iEsMJhUcqf67I4yLnCzzdG94ft6Gk8HWyv0+SSTU4FFcfWjzcSbMI0Z1NWxzc7pkvrdbv47h+eWEd25vcH9ecP9kNWcKDPsGq/3SMH8Nrrz+cPUeDENcwxHwlIKG2+ZuTmafuz1dcLtckmmxG10tfdH5suD+sqBvxkT0i1P7CFkgqSLVTKkaNk+5yO4hnc52nEGRgTdcipJLpH6yRk2tqJPaDyWeK99H+4VJjb744/FOV8W2dPRF8g6yFip2sSS1mUW/DcnI2nHvuHCh90WOs7qsm6tqK/Pyfsurerv9DICfEZH/CMAfBPCtAH4/gD8H4L8Qkb8B4IdU9a893hBfX5EpHiQ5e+agpjxuUQcI3O/XITRDAuEqy0n5svQDzjUK140+yB0ZwFBvEfenmX+dOBMZdY/S/cTPYQ8ZQJgA/gCQZeJBku72gCnjx5Upl+mHhNXNE22XosilsyGJUd8gjk2RN7wmYY7ceX1wsKJIxItNqlDhnEDfWnoIBRzksGKd3Kiel4Y5Uu99MTdszgLA/6aM2yVHnhOHuPhOBcP7iNfM91kv5tjQpeHclrTRBMffw0uNP/S12hWCcZZEF9F0ZQdcqlptQJy+KaSjIP5bxKuJuuFbi3G8eeogzpV2cSKalw9OBEKlQYUzEEQ6oJ5OIiwRcX9DrYyxn4JBFMIbk9Y6VZ3cRm6XjH2fAD2/iyPM7vgxnWbxXNlfByXzHUyvjZHWIeYRBLO7urQ77oGtUckcEn0yPvEBWnB1p3xvZv9rlL0bsmcU3095T5fJqeoZluftr4rIVwL4owD+AxhB+ub32u4HWgRVggBSdx4uvgDQNYyI9GmcXUf80kNMN71p4WLjm5CIPJvvUDfwP81xwQnMbFspqhlvUp37crNhUS2FhNJh3Htnqe6IC8UkwcTDa0VR7UUvKJHO/ZoUxXtRvIqICTgcAxFV0aEK0+BEOempghwFaC/CwywPP8a13exNlZgTqRNvq+U8UzVJq18a9KLQVdBv/DOPk9pugZ7Sj6aHGIDhsu39Jy8Q7rNJIDV5jpTAQ8oL474TnXRQAGhuklx+IrBFM6NEMjkP7OXiQb0LeSWGd93WG7pLrwoQobCzFba3pXXzzoP1FxcW7iTdQnwMWWadBk9h1NKLcVNTNZrqdTBaqcmYNBp5XlKzQVKGe/dhssmmpoLPrxMjXaxCnwz5s9oWGkHqDk9A9YLETOC8zBZ3dQ4gYB5qtjil+4QIjzEBAoDmioHh5j2k2NdVHoNI/CqA/wPA/wngdz9Smx9AIaouYxMESG4JAEQjXfoeudphUdrJ8IbpleN3hKIbEa5oxMV1E/WRnFeqzQgBj6HHgfY/QxXECBhuTBTxezyCKA3A5jmPVSGkzQ/n1VMMQA+VCqn9rsVYaJeSooqD4sa1EmNsQQ116mu0PS8oPIW81wtiF4SH7TaxXhRUB3cRHs4hSCkvueTo1hFVWy2mZl3NO25rirMnC91uzT26F/doIz66eECooLq/hyAbnEDgQfKgVEeGrKoNYpnw4MGvEhGUAneNprV1lU+40MuqxZsy4GFTwbkvGQO0eRLVuIco7HRhZ9r8u+7If6jNqlRbJVwMJxF37mBPzKwXxLU1XFqDyAI5A9tiizjsXM3dxIfdZ1xm6G05gY113IUDKEy1qt1scLEowv80Cbl0BRZH8qsRLe1aYpLmO6p2hWE5VO+MTyg0pBBJ/zbtm6oQbRWHDFDBcPYJAqRQdY85wonJPGi45D9OeT/XaP9LMLXbHwXwz8GW4Gdh9p8PfxGklDNfk31QFaE2KGUGoAREcj2GI85NIGh7EV4w7DutfstcBzsjBOI/MqDOUo0diOYEFpNkESl46DsH3M6c4UHJTN+B6EJ/DuNMpTHlRbadxIRW4YiwWNe8wEFMaK0LQaafxReV2lWw0Ii4Ajv17auapxUjHgV5/aEgAqV9Whbj4EM9u60N/UbQb8UCyANhUABmtMGIZSx5xF/Jfty+jykJLSDnFCKynrBUwkGjOUWLPqjvILjhZZYOId3ifAKe7iXSC3lvYtJLBvsm4UE6P4TmwLo2eOu9pTPHBYPjvmwLLpclpcedhAIiPlvDpS1pv7zzcabaLpxp/PzFfVRapNgRfC0S60gMqcAQsl/JUQLFY2h0TpMeiGtMumbmE8uCEbAlhYjtrppIJkdreEXAt1ZYHOL7gBk7V8PuYwP0uboUF67aQxKqDIERnOHU8xBOeNXyqtdofwp2U+m3Avh62JS+COC/g9l6vjRS62AwzRGBbGUY4q8Z3B/UecYGNkXzKHPAOUA0U4oJwYh/k0DfKuE5VI8xwZnVXTKQArOuicgF2a7l47LxRFoVAOWwXlNx5a8ptciQKGCERbuOufl4Qh2wI+KOMGf1Cufasv781Y4wYToUipR6GHHz2SH6BPdkxKpA3Oui9AETRJIaYp/iYrEWiAvA5dShfUN/CuiNtxNSRlMiluS27YjF5um2C9/A2QtSPXZLWVIj/f6Q9sb4pUsluG3sUdisgvAawW3YXCKNm1DjrHAsFnsmdpeSLptJHOFNGQNTFbj3Pfq2oHeFUL6z3sVSEIXKkDhtGdjXDeQApFliVbcHxpXf7ICTe5kwVhmJPH98Tghht6WbCivc4gkOd4jdD7eGvVaRzgraTL2lXUxCSpjCYCbiWazpQu+KpoLgPfGEM6ns8t+AzA3pnwnivAdH4Kq/ggsxVOKu8o5nj1VeJcj0f4TZc0KB8D8D+CEAP6Kqzx9tRL+JJbglpcNeAGzGd0cb4Qe46Es92253bqhwPRjtzzeXcoBZSBrJvQVHG11kHM2oGxyvdQJKjeOIxpGWKnkmFa8oIgY0hpn7SdyTajdNtZB9i0Ese6vefm20cRzkpuXPQUBkcH7ZGNUkhKCBXKkS6+sjmJGvPA6vsIyjamoBum6Hiz0b7uvWehMjYDc3F1PDvSGJpMObq3fB3XkdlwmmHcIRk1/LbJ53to68Nro4MrrpFsTZYh+JGThQE5skiOSkZ9fmXK/NnTscfkaqwCBwrmo82dy3mzNW93a7bGZrOZ8X81QjGIwkt93jnYbEmxUG0zDbNALpq2AES5o33AabV+bYixxyOs5FeJGlNCO0r5PqHUBKsOl44a7MnZKV8jezBoIdfTjL9hYBrXyODlTUecQSLun9onXd4lsNwkYNOMOTAbukpgv3c2AwUrpMuCBgYYalRyivepPpP4Gp1f57Vf3Fxx/OB1ecuTTPIAf04XZM3FHz/B8vWnwBmD3d2Qi8TtykmI8ObSN0YAlnpu48OFrmal0tmEk9ox4flECmClMj8AEnVdWRHScOS7n1NMYt0+K4vlnnOXWpCTiDIdt9f7AWREwSgcS+7HRSUyONIvqT4GMgnUZxDPmpEKIz5CVLzyDddGcPqScOrPe/LhuwmPdXGOVPbbNUN54Z+yxLVQk1V4PG2ogjz0hBQ8QnbTTshEDTnpc05y77v4e3IzE3l9jrCkMR5NydwIuo59uT/H3b2nAWIEZLgvArMTeTGiy1RzyJiccLDh8k4eIyYmsi3ZGKc/7uLp+OA6l6Zng4gMGA+WRKFA1DCijChzOWUjQMNA8Z4wFnoL4iSQh9xxIZAMQ14GOckuuSbRLeCNQUPNsOzoE6J5e+y3XbbM99pPIqxOdfV9Wffryuf5OLGgcaqT7SnTe4sSi9QSfADOSjtPHcrrXRsClzP8HiD0A/2kgmNvY3s0PWQBK2+MdAzt8HAYp3GB5xqWvuGAgPGByVYseVckr84j1FB7ouFP2MMc/ZHzB9Xw5V/X78LnsiRFjLlkHy8A5d/jQmVzVwdoZMJ8TTyUDdcZ8Q7+GwGY49XZpikY6bdcOT9Zw3mkbGgbMb4relY4O5dAcCELfh2LUA1r9SdvGw8fAtnonk+V8shg+qqBxnpBv7HYTn3NIFndfegqwFKt3UXa252taqRHwOq77E4VIT0Rkm1iQUE5NE9qwHkV0g3Qjs5Lx5CV9OqESZN9zB6+6cBczp2NfwLA3twlEQ7EwoIWr9kxbksN98PHESE4GLKjOeyDOZzNhY07RVBcNU2ol6gfd6mgX44kq25z5WeZUg0986hAcA4AdEdehfZzUA/NeZwJCO9KiwR9d8n45/vkfWpNa6FszFByQBChi2hMLRUH9x8DsRoETK4eLMfchVjgw6E4+5Iz/ojOjo26PxZb1YE3JMuEqE4oHomB81MZ4R95hjCcKh5Xm6fBdu36imLBasuy71yuWj0sQIj6W72fI6B8CCHxvUXYuDOE5qLweeZAqCo451celjmk4iCpmcRR5S02uo+0JldxHIpY0YqFnyUWcYluEG3btA3eAUgaG8bxkjx/sfMBReiIWJAjJx7eT8USbEamxaC3FELAii90BRYHCSUWTsAwCV5hqQa2s4jQ8Y/RJxKfahmEIuUpy9Fw3Yvm1kT4aHg+SdSmnPAfVHzFcZAx1khe+jP4v9J3vub5rDwW+pokixcr72ulQrRksMjrlV29B4iQSGnVtpehdplZ4wCE5RVVwpGdsT3Hpw7iFlwRCvZac1gpDIONRyfmZNEpqCVB8C/vyO4JBtYg9xRhPcJsFsI19dwH2qDWNCGO9qI+OZcD1MYywf+G+MoGIfUuU4PkyPttaxepqZhQxXdrGYpMoNCE7ZjbjeZ1fLsh3/ZpthqE5DorHxASHdpdqqEFKJQSSi2O0hMQV7yTKYHpdELi1TA9Tua2UAACAASURBVIHtG8DwyHK1anDLdj20NcyxOaxyCwKkdfBgySymo+HqPGX4GISQzlSchYHNPZ+g5u8a8EVhDcgqzpQVMWY0bqEz03uM75lZ5PniQDUHYGfXHY3NBPCg7RxWMC2DePWN6ChQ49fmgzGXPPfiKnEp8yvS7yOWjzTx6ffLAN7YJEcaAAHTRAzSuD/X83YZeeVnTQFEapzhVRIquohrYKNrlhlQRSHreC7TWKTBg1nNuG/JIwNJBRJyrXkX5zIJg4f6ivCEKiW1zEQDmjEyZe4xRuawvK6shMRE025RbC6eCUL9CoJElESc5iLz+scfanawsYQVyagMz7zdXoetR+iOIYKPdDJwPajIICgZs6J2C2jszbkvdiOqX0o3cs4F8iDEqhYoWMbGRWWslaszS36uI86X1ki30U6ov0rWB44rmmgG1OoozOCfYQV9MFFlfwhWFbDEopH5gW0ggpEIt+lwFPE5Fi82Z6Zs7cyTQpfhnJGwSSls5nXQwNhlXWnczRgF6eRoAiIK4XHKRv7ahJXwZmVpl4hgNXb5fGOMs5NSwCFJ4G3xbBabU6VYJz4veuzIkTpERXVD58nQuX6s8tElPsCIf3BXxLiwK8VfB6qdCzDU1FWMEKfCAV3ByUfgV60X7owOYF3qt6NT+01A8RkVmDO4VGHG68y+7YNkhBBcDfxAS5lgNZYCyXenCykwVCN+cBT0joh5Ntuc0HP8EscwpNiDMTjBYOfy8NHYpJ6VQvJnInXt3CS7OD+ncUQT6nYNVyPNqtfYhw7jPM/bgk3aCL7UcT9Onw85DSdXI6UFpPBS5+T2h3RCOah4AKMSiBfzt/RNjCP3gZg0jRgSPz9BI8iGMGYxz284VZjadFr/gOk2kHRJI5X9aC6WuOu5dAwE2yjnXqMRMaOSC71fVwBjjmgFngtjenhmRxtp9xEMaftlSyxUEoDhJs12HEu/1CFqnKE6/HE8XlxGp9vBfKkE6FTV+eMRnSgfXeKjGK7B/r9gQIbBTtKYmSWZiQH4u43ZSS/7jWOiUzx/eFxHzUoFOg6IDLVNcjPNiAYc6K5xLVLG6v2wt45XEsh4PtlLoB5MhxhLGbnVm9Poy/TzwRNBP5noTHOyc1lVDjuNyayComFmCXd0WofeGy6b2XR6kTqxy8KtKtgAbNsy/u7ibbSMS5k1LVZ3jGdWzZU5xyRjTY+4Vl435UY012mo6iY4b/Qtqat4MJ6D1G2bcW64f+qYm6f1SicPUp2xdCl+HlP9JVQ/YcngXQVDXSeoEjXgoFhYlH0JZJsEKLzYhNZAEoeMLNF1gRKJw6Xva/1hv88xQA632H9Tj474fCOernIPbhfaMXAH3crB3w8N/j2Wjy7xSW4i/pTE2Sym7tQ+Mj4dUsgLdiYlKaSaTb2v6s6IgRBAYws1GOAqBH5J3TgiSiIEP5AtDgIfVv4QBeIi68EOcRHhK1KBTg0GguTAONG6tmUKNK5pzpgBP9afAiTrGlgjdfx0SpX+zm+ngQXRIsSl6m7UW9sRnqX14cBRBiPFieGyUZ6xPq03DCkeutYzgvXx7XJuxd4z11qYg/1UCyNAzZl6NfZWCoFnfkqCeQIGXMyYa/IyZE+rsHmObAA0BpdslGAr0kOVmdMfY038Z5yTHYwOwrYrRV2uo3rsBSfq1GEvKyUkw7p0h+Va5oAdU0IwO2cgUD4/B/MJ5nInlDJxznPBXMrrLR9h4oNxsBNKQiQmjsFTlQBIhCrduZlGtgSCnQyGY0QQagKF6WW9f+2t+NHvxzgRP/UDOyOn6EtH5uD0AItYkaa7NDEqg47MxEB1stvkT81DsDeaj3UCJh03AXXRmQcHqaONvVus9xOeXmxrmhDizl52RMACKWF8W95PB11VLDiyeYUYjgxX3LiugufIEs8cwHy18N4m4iUa1GhO2/gmEScTnlk6yrkSksnlteBg1yj6UtTBFtNE4K1U2xISjX2PxyqV8IT9IwjxvBdB2KSheJYSA3SUrSDaByrzMKTMicnYFS1wNJwK/JNwOWbcMS9QrjsNb8IPgtEmrsCE8kJH0PbEeLC9+cGUWHw2Av1EItMYLyqc5ZSuNPl+y0eY+DBHBKTxtlARVDtJPFMPooxDw6d1nBE61FGYu9sj3fgwiQa1x30HEUvknfVsQuFll7p1l34Q+uaA0UCskEQE+zEfr1u1dTBmHIdPyMAKDCC2w0eeT4pi6ORYgnFWfNxhhBbqqyxx7OMYWiU8hACDAF8j/DGGPLRiiWRB82+AoiUyWSaJxC54G2lmRrzXcGCI9symPeBBJyI6pM5pfvMiMAIEJsaCfz+Yt8Nfgb2UvB2eEgYN3lKqLu3ISGCaXBMQEs+Yu1HuMTzfbQ+s7cBI9hkwLVK6S6+1B2AvVGdF+t7BMa25c0CsSo6+RuXjdd8xbKUDX4rekpIXrzmgMHXpASnD4SFj0phoUTuHgkthQMT/08FE02APic2LRLj3UD60xEdEfg7AWzDe7qKqXy8iXw7gLwP4DOxm1T+sqr8u5qr1/QC+CcAzAN+mqn//4Q5gd7EEsgqgnNeYuaeZO/MzKPxtqOoSoengciK1vVZPIggo/UU0DoRR96h+vN9JDWTAz2wKIU4TcSk4q1NAIxOR3ZpVwjM7SYR7bLnwbv4eA8FmjAklvzRaJEQkhq1heMVFYCjtjbdnxlRaf0XdQ+9DCmIW89yiNc5L5HYi01hbS5k0fm/NMloLRvtd3QvJbXuZfsVzdpUcYgBUFeosac12wP1i2AuDOoe3mf+ubucbKlySxBMuxpR4emW7GC5EHGP4lQEs2iuql91CzIwTnlAPCdhrMNR2c84/Z0oIJtsaBLvbxXBxbouKNq6KR8mtmHvNMDC7Pauk513G/Ik7RIRakNc0umaiUyTtQBL+q6eq0Z06OtZJkkbn9z7OuCAu++3jkr0anyjTPCdmYg46Z3X4QwSmzOlxyoeW+Hj5t6fbUb8LwN9W1e8Tke/yv78TwB8A8Dv93zcA+PP+88EyAvVow/ggEjCxdP9gm4znmMsKwuRAmP3MXLzUxkIFm0xWEJWCdDFcqMO+FESNpLKr6p5GXCEd5OpwQO0hDjQdSp70/G2ui+Tv1Y19qjwv8tHBnglb6QzF+6hEmIdLaXYhaW8rwbMKxCVo1iYhuIaccxp4xa6uiKSZc5JiaI3fGmtdI84NIWBkOCAC1SiHnNmgWtqa1CWDUEkKjJBhk3kYu7WqPymrQTemh6+Q3tsi6NsHSwBy7H9OeKrygsYcBhu6hSd4zFq+luGGPJ4b88VdzvVCmZC+aEn86eBPOqlyJg8JD0rl3PO4GFCADEKPNecNOrDtimDcy8MMSJgIdipnxgcEzxL979d3t5+vgfAAH37iM5dvAfCN/vsPA/gpGPH5FgCfVfPH/GkR+aSIfFpVf/lqSwKPCNaxrhMHBcFINR/fsXibQEfN+oYGV5cbHNLLkTvs7mcdJ+DAytwqj1md7kyQw27QxsFNNhpGhKHrT7XSWINYoNnQyU4SCeBAqccXwCm/c0yQuCbO4AFhKWOJcei+XjS0z7Idrq4HmEPJo5GIjwSClKl+OG8sWjh5BYDe/O4kS9mUXRGCT3VKqq0w7CGxfaJJMGPurVmy2rGu4kysIkKBAKRkCHh+M/W5hQR5tGYHhCcJUBAhhdmDuo7LErNT5o5ADIJOa24wOuAwGJmxLjMMHXmBsRSYMXqF6QrCEozXFedmGlsSIGJa7PiGZCAz7ck2ajwbxjgw1pC9WGPOyUgCFa9kc2KplHQwhknAgvBQnFF1YvGfzsRoi1WYcdxYM+r4Op05PHPvrXyYiY8C+FtiUPjfqOoPAPjqICiq+ssi8lVe92sA/Dx9+wv+7DrxASxLcQCU2sECAVLaFzKxoEFoiOFWr36Drm4HoB2MwxmEIoPguA7qz/I7IyYQYDDGrt+JA1b8HP0P5F8OfLhma22nHCY+UDPbJCh19pxZDFVGGzMtmHXm2bYWz6Ucd0gfhaChIk9v3FxdZSACP8SJHzkzgM+vHNZsOhxNJmIWc/YYoAYkzKRbPa+Du8P2LpYbzfvJuBag2Eaap/UJzre7CtKQCwxJgV3vXX0ncKlvQjo0lrJ2ZUMOnh9Uk2iXXLMLocvuxcdFTg06rXvCLnI94l3vgkV4rWI+daAlf1nsC73LdeB5zAzCfA6AhM8qDdG7lyhDfT68zw5DAQBEcPSRQ0aeK8T6XRuzEyCvUjzid+fspabwaOXDTHz+DVX9JScwPyEi/9cDdY+Wbc+kiHw7gG8HgOUrPmlVguOPFBuxMZSypvkdL8GxaXo9YQB+bGqTcnhyMLMzw8xt8Ki52syRAMlxA/VgWZ3jQzC782YOs+gTch34EgkqjvXnw3jMhEDDwM6S3nSIypivEZ4JueTcQYlSMSGNOG2IfaMWOuUty7r1mzSoT2o38WvQzaaxn0uscVzSlQlrJ5185g1zaYkzXpTpO/JY/FoGW19LdV9ywjkMpk2oG8xJg0kqlFUiq+/ignT8HSobT1WjoXY7gBH1flli2MFhvvNMBS6dDXsFrXvY9oDk5sM+uGEkMi2SQg5sZgjIw9Dhfu9kUPeJjf2lHBC6sVb07iEkHnji6FWCLwGTw8yIhfJXIfHkvOKFVC9Q/xdEXB/of8drHTBYj1k+tMRHVX/Jf35ORH4EwL8K4J+FOk1EPg3gc179FwD8dvr8awH80kGbPwDgBwDg9l/4Gk2uUZCcSK69HyAhIhQecbtkoYVb84PKhzGkjjhw8Xmkw09uhBF7gCEdhGReFTN3ViWHgTDVv92p2wiw57lU4NRDYrr7ZrJZJcINQ35waUfSDf99eODn/sc67WKHrs4jp+NSkTychob7VYz9p3b23LMTFjgi8UntjMGEUPoGiHqCW1Y10cFP6ccNzhHk2jiCP+A19jo8wlKa1bqOqnlnEScQ1cBQHc4xR7yKr8vOmGX9KjMv8x4f7EPf2njXab5NQAaYsbaUtkcLYZLh8EIEJjwqw/2Ys5QE0xLnI9oqaiwcw9aseqtq93r+UrUoMqSPPq0T/4z2glgCg1ows8hrOq8twUJhAmIoEXahNa4q139ub1Kpv0gSfpXyoSQ+IvImgKaqb/nvvw/A9wL4Udgtqt/nP/+6f/KjAP6kiPwlmKPBFx6092RHGAcUwR3L2MAwCioMXDnVTvyT0VYQKmlbHrzwcuqy2L41O8gqSJ2+0SyhW7swGg5Rn4E8kGfK7RT3woGRHaZ64aLBRdKhDSBttV6ZWyCUIHyB7IKrJgmRL8/SjWxdgZV97iUh6jUCIpX4BcIcak/6R3uitA4V6VJH+a2WfHM551kf3wlPpN59MAgsOU30u7bDA9hirCTFxNQkXI1JbRdfev3lVIDGOfdRRwHIadxXlDFUCrpMbMB0wnd45pFb/27dfL1sD3t9PrdX5jUkkeIZGsR0RV5qloR4M2ky94ZgvK55M1AjAnWUG21IMJP0xQ4aR4SW7b+8HkXydKYhmURXNbZpIbJUomWPpO7NVmFnZtZK0HHE2NEZYIKY6ZACD+joqsBIjtZxUyG07798KIkPgK8G8COe7HIF8BdU9W+KyM8A+Csi8scB/FMAf8jr/xjMzfpnYa7Wf+zFXUwsjD9KKs92BPUzyEg1UuB4hoP0foInoWzBtQo2XeiQeldHKqjU9dIzkUEIx8McU7YRCKxwz+Nn5VxiDqWbFy7X4bMgELM7M2w+KWUwwQ7niWIkntZi6udI5RfG1+Iu63OxaWr+nfVDgiFJ7ZAICnWEsPFgrJkiAw553CVm6IhLTCJJCLPDLveb2csGU5t1QZc2O67Z8Nm2ke23bCKIVCS0HW7aDc2ipeu6BhJucFXxGGuxo43Hg3Fh+OvTppK+J9euO1Kj/m17PNtIY6KIXZorYAIbH7+SN2khPKSSYtX1QMQgwo3sewfXu7MwiMdsUwp114hrQxKj0uSktYj6GTrA4wTS0aI40uSS17Mo5WxUm5nOEj2AyiDRmhzhzPdRPpTER1X/HwD/8sHzXwXwew+eK4A/8b46DW5qRj5CiDyyEUQuNmCI+6kbH5+LKDYRvymTOZcBaLOP/6549PgIohuAEoiEY18Yf1VdOsq7LC+r1w2ax+K/r1EYvpkb00O28aD/uYPp2U7vHm8IEbI3UngQXDPi5q801l1y00ACvJZ0AEP/XlzT6fcy5Pg9t4IQQSI/CQG27HHYbboIpAmwtR0i4b87p22iPYoEnY0579bHeHMhLa7MMgt4n0pjJtvJTMBjr/I670S+RJB5fTz7diEo6o4hQuuBiVjRFDhBLQAPCI3vK0HN/esyPMg4FuwIzFgVVfACrQkTGaqzC1NAEJSpP+p3R7igxa0fYA/O6dxOhGfOtBHtl6wJhqQOJ18YNux/f4zyoSQ+H0iJA3oNmFkNEnXngEgAkDB5uzgbxAqVu4nI7IxUDslIdUhULbikST0ThxJ7QBmBnZWgDd//gORXgJwdZzfW7EgFk9HqwouZQ/eDuedajzs4flmJ9EBmZN5C3DKJiQjvJalxyHdu3G1/eCGwvY8D7kGssyRwbI3HaPuoChMgd3oZY4pAR0/JZC50ObYWtiBRdBW01tH7gl05IMZCc+S5bluDNL8fZjJyIyTAAxjgf4k0WVVDexXhBiE5FuY77E0STMU4g7t+SZLhZ7oRIWeC6T+kY9iWYgJOUCvRuHZmCL6m9StlWl/LaB0+lJStXCXP7Q7umFGi7hMVXD1LVDd+nYEv3K9JHbzTIsy46BHLR5f4ALQxvPKV8y3SSdpZpDRSOC4xO4+E15sTLo7lkMaELQiVQ5IAYBdL5pBmQMscX+xiizFW5vhmTinK7hmvxeiTD0oe1vI+lo9PJc1p5gQTwep+XlQxDMc8hsPhItH74ABzfPvxFp35iw5wGTMxi2z/43qHY6T19/Fl5Plc3RmQVM90QGVcyy5OgPh6iyaKjSSO6GcmMDohmhnOW/M0P5xAM8asqJw7EdbdWikmKcgpDMNndDEvAt/k2h7YHInYJU3iJv5tqqSvfe715vaO++GfhJhnQoEgMMOzlLMSsORR1OL0927Me34uh3p0HBBwc23ipQ9NdX5hpHgM6vjtNRCgjzbx4RLcKeteXwYpRaGDZQ4GAhHJmx2reI2UFuygW+Bd1QXL0Mnm+Kbxxpgne8suTgGYEB+cYJHDgX1ZgA70eLRLCCQREnkP0YGKfhR79/Pjg1P7G3/KeH50CHxMgZCzaSLGL+eSTlxyQThX+gVqVPlO905tBaJEcJeAkpqW+yo40cfTtwhyFHdq6cXIzERp5/YMRnK8P1UiGrCP3LPcO8AQVagcj5A3rVPaFlytedUWJgQLvCcuncyxd2WtBDUlVTTUA95kOJ4IDXeyHZa+ua8d4n8BcYpzgkGAQNIMu3wn4dHawBxsW7r1tWJ1bRlT1pMB8KVKAsOkop+8Z+dtbagJVR+p/P/ER5AeKjIZTYGKyONODp0RF29WB/qllcM2b6yGkSiyIIuiuYol1XAhNFiH+/5kIKCRaBC7TL/p5EAcsLpBedIe5HsAO8+32UMukKp4QK0WwoWJizqID4m5lbT3QdiY09o7FEBCzemDyPF4HrKmpFaR0u6hpFM8xPyQHRES6l9lILicLNmOynxj7fO9I3la35wHrU88CON9rklTl6xh1zu0Gna2LB1dqmtu31p6a4YULq3mpgOIwfDGWKVqquNGMUqEqRXQDbQu/qbpQMaUdSJvFm0KjRRTvkd5G2uoxwI+IrYqhjhrEDr9hOR+SHwLruuOCb4/Q117TOyObCipzTggJHEeipbD16w6QYAIhD0vOQYPYJ+JvqaUiFon5n9ALNJGSznmdhdmRr8q5ZblV9Hev6h8tImP8EaMq5KZW+gdacuBqF2IdsSBTQ1fvyIhDJ1GgEIsT04txgXnijnuoTY0+j6SwXNce0eEUufauhRubRyUGtgHP8h0IKZ3Q7111M8B1xZctQN6OdN8KGY7EhEg3VwSc7e34hiQ9SXXbee8AGTb5fBzE4FUGYGEKqxViSLnSi6wc1r8ku0cOv3qi8Du5ap5G6pdt82YMoY/XJXHFdTmCRfXh4eUpPNaUjucJy0udCsectOaDSeYWDPfi9izoJROeISJT9iZDkTjtLnFeh68PwRph5fqiUfNsO2IYN/mspfaWQ28C9TmfQxnAR7jLpMG/5ThXBGP3JtWfC849tnoni1cPdYxpgNGS2hfgqHQkToo4H0EPSvydtRr0u57LB9p4hPcX1t6ukcnjhbkphQfeh1BprN7ZIkXOETyzF0iIWl4uUxExJHMDsmWOaC8m1VeHAW/t5kQlrmqV6LBsATh7Q/7BLXKjNoDyGJ3MKLt4LC6H6NAeIJyw2p6JwqNqStkc6PubLcofdNaHyK7WDMQZzkaEh+LclMkPe8PPcp+lMBlZaTIfYz8cUlE47MInlS7K6i1iuWqfQGD43YiNFR/RIRinNRGOCsMhDwhT167WAwxYrdr00FISOqRVSGLaQDCy061DaIADGwbky/bNDNdwQnwuqOeg1TlBcYdeHr2cjx0JpDxbh+8LWWf0AKGqM4MHLzt8bPbnMWDagdhsErFpjOp37IuH29/k/An+7kx4UncpkaAMjj2EfVuH23iExLPomiiaG3KGtwbuqs01FUO9s42ILjC5obVDCi9cEAPgCP9FnM++eyAqyhIT3bfZABsEJ58T4SHALGqB2aIBxlMJ8SsE9wV7hC1Lr3Pg5BzOSrMPSIJz8xFDiP7WJeICYnv4pDkOZmRlkwEMdll3Y2dSxJZak8wEAOAidsvXyOl7OQ8nesEtSuDQdghPd5bQpjaBbooumcy7ZMhO+oPCYj2UogITRLXbE/a8yeDEZk9M0OdWggQ3PYTaxkSYutoiybh7ptV0O72nomZmsG2IHaWrMreo+xLOkLQ+lwruR/zGd4dH1rXPGu+t3OMHrcxt8fPnKgwARrfTWszn7vomw9VwqD9nTBB839IsNkR2/dZPrrER+wAtGZ5s1pTrItFiw9xulum4rz3Ke4HQXIOrWlynVtv2KRNubzGpmcpnJBU2GdAmHTFVQoagFU4W7Zqp2RGh+Ihw6L3Hzr60S+mGIvRbvQPxbiSwPsPaSD7KgdrP99UO+RYQQdMhwqS2wrjulhdI0DWodkoMMY66/MdQYkTLH1Vri7sIWV+B20ccJnzvhcVTqkHQmqVSMfzuMp6tDN+D+nomqSS7umhOg2qHdt2NG6SSArjQb+KI+SypM5AQDGCUv2eGvH1b/B7eppWWD0qDBtBREN7MSNyxHww4DL6uNY8MWppg51ji64h5JA6uxJzIRX+doMLW+bButP4Y3oQTVVsSt8hBR3OnZ6TurkwPCpIz9sJ7h6T8AAfZeIDV7ctHevS0TxxIwBsfg1AEhggEQvj7dbs29VT3Z8vC86wb/t5VBxBmBO3QYgyRxWAEPEmoSrwu0uUJIJ4lgiFDefN1YNxhj2NSQbINrXUOEfqlOCEvd1MYULcE99ln66YTNwkOMwZD9BfhbigpErJUogXEZ4YS7TowbjZfCCiBmDpuQdlnePgRcwVD5HXY+YwZyI2PuKB0zdkdI+DTHWKK390Hc35nss21jUItHa/qM4vXNt5ORJujr/tkrw6VkYws9SivRnTpZ4qKmN/dFzlMMNJIC1fquFUMsVRxdlIZCvmhNPEr6wY7Rd7j+9DZIjWJhloHVs0iGeMz9uB99WQd2lpZ0ZqMF7FiQEGJ3t71oDzuBcLrsrMoYZTQFFD0joEDITbs6sgY11DBZlz5HX38Yf98YX0IfgK9fRKbF9K1eQyxsRn4ZHLR5j41KIqSXTsd9envwS173lwdfxrI2iMXatF6nXJRy6O9WD6yzZxkTNQ9EoktEuqOQZykP0d9KwcJuLByC+GEPr64FqzCMbppXnkn1cRNMZYygfYXwPQIhecDVwI0VjmZpdCYv6emgZu0A7VTpY0bM+DQR7onRNF1rnOXeaACxGY1rRMlMZTxhB9z0RQByJVyXyAJcsxIbddd02rVpEYoezaswBEXrJIAlrctBP7xfycvPIV5glPasiXAqzZkUMdlqP9kFiHlDLqshdxWUJiCMQlmhIt4OuYhCXabECJtlIQ44VBVIXXZZz1mj0g9m2EMVwtRIB99t6v7ohYuKyXdWfm5/9r79vDbSuKO3+19uWhxOEpSlS4EMH4CMQEJjoO4UbkYQLil2ESHHFAjPj4MqjxS4SoEUfHmOckOknURL3iaEBFHipCBHLxLSIoipFwRWCIEN4ockHOWTV/1KOre/XaZ5+z9z3n3ntWfd/51tlr9aO6u7qqurq62rwFIoTpE/spRWsh916NaTjSbuHZCmvejGBVC5+2lbM4cyFsiQkftv8Lr7Vos29bi7eVzG7l0tQmcOZYEL65hmP8LGrViDyIlcaMO+YEl13xy3q+wV1V0T0QGdXDDCcERpfza6hW7Bos4JOVGMLww1InYxxRc+VyZoTywcl84JpiEsYeCdzSG0Nd0wbTpPabmXSaZNpJ1ZMzkbz9ZlbK+yu5YsfEEe8gqEL/RfyzNmfjkDPUTB+wSAA9ph1j3PEyMd+YDodQU+EBDdNMdDVumjOrgPL9oZA+M9H46lc19SYpVUifMh8AV8LCFdfRVJh1UHAVjsKKGmXKRts1zzo2c2qgU8NRBYd7o3msQeSM3BQGY9gNZ9ERfF/UxivWb+Y26wOj6R5zmqzicwGUvEi7Y5jOUeUokwnPUjkM3Rqjn2Ru3SAJdGu8pAXIlQ1R6LjpwX8JsIqFjzD+eTSubQHwiVCaxzRLxyOk5RHmzREB8HMUmVlH87tyy8n1NRciybvJJwjShEVDaZLZxPCKC7df15grzAfonwQoytI8vuqh5CpMJITKnBiFT9aOwAirlWI2ZJqnM5lCu7OGUqExmqswgOy2VwQ8g2mnqhyUvzkw86KbWT0dtwAAIABJREFU3JyUc/AEbUEzANLGvjHCQuCUdWQ/CqFD4b353So9+arW3HONEcb+i2UEAWvXKrjdH0ZGpdBLjD4qIGm1iOQwYm1UXN2ktQDtAYBdd0JrUvkpDec8OSiEXilBY7jFtnJWVvJ+C50SUSv7vtqW9Dl5JwahweSrtY4cCQI5W0FlK9gpwQSiNSHSd422GSnSeDgHhZGeQZyd7FnFwoflMCgRZyvPqN3BtMr4USedR5UlYD5OpopgEffRdOWAa2FMlRDu7AwhCkUxQSRzXsJPgVK4Fo4TMXx3JwBrlmtqCLND04aJxwQ9uAn3DkxhQxohSsXRzVlWTrxuwcAI3xlbwRTLvQF0hYT0SRJmNOJ8NhVCKjPttPmBy9RQeFRnvwoiq9C6Je79BY4S9j2iIsA6dlWbhQug2PdALNbfW/2h2/zK8Lgv5+a5UEhHkIeizfxi9E6p+rhatP0gKzP3fWHfq/CQOm0Q0hWmlZ1FyvoAPv6pb0OXFav+TCkBckWot9H6cAFUlFn2vSujnKwLAKLbSN+GfNrYR1JEgvku5us4h/iHWDeSgOpUZmNH6QdC31jbOn2Y6kmx9/RVFgdvdrCqhQ/mmnx8y/61QTIgdRe1cwoxdyGj/NoFm/sjoNWrFXySx4vWSEVHOJiWNoeTViSakWl6hYZE+WGzPFJzoakRO0NzbQumcarHjTW/SV5JzZo2nQMAZDMacnW0eF3lHZGdps46KPR3FEIENKMWFkLGcwQNv4RMA6+MR4aXCvVOxG9jKCp0qGRGyvQpCnEKrtLWHjVXRI3Gr92Ih307jSjV0PBvFDi2CrYPticXow30LaXKDRM786Nari8cfOWUN99owq7sjnhHsxLZPpGZjqwAqELFRT6jh4CmZCnbYd6QhUKSNIF8VcwhWkiP8LOpaHMklqVqTYGdtlPnZZ0nU6KnqIxY1mDJEGeH0J4oGPTpK1r1asx0GDWdUU8bU1sMd+SCmfLyvIjSbKw8L5/H08EqFj4EPDhSu2b+OoJpOQCcefCookUAnWjKVH4rN+rbMMGJdIBFi2dmtGhBoyZEX5DBp1FYaZjwKfaKpMggXFgFW7TZB22RkIQHqcAxtKAHcUfbiXcgIZXJKmC4rcSxUw3WzIZpojYqbNmFgbWDGsZojezTjFT4tKxeXeYEoHnK/bFyknU2V6PwCgPtE7ftFzy+mlQzlgsUZSZWpgueciWiHkrugVfazjtaro2tjZMhCpcvXAoeG7diQ9/LN05r9Gyru3mkdkP+5xZy/XboA199E2Q1r/1hdVHT6iKI0FAr3phpiZ3GxZ05zByqVUQzs7pMN2FvqA3mbC+OyW8rtcGMytH8fHn0AW4y8znkykvNbZpl36NN48KMYLGIUTwSYr4itVBBRt8yedRUrcqsCb0w7kaDFOnUTKJR4WypI3g6lg9Nn/YydZzjVSKqFMt1FE2ysFCKQkEl/5oSVrHw0Qk3r/HADOKGtqZxGFFHscwYVRO01HKMjPGVtA3khGS2bhCYGkdA5it385iGVpipsjRQ4QLKJrinKRita4EAzGTml5GVeFg2UWcz5TFrfpj4kt6Vxwy35BlYaLdZWeTPjnYc0wTBI4x2TGyqqG1mDYuCB/Xxq5lbrB/LZMbsSsGZVHDfrOayiFrdUNygjKLhYLJCp01xn4lq7e1pjis5SsdyIFQddVQQd65w8rlQ9IMxcyKNb1jgpq33vU5FgIwZho4gMJoGfsup044maRqWvVZGMlXp/yaAAPjeYR/xsoYq6BwrsCwkHm7JRBeUGk+b5hwpbWbVaTqKebIEpnWk95ngibQay6SodBVtM8XBzLqAKLd6PxlIfqPJ+3UWsHqFD0Rw0DzS/TwV04dPUGOG0TWTIYLLhY8Kp1ElkKaVFda41b0Z14DEsybb8CVj3IlQwEhnWCgrPhVphFrjvBwYdUbsWp5qZ3mdadJYHtM+SweNmNa/j4Hoft5q+dVVVay/0qb0TfCqXkaWTSbW8atsqlJIvxCYcOFaXbYiQS4gtPrcDMlJCkRNtyAHN4VRMIvEsEJWVIWxsuGhwsA9mQhZNOhM2bKy9H4h28/0w6OGcmWsMqbvnmhNN5m+x6jVu31slV3SqNJH5bcby3roxRUeBJNwIShdKLYA0IYQM5QLCZJ2sTlCBNOsex4i9Gdh/YiQkRjFgbdyQ5rY7r6wTpGmTPDWyJgSf2AEd3yCe4zOUvAAq1z4oDOIlBNf0G5q+UiX026TVULmIKyqxOCMhNNKq0xvdbc24Vol5sI0UMqmwoaYNjt7KCcTOjmhlysQO8yWZeckIEqTm7Q1NTji0LFzIzGmdr4B6TIx7vXUGE9NoJZ7AVybN8TdCevLM+qkzcZlTBqOtGHpTUiUUa1LZqH0xMbgrJ6sja5JpDqR/kdTSP+a4An058Nu42XDVRGOnr3VNQOHUDpRCKE7VrEcc0hgaAgd+xRMwhIyiDAyJx3AlZDMOUP7KLrCtzHChdGmr2zlm5uuVMN30yGKsgFZ0YAdb1/dO38IfWXZG07dGfoxhYdKuFfN/o4Gd75RMZas40W17QDDj0M/xTlaggqbOBZl5PxZweoVPjbBWnKbr5tFouLpVA2xgRuDZ9JzLcgEB6vWyNGeCiTCjxRUhuAvTGamYYqJSirzkPUViA5rkWFnUXw7zIFy3AJDTGYKae981NKcsRuDC0zBEhhjDOm97ynPH98zA9Q22feO8Iz1W94e8BWCmVZ0jDyacp8JsiNx9B1DN+uR9Vm2f2ABJbU+/2ZCPe6pGTScxirrSmXsES0dbHNKieVn7YhCDICvvjLaZGBEXXzD53jYWFb8lOjW6C7uXyzUjUHhyBijdXEre0g8b22UPNFDsWYG4lBhiigS6DMIII/kEMuJQsdXAtC+TvsgNYLLPPRIlQ0Trpovc/BkOa/k5jsTgD2b+jbsMj9C/zcMWpNoS1ZoJHWb8hbmuFsGmbMxjeeWMvO8z9U0brOA1St8oFrIGmXoRgM92oCZNVyL9TMDyduE9aQ9j1jKjRvL7g5rZabvFAY7IVee3UAWdkRe6sMmYxMI2VyJM02xYOK1syyUtFnTmOzek0zAlIykMH/4PULhu7Vb+rBeDqvJKTGxQjghT+/va8sbez9K/2oT9fxRfhYoL7toj6Fr/YoG8UR/xvwjupz/iHXVTKSkCkYVlP7cBKoHJClWVsj/vJ/Yoz7ANNrAoBGZOpLgd0YX6NH3NXQPhn0Cle0Baqq9921wmoimHh7JIVJXEIBs09+cH6pBOwO/99+RRk3AgjVyiGg8VBBQR4aSHbEIAsiYc3jGYKoY5fmtX23e+c6TCScbn3IsAU+P+bRb5QFaR+FyQaMNBBo2wWN7YyZsTGmwM1pB2ESe5Hc49VlQlgCrV/gQo92xTd5JNW1NGYrZv6Pd09xqeY6Ct5GGddmuBek1DdFkkAkCINsc9UE37a5t0kGvFiDd0OU1rcZk00KCAIqh8bklYL4RzdEFa5zIlHk4eZvNjZyFsFPofoi2azHGKsofhTLc5t1hgJSfko7E7F5ayBmFllvlyYW5sjyw54xhlKPbjNSRokmBZRstq2Xyu3I8RFJoRjvfYO6n0HuDmkxj74sh15nQrPtkY8BMN4mB55u+HlMstpXDmHlUi6R8GKPy9hfMRouQA9jmKTav/cDkJ+Blr5OUoXGQznBGmjTz0HlAYoJMwFygwzbhyETJLIqUz5rhlgPbX3WHgVB2rU8trw+LCs82P2ju6Wv7KKRzIwgAU2biMYGmSYGHrXuMriQmX4P5Rxp1WuLsTByNcq89y8ttg3aOgNYCwWmMSj0CAQDzcyPfLyUOSkOhBJIplhZ7jqC8Tj1YreEePaPCJ6eAVSx8kIdkKW2vJnBGSUOMy1HXXhryU+2mUZN5hwUmZJpajbA72iEAzmxogJl6qKU8bEqm3uWuxO5K21pQwsT4O0K3hkOrBGn1qvChKBQsr/WZ4aTE3TH/uD1TswZBlg6g1xlHzd7swiqMTUpvHnSRwepTN1HlKg0RQCa4GkO3YGBN06JtGxcwvmleY3TO75XRucafmPS4fThdVmTarLcJOZPsMkjq9nshpGPS6MXoLspoQB5XzJg0/DJFNqFTKzMrfwy3YpUDdqhRaYEp0k8QalnzEsEQkjLoedpuHn9SOWRSVjWskrrWp4pCu4JHaM4bkiJmwYftW0uNx40kblMMOHc9Z82XzLOOKkGOXzQN/FoXdwhCwk/NeyE0a3dM4mszTZKu/uwAbEZn2i8LKEyLgdUrfACP8wTABZBrknoux7TEtAEv323j066Y9ZPuJoBqY27ui/Fd0DoNsquIy3LYCCN9SL91QiiRmDkjaTwVRlmblBEXy6sTkuIzFJuXk7z9bN7Kj0D0E5hpSkfq0iU3ehJlDDgItFq5EVjLSzHdbOXTpP0CpM3rWF48nMvaJ26qisye8wqrDh4ZRlZJJUkmtKTw6ELfOagYIO43MAsNN0A+D5D6wm49tarEo03rsxVHMYbCdBUXVwrSRw6C1ejN0TIaDPug42SXC+RaN1b63ftTaSH34Erzxva4HGzDPWPwqCoGtnpjPUBq8ef6LKkJ11KB0DqQxkb+p6zu8toVn69eBueVm7nfvgHdDgxj7r+DQJ4VrG7hE+2qevCEnEjZQ8mU5gnAnGQYfsWsMZzIIBdhH616bpFytIZ6JlJi0tk3w6eWx8tGCNwZhE5gFuM8W7goy/fLCNleV9JIA0Pyem31EHAqBJRrsqExROFdqLfjCWjKhE5uQl6O1T2Pxs+JeBcy+WQmEisHxQSxHw3cFZcTg6LUj2l/LYxnpyzrjyjhY0eXeVQA+V4MfPxL+pONahGmzIRm1GK+laeZJYnFLDQ/14hiZQdPozmRVORRqCvUYWkyxwZTWnTsXGwrvTjNEWTPVJm9X+FQmGeNfjOPReLEw8t+tv5t9NCkKpcZp7W22OFQ+9SoECnPUJXKgSswjBYNMGK0oxbzbYMUfFgUG+nbHs+CoBjwKClpNW9RAzfhcvAMDcKfw35wvOZd5gePFyxRCM0QVrnwQZej+FIEOWERcu3Snp4tMYqOicW+E1Bq6NnZjnIT3iYmuL7cDUzaoU/oOZNWrbKYlBS+WTlicsv7w4i4ZqKEHk6zQ2kAVJMMexPRCaOg+XRPSqF6lSYjmzCmJETTWsmoQWA7RNykTWU7N2Ll10x2yQtJhGDTpG8dwewKiDD3zIEhMN9MgJQaaqEgJG8rxcU23GNIJtPI3UFE03IoNsrjVvduiItwT61o1dB9ibkGPN8knMzMYwKFW/jBSxuTCIHeMqcGJT7baKeRPN2LrAF4TU4/1DGhcVJ4fJ8wKBXa30RlPvhp/WgqyzwuVUAjhkhqIfusNkQuuKzhKZ1pYQxGyy3mSDwO5vVA7nwr+2ht2E/z/Bk/sK0Y8va00WU8VM9G5z0mSl/9EOfzXLscHOZ5L3AeLmkGMAifYsJ3vgG5SQVp468anNLyRfMHsduxywgKWbYwGbzMJh2GA9ARIqXmloEzCsMB9RAZNSGm5jvTmjjsGyEIk1gPWwgOm9wM0agLl2R/lgxCGSjFVVMJRVdXN4SNuduEMm8eRhbWpmP+qpWtfSGb0kUdWZ0qqFrroh6X+IhXLyTmIGixC0PfxzMmp6sE8sFCvv9R1u1Cl9yc1PotZnBGxHNN8sgacRKoTivIlYSySaYUmHkIIc6a1a34k9FxKRysX1WB8aLjcGXmaa3LoptbAFud45mXY8ANDFFQij3WpE+qttYZzqDwGAMPAgujBi2AOQRFQvlGO98EHhH7lLJIKPMhbES6Ar3LbzpHFjIci73Dcs5QYeCuzAPvg6Yc6KXD6hY+tjTlgoCNmJjQzgHUNH4dAisDsEkBIFGpjYuFc8kYoLpgN6EuI7xATFxwDGf+USMO+1HudusmkiA0/NBZcOc2R4oaY4x0ZRuwpMKDoOaRHs3HNkcL04TdoRLdwTt2ajNHKXOIq8g4ocp9iaitpvMi4Z0x6RaysduwuEZTeh9XEr5KIE4hRiLUJrfWSWEshb9qe+PBv2jaCQzRlRJnnux94X0IFWwtgDlymiGG9G/0gNQP1QVw1OiJVDlhN9vwPLlXo5cNidnWzjVBMYjKTpdxeUy/MqCsjQsgiknBFJsmj5ruQjeOq+3FFZ6a0THI0rlM8iZz6ndHK+FlDgDRmy2t6oO5LqyWvS8ycx0B8yzmtUdGhSUAuQIS+IftYzIIPB/6tRQusWFt6gtSXIHoscahwYXp0OixCYOnlXTCgRmvnBGsbuFjUDK2sIrwTUSkiYAWfvYFQIrpJJkRCsr/1wmTRWG2ieVpKUyU8FTFw8/gUD65fc8l8oEo6KxCbWvHHbjWJ+DCEwcdLTNWmkWwNk5OYeUW+jnuhZhmVQq2uKHfcSiwf2uHMu23C3g9pGltKTTVyJDT5Nch1XZU3b6tjW7uUDow5mMrxHHzNa5g49hEBtmwMCLzvIrjbMoLpzJif2S2fWPCBZ34/iBTusulZDwlw+f4PRaWymeQmGkq5JUQlEyRduLFf6RSPdtX0tWD/B/moQkWW20ZYy1rruHjtK3CZRQSZvtEXebdCyzhu+ywuOFUTh/xKGSTzSDvN62kzVfdyXQdxqS1uWZ0m/rEVy1xIIqf2cvIi7Jvs4XVLXyM8CknqBSKXV5wZC422OyJq2XKSiFttPvn6kSUsqOlQZ5Bc6TA/FF4d3XapQWZNh2VrHH5qgQZ2wWfPUnDjFqbCbvajC+qqiRxN+IibbYSQqn5UjEvUiPSRmvx2Z6B6fqqiSSju6qa+TGaVGwl2hF4YQDbJDhLZl/rD2tnXPWYCZZAzvjM/R3FiiFzFilX4kjtdKwYvlkfBZQzxsiMrZzSXOjfuo3hWEbog3LFmurp7xN5pnetXNHboaFo6iRjxASUS0DuowfATZgMeB9bJHlf3ccVT4asCi6jKcAFUC/0WRKMxo1ObWVKQIxM4AqUCfvMDJlV5M80ZfvqDjgYju5yPjtY3cLHNC61O2dLfUKKtZXt2OqTEmFm9+YAcBtqoXnlJhZoHboucJtPzsOy4z6avwzyl0JnhKZZ2tqKwQi1aFPpJtydXMgYY6dcY34utLtldOKzRU0api2jaF8puewd5VcXAMkmrQzahUsJtXexLUEoufk0nKGKVyrErQ/nOa05vxeSR/to3H5WtuJVRij3SCkT9PGmTBCWm8l5vVKp0xqK9JZEx9fLjhv6nGvgJqTzNih+tv8E6uLSuz+h/dJqsFEyc3FQQBzPqClph5ZzwOoCqgKnfuaKgaZYhROnqO4xbFIsw9AIVg2nm76xNtNoRVlIfVGcq4tpIn1yNz8I4aBxWXkeHTxlSGWn1XL3vNksYFULHzsIKq7UCOYwRksEpia4epo2R2lyqiCJl55pdr3CNw5vIO44gL7Xm8JsdJShyFAy4ksMPjsIVmic0QU5TrhqnDcU7soFtcXzK6VzXtZ+TuVWzXqeqVuIac21/aXyHEsSXsoIo485oZ/TUxAeptnVmxyYfXwXRIv3NWd5/L6dHo9aLyeu7Ep5bwLIHFZGkfmFsTDaDavdfI8MSXnIGgYbdtfaWev0k/v2vSPIuTP2rkCFbs/NtUU5XJSP5DYsKzwRlpkzaIfgpBG+R+H3BRW0WOSpeofZi4CvmwRVUBBKU3lKl4RdcPuObttWbhMET2hbFbK8ucm8VKKMXvK5UxGAvRoQcsGT1dOTfomweoUPsYekaEYtmnIDkRowtWiJitPSagrRE/GmEQEIfvuM0n23DPCZAcvJZzvpna2Wsn2bXFjUTmSXRGJnWdxElZ1noTTxPa/NuD5tLB5ozNtgLsjdII7I6ulcOBfngQl40yIzhoXuxAimATa0KfSbr0CjgLV6OQXzZM7Kinj5flTkEIF5+B6XM1HKruHmJrXTV8yxX80po7W9KWF0822+smhGGm24T+obaNuyCBvojme5H8RMoFFehtGOb2gDmVDhMC6RZtyJo02VcRRkXo3SpysS5KtZ1n6OziwZ2HiaoCcJMcWV8ztl2z1/FIRulSjqi/3UUprLof40RyUKN5lAnMumborn6MIsa0wqL/CKLE8W3US70+K1BU9WjvOvnCsIA1gjIhOwCMmGlc9sgUqBE54OFRMBhclg8ZTSYS1KaWwCA34LZ5+yQbYEt0jZNpk7xImc6Nu8TIr05W7RUUilg5OdYo1QyZgCp4kV6/bJngtXX4kw+eTxujjUYTZqZcaZ4LFydAJEG2TG6Pogyk8bW19XFtoeQQUdF4IyTTT/VPaDCajysCJR2mSPe4WwYCf9Ckhsp0W5iPLSq840X31UFJvM3dv7JLTPu4GUXIKwsnSBDj3sjfWxjq3UXTCnGl9bUHsONBTP2DR6Vqw1pYBTmyPNKM1TrdO8ith3xdwx+qgJKSBXIOMcLJqQhDaCmU75grmRV/ZjU8GUBIDvO3HmqWqHWYUGc6Up4pxrG2GMKEvUhbAXmK1aZwirWvgwE9o27RFaD7sGb2d5in2KMnxO1PadmNsGaEqXIcuQM4bSbizPHk3DiL4tJp8z2kJwxAKiwtPpi+67fEMjplVmbntjGQMMjEDnUblCKovMFPnIhNXjp6NhZ5nThBtruvD0ndaEzDUtEF3hFOtVJp0YopZF9e7LBH/2oavkpLhioY7A3Az9dMlZeBcEbty0jybiDs1aNxAHBldAPFxpzhjx9HxUFuyMWinUQxuzDTMt1mlEhYlvuqvw476zJiaEyrpinbFNgdbylbMqCxzCKlk/1wSOo18SNlyZ9HNKJnjCeOZtSELURjHlQRhLVaZC9PkCmbyNVP9cb0f5P/ckmA62KeFDREcD+GvIjss/MPM7x6WX0PiE1rxRgoZjv8v9kGRaEQEUb/DM7okngNomuUKH7zFmWMA+wyG9qqhWtsmuzJhiWWHy15lp5R1TruXEtB2tRySB91HnW8DN3lrTImpafu5lqNkKLb7qrhxt5R2NzvJNOFEoIFf9Tmksssncdf6IgpAb7gje3oVPli5PZO71Hu2iLIOg5tRcI6oJoLzSrgt57Xs0u3lDIm1mGzyp/mzVGL5RGP+cwdUVNbME2AKeuMhrJtGo2Hh6zsqKbcs/5fOlKnjCij7D3/oiCAdpp45/g0LG5oInN/cX3ZAa1LU0xO9RsOZb0EWZY+g8pi9XshNkWyxsM8KHiEYA/gbAEQBuBfB1IrqQmb/bk8NDxdcYZgaR0eppeSLO7rlx4gxExiWjyOywPVyonJDl4NtEZKQw6Qi0x64w5tpoTbhYeS6wKmk6AjBofz5fe7RMw8O0NZgdOQiOGHHBVlS1Iq2uaBLrnGNKbYpW605IkrKN8TfXElQkKVLd3RUsZ+bTrktwKCYUW67uSj2CvNvLAsPTxsVMrlHwFMwrXjbozNAiD9h3jebhDC1q4EZvHYUpNSqtGscw7awj5M/4cJybtu9mLvBx/N0DrrKCzHAqvcdKvFkHolRiomkP5fhNyNBL+Vr8rq42a8qU5itXTn6oOtBcdrfQWEFSofcOi+rhWUuEbUb4APiPADYy840AQERnAzgOQF34MHxSyeZwodUUUQXknc7fUQrkmB08LdyGhUISoSaTXN19kptiUkUIilmfJ0qUNx0wjat6uLTQospKM7oMEzwyuoKiu26/kjfbzzJPQZ1IthIlbVPJpLksO5gvcs8lZbxZZxQdM26lY8K1mjVxjE5MuYqMjm0eW2WJQbiTxnu3ZdjlZ90VkI1JGIseWnBzW5uUJo5jGPZUuG3k8jJnuvpPOC7QtxrjOGBl42tmZU70z1p/RpImhIDk0mwSSu/BcKGldVCh3LhiYzSstGRyayyME2xBCUnNoZQmKghktN2T3vFHyGSPxEwYhEbnjylc+inURz4P81iBWQURi6Lust5KliXCtiR8ngDg/4XftwL4lXEZ+BE50U1z+jSBYjHMylhWZvogSgMYQulQFD4VRpTRUhnSpWHZOHRtTgroaNWRqOIkAlWER9bacDeRznM2IRryBe2ow3AyPIJwsP5C6Ddvd+HU4UWFM1ZZejiDoFIzjBOfRHBZ+JrsYHA5sapabmAMeTcFJq7QVNJpe+w8V6eu0hzSuljtQrEydMFjXpaqwNgKxUIW2b5bXL2L0h7Ggo2OIo5pVYPoyaarCl+xm0I2p3TqZ9pU2enbl7RmwcxWKTaddVJHwXLmKQI2rYD1XQjBlAlZVz6QzHzWnjLOoJkmo7clQ86GjZ07WaOK/3PGDlSESASjLw/jU5y36UWDUl6mZDEgU8Yg9y+ZgPZDqaz6YehvLp7VdsU0oe4ZwrYkfMaIcU1AdCqAU/Xnw7f8zhu+s9mx2nywB4C7VhqJKWDAf2VhwH9lYWvGfx8iOpWZ3zdNIduS8LkVwJPC7ycC+GFMoJ31PgAgoquY+eDlQ2+2MOC/sjDgv7Iw4L+yQERXQXnpUmHc2eutDb4OYH8i2peItgdwAoALVxinAQYYYIABKrDNrHyYeY6IfhfAJRBX6w8w83UrjNYAAwwwwAAV2GaEDwAw80UALpow+VRLxi0ABvxXFgb8VxYG/FcWpsafeDH+nwMMMMAAAwwwA9iW9nwGGGCAAQbYSmCbFj5EtBsRfY6IbtDnrj3pLiai+4jo08X7fYnoa5r/HHVkWDZYBP4naZobiOik8H4DEV1PRN/Uvz2XCe+jtd6NRHR65fsO2p8btX/Xhm9n6Pvrieio5cC3gt+S8CeitUS0KfT3e5Ybd8VjIfx/lYiuJqI5Ijq++FalpeWCKXGfD32/Is5GE+D/e0T0XSK6loguI6J9wrcV7XvFYRr8F9f/cu/EtvkH4E8BnK7/nw7gT3rSHQ7gWACfLt5/DMAJ+v97ALxqS8MfwG4AbtTnrvr/rvptA4CDlxnnEYDvA9gPwPYAvgXgaUWaVwN4j/5/AoBz9P+nafodAOyr5Yy2IvzXAvjOcuK7RPyCIhYyAAARgUlEQVTXAjgQwFkAjp+ElrZ03PXbA1tB3/8agEfr/68KtLOifT8t/kvp/2165QMJr/Mh/f9DAF5YS8TMlwH4cXxHRATguQA+sVD+zQiT4H8UgM8x8z3MfC+AzwE4epnwq4GHOWLmnwKwMEcRYrs+AeBw7e/jAJzNzA8z8w8AbNTylhOmwX9LgAXxZ+abmPladENQrjQtTYP7lgCT4P/PzPyg/vwq5DwisPJ9D0yH/6JhWxc+j2Pm2wBAn4sxO+0O4D5mntPft0JC+CwnTIJ/LaxQxPODugx+8zIxyIXwydJo/94P6e9J8m5umAZ/ANiXiK4hoiuI6NDNjWwFpunDle7/aevfkYiuIqKvEtFyK4rA4vF/GYDPLjHv5oBp8AcW2f9bvas1EV0K4PGVT2+ctujKu5m7Bs4A/3F4vpiZ/42IHgPgXAAvgZgrNidM0m99aZalzxeAafC/DcDezHw3Ef0ygPOJ6OnM/KNZIzkGpunDle7/aevfm5l/SET7AbiciL7NzN+fEW6TwMT4E9GJAA4GcNhi825GmAZ/YJH9v9ULH2Z+Xt83Ivp3ItqLmW8jor0A3LGIou8CsAsRrVHtthOuZxYwA/xvBbAu/H4iZK8HzPxv+vwxEX0Usqze3MJnwTBHIc2tRLQGwM4A7pkw7+aGJePPYvh+GACY+RtE9H0ABwC4arNj3cXNYDF92EtLywRTjT8z/1CfNxLRBgDPhOxhLBdMhD8RPQ+iXB7GzA+HvOuKvBs2C5b9MA3+i+7/bd3sdiEA8xo5CcAFk2ZURvLPAMyjZlH5ZwST4H8JgCOJaFcSb7gjAVxCRGuIaA8AIKLtABwDYDkCqU4S5ii263gAl2t/XwjgBPUm2xfA/gCuXAacIywZfyJ6LMm9UlDtb3/IxvFywjRhpqq0tJnwrMGScVecd9D/9wDwHPRdp7L5YEH8ieiZAN4L4AXMHJXJle57YAr8l9T/y+lNsdx/EDv8ZQBu0Odu+v5gyE2nlu4LAO4EsAki/Y/S9/tBmN9GAB8HsMMWiv8piuNGAC/VdzsB+AaAawFcB73hdZnw/nUA/wrRet6o7/6nEiwA7Kj9uVH7d7+Q942a73oAz18hulkS/gD+i/b1twBcDeDYLRT/Q5TOfwLgbgDXjaOlrQF3AP8JwLe1778N4GVbaN9fCuDfAXxT/y7cUvp+GvyX0v9DhIMBBhhggAGWHbZ1s9sAAwwwwABbIAzCZ4ABBhhggGWHQfgMMMAAAwyw7DAInwEGGGCAAZYdBuEzwAADDDDAssMgfCpAROuIiInozJXGZaWAiNZrH6zdzPXcREQ3bc46tnXQcdqw0nhEIInwzUS0fqVxGQAgorOI6A4i2mkJeR9NRLcT0YdnidOqFD7DxFg+ILnWYavx598S8R0E9OoGIjpZ+dXJS8x/MIATAbyTmX+y2PwsgUT/GMCLiWhmgX63+vA6mwmuBPBUSIidATYvHL7SCGwD8FQADy6YaoDVCu8A8CMAfzdFGe8F8BYAb4dEX5gaBuFTAZX031tpPFYD8PIGftwmgZkHWh2gCkR0AIDnQSKibFpqOcz8EBGdA+AVRLQ/M98wNXIrEcJhJf8AnAmJ1Fr7O1nTrNPfZxZ5N+j77QD8ESQExUMQQfXykO6VkBATFq7nrQCaHnx+BXInzO0AfgoJaf5eAD+7iDadbPhD7gDZAAnzz0W6nwewXut4GBIm46MAnlIpc72WubZS17mQmGWbIBrVlwCcWKRbO6afN4R0NwG4Kfw+Q9Oc1tPWnwUwD+Drxfs1kEvevqo4PQjgGgC/29f3S8FX0/6y9sEd2o83A/hbAHstYswIEh/uy5DQTg/puFwC4LcLOqz9rQ9l1XA8U9+vA/AiSKilByGBIv8SGioKcmfVBu2zewF8GMDuFXw7dYyjldCf64u0G1DQZY2Oi/cHAvhHpZWHtb+uBvBXALZbRJ//FoDPQ+bGJsgcPQOVsFlGlwAeDeDPANyidW8E8AZAosMUeV4ACYN1m6b9IYArALy6knY3iCnrXxSX+zXvkT08p/a3doI2v1PTHr4UGizSH6Zl/fGkfT7ubzWufDYA2AXAayBxiM4P3745YRlnQ4TGRQAegQSXfB8RPQKZKCcB+DSEmF4AEVQPAviTWAgRvRTA30MI9ULIwO8P4HcAHEtEz2LmWxbRtuMhwuezkJtX14a6jgbwSYjg/BRkEj0RwG8C+A0i+jVmvnqCOv4OEjDw85BJtjskHtSHiegpzPxmTXcfROieDGAf/d/gpjHlnwVZ2p8E4F2V7ydC9irtMjcLnPopyIVc10ME6kOQWxffDRmrlyzQronwJaJjIIKHIErDzRBh9CoAxxHRc5h5XPsM/heE8f0AcmPu/QD2gsQu+68AztF63wrgtZrnr0L+SWn1fwB4PoTON0BMJq8DsBsRXQCh5c8AeB8kPteJAPbQPCsORHQggK9BmN6FkP76DwCeDFE23gSZgwuV8w5If98FoY8HIG18B4CjiOgIZi7L2Q7AP0EUns8CmINc6PhOSHw/pxEiOhWiNN4OocW7IPdvHQjgpRDlxNLuAxmLtZC4khdDYjEeA+BiInoFM/+9Jl8Poc3jIIGF47jft1C7IaueeYhSVsIkNBjhSkhfH6H5poNZSLCt7Q89Wln4vg7jVz5fB7BLeL8fZNVyrw7kE8K3XSCEeCeANeH9AZpnY0yv354LIZjzJmzPyYpXC+DoyvddFbe70L0W9+mQiXh18X496iufn6uUvz1E0D5SacsG9Gi6+v0mhJWPvrtE635GJf112m+7h3dnavp3IwRPhVwL/H79dtyEfdmLL4Cf0T6cB3Bo8e0NWs8/TVjP3ZBV8aMr3/ZYqI+K7+NWPvcDeGp4v4P24bzicFj41kBu0GQAv7hQHeNoBTNa+QD4i77xU7qeZFX7bC3jFgCPD+/XQAQFA/jDSp8zRMF8VHi/J4Tp34ew6oKsLB8GsOcE47kBMldPKN7vAhEumyAXSfb2y4Q0thNEYH57WhoM769R2nnMYnCp/a1Kb7cZwOnM7FoHM98I4IsQ4nkb6z06+u0+CIHvgfxWwFdBNKvXxPSa53KIlnesXgQ3KVzAzBdX3v93xe0tzJyFOWfm6yCrr2cS0dMWqoArezQsV+7+DWQyz8KBwFY1J8WX6rXzNACfZua79V0DMa3dDuB1zDwf8JoH8HrIxH3xDPA6DrLSO4eZv1B8+wsIwzqCiPaesLxHIBM5A2aepaPLu5j5X0LZD0M02gbAZ5j5ivCtBfB/9edBM8RhFtDZr2DmexXnheAUfb6dmW8P+ecg9NFCrA01OI3DXgnLNQIXQO5wekqRdg6VVVgcTyI6CGK+OpeZzy7S3QfZ1N8REiF9WngCRAG7bUyaxdLg7RDamfqW1dVodpsF1C4Hs0uXvlH5ZsLliRAzDSDaGAAcRkSHVPLsCSGcA3rKrEHf3TdW10E9Z5cO0OdTscAdHMpY3wARMnsDeFSRZBZX/54H0dhPJKLTg0AxYbQ+pD0AIhBuAPAmqt8UvgnStmnhl/R5efmBmeeI6PMQjf+ZEC17HHwEYhK7jog+Dtkb+Aoz3z8DPCNMQ6tbApwDMZGfT0SfgIT0/1JNCRoD48btX4noVsj157tEpRLA/cy8sVKeXTW9a3j3EYgCcp1uzF+heN5Z5LW5uHPPXHysPmdBr3a1+70935dCg/foc49pkRuEzxKgZ3Dm9Dnu23bhnRHG7y9Q3c8sArXbe95bXS+fpi69IO1KyKT7AsQefj9Ec1oLEQ47TIhrLzDzJiL6mOJ7JIDP6r7OiyDmy3hvvLVtf4jW2AeL6cc+2FmffZqkvd9lgrJeB3FYOQXA6fo3R0QXAXh9D9NbCsyCVlcMmPlKIjoUcs/T8dC9OyK6HsBbmfkfJyhmknHbW9NF4dO3p2J9NAp4/iUR3QXZhzoNsk/HRHQFgN9nZlMCjF6P0L8+mAW92optx57vS6FBUzaX7DlnMJjdVg5s4u/MzDTm74qxpeTAC9R10AJ1fagnv8HvQSbPy5h5HTOfxsxvZuYzMftbF0vT2zFa90c53xi2tp23QNv2nQFOVtfje77vVaTrBWaeZ+a/ZuaDADwOYmY5D+KgcrHdCrkFAaNfWZ1E2Bq0AEBy/fhE5TDzV5j5GIjS8xwAb4P02Uf1SueFYGbjNg6Y+SxmfhaETn8Dst/4q5Cbhfcs6njNAvT60mlwUbCbRnevfVwiDVpZd1S+LQpWq/AxM85obKrNC+Z9cuhWVNeT9Xlu5dthPXnmAcCul54UmPlLEFPacUS0M5IQKgXk9yAa6rN0dTQtjMP3Gn2uKz8oM/3P+nMSr0EHZr6DmT/JzL8FMQ39HIBnFDitJK0CYrp5UvlS++kXF1kOamVBbujtBWZ+mJm/zMx/BFldALIPtxCMG7cnQ0yMPyhMbksGZr6PmS9i5pdDTMS7Ic29pczFpfKr2yCWgnJvqgMT0KDBU5AcFaaC1Sp87oVocpNuDG8O+D+Qzb7/rQfBMiCi7dXcMAv4IIRBv6UWHoOIGiJaN0E5N+kzS0tER6F/w/ZufS6lrz8EMRm8GuLOfS0zXxMT6KbxuyHa67uIqNyDAhHtNYkzxQT4ng+xeb+IiJ5VfHstxOvxUl7APZ6IdiCiw6nYoFLhuZv+jBEL7gbw2FrblhGuBLA3EZWn298EcU1fTDlAYQImosMhZlUU7w9V5aOEx+lzksgOH9Dnm4jI9lRMcP45hA++f4JyeoGIju5ZzdmK50EAUPPbFwD8JhGdUkkPIvqFsFICljiHmJkhRyL2UCEb61gsDYKI9oX0+wYteypYlXs+zPwAEX0NwKFE9BHIneXzkPvIr10mHL6nxPcByIbfxYrHdhAiOxSitfz8DOq6m4iOhyypv0pEl0HcbVut69mQ5XSfbdjgbyFnFj5OROdCNqefATlb9DEAv13JcxnkzMAn1Za8CcDNzDxJkMKzIPfHvxXSL31mwbdBvLNeCfEQvFxx2xOyF/QcyJ7BWGeKhfBVujkFwMcBXKGbtLdAzvkcCdlze8UEdTwKsnF+k9LhzZC+PwKy0Xxh9FBTnA6BmEI+D3Hp/RYzf2qCumYFfw45R3WBbqjfAzkXtC/EdXjdhOV8ELLPeYZ6fn0X4jTyfAh9ll5erwdwJEng1BshxwKerunvhZxPGgvM/GUi+lMAfwDgO+q48BMt4xkQT9U/mxD/PjgbwENE9EWIkkaQOXwIxLHj0pD2v0FWF+8notMg55jug6zADlScno1k2voKRBC8loh2gxwOB4B3T+Cgci6kT4+CHOswWCwNAimsTs3ysXjgKX21t9Y/iAnpUxCtosUiIhz0lLcePaeOEU6bV779gua9GcJU7gHwHciBtedO2JaTI/5j0q2FrLhugBzC/BHEbPVhAC+cpD0QhnM5ZOL/GDJxXzimz0aQg3w3QlZ62XkRLHyG5VLN8wjC2YdKOoJsRl+mffhTiAD6IoA/BPCkCftyLL6a5hAIo7xT67kFcvh2oqgUEEH6BxDHiVt0LO6EmGReCWD7Iv1OWv6tkM3u7PxMD47jaK6XXvrGUb+9AOI99xBk3pwNWfV0aAVjztJBhMdFSj8PQObVYTW8IAzvgxAhdT9EaFwPOYC8zyLn/AlKDz/WNlwHUUp2rKTtpcta3+q4nad086DS4DU6zp0zMQAeo3T5De2DTZAzgp8BcCqAnYr0R0OE0ANYXISD7SFK0demoUHN82WIQOx8W8ofaaEDDDDAAANsg0BEZ0AUql/iwmy9iDIOhESEeTMzv30meA3CZ4ABBhhg2wUi2hGyWryWmY9dYhnnQ8zLB/AUAUojrFaHgwEGGGCAVQHM/BDEJH0VLfEyOYgJ8SWzEjzAsPIZYIABBhhgBWBY+QwwwAADDLDsMAifAQYYYIABlh0G4TPAAAMMMMCywyB8BhhggAEGWHYYhM8AAwwwwADLDoPwGWCAAQYYYNlhED4DDDDAAAMsO/x/xEZlFLKXIQQAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "filtered_csd = gaussian_filter(csd.data, sigma=4)\n", "\n", "fig, ax = plt.subplots(figsize=(6, 6))\n", "ax.pcolor(csd[\"time\"], csd[\"vertical_position\"], filtered_csd)\n", "\n", "ax.set_xlabel(\"time relative to stimulus onset (s)\", fontsize=20)\n", "ax.set_ylabel(\"vertical position (um)\", fontsize=20)\n", "\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Suggested excercises\n", "\n", "If you would hands-on experience with the `EcephysSession` class, please consider working through some of these excercises.\n", "\n", "- **tuning curves** : Pick a stimulus parameter, such as orientation on drifting gratings trials. Plot the mean and standard error of spike counts for each unit at each value of this parameter.\n", "- **signal correlations** : Calculate unit-pairwise correlation coefficients on the tuning curves for a stimulus parameter of interest (`numpy.corrcoef` might be useful).\n", "- **noise correlations** : Build for each unit a vector of spike counts across repeats of the same stimulus condition. Compute unit-unit correlation coefficients on these vectors.\n", "- **cross-correlations** : Start with two spike trains. Call one of them \"fixed\" and the other \"moving\". Choose a set of time offsets and for each offset:\n", " 1. apply the offset to the spike times in the moving train\n", " 2. compute the correlation coefficient between the newly offset moving train and the fixed train.\n", " You should then be able to plot the obtained correlation coeffients as a function of the offset. \n", "- **unit clustering** : First, extract a set of unitwise features. You might draw these from the mean waveforms, for instance:\n", " - mean duration between waveform peak and trough (on the unit's peak channel)\n", " - the amplitude of the unit's trough\n", " \n", " or you might draw them from the unit's spike times, such as:\n", " - median inter-spike-interval\n", " \n", " or from metadata\n", " - CCF structure\n", " \n", " With your features in hand, attempt an unsupervised classification of the units. If this seems daunting, check out the [scikit-learn unsupervised learning documention](https://scikit-learn.org/stable/modules/clustering.html#clustering) for library code and examples.\n", "- **population decoding** : Using an `EcephysSession` (and filtering to some stimuli and units of interest), build two aligned matrices:\n", " 1. A matrix whose rows are stimulus presentations, columns are units, and values are spike counts.\n", " 2. A matrix whose rows are stimulus presentations and whose columns are stimulus parameters.\n", " \n", " Using these matrices, train a classifier to predict stimulus conditions (sets of stimulus parameter values) from presentationwise population spike counts. See the [scikit-learn supervised learning tutorial](https://scikit-learn.org/stable/tutorial/statistical_inference/supervised_learning.html) for a guide to supervised learning in Python." ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.8" }, "nbdime-conflicts": { "local_diff": [ { "key": "kernelspec", "op": "add", "value": { "display_name": "allensdk", "language": "python", "name": "allensdk" } }, { "key": "language_info", "op": "add", "value": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.8" } } ], "remote_diff": [ { "key": "kernelspec", "op": "add", "value": { "display_name": "py37", "language": "python", "name": "py37" } }, { "key": "language_info", "op": "add", "value": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.3" } } ] } }, "nbformat": 4, "nbformat_minor": 2 }