{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Extracellular Electrophysiology Data\n", "\n", "At the Allen Institute for Brain Science we carry out in vivo extracellular electrophysiology (ecephys) experiments in awake animals using high-density Neuropixels probes. The data from these experiments are organized into *sessions*, where each session is a distinct continuous recording period. During a session we collect:\n", "\n", "- spike times and characteristics (such as mean waveforms) from up to 6 neuropixels probes\n", "- local field potentials\n", "- behavioral data, such as running speed and eye position\n", "- visual stimuli which were presented during the session\n", "- cell-type specific optogenetic stimuli that were applied during the session\n", "\n", "The AllenSDK contains code for accessing across-session (project-level) metadata as well as code for accessing detailed within-session data. The standard workflow is to use project-level tools, such as `EcephysProjectCache` to identify and access sessions of interest, then delve into those sessions' data using `EcephysSession`.\n", "\n", "\n", "Project-level\n", "------------------\n", "The `EcephysProjectCache` class in `allensdk.brain_observatory.ecephys.ecephys_project_cache` accesses and stores data pertaining to many sessions. You can use this class to run queries that span all collected sessions and to download data for individual sessions.\n", "* Obtaining an `EcephysProjectCache`\n", "* Querying sessions\n", "* Querying probes\n", "* Querying units\n", "* Surveying metadata\n", "\n", "\n", "Session-level\n", "-------------------\n", "The `EcephysSession` class in `allensdk.brain_observatory.ecephys.ecephys_session` provides an interface to all of the data for a single session, aligned to a common clock. This notebook will show you how to use the `EcephysSession` class to extract these data.\n", "* Obtaining an `EcephysSession`\n", "* Stimulus information\n", "* Spike data\n", "* Spike histograms\n", "* Running speed\n", "* Optogenetic stimulation\n", "* Local Field Potential\n", "* Current source density\n", "* Unitwise mean waveforms\n", "* Suggested excercises" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "# first we need a bit of import boilerplate\n", "import os\n", "\n", "import numpy as np\n", "import xarray as xr\n", "import pandas as pd\n", "import matplotlib.pyplot as plt\n", "from scipy.ndimage.filters import gaussian_filter\n", "\n", "from allensdk.brain_observatory.ecephys.ecephys_project_cache import EcephysProjectCache\n", "from allensdk.brain_observatory.ecephys.ecephys_session import (\n", " EcephysSession, \n", " removed_unused_stimulus_presentation_columns\n", ")\n", "from allensdk.brain_observatory.ecephys.visualization import plot_mean_waveforms, plot_spike_counts, raster_plot\n", "from allensdk.brain_observatory.visualization import plot_running_speed\n", "\n", "# tell pandas to show all columns when we display a DataFrame\n", "pd.set_option(\"display.max_columns\", None)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Obtaining an `EcephysProjectCache`\n", "\n", "In order to create an `EcephysProjectCache` object, you need to specify two things:\n", "1. A remote source for the object to fetch data from. We will instantiate our cache using `EcephysProjectCache.from_warehouse()` to point the cache at the Allen Institute's public web API.\n", "2. A path to a manifest json, which designates filesystem locations for downloaded data. The cache will try to read data from these locations before going to download those data from its remote source, preventing repeated downloads." ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "manifest_path = os.path.join(\"example_ecephys_project_cache\", \"manifest.json\")\n", "cache = EcephysProjectCache.from_warehouse(manifest=manifest_path)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Querying across sessions\n", "\n", "Using your `EcephysProjectCache`, you can download a table listing metadata for all sessions." ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "scrolled": false }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
published_atspecimen_idsession_typeage_in_dayssexfull_genotypeunit_countchannel_countprobe_countecephys_structure_acronyms
id
7150937032019-10-03T00:00:00Z699733581brain_observatory_1.1118.0MSst-IRES-Cre/wt;Ai32(RCL-ChR2(H134R)_EYFP)/wt88422196[CA1, VISrl, nan, PO, LP, LGd, CA3, DG, VISl, ...
7191615302019-10-03T00:00:00Z703279284brain_observatory_1.1122.0MSst-IRES-Cre/wt;Ai32(RCL-ChR2(H134R)_EYFP)/wt75522146[TH, Eth, APN, POL, LP, DG, CA1, VISpm, nan, N...
7211238222019-10-03T00:00:00Z707296982brain_observatory_1.1125.0MPvalb-IRES-Cre/wt;Ai32(RCL-ChR2(H134R)_EYFP)/wt44422296[MB, SCig, PPT, NOT, DG, CA1, VISam, nan, LP, ...
7325921052019-10-03T00:00:00Z717038288brain_observatory_1.1100.0Mwt/wt82418475[grey, VISpm, nan, VISp, VISl, VISal, VISrl]
7375810202019-10-03T00:00:00Z718643567brain_observatory_1.1108.0Mwt/wt56822186[grey, VISmma, nan, VISpm, VISp, VISl, VISrl]
\n", "
" ], "text/plain": [ " published_at specimen_id session_type \\\n", "id \n", "715093703 2019-10-03T00:00:00Z 699733581 brain_observatory_1.1 \n", "719161530 2019-10-03T00:00:00Z 703279284 brain_observatory_1.1 \n", "721123822 2019-10-03T00:00:00Z 707296982 brain_observatory_1.1 \n", "732592105 2019-10-03T00:00:00Z 717038288 brain_observatory_1.1 \n", "737581020 2019-10-03T00:00:00Z 718643567 brain_observatory_1.1 \n", "\n", " age_in_days sex full_genotype \\\n", "id \n", "715093703 118.0 M Sst-IRES-Cre/wt;Ai32(RCL-ChR2(H134R)_EYFP)/wt \n", "719161530 122.0 M Sst-IRES-Cre/wt;Ai32(RCL-ChR2(H134R)_EYFP)/wt \n", "721123822 125.0 M Pvalb-IRES-Cre/wt;Ai32(RCL-ChR2(H134R)_EYFP)/wt \n", "732592105 100.0 M wt/wt \n", "737581020 108.0 M wt/wt \n", "\n", " unit_count channel_count probe_count \\\n", "id \n", "715093703 884 2219 6 \n", "719161530 755 2214 6 \n", "721123822 444 2229 6 \n", "732592105 824 1847 5 \n", "737581020 568 2218 6 \n", "\n", " ecephys_structure_acronyms \n", "id \n", "715093703 [CA1, VISrl, nan, PO, LP, LGd, CA3, DG, VISl, ... \n", "719161530 [TH, Eth, APN, POL, LP, DG, CA1, VISpm, nan, N... \n", "721123822 [MB, SCig, PPT, NOT, DG, CA1, VISam, nan, LP, ... \n", "732592105 [grey, VISpm, nan, VISp, VISl, VISal, VISrl] \n", "737581020 [grey, VISmma, nan, VISpm, VISp, VISl, VISrl] " ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "cache.get_session_table().head()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Querying across probes\n", "\n", "... or for all probes" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
ecephys_session_idlfp_sampling_ratenamephasesampling_ratehas_lfp_dataunit_countchannel_countecephys_structure_acronyms
id
7294456487191615301249.998642probeA3a29999.967418True87374[APN, LP, MB, DG, CA1, VISam, nan]
7294456507191615301249.996620probeB3a29999.918880True202368[TH, Eth, APN, POL, LP, DG, CA1, VISpm, nan]
7294456527191615301249.999897probeC3a29999.997521True207373[APN, NOT, MB, DG, SUB, VISp, nan]
7294456547191615301249.996707probeD3a29999.920963True93358[grey, VL, CA3, CA2, CA1, VISl, nan]
7294456567191615301249.999979probeE3a29999.999500True138370[PO, VPM, TH, LP, LGd, CA3, DG, CA1, VISal, nan]
\n", "
" ], "text/plain": [ " ecephys_session_id lfp_sampling_rate name phase sampling_rate \\\n", "id \n", "729445648 719161530 1249.998642 probeA 3a 29999.967418 \n", "729445650 719161530 1249.996620 probeB 3a 29999.918880 \n", "729445652 719161530 1249.999897 probeC 3a 29999.997521 \n", "729445654 719161530 1249.996707 probeD 3a 29999.920963 \n", "729445656 719161530 1249.999979 probeE 3a 29999.999500 \n", "\n", " has_lfp_data unit_count channel_count \\\n", "id \n", "729445648 True 87 374 \n", "729445650 True 202 368 \n", "729445652 True 207 373 \n", "729445654 True 93 358 \n", "729445656 True 138 370 \n", "\n", " ecephys_structure_acronyms \n", "id \n", "729445648 [APN, LP, MB, DG, CA1, VISam, nan] \n", "729445650 [TH, Eth, APN, POL, LP, DG, CA1, VISpm, nan] \n", "729445652 [APN, NOT, MB, DG, SUB, VISp, nan] \n", "729445654 [grey, VL, CA3, CA2, CA1, VISl, nan] \n", "729445656 [PO, VPM, TH, LP, LGd, CA3, DG, CA1, VISal, nan] " ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "cache.get_probes().head()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Querying across channels\n", "\n", "... or across channels." ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
ecephys_probe_idlocal_indexprobe_horizontal_positionprobe_vertical_positionanterior_posterior_ccf_coordinatedorsal_ventral_ccf_coordinateleft_right_ccf_coordinateecephys_structure_idecephys_structure_acronymecephys_session_idlfp_sampling_ratephasesampling_ratehas_lfp_dataunit_count
id
84970555879264550411120816533146862215.0APN7798394711250.0014793a30000.035489True0
84970556079264550425940816233076866215.0APN7798394711250.0014793a30000.035489True0
84970556279264550432740816033016871215.0APN7798394711250.0014793a30000.035489True0
84970556479264550444360815732956875215.0APN7798394711250.0014793a30000.035489True0
84970556679264550451160815532886879215.0APN7798394711250.0014793a30000.035489True0
\n", "
" ], "text/plain": [ " ecephys_probe_id local_index probe_horizontal_position \\\n", "id \n", "849705558 792645504 1 11 \n", "849705560 792645504 2 59 \n", "849705562 792645504 3 27 \n", "849705564 792645504 4 43 \n", "849705566 792645504 5 11 \n", "\n", " probe_vertical_position anterior_posterior_ccf_coordinate \\\n", "id \n", "849705558 20 8165 \n", "849705560 40 8162 \n", "849705562 40 8160 \n", "849705564 60 8157 \n", "849705566 60 8155 \n", "\n", " dorsal_ventral_ccf_coordinate left_right_ccf_coordinate \\\n", "id \n", "849705558 3314 6862 \n", "849705560 3307 6866 \n", "849705562 3301 6871 \n", "849705564 3295 6875 \n", "849705566 3288 6879 \n", "\n", " ecephys_structure_id ecephys_structure_acronym ecephys_session_id \\\n", "id \n", "849705558 215.0 APN 779839471 \n", "849705560 215.0 APN 779839471 \n", "849705562 215.0 APN 779839471 \n", "849705564 215.0 APN 779839471 \n", "849705566 215.0 APN 779839471 \n", "\n", " lfp_sampling_rate phase sampling_rate has_lfp_data unit_count \n", "id \n", "849705558 1250.001479 3a 30000.035489 True 0 \n", "849705560 1250.001479 3a 30000.035489 True 0 \n", "849705562 1250.001479 3a 30000.035489 True 0 \n", "849705564 1250.001479 3a 30000.035489 True 0 \n", "849705566 1250.001479 3a 30000.035489 True 0 " ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "cache.get_channels().head()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Querying across units\n", "\n", "... as well as for sorted units." ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
waveform_PT_ratiowaveform_amplitudeamplitude_cutoffcumulative_driftd_primewaveform_durationecephys_channel_idfiring_ratewaveform_halfwidthisi_violationsisolation_distanceL_ratiomax_driftnn_hit_ratenn_miss_ratepresence_ratiowaveform_recovery_slopewaveform_repolarization_slopesilhouette_scoresnrwaveform_spreadwaveform_velocity_abovewaveform_velocity_belowecephys_probe_idlocal_indexprobe_horizontal_positionprobe_vertical_positionanterior_posterior_ccf_coordinatedorsal_ventral_ccf_coordinateleft_right_ccf_coordinateecephys_structure_idecephys_structure_acronymecephys_session_idlfp_sampling_ratenamephasesampling_ratehas_lfp_datadate_of_acquisitionpublished_atspecimen_idsession_typeage_in_dayssexgenotype
id
9159562820.611816164.8787400.072728309.713.9108730.5356788502294196.5194320.1648240.10491030.5469000.01386527.100.8981260.0015990.99-0.0875450.4809150.1023691.91183930.00.000000NaN73374464732740-1000-1000-10008.0grey7325921051249.996475probeB3a29999.915391True2019-01-09T00:26:20Z2019-10-03T00:00:00Z717038288brain_observatory_1.1100.0Mwt/wt
9159563400.439372247.2543450.000881160.245.5190240.5631498502294199.6605540.2060300.00682559.6131820.0004107.790.9876540.0009030.99-0.1041960.7045220.1974583.35790830.00.000000NaN73374464732740-1000-1000-10008.0grey7325921051249.996475probeB3a29999.915391True2019-01-09T00:26:20Z2019-10-03T00:00:00Z717038288brain_observatory_1.1100.0Mwt/wt
9159563450.500520251.2758300.001703129.363.5599110.52194385022941912.6984300.1922950.04493647.8057140.00828111.560.9300000.0049560.99-0.1531270.7812960.1388273.36219830.00.343384NaN73374464732740-1000-1000-10008.0grey7325921051249.996475probeB3a29999.915391True2019-01-09T00:26:20Z2019-10-03T00:00:00Z717038288brain_observatory_1.1100.0Mwt/wt
9159563490.424620177.1153800.096378169.292.9739590.50820885022941916.1924130.1922950.12071554.6355150.01040614.870.8746670.0216360.99-0.0860220.5533930.1369012.68463640.00.206030NaN73374464732740-1000-1000-10008.0grey7325921051249.996475probeB3a29999.915391True2019-01-09T00:26:20Z2019-10-03T00:00:00Z717038288brain_observatory_1.1100.0Mwt/wt
9159563560.512847214.9545450.054706263.012.9368510.5494148502294192.1931130.2335010.43042718.1363020.06134518.370.6373630.0006730.99-0.1060510.6329770.1088672.60540860.0-0.451304NaN73374464732740-1000-1000-10008.0grey7325921051249.996475probeB3a29999.915391True2019-01-09T00:26:20Z2019-10-03T00:00:00Z717038288brain_observatory_1.1100.0Mwt/wt
\n", "
" ], "text/plain": [ " waveform_PT_ratio waveform_amplitude amplitude_cutoff \\\n", "id \n", "915956282 0.611816 164.878740 0.072728 \n", "915956340 0.439372 247.254345 0.000881 \n", "915956345 0.500520 251.275830 0.001703 \n", "915956349 0.424620 177.115380 0.096378 \n", "915956356 0.512847 214.954545 0.054706 \n", "\n", " cumulative_drift d_prime waveform_duration ecephys_channel_id \\\n", "id \n", "915956282 309.71 3.910873 0.535678 850229419 \n", "915956340 160.24 5.519024 0.563149 850229419 \n", "915956345 129.36 3.559911 0.521943 850229419 \n", "915956349 169.29 2.973959 0.508208 850229419 \n", "915956356 263.01 2.936851 0.549414 850229419 \n", "\n", " firing_rate waveform_halfwidth isi_violations \\\n", "id \n", "915956282 6.519432 0.164824 0.104910 \n", "915956340 9.660554 0.206030 0.006825 \n", "915956345 12.698430 0.192295 0.044936 \n", "915956349 16.192413 0.192295 0.120715 \n", "915956356 2.193113 0.233501 0.430427 \n", "\n", " isolation_distance L_ratio max_drift nn_hit_rate nn_miss_rate \\\n", "id \n", "915956282 30.546900 0.013865 27.10 0.898126 0.001599 \n", "915956340 59.613182 0.000410 7.79 0.987654 0.000903 \n", "915956345 47.805714 0.008281 11.56 0.930000 0.004956 \n", "915956349 54.635515 0.010406 14.87 0.874667 0.021636 \n", "915956356 18.136302 0.061345 18.37 0.637363 0.000673 \n", "\n", " presence_ratio waveform_recovery_slope \\\n", "id \n", "915956282 0.99 -0.087545 \n", "915956340 0.99 -0.104196 \n", "915956345 0.99 -0.153127 \n", "915956349 0.99 -0.086022 \n", "915956356 0.99 -0.106051 \n", "\n", " waveform_repolarization_slope silhouette_score snr \\\n", "id \n", "915956282 0.480915 0.102369 1.911839 \n", "915956340 0.704522 0.197458 3.357908 \n", "915956345 0.781296 0.138827 3.362198 \n", "915956349 0.553393 0.136901 2.684636 \n", "915956356 0.632977 0.108867 2.605408 \n", "\n", " waveform_spread waveform_velocity_above waveform_velocity_below \\\n", "id \n", "915956282 30.0 0.000000 NaN \n", "915956340 30.0 0.000000 NaN \n", "915956345 30.0 0.343384 NaN \n", "915956349 40.0 0.206030 NaN \n", "915956356 60.0 -0.451304 NaN \n", "\n", " ecephys_probe_id local_index probe_horizontal_position \\\n", "id \n", "915956282 733744647 3 27 \n", "915956340 733744647 3 27 \n", "915956345 733744647 3 27 \n", "915956349 733744647 3 27 \n", "915956356 733744647 3 27 \n", "\n", " probe_vertical_position anterior_posterior_ccf_coordinate \\\n", "id \n", "915956282 40 -1000 \n", "915956340 40 -1000 \n", "915956345 40 -1000 \n", "915956349 40 -1000 \n", "915956356 40 -1000 \n", "\n", " dorsal_ventral_ccf_coordinate left_right_ccf_coordinate \\\n", "id \n", "915956282 -1000 -1000 \n", "915956340 -1000 -1000 \n", "915956345 -1000 -1000 \n", "915956349 -1000 -1000 \n", "915956356 -1000 -1000 \n", "\n", " ecephys_structure_id ecephys_structure_acronym ecephys_session_id \\\n", "id \n", "915956282 8.0 grey 732592105 \n", "915956340 8.0 grey 732592105 \n", "915956345 8.0 grey 732592105 \n", "915956349 8.0 grey 732592105 \n", "915956356 8.0 grey 732592105 \n", "\n", " lfp_sampling_rate name phase sampling_rate has_lfp_data \\\n", "id \n", "915956282 1249.996475 probeB 3a 29999.915391 True \n", "915956340 1249.996475 probeB 3a 29999.915391 True \n", "915956345 1249.996475 probeB 3a 29999.915391 True \n", "915956349 1249.996475 probeB 3a 29999.915391 True \n", "915956356 1249.996475 probeB 3a 29999.915391 True \n", "\n", " date_of_acquisition published_at specimen_id \\\n", "id \n", "915956282 2019-01-09T00:26:20Z 2019-10-03T00:00:00Z 717038288 \n", "915956340 2019-01-09T00:26:20Z 2019-10-03T00:00:00Z 717038288 \n", "915956345 2019-01-09T00:26:20Z 2019-10-03T00:00:00Z 717038288 \n", "915956349 2019-01-09T00:26:20Z 2019-10-03T00:00:00Z 717038288 \n", "915956356 2019-01-09T00:26:20Z 2019-10-03T00:00:00Z 717038288 \n", "\n", " session_type age_in_days sex genotype \n", "id \n", "915956282 brain_observatory_1.1 100.0 M wt/wt \n", "915956340 brain_observatory_1.1 100.0 M wt/wt \n", "915956345 brain_observatory_1.1 100.0 M wt/wt \n", "915956349 brain_observatory_1.1 100.0 M wt/wt \n", "915956356 brain_observatory_1.1 100.0 M wt/wt " ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "units = cache.get_units()\n", "units.head()" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "40010\n" ] } ], "source": [ "# There are quite a few of these\n", "print(units.shape[0])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Surveying metadata\n", "\n", "You can answer questions like: \"what mouse genotypes were used in this dataset?\" using your `EcephysProjectCache`." ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "stimulus sets: ['brain_observatory_1.1', 'functional_connectivity']\n", "genotypes: ['Sst-IRES-Cre/wt;Ai32(RCL-ChR2(H134R)_EYFP)/wt', 'Pvalb-IRES-Cre/wt;Ai32(RCL-ChR2(H134R)_EYFP)/wt', 'wt/wt', 'Vip-IRES-Cre/wt;Ai32(RCL-ChR2(H134R)_EYFP)/wt']\n", "structures: ['APN', 'LP', 'MB', 'DG', 'CA1', 'VISrl', nan, 'TH', 'LGd', 'CA3', 'VIS', 'CA2', 'ProS', 'VISp', 'POL', 'VISpm', 'PPT', 'OP', 'NOT', 'HPF', 'SUB', 'VISam', 'ZI', 'LGv', 'VISal', 'VISl', 'SGN', 'SCig', 'MGm', 'MGv', 'VPM', 'grey', 'Eth', 'VPL', 'IGL', 'PP', 'PIL', 'PO', 'VISmma', 'POST', 'SCop', 'SCsg', 'SCzo', 'SCiw', 'IntG', 'MGd', 'MRN', 'LD', 'VISmmp', 'CP', 'VISli', 'PRE', 'RPF', 'LT', 'PF', 'PoT', 'VL', 'RT']\n" ] } ], "source": [ "print(f\"stimulus sets: {cache.get_all_session_types()}\")\n", "print(f\"genotypes: {cache.get_all_full_genotypes()}\")\n", "print(f\"structures: {cache.get_structure_acronyms()}\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "In order to look up a brain structure acronym, you can use our [online atlas viewer](http://atlas.brain-map.org/atlas?atlas=602630314). The AllenSDK additionally supports programmatic access to structure annotations. For more information, see the [reference space](https://allensdk.readthedocs.io/en/latest/reference_space.html) and [mouse connectivity](https://allensdk.readthedocs.io/en/latest/connectivity.html) documentation." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Obtaining an `EcephysSession`\n", "\n", "We package each session's data into a Neurodata Without Borders 2.0 (NWB) file. Calling `get_session_data` on your `EcephysProjectCache` will download such a file and return an `EcephysSession` object.\n", "\n", "`EcephysSession` objects contain methods and properties that access the data within an ecephys NWB file and cache it in memory." ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "scrolled": false }, "outputs": [], "source": [ "session_id = 756029989 # for example\n", "session = cache.get_session_data(session_id)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "This session object has some important metadata, such as the date and time at which the recording session started:" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "session 756029989 was acquired in 2018-10-26 12:59:18-07:00\n" ] } ], "source": [ "print(f\"session {session.ecephys_session_id} was acquired in {session.session_start_time}\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We'll now jump in to accessing our session's data. If you ever want a complete documented list of the attributes and methods defined on `EcephysSession`, you can run `help(EcephysSession)` (or in a jupyter notebook: `EcephysSession?`)." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Sorted units\n", "\n", "Units are putative neurons, clustered from raw voltage traces using Kilosort 2. Each unit is associated with a single *peak channel* on a single probe, though its spikes might be picked up with some attenuation on multiple nearby channels. Each unit is assigned a unique integer identifier (\"unit_id\") which can be used to look up its spike times and its mean waveform.\n", "\n", "The units for a session are recorded in an attribute called, fittingly, `units`. This is a `pandas.DataFrame` whose index is the unit id and whose columns contain summary information about the unit, its peak channel, and its associated probe." ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "scrolled": false }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
cumulative_driftL_ratiowaveform_PT_ratiowaveform_repolarization_slopeamplitude_cutoffisolation_distancelocal_index_unitcluster_idpeak_channel_idnn_miss_ratewaveform_velocity_belowwaveform_velocity_aboved_primewaveform_recovery_slopewaveform_amplitudeisi_violationsmax_driftwaveform_spreadfiring_ratewaveform_durationpresence_ratiosnrwaveform_halfwidthsilhouette_scorenn_hit_ratec50_dgarea_rffano_dgfano_flfano_nsfano_rffano_sgf1_f0_dgg_dsi_dgg_osi_dgg_osi_sgazimuth_rfmod_idx_dgpref_sf_sgpref_tf_dgrun_mod_dgrun_mod_flrun_mod_nsrun_mod_rfrun_mod_sgpref_ori_dgpref_ori_sgrun_pval_dgrun_pval_flrun_pval_nsrun_pval_rfrun_pval_sgelevation_rfp_value_rfpref_image_nspref_phase_sgfiring_rate_dgfiring_rate_flfiring_rate_nsfiring_rate_rffiring_rate_sgon_off_ratio_fltime_to_peak_nspref_sf_multi_sgpref_tf_multi_dgpref_ori_multi_dgpref_ori_multi_sgpref_phase_multi_sgimage_selectivity_nspref_image_multi_nslifetime_sparseness_dglifetime_sparseness_fllifetime_sparseness_nslifetime_sparseness_rflifetime_sparseness_sgprobe_horizontal_positionchannel_local_indexprobe_idprobe_vertical_positionecephys_structure_idecephys_structure_acronymanterior_posterior_ccf_coordinatedorsal_ventral_ccf_coordinateleft_right_ccf_coordinateprobe_descriptionlocationprobe_sampling_rateprobe_lfp_sampling_rateprobe_has_lfp_data
unit_id
951814884463.860.0247710.5227130.6736500.04240446.750473568501263820.0162020.0000000.0000003.555518-0.249885187.4347800.18163845.6440.09.4921760.1510890.993.3425350.0961470.0337760.727333NaN2600.02.3704401.7651283.9833331.8666675.1863640.2447960.0539980.0331340.02370561.9230.6121620.0415.0-0.154286-0.005676-0.228819-0.212121-0.310345180.0150.00.6197169.763807e-010.5074050.4695070.447263-5.000True49290.7517.57194411.0575615.8451948.8059636.974832NaN0.0385FalseFalseFalseFalseFalse0.042644False0.0118290.0000120.0626160.0586060.03919743476064008360215.0APN816234876737probeA29999.9496111249.9979True
951814876325.210.0017850.6525140.5186330.09728685.178750458501263820.0037560.0000000.0000004.445414-0.143762129.6865050.00479940.6850.039.1005570.3159130.992.5897170.2060300.1089081.000000NaN900.03.4175730.7047620.6726900.8039801.0030550.1377090.0176750.0152480.02733472.2220.6784730.042.00.3265870.2315950.0621570.0685480.068853315.0150.00.0000306.157503e-070.3535660.6741850.47287045.556False50210.0043.39030144.70984836.82028844.88508435.195889NaN0.1535FalseFalseFalseFalseFalse0.214051False0.0018120.0000030.0023660.0043080.00294343476064008360215.0APN816234876737probeA29999.9496111249.9979True
951815032396.280.0356540.4842970.7663470.01548289.60883615178501263980.014673-0.686767-0.2060303.848256-0.255492207.3809400.00709940.0180.028.3832770.1648240.993.8115660.0961470.0967150.986000NaN400.02.3018101.4088662.7110281.7147902.0552580.1735970.0136650.0078860.05190985.0000.7689890.0415.0-0.026107-0.220335-0.3452710.043011-0.157445135.0120.00.8271951.179300e-020.0067500.8671400.2296175.000False49900.2529.46448528.82959228.25266628.02535430.002900NaN0.0495FalseFalseFalseFalseFalse-0.005102False0.0041210.0069730.0067430.0188080.0077834312760640083140215.0APN812934196762probeA29999.9496111249.9979True
951815275374.820.0167830.6006000.6289440.06380748.11433627308501264160.0036830.0000000.6867673.065938-0.206676158.1586500.03231733.3260.05.7093580.1785590.992.9181340.0961470.1442490.883598NaN200.03.2645831.1450982.1600001.0394562.6040370.3801190.0184990.0369590.07217925.0000.0130710.0415.0-0.397810-0.582707-0.274725-0.2000000.068966135.0150.00.0082706.722051e-070.4661160.4929310.87205150.000False49380.5010.5105498.7661141.9728038.4923653.180672NaN0.0495FalseFalseFalseFalseFalse0.298085False0.0099180.0022330.0730800.0356060.0455481121760640083220215.0APN809533496787probeA29999.9496111249.9979True
951815314420.050.0096660.4590250.7402220.07212976.91633431348501264200.017600-0.274707-0.0686774.198612-0.171503173.4757050.04807542.8090.023.9022350.1785590.993.3603240.1236180.1111060.968000NaN200.09.5211381.8155622.6851613.0298165.8379140.3530140.0214650.0331740.06038790.0001.9610570.041.0-0.381593-0.1104150.051182-0.007519-0.375085135.00.00.0093572.297652e-010.8190530.9776420.117368-25.000False50210.5036.37073735.51741814.13204236.25675314.647080NaN0.2055FalseFalseFalseFalseFalse0.009373False0.0066690.0253390.0230170.0287780.0279932723760640083240215.0APN808833336792probeA29999.9496111249.9979True
\n", "
" ], "text/plain": [ " cumulative_drift L_ratio waveform_PT_ratio \\\n", "unit_id \n", "951814884 463.86 0.024771 0.522713 \n", "951814876 325.21 0.001785 0.652514 \n", "951815032 396.28 0.035654 0.484297 \n", "951815275 374.82 0.016783 0.600600 \n", "951815314 420.05 0.009666 0.459025 \n", "\n", " waveform_repolarization_slope amplitude_cutoff \\\n", "unit_id \n", "951814884 0.673650 0.042404 \n", "951814876 0.518633 0.097286 \n", "951815032 0.766347 0.015482 \n", "951815275 0.628944 0.063807 \n", "951815314 0.740222 0.072129 \n", "\n", " isolation_distance local_index_unit cluster_id peak_channel_id \\\n", "unit_id \n", "951814884 46.750473 5 6 850126382 \n", "951814876 85.178750 4 5 850126382 \n", "951815032 89.608836 15 17 850126398 \n", "951815275 48.114336 27 30 850126416 \n", "951815314 76.916334 31 34 850126420 \n", "\n", " nn_miss_rate waveform_velocity_below waveform_velocity_above \\\n", "unit_id \n", "951814884 0.016202 0.000000 0.000000 \n", "951814876 0.003756 0.000000 0.000000 \n", "951815032 0.014673 -0.686767 -0.206030 \n", "951815275 0.003683 0.000000 0.686767 \n", "951815314 0.017600 -0.274707 -0.068677 \n", "\n", " d_prime waveform_recovery_slope waveform_amplitude \\\n", "unit_id \n", "951814884 3.555518 -0.249885 187.434780 \n", "951814876 4.445414 -0.143762 129.686505 \n", "951815032 3.848256 -0.255492 207.380940 \n", "951815275 3.065938 -0.206676 158.158650 \n", "951815314 4.198612 -0.171503 173.475705 \n", "\n", " isi_violations max_drift waveform_spread firing_rate \\\n", "unit_id \n", "951814884 0.181638 45.64 40.0 9.492176 \n", "951814876 0.004799 40.68 50.0 39.100557 \n", "951815032 0.007099 40.01 80.0 28.383277 \n", "951815275 0.032317 33.32 60.0 5.709358 \n", "951815314 0.048075 42.80 90.0 23.902235 \n", "\n", " waveform_duration presence_ratio snr waveform_halfwidth \\\n", "unit_id \n", "951814884 0.151089 0.99 3.342535 0.096147 \n", "951814876 0.315913 0.99 2.589717 0.206030 \n", "951815032 0.164824 0.99 3.811566 0.096147 \n", "951815275 0.178559 0.99 2.918134 0.096147 \n", "951815314 0.178559 0.99 3.360324 0.123618 \n", "\n", " silhouette_score nn_hit_rate c50_dg area_rf fano_dg fano_fl \\\n", "unit_id \n", "951814884 0.033776 0.727333 NaN 2600.0 2.370440 1.765128 \n", "951814876 0.108908 1.000000 NaN 900.0 3.417573 0.704762 \n", "951815032 0.096715 0.986000 NaN 400.0 2.301810 1.408866 \n", "951815275 0.144249 0.883598 NaN 200.0 3.264583 1.145098 \n", "951815314 0.111106 0.968000 NaN 200.0 9.521138 1.815562 \n", "\n", " fano_ns fano_rf fano_sg f1_f0_dg g_dsi_dg g_osi_dg \\\n", "unit_id \n", "951814884 3.983333 1.866667 5.186364 0.244796 0.053998 0.033134 \n", "951814876 0.672690 0.803980 1.003055 0.137709 0.017675 0.015248 \n", "951815032 2.711028 1.714790 2.055258 0.173597 0.013665 0.007886 \n", "951815275 2.160000 1.039456 2.604037 0.380119 0.018499 0.036959 \n", "951815314 2.685161 3.029816 5.837914 0.353014 0.021465 0.033174 \n", "\n", " g_osi_sg azimuth_rf mod_idx_dg pref_sf_sg pref_tf_dg \\\n", "unit_id \n", "951814884 0.023705 61.923 0.612162 0.04 15.0 \n", "951814876 0.027334 72.222 0.678473 0.04 2.0 \n", "951815032 0.051909 85.000 0.768989 0.04 15.0 \n", "951815275 0.072179 25.000 0.013071 0.04 15.0 \n", "951815314 0.060387 90.000 1.961057 0.04 1.0 \n", "\n", " run_mod_dg run_mod_fl run_mod_ns run_mod_rf run_mod_sg \\\n", "unit_id \n", "951814884 -0.154286 -0.005676 -0.228819 -0.212121 -0.310345 \n", "951814876 0.326587 0.231595 0.062157 0.068548 0.068853 \n", "951815032 -0.026107 -0.220335 -0.345271 0.043011 -0.157445 \n", "951815275 -0.397810 -0.582707 -0.274725 -0.200000 0.068966 \n", "951815314 -0.381593 -0.110415 0.051182 -0.007519 -0.375085 \n", "\n", " pref_ori_dg pref_ori_sg run_pval_dg run_pval_fl run_pval_ns \\\n", "unit_id \n", "951814884 180.0 150.0 0.619716 9.763807e-01 0.507405 \n", "951814876 315.0 150.0 0.000030 6.157503e-07 0.353566 \n", "951815032 135.0 120.0 0.827195 1.179300e-02 0.006750 \n", "951815275 135.0 150.0 0.008270 6.722051e-07 0.466116 \n", "951815314 135.0 0.0 0.009357 2.297652e-01 0.819053 \n", "\n", " run_pval_rf run_pval_sg elevation_rf p_value_rf pref_image_ns \\\n", "unit_id \n", "951814884 0.469507 0.447263 -5.000 True 4929 \n", "951814876 0.674185 0.472870 45.556 False 5021 \n", "951815032 0.867140 0.229617 5.000 False 4990 \n", "951815275 0.492931 0.872051 50.000 False 4938 \n", "951815314 0.977642 0.117368 -25.000 False 5021 \n", "\n", " pref_phase_sg firing_rate_dg firing_rate_fl firing_rate_ns \\\n", "unit_id \n", "951814884 0.75 17.571944 11.057561 5.845194 \n", "951814876 0.00 43.390301 44.709848 36.820288 \n", "951815032 0.25 29.464485 28.829592 28.252666 \n", "951815275 0.50 10.510549 8.766114 1.972803 \n", "951815314 0.50 36.370737 35.517418 14.132042 \n", "\n", " firing_rate_rf firing_rate_sg on_off_ratio_fl time_to_peak_ns \\\n", "unit_id \n", "951814884 8.805963 6.974832 NaN 0.0385 \n", "951814876 44.885084 35.195889 NaN 0.1535 \n", "951815032 28.025354 30.002900 NaN 0.0495 \n", "951815275 8.492365 3.180672 NaN 0.0495 \n", "951815314 36.256753 14.647080 NaN 0.2055 \n", "\n", " pref_sf_multi_sg pref_tf_multi_dg pref_ori_multi_dg \\\n", "unit_id \n", "951814884 False False False \n", "951814876 False False False \n", "951815032 False False False \n", "951815275 False False False \n", "951815314 False False False \n", "\n", " pref_ori_multi_sg pref_phase_multi_sg image_selectivity_ns \\\n", "unit_id \n", "951814884 False False 0.042644 \n", "951814876 False False 0.214051 \n", "951815032 False False -0.005102 \n", "951815275 False False 0.298085 \n", "951815314 False False 0.009373 \n", "\n", " pref_image_multi_ns lifetime_sparseness_dg \\\n", "unit_id \n", "951814884 False 0.011829 \n", "951814876 False 0.001812 \n", "951815032 False 0.004121 \n", "951815275 False 0.009918 \n", "951815314 False 0.006669 \n", "\n", " lifetime_sparseness_fl lifetime_sparseness_ns \\\n", "unit_id \n", "951814884 0.000012 0.062616 \n", "951814876 0.000003 0.002366 \n", "951815032 0.006973 0.006743 \n", "951815275 0.002233 0.073080 \n", "951815314 0.025339 0.023017 \n", "\n", " lifetime_sparseness_rf lifetime_sparseness_sg \\\n", "unit_id \n", "951814884 0.058606 0.039197 \n", "951814876 0.004308 0.002943 \n", "951815032 0.018808 0.007783 \n", "951815275 0.035606 0.045548 \n", "951815314 0.028778 0.027993 \n", "\n", " probe_horizontal_position channel_local_index probe_id \\\n", "unit_id \n", "951814884 43 4 760640083 \n", "951814876 43 4 760640083 \n", "951815032 43 12 760640083 \n", "951815275 11 21 760640083 \n", "951815314 27 23 760640083 \n", "\n", " probe_vertical_position ecephys_structure_id \\\n", "unit_id \n", "951814884 60 215.0 \n", "951814876 60 215.0 \n", "951815032 140 215.0 \n", "951815275 220 215.0 \n", "951815314 240 215.0 \n", "\n", " ecephys_structure_acronym anterior_posterior_ccf_coordinate \\\n", "unit_id \n", "951814884 APN 8162 \n", "951814876 APN 8162 \n", "951815032 APN 8129 \n", "951815275 APN 8095 \n", "951815314 APN 8088 \n", "\n", " dorsal_ventral_ccf_coordinate left_right_ccf_coordinate \\\n", "unit_id \n", "951814884 3487 6737 \n", "951814876 3487 6737 \n", "951815032 3419 6762 \n", "951815275 3349 6787 \n", "951815314 3333 6792 \n", "\n", " probe_description location probe_sampling_rate \\\n", "unit_id \n", "951814884 probeA 29999.949611 \n", "951814876 probeA 29999.949611 \n", "951815032 probeA 29999.949611 \n", "951815275 probeA 29999.949611 \n", "951815314 probeA 29999.949611 \n", "\n", " probe_lfp_sampling_rate probe_has_lfp_data \n", "unit_id \n", "951814884 1249.9979 True \n", "951814876 1249.9979 True \n", "951815032 1249.9979 True \n", "951815275 1249.9979 True \n", "951815314 1249.9979 True " ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" } ], "source": [ "session.units.head()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "As a `pandas.DataFrame` the units table supports many straightforward filtering operations:" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "684 units total\n", "81 units have snr > 4\n" ] } ], "source": [ "# how many units have signal to noise ratios that are greater than 4?\n", "print(f'{session.units.shape[0]} units total')\n", "units_with_very_high_snr = session.units[session.units['snr'] > 4]\n", "print(f'{units_with_very_high_snr.shape[0]} units have snr > 4')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "... as well as some more advanced (and very useful!) operations. For more information, please see the pandas documentation. The following topics might be particularly handy:\n", "\n", "- [selecting data](http://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html)\n", "- [merging multiple dataframes](http://pandas.pydata.org/pandas-docs/stable/user_guide/merging.html)\n", "- [grouping rows within a dataframe](http://pandas.pydata.org/pandas-docs/stable/user_guide/groupby.html)\n", "- [pivot tables](http://pandas.pydata.org/pandas-docs/stable/user_guide/reshaping.html)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Stimulus presentations\n", "\n", "During the course of a session, visual stimuli are presented on a monitor to the subject. We call intervals of time where a specific stimulus is presented (and its parameters held constant!) a *stimulus presentation*.\n", "\n", "You can find information about the stimulus presentations that were displayed during a session by accessing the `stimulus_presentations` attribute on your `EcephysSession` object. " ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
colorcontrastframeorientationphasepossizespatial_frequencystart_timestimulus_blockstimulus_namestop_timetemporal_frequencyx_positiony_positiondurationstimulus_condition_id
stimulus_presentation_id
0nullnullnullnullnullnullnullnull24.429348nullspontaneous84.496188nullnullnull60.0668400
1null0.8null45[3644.93333333, 3644.93333333][-40.0, -20.0][20.0, 20.0]0.0884.4961880gabors84.729704440300.2335161
2null0.8null45[3644.93333333, 3644.93333333][-40.0, -20.0][20.0, 20.0]0.0884.7297040gabors84.9799004-30100.2501962
3null0.8null90[3644.93333333, 3644.93333333][-40.0, -20.0][20.0, 20.0]0.0884.9799000gabors85.230095410-100.2501963
4null0.8null90[3644.93333333, 3644.93333333][-40.0, -20.0][20.0, 20.0]0.0885.2300950gabors85.480291430400.2501964
\n", "
" ], "text/plain": [ " color contrast frame orientation \\\n", "stimulus_presentation_id \n", "0 null null null null \n", "1 null 0.8 null 45 \n", "2 null 0.8 null 45 \n", "3 null 0.8 null 90 \n", "4 null 0.8 null 90 \n", "\n", " phase pos \\\n", "stimulus_presentation_id \n", "0 null null \n", "1 [3644.93333333, 3644.93333333] [-40.0, -20.0] \n", "2 [3644.93333333, 3644.93333333] [-40.0, -20.0] \n", "3 [3644.93333333, 3644.93333333] [-40.0, -20.0] \n", "4 [3644.93333333, 3644.93333333] [-40.0, -20.0] \n", "\n", " size spatial_frequency start_time \\\n", "stimulus_presentation_id \n", "0 null null 24.429348 \n", "1 [20.0, 20.0] 0.08 84.496188 \n", "2 [20.0, 20.0] 0.08 84.729704 \n", "3 [20.0, 20.0] 0.08 84.979900 \n", "4 [20.0, 20.0] 0.08 85.230095 \n", "\n", " stimulus_block stimulus_name stop_time \\\n", "stimulus_presentation_id \n", "0 null spontaneous 84.496188 \n", "1 0 gabors 84.729704 \n", "2 0 gabors 84.979900 \n", "3 0 gabors 85.230095 \n", "4 0 gabors 85.480291 \n", "\n", " temporal_frequency x_position y_position duration \\\n", "stimulus_presentation_id \n", "0 null null null 60.066840 \n", "1 4 40 30 0.233516 \n", "2 4 -30 10 0.250196 \n", "3 4 10 -10 0.250196 \n", "4 4 30 40 0.250196 \n", "\n", " stimulus_condition_id \n", "stimulus_presentation_id \n", "0 0 \n", "1 1 \n", "2 2 \n", "3 3 \n", "4 4 " ] }, "execution_count": 13, "metadata": {}, "output_type": "execute_result" } ], "source": [ "session.stimulus_presentations.head()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Like the units table, this is a `pandas.DataFrame`. Each row corresponds to a stimulus presentation and lists the time (on the session's master clock, in seconds) when that presentation began and ended as well as the kind of stimulus that was presented (the \"stimulus_name\" column) and the parameter values that were used for that presentation. Many of these parameter values don't overlap between stimulus classes, so the stimulus_presentations table uses the string `\"null\"` to indicate an inapplicable parameter. The index is named \"stimulus_presentation_id\" and many methods on `EcephysSession` use these ids.\n", "\n", "Some of the columns bear a bit of explanation:\n", "- stimulus_block : A block consists of multiple presentations of the same stimulus class presented with (probably) different parameter values. If during a session stimuli were presented in the following order:\n", " - drifting gratings\n", " - static gratings\n", " - drifting gratings\n", " then the blocks for that session would be [0, 1, 2]. The gray period stimulus (just a blank gray screen) never gets a block.\n", "- duration : this is just stop_time - start_time, precalculated for convenience.\n", "\n", "What kinds of stimuli were presented during this session? Pandas makes it easy to find out:" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "['spontaneous',\n", " 'gabors',\n", " 'flashes',\n", " 'drifting_gratings',\n", " 'natural_movie_three',\n", " 'natural_movie_one',\n", " 'static_gratings',\n", " 'natural_scenes']" ] }, "execution_count": 14, "metadata": {}, "output_type": "execute_result" } ], "source": [ "session.stimulus_names # just the unique values from the 'stimulus_name' column" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We can also obtain the `stimulus epochs` - blocks of time for which a particular kind of stimulus was presented - for this session." ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
start_timestop_timedurationstimulus_namestimulus_block
024.42934884.49618860.066840spontaneousnull
184.496188996.491813911.995625gabors0
2996.4918131285.483398288.991585spontaneousnull
31285.4833981583.982946298.499548flashes1
41583.9829461585.7344181.751472spontaneousnull
51585.7344182185.235561599.501143drifting_gratings2
62185.2355612216.26149831.025937spontaneousnull
72216.2614982816.763498600.502000natural_movie_three3
82816.7634982846.78859830.025100spontaneousnull
92846.7885983147.039578300.250980natural_movie_one4
103147.0395783177.06468830.025110spontaneousnull
113177.0646883776.565851599.501163drifting_gratings5
123776.5658514077.834348301.268497spontaneousnull
134077.8343484678.336348600.502000natural_movie_three6
144678.3363484708.36143830.025090spontaneousnull
154708.3614385397.937871689.576433drifting_gratings7
165397.9378715398.9387181.000847spontaneousnull
175398.9387185879.340268480.401550static_gratings8
185879.3402685909.36539830.025130spontaneousnull
195909.3653986389.766968480.401570natural_scenes9
206389.7669686690.017948300.250980spontaneousnull
216690.0179487170.419568480.401620natural_scenes10
227170.4195687200.44462830.025060spontaneousnull
237200.4446287680.846188480.401560static_gratings11
247680.8461887710.87134830.025160spontaneousnull
257710.8713488011.122288300.250940natural_movie_one12
268011.1222888041.14740830.025120spontaneousnull
278041.1474088569.088694527.941286natural_scenes13
288569.0886948611.62424842.535554spontaneousnull
298611.6242489152.076028540.451780static_gratings14
\n", "
" ], "text/plain": [ " start_time stop_time duration stimulus_name stimulus_block\n", "0 24.429348 84.496188 60.066840 spontaneous null\n", "1 84.496188 996.491813 911.995625 gabors 0\n", "2 996.491813 1285.483398 288.991585 spontaneous null\n", "3 1285.483398 1583.982946 298.499548 flashes 1\n", "4 1583.982946 1585.734418 1.751472 spontaneous null\n", "5 1585.734418 2185.235561 599.501143 drifting_gratings 2\n", "6 2185.235561 2216.261498 31.025937 spontaneous null\n", "7 2216.261498 2816.763498 600.502000 natural_movie_three 3\n", "8 2816.763498 2846.788598 30.025100 spontaneous null\n", "9 2846.788598 3147.039578 300.250980 natural_movie_one 4\n", "10 3147.039578 3177.064688 30.025110 spontaneous null\n", "11 3177.064688 3776.565851 599.501163 drifting_gratings 5\n", "12 3776.565851 4077.834348 301.268497 spontaneous null\n", "13 4077.834348 4678.336348 600.502000 natural_movie_three 6\n", "14 4678.336348 4708.361438 30.025090 spontaneous null\n", "15 4708.361438 5397.937871 689.576433 drifting_gratings 7\n", "16 5397.937871 5398.938718 1.000847 spontaneous null\n", "17 5398.938718 5879.340268 480.401550 static_gratings 8\n", "18 5879.340268 5909.365398 30.025130 spontaneous null\n", "19 5909.365398 6389.766968 480.401570 natural_scenes 9\n", "20 6389.766968 6690.017948 300.250980 spontaneous null\n", "21 6690.017948 7170.419568 480.401620 natural_scenes 10\n", "22 7170.419568 7200.444628 30.025060 spontaneous null\n", "23 7200.444628 7680.846188 480.401560 static_gratings 11\n", "24 7680.846188 7710.871348 30.025160 spontaneous null\n", "25 7710.871348 8011.122288 300.250940 natural_movie_one 12\n", "26 8011.122288 8041.147408 30.025120 spontaneous null\n", "27 8041.147408 8569.088694 527.941286 natural_scenes 13\n", "28 8569.088694 8611.624248 42.535554 spontaneous null\n", "29 8611.624248 9152.076028 540.451780 static_gratings 14" ] }, "execution_count": 15, "metadata": {}, "output_type": "execute_result" } ], "source": [ "session.get_stimulus_epochs()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "If you are only interested in a subset of stimuli, you can either filter using pandas or using the `get_stimulus_table` convience method:" ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
contrastorientationphasepossizespatial_frequencystart_timestimulus_blockstimulus_namestop_timetemporal_frequencydurationstimulus_condition_id
stimulus_presentation_id
37980.8180[42471.86666667, 42471.86666667][0.0, 0.0][250.0, 250.0]0.041585.7344182drifting_gratings1587.73609822.00168246
37990.8135[42471.86666667, 42471.86666667][0.0, 0.0][250.0, 250.0]0.041588.7368912drifting_gratings1590.73857122.00168247
38000.8180[42471.86666667, 42471.86666667][0.0, 0.0][250.0, 250.0]0.041591.7393982drifting_gratings1593.74107822.00168246
38010.8270[42471.86666667, 42471.86666667][0.0, 0.0][250.0, 250.0]0.041594.7419212drifting_gratings1596.74359122.00167248
38020.8135[42471.86666667, 42471.86666667][0.0, 0.0][250.0, 250.0]0.041597.7444582drifting_gratings1599.74608842.00163249
\n", "
" ], "text/plain": [ " contrast orientation \\\n", "stimulus_presentation_id \n", "3798 0.8 180 \n", "3799 0.8 135 \n", "3800 0.8 180 \n", "3801 0.8 270 \n", "3802 0.8 135 \n", "\n", " phase pos \\\n", "stimulus_presentation_id \n", "3798 [42471.86666667, 42471.86666667] [0.0, 0.0] \n", "3799 [42471.86666667, 42471.86666667] [0.0, 0.0] \n", "3800 [42471.86666667, 42471.86666667] [0.0, 0.0] \n", "3801 [42471.86666667, 42471.86666667] [0.0, 0.0] \n", "3802 [42471.86666667, 42471.86666667] [0.0, 0.0] \n", "\n", " size spatial_frequency start_time \\\n", "stimulus_presentation_id \n", "3798 [250.0, 250.0] 0.04 1585.734418 \n", "3799 [250.0, 250.0] 0.04 1588.736891 \n", "3800 [250.0, 250.0] 0.04 1591.739398 \n", "3801 [250.0, 250.0] 0.04 1594.741921 \n", "3802 [250.0, 250.0] 0.04 1597.744458 \n", "\n", " stimulus_block stimulus_name stop_time \\\n", "stimulus_presentation_id \n", "3798 2 drifting_gratings 1587.736098 \n", "3799 2 drifting_gratings 1590.738571 \n", "3800 2 drifting_gratings 1593.741078 \n", "3801 2 drifting_gratings 1596.743591 \n", "3802 2 drifting_gratings 1599.746088 \n", "\n", " temporal_frequency duration stimulus_condition_id \n", "stimulus_presentation_id \n", "3798 2 2.00168 246 \n", "3799 2 2.00168 247 \n", "3800 2 2.00168 246 \n", "3801 2 2.00167 248 \n", "3802 4 2.00163 249 " ] }, "execution_count": 16, "metadata": {}, "output_type": "execute_result" } ], "source": [ "session.get_stimulus_table(['drifting_gratings']).head()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We might also want to know what the total set of available parameters is. The `get_stimulus_parameter_values` method provides a dictionary mapping stimulus parameters to the set of values that were applied to those parameters:" ] }, { "cell_type": "code", "execution_count": 17, "metadata": { "scrolled": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "color: [-1.0 1.0]\n", "contrast: [0.8 1.0]\n", "frame: [-1.0 0.0 1.0 ... 3597.0 3598.0 3599.0]\n", "orientation: [0.0 30.0 45.0 60.0 90.0 120.0 135.0 150.0 180.0 225.0 270.0 315.0]\n", "phase: ['0.0' '0.25' '0.5' '0.75' '[0.0, 0.0]' '[3644.93333333, 3644.93333333]'\n", " '[42471.86666667, 42471.86666667]']\n", "pos: ['[-40.0, -20.0]' '[0.0, 0.0]']\n", "size: ['[1920.0, 1080.0]' '[20.0, 20.0]' '[250.0, 250.0]' '[300.0, 300.0]']\n", "spatial_frequency: ['0.02' '0.04' '0.08' '0.16' '0.32' '[0.0, 0.0]']\n", "temporal_frequency: [1.0 2.0 4.0 8.0 15.0]\n", "x_position: [-40.0 -30.0 -20.0 -10.0 0.0 10.0 20.0 30.0 40.0]\n", "y_position: [-40.0 -30.0 -20.0 -10.0 0.0 10.0 20.0 30.0 40.0]\n" ] } ], "source": [ "for key, values in session.get_stimulus_parameter_values().items():\n", " print(f'{key}: {values}')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Each distinct state of the monitor is called a \"stimulus condition\". Each presentation in the stimulus presentations table exemplifies such a condition. This is encoded in its stimulus_condition_id field.\n", "\n", "To get the full list of conditions presented in a session, use the stimulus_conditions attribute:" ] }, { "cell_type": "code", "execution_count": 18, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
colorcolorSpacecontrastdepthflipHorizflipVertframeinterpolatemaskopacityorientationphaseposrgbPedestalsizespatial_frequencystimulus_nametemporal_frequencytextexResunitsx_positiony_positioncolor_triplet
stimulus_condition_id
0nullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullspontaneousnullnullnullnullnullnullnull
1nullrgb0.80nullnullnull0circle145[3644.93333333, 3644.93333333][-40.0, -20.0][0.0, 0.0, 0.0][20.0, 20.0]0.08gabors4sin256deg4030[1.0, 1.0, 1.0]
2nullrgb0.80nullnullnull0circle145[3644.93333333, 3644.93333333][-40.0, -20.0][0.0, 0.0, 0.0][20.0, 20.0]0.08gabors4sin256deg-3010[1.0, 1.0, 1.0]
3nullrgb0.80nullnullnull0circle190[3644.93333333, 3644.93333333][-40.0, -20.0][0.0, 0.0, 0.0][20.0, 20.0]0.08gabors4sin256deg10-10[1.0, 1.0, 1.0]
4nullrgb0.80nullnullnull0circle190[3644.93333333, 3644.93333333][-40.0, -20.0][0.0, 0.0, 0.0][20.0, 20.0]0.08gabors4sin256deg3040[1.0, 1.0, 1.0]
\n", "
" ], "text/plain": [ " color colorSpace contrast depth flipHoriz flipVert \\\n", "stimulus_condition_id \n", "0 null null null null null null \n", "1 null rgb 0.8 0 null null \n", "2 null rgb 0.8 0 null null \n", "3 null rgb 0.8 0 null null \n", "4 null rgb 0.8 0 null null \n", "\n", " frame interpolate mask opacity orientation \\\n", "stimulus_condition_id \n", "0 null null null null null \n", "1 null 0 circle 1 45 \n", "2 null 0 circle 1 45 \n", "3 null 0 circle 1 90 \n", "4 null 0 circle 1 90 \n", "\n", " phase pos \\\n", "stimulus_condition_id \n", "0 null null \n", "1 [3644.93333333, 3644.93333333] [-40.0, -20.0] \n", "2 [3644.93333333, 3644.93333333] [-40.0, -20.0] \n", "3 [3644.93333333, 3644.93333333] [-40.0, -20.0] \n", "4 [3644.93333333, 3644.93333333] [-40.0, -20.0] \n", "\n", " rgbPedestal size spatial_frequency \\\n", "stimulus_condition_id \n", "0 null null null \n", "1 [0.0, 0.0, 0.0] [20.0, 20.0] 0.08 \n", "2 [0.0, 0.0, 0.0] [20.0, 20.0] 0.08 \n", "3 [0.0, 0.0, 0.0] [20.0, 20.0] 0.08 \n", "4 [0.0, 0.0, 0.0] [20.0, 20.0] 0.08 \n", "\n", " stimulus_name temporal_frequency tex texRes units \\\n", "stimulus_condition_id \n", "0 spontaneous null null null null \n", "1 gabors 4 sin 256 deg \n", "2 gabors 4 sin 256 deg \n", "3 gabors 4 sin 256 deg \n", "4 gabors 4 sin 256 deg \n", "\n", " x_position y_position color_triplet \n", "stimulus_condition_id \n", "0 null null null \n", "1 40 30 [1.0, 1.0, 1.0] \n", "2 -30 10 [1.0, 1.0, 1.0] \n", "3 10 -10 [1.0, 1.0, 1.0] \n", "4 30 40 [1.0, 1.0, 1.0] " ] }, "execution_count": 18, "metadata": {}, "output_type": "execute_result" } ], "source": [ "session.stimulus_conditions.head()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Spike data\n", "\n", "The `EcephysSession` object holds spike times (in seconds on the session master clock) for each unit. These are stored in a dictionary, which maps unit ids (the index values of the units table) to arrays of spike times." ] }, { "cell_type": "code", "execution_count": 19, "metadata": { "scrolled": true }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/home/nileg/Desktop/allensdk/allensdk/brain_observatory/ecephys/ecephys_session.py:1062: UserWarning: Session includes invalid time intervals that could be accessed with the attribute 'invalid_times',Spikes within these intervals are invalid and may need to be excluded from the analysis.\n", " warnings.warn(\"Session includes invalid time intervals that could be accessed with the attribute 'invalid_times',\"\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "236169 spikes were detected for unit 951816951 at times:\n" ] }, { "data": { "text/plain": [ "array([3.81328401e+00, 4.20301799e+00, 4.30151816e+00, ...,\n", " 9.96615988e+03, 9.96617945e+03, 9.96619655e+03])" ] }, "execution_count": 19, "metadata": {}, "output_type": "execute_result" } ], "source": [ " # grab an arbitrary (though high-snr!) unit (we made units_with_high_snr above)\n", "high_snr_unit_ids = units_with_very_high_snr.index.values\n", "unit_id = high_snr_unit_ids[0]\n", "\n", "print(f\"{len(session.spike_times[unit_id])} spikes were detected for unit {unit_id} at times:\")\n", "session.spike_times[unit_id]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "You can also obtain spikes tagged with the stimulus presentation during which they occurred:" ] }, { "cell_type": "code", "execution_count": 20, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
stimulus_presentation_idunit_idtime_since_stimulus_presentation_onset
spike_time
1585.73484137989518179270.000423
1585.73686237989518127420.002444
1585.73859137989518054270.004173
1585.73894137989518169510.004523
1585.73899537989518205100.004577
\n", "
" ], "text/plain": [ " stimulus_presentation_id unit_id \\\n", "spike_time \n", "1585.734841 3798 951817927 \n", "1585.736862 3798 951812742 \n", "1585.738591 3798 951805427 \n", "1585.738941 3798 951816951 \n", "1585.738995 3798 951820510 \n", "\n", " time_since_stimulus_presentation_onset \n", "spike_time \n", "1585.734841 0.000423 \n", "1585.736862 0.002444 \n", "1585.738591 0.004173 \n", "1585.738941 0.004523 \n", "1585.738995 0.004577 " ] }, "execution_count": 20, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# get spike times from the first block of drifting gratings presentations \n", "drifting_gratings_presentation_ids = session.stimulus_presentations.loc[\n", " (session.stimulus_presentations['stimulus_name'] == 'drifting_gratings')\n", "].index.values\n", "\n", "times = session.presentationwise_spike_times(\n", " stimulus_presentation_ids=drifting_gratings_presentation_ids,\n", " unit_ids=high_snr_unit_ids\n", ")\n", "\n", "times.head()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We can make raster plots of these data:" ] }, { "cell_type": "code", "execution_count": 21, "metadata": { "scrolled": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeMAAAH6CAYAAAA0riRrAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3debwkVX3///cHZoFhEQYcGRlkAFH0soRNxC9GNC7AKEgWUCLoxAgm8Weixi1xGWMiLvGr5pv88sNtEBWFqAh+2VxRkEUGUOCSiWyDjs44MCMOMMyG5/fHqbpTt25Vd1VXVZ+q26/n43Eft7uqzjmfc+pUne5T1d3mnBMAAAhnu9ABAAAw6hiMAQAIjMEYAIDAGIwBAAiMwRgAgMAYjAEACGwkBmMzc2Z2TWrZkmj58WGigiSZ2avN7DYzeyTaH58MHdOgzOz8qA4LQ8eSZGbXmBmfYYSk9vbTUTcSgzG2yXphEoqZHSvpy5J2kfSfkj4g6aqgQfXACzg0oe4XS13sp2b2SjO7yMyWm9lvzexxM7vbzL5iZkdlbH98VMd+f/uk0s0ys3eY2c/MbIOZrTez68zstB6xzTOzj5rZndGbhrVmdouZvd3MdqmrDWbUlVHLPUvShtBBYIpFkkzSWc6560MHU4N3S/qwpF+FDgTooY399BRJR0u6WdKvJW2W9HRJp0o63czOds59NrH9CvkX71kOkfTHku50zv0yXmhmsyRdLen4KP1S+TekJ0m6yMwOds69L5lRNHtwk6R5kq6RdKWkHSS9VNJHJb3GzJ7rnHt8oFonjMRg7JxbHjoGZHpq9P/XQaOoiXNulaRVoeMAemlpP/0r59zG9EIzO0R+gP5XM7vAObdZkpxzKyQtycrIzL4SPfxMatXfyA/EN0h6iXPusWj7neUH2veY2WXOuWWJNG+XH4iXOOcmBn8z217StyW9SNKfSbqgRF2zOeda8SfpZEnfk+8km+RP0D+U9Nep7a6R5CTNlvTPku6Ptr9X0vslzcrI20m6JrVsSbT8+NTyp0kal39ldmZq3QJJ/y7pvqjMtZIuk3R0iXoujMo9X9IzJF0kaY2k38exSDpS0qck/UzSOkkbJd0t6eOSds/Ic5akN0u6VdJv5WcBVki6VNKLo21eF5Wb9bckld8xkr4maXXUDr+UdJ6kp2aUHe+PWZLeJ+l/orY5v0cb9IplYWK7IyV9PWqfTZIekPT/Spqfkef5Ufr9Jf0/km6X9Hh6v+fEc6ikr0RttknSg1FbflLSzGibFXkxZ8SQrENyfx8QtetaSY/IH8wHR9s9WdKn5fv/RvkT0At71HNhxrrjc/bnNck4U/vgdTltknXM7CLpvZLulLQ+qsO98n34yIL9P+4vpY9fSXtJ+qz8O7onkrFLmiP/ju+nkh6T9Kj8SffVGfmZpNdKuj7a1xvl+/jVkk7P2L7wca/EeUXSn0r6ifzxuE7SVyXtndE3sv6uSWz3wqhv3BW1++PRPni/pB1S5a/Iy7NgHzpN0o8k/S4q546oXWdnbLsi+ttJ0sck/SJqn3skvVOSFT0v9ukzt0Xx7l1g2z2j/blB0m6pdT+K8lmUke6V0brPp5ZfGS0/PCPNW6N1b6ujnq14Z2xmZ8uf7FdL+pakh+RfjRwqabH8CTjtYvlpja9J2iI/zbFE0lFmdrKLWqtkHIdJukL+pHOSc+67iXVHyJ8858oftN+Q3/GvlHSdmZ3qnLuiRHEHyE9//Fz+uumO8geaJL1Bfnrmh5K+Kz+VcqT8zj/RzI5xzj2SyOt8Sa+WP0AvkD+InirpOEknRHn8VH5a5/3yg9r5ifTXJOr5F/IH/ib5E84vJR0o6S8lvSKakvlFRn2+Lr8/rpT0TfkBNE8cyyslHSb/wuPhaN3DURwvj/I0+X38QNQGfyXpFDM7zjl3f0ben5L0fEmXy+/LJ3rEITM7VH4/uKi+90vaVX6K7K8lvUe+f30yivcFkr4gfxIqY2FUzn/Lt/1C+X18TXTt/Cr5/X+RfB97laQrzewZOe09VGZm8jE+T36Q+6ykrfID1QslXSvplhJZlj1+50q6UX6Q/Yb8i9ffRLHtJun7kg6XfxH1eflj5mWSLjSzMefcexJ5/Yv8AHN/FMfvJM2P4vkz+X0Q13vQ4/6v5d9gXCZ/HB8j6XRJh5nZHzjnNsn39Q/IvzDaV5OnXVckHr9T0kHyLx4ul58m/V9Rex1vZi92zsX9fOB+amYfitrlIUkXyrf1iZI+JOllZvZSF70zTZgp3y5PlT/2t0blfziKM28quWhMz5D0zCimIu/mXyv/Qu8C59zDqXV7Rf/vy0gXL/uj1PJx+XPoIvkXBXFc28m3ze/l+151dYzoNbzyuUX+5D8v65VO6vk18ifOnyvxLlF+x98QrUu/o+37zljSi+UPyl9LOiy17Qz5V3sbJb0gte6p8q/UVynj1WNGfRZq26vVD+Vss6+k7TOWvz5K987EsidFHWJZTpo9+rVFYt0z5N8J36PUq1D5TvqEpEty9sft6X1VoC3OV8YrdEk7y7/7eELS81Pr3hml+XZOXr+StF+JGD4epTslY93ukrbL6zNF6pPa3/+Y2v690fJ1kv6/VFlnRus+UaTNonXHq6F3xvLX4Vx6/0frtlPGjE1OvnF/KXv8OvkXmjN6tPs7Ust3kH8B8XtJf5BYvlbSSklzMvLaM/G49HGf6CPrJR2SSnNhtO60fvsntX5/ZbzLlPTBKL/TU8sH6afHRst+IWmvVBt8K1r3D6l8VkTLr5C0Y2L5PPkXGg8rmlkqcTy+OIr/Q/KzVY/Kv8udcnzmpF8exfS8jHXXR+tOylgXvzN2GXWJ8/ye/AzAp+RfVP9W0uIy9esZe10ZVQrCD8aPqcABrW0H85kZ646P1v0gtbznYCzpNfKD0F2SnpaR7ynRth/Lielv83ZyxrYLo21Xq8DgnUpr8i8Yvp9YtmuU34+zDtiMPHoNxp9QzjROtP4S+Ve+u2Tsj0IHSyq/KSeFaPmfR8svzEgzQ/4djUvuq0Ref1syhngwfmmBbSf6TNH6JPb3/Uq9WJK/JOKivr9Lat328u8Y0305s81S/X9J1jGTWvY6DTYYT9knJds77i9lj9+8F+t7RH3y5pzyDovSfzSxbG20P3oefxrguE/0kX/O2P6F0bp/7bd/CrblXGVPrQ7STz8TLTs7Y/tnyL8wvi+1fEWU5ukZab4QrTu4ZJ0+rMnT66skvaxg2hdEae7IWf+P2nauTA64O8lfTojLnJ9Kt5v8jEgyrt/Lz+buU+V4SP61Yppafpr245LuMrOvyk/r/Ng592CPND/MWHadfKc5vETZfyt/0P1Y0snOud9mbHNs9H9fM1uSsf7A6P+z5F8lFvEz56eqpjCzmZLOkZ+qfLb8u9/kx9D2jh8459ab2bckvULST83s6/JThjc558reQR7X8wVmdnTG+nnyg8QzNHVK8icly+rliOj/lOkf59xWM/uR/CB3uPwr+SpxXCTfB75pZl+Tn9L/sXPu3pL59PNTt20qMRbfuPZzN/myg5xzT5jZb+SngdvgLvnLC682s33l70e4TtIyN3Xqsoiyx+8K51zWpY+j5fukyzk2Z0b/n5VY9mX5+wruMrOLo1hucM79LpW2ynG/TFPFd/bunrEul5ntJN9HT5U/9naRf2Ee2zsrXUm9jrmfm9lKSfuZ2ZNS7fQ759w9GfkNVFfn3LskvSuq8zMk/b385Zr3Ouf+pU/ys6P/n85Z/yn5yxDPkzRuZlfIt+Mi+QH2d9o20yhp4m7qy+QvI54kP07MkR8zPi5/yexYl33JrJRWDMbOuf9tZg/JX2d5s6S/kz+4fijp7W7y3W2x32TkszXKZ16J4v9Qfod8L2cglvyrb8nvyF52LlHu6h7rLpI/8O6TP+mtln9nIPm2mZ3a/nT56dsztO0azcZocPl759yUtsoR1/PtfbbLqmev+pT1pOh/3jWiePluVeNwzv3EzJ4v/6r5T+Wnh2Vm/yPpA865r/RKX0L6RB/318x1ka3aNpgEFb04eJH8TXp/Kukj0apHzOwLkt7tnHu0RJZlj9+8/Rr32aOjvzzJPvsW+WNrsaR3RX9bo5Pz2xKDS5XjPn29UvL7U/IvHgqJXph/X9Jz5O8JuUj+prMt0Sbv19TzwSCKHHNPkz/mkv01q57SAHVNcv5O59sk/bmZzZX0QTP7tnPu5qzto23+RP5+mS/m5PmomR0n6R/k+/Ab5G9CvEL+WvnyKO51iWTny88KHeacuz1atl7SeWa2g/w1+vfLzzRV0orBWJKccxdIuiC6GeN58oPRX0i62swOyniX/BSl3hWZ2Qz5myvWq7jXyx+M7zez7Vzqc2aRuPOd4py7rETevbishdEH3E+Vf4d2onNua2LddpLeMSUj/xm3JZKWRB9y/0P5zvEa+XeQzy8YU1zPJznnyrShn2OrTxzHXjnr56e2mxRK2cKcczdIermZzZa/SewE+XdOF5rZgy5xI18LxK/as47drBcnpfOJjsEpoherb5H0FjN7uvy04DmS3hSVfWaJ8ssev3n7Ne4Dn3DOvbVIwdEMxSclfdLM5snf6Pgq+UF3LLrha5OaOe7LOkV+ID7fObc4ucLM5ssPBHVIHnNZs0K9jrmmXSV/TL5A/lMGWV4r/6LkC27qjVsToheM/xD9TTCz/eVfVN3inNsSLdslKnNdYiBO+kH0/8jiVcnXum/gcs497Jy7wjn3BvlXJXPlB5e0F2QsO07+ldhtGevyPCzpJfJTu+81s49mbHNj9L/ooFbF06P/lyUH4shz5KdLcjnnfumc+7L8naT3SDrOzPZIbPJ75b9aHWY9e4n33/HpFdEJO47v1joLdc5tcs5dH70ge3O0+JTEJvE080Cv9msSz97sk7FuyjcVNZWPc+4e59zn5I/DRzW5nYqo6/j9iXyfHqjPOufWOOe+4Zw7Tf4d6AGSDo5WD+t4eEKa+OxqWnw++EbGuqw2nMhP5fppr2Pu6fKXS+7vNdA1KJ6GT58Pk94Q/c+bou7nrOj/hYlls6L/u0ZfGJL25Oj/IJdppmjFYGxmL4w+OpEWT1dlXft8r5lNXI+IpgzOjZ4uLVN+dL3uBPm75d5uZp9KbXKp/KvFvzGzk7LyMLNjzWxOmXJzrIj+H5/Kf56k/8go98nRB+PTdpJ/pbdVkzvLWmWfgCX/Wcotkj4RfaQgXdasaEq3ad+Unyp6tZk9N7Xu7yTtJ+m7roaP/JjZ88ws6wXOU6L/yb63Nvr/tKrlVhBfE39DcmHUB/62RD7L5AexM5L9Nprum/KC1Mz2i949pO0u/46k7DcQ1XL8RteRvyz/kaj3Zg1oZnaAme0XPZ5tZv8rY5uZ8i/8pW37fFjHfa9+tSL6f3yq3P217VJBmfzyfD76/x4ziweZ+AXCv8qPFZ8rkV9h0T45LGfd0ZLeKP8CI/OrcqNz0rPkv3Gr5zf5mdmuGcteIn+Z7175m7IkSc65tfJ3Tc+Q/+RDMs0O8h97lPy4UVlbpqkvkfSomd0o3/lM/tXo0fI3CmVNE/63/EX45OcUD5D/HF7mNYNenHMbbNtnW98cNfYbnbfFzP5Y/vN0l5vZ9fI3s2yQH9iOlv/4wXxV/9rNm+VvEvjjqJzr5AeGE+W/UCP9bVV7S7rNzO6Q/3jRL+XvsH65/JTTv6VuDvqepFdFN33dKt92P3LO/cg5t9z854w/L9+2V8l/BGWm/IH9fPnrVQdVrGNP0bWdv5D0X5J+aGb/JT+leaT819Ctlp8ercM7JL3IzK6Vv8P2UUlj8u39W01+pf0D+QHsXDM7OFov59w/1xRLEZfKfwHMq81sgfxnl58m3/8vlf/Shr6cc6vM7MvyU8s/NbPL5fvNSfJfjpC+ieowSd8ws5vlj71fy78zOEW+f+QNDHnqPH7fJH8z1T9JOtPMrpO/Jv1U+ZP00fKfw79ffmbpOjO7R/7c8oD8R6BeEm17mXPuvyVpiMf99+SnyL8RXbd+XNIDzrkvyn+s6B5Jb41ecN0mv79fLt9WWQNu6X7qnLs+mhV8h6Q7o/3ymPxxcLD8eehjFerYy47yffB2+eviK+VvknqW/DdcSf7eobxvUux341bS8qic5fIfWTtC/uNUq+UvRzyW2v7N8u38nmjQvj6K90T5j6Deo/J9P1tdt2VX+ZN/5XOJ/E0V8bfV3CbfMdIf+bhGyvwGn/sU3cyQkf+Uj/Mo/xu4Zmnbbezna/JnP+fJ33p/ZxTno/Inxq/JX5+d8hnIjFgWxnn32Gau/BedrJDvMPfKf+5uTrRsRWLb3eRvqvm+/OceN8nfbHGN/AnIUnnPk5+K+Y38q82sj8IcEtX9gSi/dVGdz5P0oqz9MeB+P185H9OJ1h8d9YsH5d/d/0L+ByWyvgmsZ149Ynip/Duxu+Svhz0m/6Ln3yTtm7H9a+RPyI9H5bleMfTb31l9M7Fu0r5OLN9H/kaedVEcN8t/F+/xOfszcx/JH0Mfkz/5xZ8vf7f8i/T0R5sWRH3wx9p2Q+FK+S96OLFEe1+jGo7fjG1myQ/K10f7cVPUX74nP5uyR7TdTPnzypXR+o1R/7pR/jyU9Q1ghY979fhYUV5fkJ9O/lDUBlsy2n4f+Xf/v4r293hUhyn7adB+mlj3KvmB95Gobcblb27cIWPbzP7Zrx0ytp0p/y7zO1Gf2hjFfY/8Z8uP6ZF292jbKd+4lbP9x+S/VSz+JrPl0b6d2yPNofIvEH8hf5zE++BDRcos+mdRYZ1h/heHXuCcy5rWBtBiHL9AtlZcMwYAYJQxGAMAEBiDMQAAgXXumjEAANMN74wBAAhsaJ8z3nPPPd3ChQuHVRwAAMHdcsstDznnntxvu6ENxgsXLtSyZVm/9wAAwPRkZg8U2Y5pagAAAmMwBgAgMAZjAAACYzAGACAwBmMAAAJjMAYAIDAGYwAAAmMwBgAgMAZjAAACYzAGACAwBmMAAAJjMAYAIDAGYwAAAmMwBgAgMAZjAAACYzAGACAwBmMAAAJjMAYAIDAG45otvmqxFl+1OHQYAIAOYTAGACAwBmMAAAIz59xQCjrqqKPcsmXLhlJWEXdcfsnE48fWPiRJ2mmPPXXIolMztztk0amTHudtk/U8b7si63qlKRvnIOnK5FWmrCbyqDPWOuIps01y28fWPpTZF3vl11TfqrtNB+nPTcSWPP4HzaNoGcPsj2gfM7vFOXdUv+14ZwwAQGAMxgAABDay09RAJyxd5P8vvjxsHAAGwjQ1AAAdwWAMAEBgDMYAAAQ2I3QAXXDndSskSQcftzBoHBhB0+BaMccP0B/vjAEACIzBGACAwJimjpx6292Zyy85/MCg02txXJccfmAt2zUdxzBi6VdG3rphxBWirDLl9duubNxFtu93/Ay7rQbVtjjbFk+XtaEteWcMAEBgDMYAAAQ2Lb6Ba+XKiyVJCxacVmmb6WqU696ksu3ahv1QZwxN1qerebfFsOo4Cm1ZFd/ABQBARzAYAwAQGIMxAACBTYtrxtPVJR+/VZJ06tuOCByJ16Z4Bo2lrjr0yqdoGW1qz6qqtkeotggZ23Ta/02YLu3DNWMAADqCwRgAgMCYpo6cft4NkqSLzjl2WpYHABg+pqkBAOgIBmMAAAIbuR+KGB8f14YNGyaez5kzR2NjY3rfcbtO2U6SxsbGei4b1EXnHKvx8XGNj4/Xkl9a0/EXKa/O7cvGEYvzL1peeru64qyaT5P7rqyu1aUtbdeWY2RY+bdVW+vNO2MAAAJjMAYAIDAGYwAAAuv8R5vuvG6FpOwfMO+1DkB5HFOoqsk+1Mb+yUebAADoCAZjAAAC6/w09aAeOPMsSdK+X7yg57Imyhlm+nReG5cv1w4HHSRJE4+L5l0klirxlkkbbxvbuHy5JOmZN/9kop6SMuuaTpsnjqNou/XqU8k8k/kly0inBdqsjX22jTExTQ0AQEcwGAMAEBiDMQAAgY3sNeOm8atMAKRmzwWcZ9qPa8YAAHQEgzEAAIF1dpr6ypUPSZJOXLDnpMfpdf3yWLtpi/aYPXNSPpImlsey8o7TJyXTxPnEy+PHrzlgft+6JNPlScbeq45JWXHHZWTVOa+ds9o4q23i/H7z+GbN2M4mldmr7fq1d5x+6++dnrLjrIn405L7tl97pfNP55nXNsnt8vLPyjudNiv2dJq8cvulT/a5fvsx6Uv3rprSxul9mhVb0TaP85c0kVe8X2dsZ3rNAfP7Ht95fTzZRnnHUXJd1rkgq4z0vk739bxzSjK/WL/2T+fdq57xsi/du0rS1PNMVj16nV+K9I9eMabbJNavzKRkXdJ1lXwflLb1nbw2KdIXm8I0NQAAHcFgDABAYJ2dpgZab9mnpUdWSbvMl446O3u9VGxdv+eDxDZI+qrlVhGXHRskhjLxZ23bVLvXsb+L5j1ojHWnq6Mtix5feY/riqUHpqkBAOgIBmMAAAJjMAYAIDCuGSdddqn/f/IpYeMoq6txVzGKdQbQOVwzBgCgIxiMAQAIjGnqPsbHxyVJY2NjjacbtKyqaevQdPmh61dEOsaiMSe3K1vPYbdL0Tr2i2uQthofH9eGDRs0Z86coRyPbVK0fdLbVOlbqAfT1AAAdASDMQAAgTFNLWnlyoslSQsWnJb5vEzaOuOoO12dsZYRqtxha0s9y8ZRpf/XJavMtrRnWXXFXWa/rFx5sTZtWqPZs+fllltkm6Kx1JG2X55N7P8QfYppagAAOoLBGACAwBiMAQAIjGvGKfE1hVgd143beO2rVz2LXOPpd/0p73pXVnlF4gzdtnVc02zDtdmsWNrYPzF9Ve1vXeuvXDMGAKAjGIwBAAhspKep77j8EknSIYtODZK+7nwAAO3CNDUAAB3BYAwAQGAjPU09ndx53QpJ0sHHLQwaB4DR0IZzThti6IdpagAAOoLBGACAwBiMAQAIbEboAAYRfxTosbUPSZJ22mNPPbb2Ie20x549Px50x+WXaP1vVmn7GTMn0sTp43R3XH7JRF7pMg5ZdOpE2cl18fp4WTK/Gy/4zKT1yTzix8mYkh5b+5Ce2LpF28+YOaWc9Hbxuh9//gptP2OmnnvWG6a0V7KOeZLxZ7VFcl1e3Mlt86T3U167Juudbv+s7bPaMN0v+pUlSU9s3SJJ2vUp83XIolN14wWf0RNbt2jXp8zPrF+6Pnnbp/tZOuZ42XPPesOUfhIr2u5F6p6uQ17fSPedvOMsXa90P0r3/3TafmWW/RhgXtnpMtIxZOWfdd5J55VX/3h91vkgnX+yjHQ5WeegvHbOaoN0mli6v2bVJxnPIYtOnbhOm84/Wa+smHq1QRnpftGvLfr1u+SxFwLvjAEACIzBGACAwPhok6Tx8XFJ0tjYWKl1ZbYBAIwePtoEAEBHMBgDABBYJ++mrlvm9PKyT/t1R51dLn2UTgXS5ZVZOu0g6arEGUrRmIdRt7a13yjWuSuGcVy3ed+0ObYW4Z0xAACBMRgDABAYgzEAAIGNzkebli7a9nj17dJeh0qLLy+XTtqWZumibfmk1+XlkVyfXJZe32td0TyLblOlvKy0WW3bqw2z8qyzPv2el9m2V5lF6pO1XZlYiqbNau9BY+61vkzb5K0fpO8XiW+Qeg16TPXLP6//1x1L3vFXJn065rL1ziovVmYfVSm/bJ8tm39JfLQJAICOYDAGACCw0Zmmbki/Lx/v98MVeduU/UL8KoZZVj9FYwkZc1bZeT/qkF6Wl6ZIvoPGVla/H1PoV27ZfZhVTpEYBmmvMsdrmbYctN3r3L+99kGV81SVmIpuX+ZcWPfzpjFNDQBARzAYAwAQGNPUNbnl1jMkSUcecWHgSMrLir3O+nShbdoSY9k44u1jcbq85ekyypSX3rbpftOr7EHShcxjkLLapkhsedsU6TtV8xw05rLxlMU0NQAAHcFgDABAYAzGAAAE1tlrxv3m+Ae99lblGkZT6bLSVrmOUrXsOsrqdU2zaBn9rpfWeY2p7DWvKvnkXaPslzarPeo6TqrEOUi9e5U/aF5F2qtI+vT2VerSa9uy/btfOf2U3Yf9yqjzeCsb/6B5NIFrxgAAdASDMQAAgXV2mrqflSsvliQtWHBarWn6bdNrfdm0dcRTdJuycQzSviFU3V+bNq3R7Nnz+tazyn4vuk3R2OK8Ynnr++3PqnGXzbPouqLHSdV+X/f6YaQZ5BxSNp4q54Mq542mzjlNn8uYpgYAoCMYjAEACGzaTlNPV+Pj45KksbGxSY9DlN9loepRpdzp0vbAKGGaGgCAjmAwBgAgMAZjAAAC45rxCDn1trslSZccfmCryyuSLr3NsOsGNClkfy5Tdr9tOS65ZgwAQGcwGAMAEBjT1GiNpUuXSpIWL14cOJJ8TcUY5xtrcxuce+65kqR3v/vdje+zpUuXavXq1dprr71a3SZZutCfu64Lbcw0NQAAHcFgDABAYAzGAAAE1tlrxndet2LS84OPW1hbngcft3DS4/S6vDRFlg8STywvr6Kx5qVJl5NVXlYsd163Qo/9bqN2etIOleuZzKdq22W1R5k4e/WDrPxDqrLvsh7XHVeTbTRIGXn1bjLeQY7POsqpK79YV/pHv/4+jBiSuGYMAEBHMBgDABBYZ6epy7jl1jMkSUcecWHmsn7rq+Zfh7ryqzuusnlX2abs8jLbVF1fV5pB05ctq2qbldkXRbYdpKxBtysbZ9WyqqRpuswq6wetT5PnoDaWzTQ1AAAdwWAMAEBgnZ6mbuJuyF53p1a5I69IrHl3/d50+XJJ0jGLDsrNKxnnMNTd3nXcdV5mH9SZbx3adId2WwzzjuxYVll1xlHnJwXqOnayzjlVPinRL64Qx1UsxPHFNDUAAB3BYAwAQGAMxgAABNbpa8YXfeBdkqTT3//hSY97bZf1HMXRdr39n8WnSZLmLdxfEu00KPoZpguuGQMA0BEMxgAABNbpaWoAQLcsXbpUkrR48eLAkQwH09QAAHQEgzEAAIHNCB1AFafedvek55ccfmDuNmXX9SuzTJphlXvqbXdr/JHHNbbLjrnblSm7StvV0U6jItlWw2y3vP6SFUOdcdWVV14+VfMvcl4ZNLai64epjvqWkTU9nW6PuiSGLRAAACAASURBVPZhU324CbwzBgAgMAZjAAACYzAGACCwkfxo0+Kr/DWLpScszVyWtb6pcoukWfYb3247z9xZB809qHT6ZJnHXnisJOmguQdN2q5onouvWqzl65aXjiMvnrxlvZan18WPY3XFVTZdVtsMus/TaY698Fg9uuVR7TxzZ91wxg2lYhw0jhB5Vik7r6/ntVddx3y/ctqg6LE0SPo6pcupWm6RfdN03fhoEwAAHcFgDABAYCM5TR1bc97tkqR55xxa67YYXfST6tJtSJsO5ldLrpck7b3keZJox1CYpgYAoCMYjAEACGykpql7TdMk18WPY3nTOlWmffqlTU8xFUnPNNQ2RdqijvYaJI/pvJ+mc90QTpf7FdPUAAB0BIMxAACBMRgDABDYSF0zBlDcoD8CP2o/Hl9ErzZpor3K5sk+aw7XjAEA6AgGYwAAAhvpaeqyXxBe9xeKhy4f7TLID2agPkXbebrsj7bXo+3xFcU0NQAAHcFgDABAYNNimjp5J2DddwW2/S7Dtsc3SqrewdrUvozzTWuqnKrH4bDvPK47/37t0FTbVM27KXkx9er/RevRxvqmMU0NAEBHMBgDABAYgzEAAIFNi2vGRbThVz9CxdCGugPAKOKaMQAAHcFgDABAYDNCBzAsQ5uivexS///kU6Ysnzc/Y3m/dDXE0bPuRcotGluVOtQZB2irEJps83TeWWX1Kr+u2EL2q0HOER06DnhnDABAYAzGAAAENjJ3U083D5x5liRp3y9e0Hd5clleOtSHNu6eB848SxuXL9cOBx2Uud/Yp8PXRJuH2I/cTQ0AQEcwGAMAEBiDMQAAgXHNuEuSt+nnPU5v1yuPsuWE0FT5PT6ClimvLdJttfahqWn32NP/X/uQf1y0Lv3qHuqjLKH6RL9+nrcv4jaPl6WfJ7fJKzcrr2TZZWId5OM3dezrJj/2M2gd0sdbU30q4DmNa8YAAHQEgzEAAIF1dpp65cqLJUkLFpxWaZtRd++9/y5JOuCAN1XKZ9D9ES+LFdlX7NdsVdqF42mbZD0H6Z9F1XXsSVP3zajsqyy9zjMh2oNpagAAOoLBGACAwBiMAQAIrLPXjMu6cqX/aMKJC/YMFgOA+nFso824ZgwAQEcwGAMAENiM0AEMS51TWJtuuk+SNPuY/WtLn14WP48NWlbVuOpK12ubJtqzqTLLpuu3fZG+UCbfQepVx/5z6x+XJNmuO2r2MftP2r7I47xyem0fPz8x8dytf1y2645TYixaRl69s/LJyq9f/fqVN6gm8iyS96ab7pNb99jkhTO20w4vGctMn27PWB39v9eyrHKKrB8m3hkDABAYgzEAAIGNzN3USdeOr5MkPX9sbqX0sXQ+yfyzHuelA1D9+GxbOYNoOrY213264W5qAAA6gsEYAIDAGIwBAAis89eM15x3uyRp3jmH5j7ulzaWt22RvMooG2cd5fRa1oRhldOEMrH327bufdBEu4aMp439JC+mNefdri2rHp14PnP+zhOPi55/2ljfKpJtkm6P5DZJ8boqbVT03N3PMPYH14wBAOgIBmMAAALr/DR1SA+ceZYkad8vXjDSMRRRZ5zpvJLPe5WTtS5eJkkbly/XDgcd1Ehb9ip70PLK1rWKQfOrI46i9SxaVq/+02R8VYXcB03kNWyhYmeaGgCAjmAwBgAgsM5PUy9dulSStHjx4p7r0+Ltly5dqtWrV2uvvfbKzSOZ1+rVqyWp0PaDxlokjiLbjapk+6TbKq/tspan+05WfvF2/fpQr5iK5lFFr/r1Kq9qX2u6rzaRf9Z+zyprkH5WNoas9HX06XTMVc49deyD6XxOY5oaAICOYDAGACAwBmMAAALr/DXjKsp808t0+cacEGjDdhvl/VNX3Zv6Vr2275u2x9cGXDMGAKAjGIwBAAhsdKaply7y/xdfXl/6vDyTywdNVybuurYJoUpccdpYXh6DtM+5+0ibH5Nm7eSf73XotnVl91PZ/lCmTcr0pSIG7Uv90g2r/w0SRx2xF81DklZHP3KQ7FNNOXcfadN6afau0rt/6eNYfbvv25L0tGMH6ztF9+fSRdIvbvCPZ+1UX53r7PcN981GpqnN7D4zOyxn3cFmdl+Z/AAAQPlp6oWSZues20HSvpWiAQBgBJWapjaz30s6xjl3c8a6N0r6F+fcHllpg09TN6iub48Z5BtxBs0/63lX5X1jUh15dr1tMFmZb7aqu6wy35RVJt+qcY2KZL3PPfdcbd68WbNmzZr41rum2qXoNPWMAhm9RdJboqdO0rfMbHNqsx0lzZX01bKBAgAw6voOxpLuk/S96PFrJS2T9GBqm02S7pL02fpCAwBgNPQdjJ1zl0q6VJLMTJL+yTl3f8NxAQAwMkbno03T0Kab/M3rs4/ZP3AkAHqp+1gtkt/G74xLW38vm7tTpXI5z1RT5zXj90n6rHPu19HjXpxz7oNFgwQAAMWuGS+RdJWkX0ePe3GSGIwBACiBaWoAhVy58iFJ0okL9gwcyegZZtuzn+vFD0UAANARRaapM5nZPPlv3ZrEOfeLShEBADBiSg3GZrarpE9JOl35X4u5fdWguuyBM8+SJO37xQsCRwLUi2nLcIbZ9uznMMq+M/4PSX8i6XOS7pD/sg8AAFBB2cH4BElvd879RxPBAAAwiga5get/ao8CAIARVvad8VclvULSdxuIZajGx8cnHm/YsEGSNGfOHI2NjWVuNzY2Nulx3jb7fvECjY+Pa3x8vOd2efGUSVM2zkHSlcmrTFlN5FFnrHXEU2ab5LYbNmzI7Iu98muqb9XdpoP05yZiSx7/g+ZRtIxh9kd0V9nB+NuSPmlmu0i6QtK69AbOue/XERgAAKOi7GB8afR/P0mvSyx3kiz6P9J3UwMAUFapb+Ays+PlB9xczrkfZi3nG7iA8viSfqDbavuhiCTn3DUDRwQAADKV/dKPfteDnXPujyrEAwDAyCl7zXg7TZ2m3kPSMyU9KOnndQTVOpdFl8pPPiVsHBg502J6muMH6KvsNPXxWcvN7ABJ35T0oRpiAgBgpNTyq03OuXslfVjSx+rIDwCAUVLnTyg+KOkZNeYHAMBIGPgnFJPMbA9Jb5V0bx35BRFf10o7+ZSw17qKXm9r+rpcmfyHcY2wVxl564Z57XLY10nr6idl4y6yfei+W5e2xdm2eLqsBW1Z9m7q+zX1Bq5Zkp4SPf6TOoICAGCUlH1n/ENNHYw3SnpA0n9F144BAEAJpb6Bq4omv4HrzutWSJIOPm5hpW2mq1Gue5PKtmsb9kOdMTRZn67m3RbDquMotGVVRb+Bq84buAAAwAAYjAEACGxaTFNPW0sX+f+LLw8bR6xN8QwaS1116JVP0TLa1J5VVW2PUG0RMrbptP+bME3ah2lqAAA6gsEYAIDAGIwBAAiMa8aR8fFxSdLY2Ni0LA8AMHxcMwYAoCMYjAEACKyWH4roklNvu1vjjzw+8Xxslx11yeEH6j2bZ0mSLklsJ0mXHH7gpLTpZYMaGxvz+d12dy35pTUdf5Hy6ty+bByxOP+i5aW3qyvOqvk0ue/K6lpd2tJ2bTlGhpV/W7W13rwzBgAgMAZjAAACYzAGACCw7n+0aZAfmQcwGI4pVNVkH2ph/+SjTQAAdASDMQAAgXV/mnpA146vkyQ9f2xuz2VNlDPM9Om8Ht6wVbvN8Z9oix8XzbtILFXiLZM23jb28IatkqRXHD1vop6SMuuaTpsnjqNou/XqU8k8k/kly0inBdqsjX22jTExTQ0AQEcwGAMAENjITlM3bc15t0uS5p1zaOBIAITU5LmA80z7MU0NAEBHMBgDABAYgzEAAIF191ebkt+0kv7WlaLfwnLZpdLah6Q99pycj7RteSwr7zh9UpRm3vzo+dKbty2Pt138+v51ibdNxpCWjL1XHZOy4o7LyKpzXjtntXFW28T5rV4lzZw5ucyctpuUb157x+m3bJH2mr8t/rTkvu3XXun803nmtU1yu7z8s/JOp82KPZ0mr9x+6ZN9rt9+TFr6ualtnN6nWbEVbfM4f2lbXvF+nTnTx93v+M7r47F0v05Krss6F2SVkd7X6b6eymfiXHDZ/VPboV/7p/NO1XPe/Pu35R3ns/Rz/nH6PJNVj17nlyL9o1eM6TaJ9SszKVmX9H6WfB+UtvWd9L5P1qPI+TIg3hkDABAYgzEAAIHx0SagIZtuuk9u/eOyXXfU7GP2z1wvqdC6fs8HiW2Q9FXLrSIuOzZIDGXiz9q2qXavY38XzXvQGOtOV0dbFj2+8h7XFUsvfLQJAICOYDAGACAwpqkT7rxuhSTp4OMWBo2jrK7GXcUo1hlA9zBNDQBARzAYAwAQGIMxAACBcc24j8VXLZYkLT1haePpBi2rato6NF1+6PoVkY6xaMzJ7crWc9jtUrSO/eIapK0WX7VYy9ct10FzDxrK8dgmRdsnvU2VvoV6cM0YAICOYDAGACAwpqklXTu+TpL0/LG5mc/LpK0zjrrT1RlrGaHKHba21LNsHFX6f12yymxLe5ZVV9xl9su14+v08Iat2m3OjNxyi2xTNJY60vbLs4n9H6JPMU0NAEBHMBgDABAY09RpSxdNfr748uJp8rbttz6EXvXMize5fOkiafXt0l6HZtcrnccg7dorlqLr65JVTtmy89okRL9I78tQcWD0VO1vHeuvTFMDANARDMYAAATGYAwAQGAjfc246m3uTX2EAQAwPXDNGACAjmAwBgAgsBmhAwip6rRwXdPKIb+9CwAG0YZzThtiqAvvjAEACIzBGACAwDo5TX36eTdIku5atV6S9Oz5u+quVev17Pm76qJzju2ZbtmKdZoze8ZEmjh9nO70826YyCtdxkXnHDtRdnJdvD5elszvkCVXT1qfzCN+nIwp6a5V67Vh01bNmb1tN6W3Scf4ui/5vO5Y8rIp7ZWsY55k/FltkVyXF3dy2zzp/ZTXrsl6p9s/a/usNkz3i35lSdKGTVslSUctnKuLzjlWhyy5Whs2bdVRC+dm1i9dn7zt0/0sHXO87I4lL5vST2JF271I3dN1yOsb6b6Td5yl65XuR+n+n07br8x+5efFk9d/8mLIyj/rvJPOK6/+8fqs80E6/2QZ6XKyzkF57ZzVBuk0sXR/zapPMp6Lzjl2Ymo4nX+yXlkx9WqDMtL9ol9b9Ot3yWMvBN4ZAwAQGIMxAACBMRgDABDYSH8D14RevwJS5BdCOvYrIgCA4eAbuAAA6AgGYwAAAuvkR5tqlzW9vOzT+et6pY/THXV2+TgGTTtIuipxhlI05mHUrW3tN4p17ophHNdt3jdtjq1FeGcMAEBgDMYAAAQ2MndTrznv9onHW1Y9qpnzd9a8cw4tlU7SRJo1590+kU96XV4eyfXJZen1vdYVzbPoNlXKy0qb1ba92jArzzrr0+95mW3LtEUveeWXLbvf49gg+7XI+jJtk7d+kL5fJL5B6jXoMdUv/7z+X3csecdfmfTpmMvWO6u8WJl9VKX8sn22bP5lcTc1AAAdwWAMAEBgDMYAAAQ2MteMG5N3236R2/l7bTPMjwO06aMHbfr4Upmyk8vix7Hksrw0RfIdNLaysuIvU27ZfZhVTpEYBmmvMsfrMD5aVOf+7bUPqpynqsRUdPsy58K6nzeMa8YAAHQEgzEAAIExTV2T8fFxSdLY2FjgSMrLir3O+nShbdoSY9k44u1jcbq85ekyypSX3rbpftOr7EHShcxjkLLapkhsedsU6TtV8xw05rLxlMU0NQAAHcFgDABAYJ2dpr7l1jMkSUceceFA66tsXzbvqumy0ublVaWMomXXUVacNjbIfszLo0q8RdMO2v+K5JNclve4V16xrDRF4yyyXdE4B6l3r/IHzatIexVJn96+Sl16bVu2f/crp5+y+7BfGXUeb2XjHzSPJjBNDQBARzAYAwAQGIMxAACBdfaacT+XrfqqJOnk+a+qNU2/bXqtL5u2jniKblM2jkHaN4Sq+2vt5jXaY9a8vvWsst+LblM0tjivWN76fvuzatxl8yy6ruhxUrXf171+GGkGOYeUjafK+aDKeaOpc07T5zKuGQMA0BEMxgAABDZtp6mnq2vH10mSnj82d9LjEOV3Wah6VCl3urQ9MEqYpgYAoCMYjAEACIzBGACAwLhmPEKG/YswdfxKTtFt2vxrN0BZIftzHb+oNEhe0xXXjAEA6AgGYwAAAmOaGq1x6m13S5IuOfzAwJHkayrGON9Ym9vgGT+6XZL08z88tPF9duptd2v8kcc1tsuOrW6TLF3oz13XhTZmmhoAgI5gMAYAILDOTlP3+zL8KnnW8WX0dXz5eNE6Vv2BiXQ5WeVlxVLmhxR6SedTte2y2qNMnL36QVb+IVXZd1mP646ryTaq+iMLTbdBVplZz5sqp678Yl3pH/36+zBiSGKaGgCAjmAwBgAgMAZjAAAC6+w14zKybn9PLuu3vmr+dagrvyY/ClAk7yrblF1eZpuq6+tKM2j6smVVbbMy+6LItoOUNeh2ZeOsWlaVNE2XWWX9oPUJ+XGkEGVzzRgAgI5gMAYAILBOT1Nvuuk+SdLsY/af9LiOPNPyyihabpFYN910n9z6x2W77jhp3cbv+C9b3+ElY7l5JeMchrrbu0o+g+yDYcVW1DDL6ophtEmR46fOOKrmVfc5L++ck7e8bIyDrK9TqPNjEtPUAAB0BIMxAACBdXqaWss+HWV+9uTHvbbLeo7iaLvefvAB/3+X+f4/7TQY+hmmCaapAQDoCAZjAAACYzAGACCwbl8zBgB0yuKrFkuSlp6wNHAkw8E1YwAAOoLBGACAwGaEDqCKIj9+3esHpKv+OPmgmir3slVf1drNa7THrHm525Upu0rbDeuHu6eDYf3IfVa5Wf2l6R9iryuvvHyq5l/kvDJobEXXD1Md9S0ja3o63R517cOm+nATeGcMAEBgDMYAAAQ2kndTr1x5sSRpwYLTMpdlrW+q3CJpNm5cKUkym6XZs+eVTp8s8957/12SNHv2vEnbFc1z5cqLtWnTmtJx5MWTt6zX8vS6+HGsrrjKpstqm0H3eTrNvff+u5zbLLNZOuCAN5WKcdA4QuRZpey8vp7XXnUd8/3KaYOix9Ig6euULqdquUX2TdN1425qAAA6gsEYAIDAGIwBAAhsJK8Zx8bHxyVJY2NjtW6L0UU/qS7dhrTpYG6++WZJ0tFHHy2JdgyFa8YAAHQEgzEAAIGN1jT10kX+/+LLe6+LH8eytu+XX5VYJOncffz/d/+yePoq8Uw3RdqijvYaJI/pvJ+mc90QTof7FdPUAAB0BIMxAACBjdY0NYDiln3a/z/q7OGkm856tUkT7VU2T/ZZY5imBgCgIxiMAQAIjMEYAIDARvqa8aab7pMkzT5m/0a2b3v5aJe8/ct+H46i7Txd9kfb69H2+IrimjEAAB3BYAwAQGDTYpr6ypUPSZJOXLDnpMd1591GbY9vlJTdF+ntm9qXcb5pTZVT9Tjslbbp/l5H/v3aoam2qZp3U/Ji6tX/i9ajjfVNY5oaAICOYDAGACCwaTFNXcTSpUslSYsXLx65GNpQdwAYRUxTAwDQEQzGAAAExmAMAEBgI3PNeFgu+sC7JEmnv//DhZYXXV9XHINsV2dew4gDtFUITbZ5Ou+ssnqVX1dsIfvVIOeINhwHXDMGAKAjGIwBAAiMaeqOKvOjAsll0+XL19uMNu6eTTfdJ7f+cdmuO2buN/bp8DXR5iH2I9PUAAB0BIMxAACBzQgdAIpbufJiSdKCBafpwb39lP8C7T9p+exjoucrl2nBgtMkTZ6SSaYrUk7ycQhNlZ+Xb7w8La8t0m21adMaKf7O+nv9v9mz50mSNm1ao9mz5xWuS7+691pfV7v1q/Mwpcvt9XxiX0gTbR4vSz+XpNl7z9OCY/LbedOe0XYr5xU6LvrF1qseRfIruq5oTFUNWof08ZZcV+dU8kTZx5w25fzYFrwzBgAgMAZjAAACYzAGACCwzn60qcgt6nwcob+N3xmXJO3wkrFK+Qy6P+JlsSL7iv2arUq7cDxtk/VRwFidda/r2JOm7ptR2VdZ+n28c9j4aBMAAB3BYAwAQGCdnaYuK/RHdAA0g2MbbcY0NQAAHcFgDABAYAzGAAAENjJfh1nn9aQ1590uSZp3zqG1pU8vi5/HBi2ralx1peu1TRPt2VSZZdP1275IXyiT7yD1qmP/bVn1qCRp5vydNe+cQydtX+RxXjm9to+fLzjntElxzJy/85QYi5aRV++sfLLy61e/fuUNqok8i+S95rzbtXnF7yQnyfwym7299l7yvMz06faM1dH/ey3LKqfI+mHinTEAAIExGAMAENjIfLQpqeq3sfT7Vp6sb/Bp+tt8gOliWN+W1OZvqWo6tjbXfbrho00AAHQEgzEAAIF1fpr6llvPkCQdecSFuY/7pY3lbVskrzLKxllHOb2WNWFY5TShTOz9tq17HzTRriHjaWM/yYvpllvP0COP3DXxfJddnj3xuOj5p431rSLZJun2SG6TFK+r0kZFz939DGN/ME0NAEBHMBgDABAYgzEAAIF1/ppxSE1+602XYiiizjjLfEtTvxiS38ATf3vTsL7FqKlvHqsj77ryqyOOovUsWlaZb+CqM76qQu6DJvIatlCxc80YAICOYDAGACCwzk9TXzu+TpL0/LG5PdenxdtfO75OD2/Yqt3mzMjNI5nXwxu2SlKh7QeNtUgcRbYbVcn2SbdVXttlLU/3naz84u369aFeMRXNo4pe9etVXtW+1nRfbSL/rP2eVdYg/axsDFnp6+jT6ZirnHvq2AfT+ZzGNDUAAB3BYAwAQGCdn6auYhjTdKAN226U909ddR9kyrdsvm3U9vjagGlqAAA6gsEYAIDAGIwBAAhsZK4Zn37eDZKki845trb0eXkmlw+arkzcdW0TQpW44rSxvDwGaZ9DllytDZu2as7sGZKkZ8/fdWJd2f1Utj+UaZMyfamIQftSv3TD6n+DxFFH7EXzkKS7Vq2XNLlPNeWQJVfrkY1btcsOM3THkpfp9PNu0F2r1mvDJv8RzaMWzh2o7xTdn6efd4OWrfDXlefMnlFbnevs9033Ta4ZAwDQEQzGAAAENjLT1E264/JLJEmHLDq1tnzqyjMv/6znXRXXI1ZHfaZL22CyXvu17n1e9HgrW27VOEe1byfrfeMFn9ETW7do+xkztdMeezZ2zpWYpgYAoDMYjAEACIxp6i677FL//+RTwsYBoLe6j9Ui+S39nLRli7TX/Grlcp6phGlqAAA6gsEYAIDAGIwBAAiMa8YAiuHaYTjDbHv2c624ZgwAQEcwGAMAEBjT1AAANIRpagAAOoLBGACAwBiMAQAIjMEYAIDAGIwBAAiMwRgAgMAYjAEACIzBGACAwBiMAQAIjMEYAIDAGIwBAAiMwRgAgMAYjAEACIzBGACAwBiMAQAIjMEYAIDAGIwBAAiMwRgAgMAYjAEACMycc8MpyOxBSQ80WMSekh5qMP9hmS71kKhLW02XukyXekjUpa3qqMu+zrkn99toaINx08xsmXPuqNBxVDVd6iFRl7aaLnWZLvWQqEtbDbMuTFMDABAYgzEAAIFNp8H406EDqMl0qYdEXdpqutRlutRDoi5tNbS6TJtrxgAAdNV0emcMAEA3OeeC/En6vKQ1ku5MLFsi6VeSfhr9nRQtnynpC5LukPTfkt6dSLMiWv5TSctyynp7Is87JT0haW7R9EOsy26SviZpebTu2IyyTNK/SbpH0u2Sjkise62ku6O/13agLn8e1eEOSddLOqzMfm1RPY6X9LtEvu9LrDtB0v9E++tdHdgnrT9WJD0zse1PJa2X9HddPFZK1KXVx0qJehyvlh8rJepS67FSurJ1/Un6Q0lHZDTa32dse4akr0aP50QVXZio9J4lyn2FpO+nOnLh9A3X5QuS/jJ6PEvSbhnpT5J0pfyJ5rmSboqWz5V0X/R/9+jx7i2vy/PiGCWdGNeljv0y5HocL+n/ZizfXtK9kvaP0v5M0rPbXJeuHCupNl4t/1nOTh4rBevS+mOlYD06cawUqUvdx0qwaWrn3I8krSu6uaSdzGyGpB0lbZZ/tTKIV0v6yoBpM9VRFzN7knxH+lyU52bn3MMZ6U+RdIHzbpS0m5nNl/QySd9xzq1zzv1W0nfkX2m2ti7OueujWCXpRkkLysabG9hw90me50i6xzl3n3Nus6Svyu+/UgLWpZXHSmqbP5J0r3Mu6wuFWn+sFK1L24+V1Da99kme1hwrqW2K1qXysdLGa8ZvMrPbzezzZrZ7tOxrkh6TtErSLyT9q3MubnAn6dtmdouZnd0rYzObI3/QfT2xuHD6AZSpy36SHpS01MxuM7PPmtlOGXnuLemXiecro2V5y9tcl6TXy7+LiTW1X5qqx7Fm9jMzu9LMxqJlnd0nLT9Wkl6l/JNgF46VpF51SWrjsZLUrx5tP1aS+u6Tuo6Vtg3G/ynpAEl/IN9AH4+WP0d+Pv6p8ieVt5nZ/tG645xzR8hP3fyNmf1hj/xfIenHqQYvk77JusyQn175T+fc4fKd5F01xVJVo3UxsxfKn2DemVjcxH5pqh63yk9jHSbp/0j6Zg2x9tN0/2rzsSJJMrNZkk6W9F81xVGHRuvS4mOlaD26cKxIKtW/ajlWWjUYO+d+45x7wjn3e0mfkW8syc/tX+Wc2+KcWyPpx5KOitL8Kvq/RtIliTRZprzKKZm+ybqslLTSOXdTtN3X5E+eab+StE/i+YJoWd7yNtdFZnaopM9KOsU5tzZRZu37pal6OOfWO+cejR5fIWmmme2pju6TSJuPldiJkm51zv0mJ+suHCuxfnVp+7FSqB4dOVYK1SWhlmOlVYNxdD0ndqr8HWqSn0J4UbTNTvI3Yyw3s53MbJfE8pcm0qTzfpKkF0i6NLGscPqm6+KcWy3pl2b2zGi7P5J0V0bWgFOJEgAABSFJREFUl0k6y7znSvqdc26VpKslvdTMdo+mYV4aLWttXczsaZK+IelM59zPE8sb2S8N1mMvM7Po8XPkj6u1km6WdKCZ7Re9yn6V/P6rrMH+1fpjJbFtv+t0rT9Wital7cdKiXq0/lgpWpcoXX3HihvwDryqf1ElV0naIv+q/fWSvih/O/jt8jtifrTtzvJTBePyJ5C3R8v3l7/r7mfRun9M5P9GSW9MPH+dojvnEsty0w+7LtG6P5C0LErzTW27e3KiLvJ3hv6H/J2Hd0g6KpH+L+Q/FnCPpMUdqMtnJf1W2z4esKyu/TLkerwpSvsz+ZtrnpdIf5Kkn0f7q/X9q0PHyk7yJ/EnpfLv4rFSpC5dOFaK1KMrx0rfutR9rPANXAAABNaqaWoAAEYRgzEAAIExGAMAEBiDMQAAgTEYAwAQGIMxAACBMRgDQ2JmrzSzt2YsP97MnJkdHyCsTGZ2pJltMLPC3w9sZp80syuajAuYrvicMTAkZna+pBc75xaklu8q6dmS7nLODfprZLUys+/Lx/OmEmnmy/8c4UnOuR80FhwwDfHOGAjM+e/rvbFFA/GRkl4o/wX7hTn/VZPfkv/RdQAlMBgDQxC9K36tpL2jKWlnZiuidVOmqc3sGjO7zsxOMLOfmtnj5n/68Bgzm2FmHzKzVWa2zszOt9TPIZrZHDP7iJndb2abo///aGZFjvm/lHS7c248lecZUQyPmtl6M7vDzM5Jpf2qpJeZ2T4CUNiM0AEAI+KDkp4s6Wj5n2WTpE190jxd0sck/YukRyV9VP67dS+TP3ZfJ+lZ0TZrJL1Dksz/WPrV8lPfH5T/Xt7nSnqvpLmS3tan3BMkXZ5cYGbHSfqSpH+Tf+e7naSDJO2WSntttO4lkj7fpxwAEQZjYAicc/ea2YOSNjvnbiyYbA/5L9K/T5Kid7WXStrPOffiaJurzf9W6p8pGozlf23mOEkvcM79KFr2vejHct5vZh9x/qfdpjCzp0haKP8l90nPlfSwc+7vEsu+nVHPB81sZbQ9gzFQENPUQHv9PB6II/HPu6V/7m+5pAXxT9PJv7N9QNL10ZT2jOjd8rclzZQfKPM8Nfr/YGr5zZJ2N7MvmdnLzSz9jjjpwUQ+AApgMAba67ep55t7LJ8hafvo+TxJ+8r/jFzy7yfR+j16lLlD9H/SFLpz7ofy7773kf+x9AfN7Lvmf/A+7XFJO/YoA0AK09TA9LNW0v2STstZv6JPWknaPb3COfc1SV8zs50lHS/pI5KuMrMFzrnfJzadK//bsQAKYjAGhmeThvOO8SpJfyLpUefc8n4bp6yQtFH+B9IzOecelfR/zWx/SZ+Sf6f9oCSZ2faSnib/o+0ACmIwBobnLklzzeyvJC2TtNE5d0cD5XxZ0mL5m7Y+Ln8z1ixJB8jfyf1K59yGrITOuc1mdpOk5ySXm9k/SXqKpB9I+rWkBZLeLOmnzrnk9eWDJc2R9CMBKIzBGBiez8rfPPUh+Y8EPSB/53KtnHNbzOxlkt4l6WxJ+0l6TNK98h9Z2twjuSRdJOljZraTc+6xaNlN8oPvJ+SnodfI3xD23lTal0taLema6jUBRgdfhwlgkujrOVdK+mvn3JdKpr1L0tedc+lBGkAP3E0NYJLoazk/IukdiY9L9WVmp8hPZX+8qdiA6YppagBZ/rf8R6Xmy18jLmJHSa9xzj3cWFTANMU0NQAAgTFNDQBAYAzGAAAExmAMAEBgDMYAAATGYAwAQGD/PynHMrssxgIVAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" }, { "data": { "text/plain": [ "color null\n", "contrast 0.8\n", "frame null\n", "orientation 180\n", "phase [42471.86666667, 42471.86666667]\n", "pos [0.0, 0.0]\n", "size [250.0, 250.0]\n", "spatial_frequency 0.04\n", "start_time 1585.73\n", "stimulus_block 2\n", "stimulus_name drifting_gratings\n", "stop_time 1587.74\n", "temporal_frequency 2\n", "x_position null\n", "y_position null\n", "duration 2.00168\n", "stimulus_condition_id 246\n", "Name: 3798, dtype: object" ] }, "execution_count": 21, "metadata": {}, "output_type": "execute_result" } ], "source": [ "first_drifting_grating_presentation_id = times['stimulus_presentation_id'].values[0]\n", "plot_times = times[times['stimulus_presentation_id'] == first_drifting_grating_presentation_id]\n", "\n", "fig = raster_plot(plot_times, title=f'spike raster for stimulus presentation {first_drifting_grating_presentation_id}')\n", "plt.show()\n", "\n", "# also print out this presentation\n", "session.stimulus_presentations.loc[first_drifting_grating_presentation_id]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We can access summary spike statistics for stimulus conditions and unit" ] }, { "cell_type": "code", "execution_count": 22, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
spike_countstimulus_presentation_countspike_meanspike_stdspike_semcolorcolorSpacecontrastdepthflipHorizflipVertframeinterpolatemaskopacityorientationphaseposrgbPedestalsizespatial_frequencystimulus_nametemporal_frequencytextexResunitsx_positiony_positioncolor_triplet
unit_idstimulus_condition_id
95179933624613150.8666671.9952320.515167nullrgb0.80nullnullnull0None1180[42471.86666667, 42471.86666667][0.0, 0.0][0.0, 0.0, 0.0][250.0, 250.0]0.04drifting_gratings2sin256degnullnull[1.0, 1.0, 1.0]
95180097724626151.7333332.7377430.706882nullrgb0.80nullnullnull0None1180[42471.86666667, 42471.86666667][0.0, 0.0][0.0, 0.0, 0.0][250.0, 250.0]0.04drifting_gratings2sin256degnullnull[1.0, 1.0, 1.0]
951801127246103156.8666677.4149141.914523nullrgb0.80nullnullnull0None1180[42471.86666667, 42471.86666667][0.0, 0.0][0.0, 0.0, 0.0][250.0, 250.0]0.04drifting_gratings2sin256degnullnull[1.0, 1.0, 1.0]
9518011872464150.2666670.5936170.153271nullrgb0.80nullnullnull0None1180[42471.86666667, 42471.86666667][0.0, 0.0][0.0, 0.0, 0.0][250.0, 250.0]0.04drifting_gratings2sin256degnullnull[1.0, 1.0, 1.0]
95180146224683155.5333332.5875160.668094nullrgb0.80nullnullnull0None1180[42471.86666667, 42471.86666667][0.0, 0.0][0.0, 0.0, 0.0][250.0, 250.0]0.04drifting_gratings2sin256degnullnull[1.0, 1.0, 1.0]
\n", "
" ], "text/plain": [ " spike_count stimulus_presentation_count \\\n", "unit_id stimulus_condition_id \n", "951799336 246 13 15 \n", "951800977 246 26 15 \n", "951801127 246 103 15 \n", "951801187 246 4 15 \n", "951801462 246 83 15 \n", "\n", " spike_mean spike_std spike_sem color \\\n", "unit_id stimulus_condition_id \n", "951799336 246 0.866667 1.995232 0.515167 null \n", "951800977 246 1.733333 2.737743 0.706882 null \n", "951801127 246 6.866667 7.414914 1.914523 null \n", "951801187 246 0.266667 0.593617 0.153271 null \n", "951801462 246 5.533333 2.587516 0.668094 null \n", "\n", " colorSpace contrast depth flipHoriz flipVert \\\n", "unit_id stimulus_condition_id \n", "951799336 246 rgb 0.8 0 null null \n", "951800977 246 rgb 0.8 0 null null \n", "951801127 246 rgb 0.8 0 null null \n", "951801187 246 rgb 0.8 0 null null \n", "951801462 246 rgb 0.8 0 null null \n", "\n", " frame interpolate mask opacity orientation \\\n", "unit_id stimulus_condition_id \n", "951799336 246 null 0 None 1 180 \n", "951800977 246 null 0 None 1 180 \n", "951801127 246 null 0 None 1 180 \n", "951801187 246 null 0 None 1 180 \n", "951801462 246 null 0 None 1 180 \n", "\n", " phase pos \\\n", "unit_id stimulus_condition_id \n", "951799336 246 [42471.86666667, 42471.86666667] [0.0, 0.0] \n", "951800977 246 [42471.86666667, 42471.86666667] [0.0, 0.0] \n", "951801127 246 [42471.86666667, 42471.86666667] [0.0, 0.0] \n", "951801187 246 [42471.86666667, 42471.86666667] [0.0, 0.0] \n", "951801462 246 [42471.86666667, 42471.86666667] [0.0, 0.0] \n", "\n", " rgbPedestal size \\\n", "unit_id stimulus_condition_id \n", "951799336 246 [0.0, 0.0, 0.0] [250.0, 250.0] \n", "951800977 246 [0.0, 0.0, 0.0] [250.0, 250.0] \n", "951801127 246 [0.0, 0.0, 0.0] [250.0, 250.0] \n", "951801187 246 [0.0, 0.0, 0.0] [250.0, 250.0] \n", "951801462 246 [0.0, 0.0, 0.0] [250.0, 250.0] \n", "\n", " spatial_frequency stimulus_name \\\n", "unit_id stimulus_condition_id \n", "951799336 246 0.04 drifting_gratings \n", "951800977 246 0.04 drifting_gratings \n", "951801127 246 0.04 drifting_gratings \n", "951801187 246 0.04 drifting_gratings \n", "951801462 246 0.04 drifting_gratings \n", "\n", " temporal_frequency tex texRes units \\\n", "unit_id stimulus_condition_id \n", "951799336 246 2 sin 256 deg \n", "951800977 246 2 sin 256 deg \n", "951801127 246 2 sin 256 deg \n", "951801187 246 2 sin 256 deg \n", "951801462 246 2 sin 256 deg \n", "\n", " x_position y_position color_triplet \n", "unit_id stimulus_condition_id \n", "951799336 246 null null [1.0, 1.0, 1.0] \n", "951800977 246 null null [1.0, 1.0, 1.0] \n", "951801127 246 null null [1.0, 1.0, 1.0] \n", "951801187 246 null null [1.0, 1.0, 1.0] \n", "951801462 246 null null [1.0, 1.0, 1.0] " ] }, "execution_count": 22, "metadata": {}, "output_type": "execute_result" } ], "source": [ "stats = session.conditionwise_spike_statistics(\n", " stimulus_presentation_ids=drifting_gratings_presentation_ids,\n", " unit_ids=high_snr_unit_ids\n", ")\n", "\n", "# display the parameters associated with each condition\n", "stats = pd.merge(stats, session.stimulus_conditions, left_on=\"stimulus_condition_id\", right_index=True)\n", "\n", "stats.head()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Using these data, we can ask for each unit: which stimulus condition evoked the most activity on average?" ] }, { "cell_type": "code", "execution_count": 23, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
spike_countstimulus_presentation_countspike_meanspike_stdspike_semcolorcolorSpacecontrastdepthflipHorizflipVertframeinterpolatemaskopacityorientationphaseposrgbPedestalsizespatial_frequencystimulus_nametemporal_frequencytextexResunitsx_positiony_positioncolor_triplet
unit_id
95179933681155.4000009.2874722.398015nullrgb0.80.0nullnullnull0.0None1.00[42471.86666667, 42471.86666667][0.0, 0.0][0.0, 0.0, 0.0][250.0, 250.0]0.04drifting_gratings4sin256.0degnullnull[1.0, 1.0, 1.0]
95180097741152.7333332.8401880.733333nullrgb0.80.0nullnullnull0.0None1.045[42471.86666667, 42471.86666667][0.0, 0.0][0.0, 0.0, 0.0][250.0, 250.0]0.04drifting_gratings1sin256.0degnullnull[1.0, 1.0, 1.0]
9518011272091513.9333339.7282112.511813nullrgb0.80.0nullnullnull0.0None1.090[42471.86666667, 42471.86666667][0.0, 0.0][0.0, 0.0, 0.0][250.0, 250.0]0.04drifting_gratings1sin256.0degnullnull[1.0, 1.0, 1.0]
95180118753153.5333335.9023801.523988nullrgb0.80.0nullnullnull0.0None1.0270[42471.86666667, 42471.86666667][0.0, 0.0][0.0, 0.0, 0.0][250.0, 250.0]0.04drifting_gratings4sin256.0degnullnull[1.0, 1.0, 1.0]
951801462136159.0666675.1612111.332619nullrgb0.80.0nullnullnull0.0None1.045[42471.86666667, 42471.86666667][0.0, 0.0][0.0, 0.0, 0.0][250.0, 250.0]0.04drifting_gratings2sin256.0degnullnull[1.0, 1.0, 1.0]
\n", "
" ], "text/plain": [ " spike_count stimulus_presentation_count spike_mean spike_std \\\n", "unit_id \n", "951799336 81 15 5.400000 9.287472 \n", "951800977 41 15 2.733333 2.840188 \n", "951801127 209 15 13.933333 9.728211 \n", "951801187 53 15 3.533333 5.902380 \n", "951801462 136 15 9.066667 5.161211 \n", "\n", " spike_sem color colorSpace contrast depth flipHoriz flipVert \\\n", "unit_id \n", "951799336 2.398015 null rgb 0.8 0.0 null null \n", "951800977 0.733333 null rgb 0.8 0.0 null null \n", "951801127 2.511813 null rgb 0.8 0.0 null null \n", "951801187 1.523988 null rgb 0.8 0.0 null null \n", "951801462 1.332619 null rgb 0.8 0.0 null null \n", "\n", " frame interpolate mask opacity orientation \\\n", "unit_id \n", "951799336 null 0.0 None 1.0 0 \n", "951800977 null 0.0 None 1.0 45 \n", "951801127 null 0.0 None 1.0 90 \n", "951801187 null 0.0 None 1.0 270 \n", "951801462 null 0.0 None 1.0 45 \n", "\n", " phase pos rgbPedestal \\\n", "unit_id \n", "951799336 [42471.86666667, 42471.86666667] [0.0, 0.0] [0.0, 0.0, 0.0] \n", "951800977 [42471.86666667, 42471.86666667] [0.0, 0.0] [0.0, 0.0, 0.0] \n", "951801127 [42471.86666667, 42471.86666667] [0.0, 0.0] [0.0, 0.0, 0.0] \n", "951801187 [42471.86666667, 42471.86666667] [0.0, 0.0] [0.0, 0.0, 0.0] \n", "951801462 [42471.86666667, 42471.86666667] [0.0, 0.0] [0.0, 0.0, 0.0] \n", "\n", " size spatial_frequency stimulus_name \\\n", "unit_id \n", "951799336 [250.0, 250.0] 0.04 drifting_gratings \n", "951800977 [250.0, 250.0] 0.04 drifting_gratings \n", "951801127 [250.0, 250.0] 0.04 drifting_gratings \n", "951801187 [250.0, 250.0] 0.04 drifting_gratings \n", "951801462 [250.0, 250.0] 0.04 drifting_gratings \n", "\n", " temporal_frequency tex texRes units x_position y_position \\\n", "unit_id \n", "951799336 4 sin 256.0 deg null null \n", "951800977 1 sin 256.0 deg null null \n", "951801127 1 sin 256.0 deg null null \n", "951801187 4 sin 256.0 deg null null \n", "951801462 2 sin 256.0 deg null null \n", "\n", " color_triplet \n", "unit_id \n", "951799336 [1.0, 1.0, 1.0] \n", "951800977 [1.0, 1.0, 1.0] \n", "951801127 [1.0, 1.0, 1.0] \n", "951801187 [1.0, 1.0, 1.0] \n", "951801462 [1.0, 1.0, 1.0] " ] }, "execution_count": 23, "metadata": {}, "output_type": "execute_result" } ], "source": [ "with_repeats = stats[stats[\"stimulus_presentation_count\"] >= 5]\n", "\n", "highest_mean_rate = lambda df: df.loc[df['spike_mean'].idxmax()]\n", "max_rate_conditions = with_repeats.groupby('unit_id').apply(highest_mean_rate)\n", "max_rate_conditions.head()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Spike histograms\n", "\n", "It is commonly useful to compare spike data from across units and stimulus presentations, all relative to the onset of a stimulus presentation. We can do this using the `presentationwise_spike_counts` method. " ] }, { "cell_type": "code", "execution_count": 24, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "\n", "array([[[0, 1, 0, ..., 0, 0, 0],\n", " [0, 0, 0, ..., 0, 0, 0],\n", " [0, 0, 0, ..., 0, 0, 0],\n", " ...,\n", " [0, 0, 0, ..., 0, 0, 0],\n", " [0, 0, 0, ..., 1, 0, 0],\n", " [0, 0, 0, ..., 0, 0, 0]],\n", "\n", " [[0, 0, 0, ..., 0, 0, 0],\n", " [0, 0, 0, ..., 0, 0, 0],\n", " [0, 0, 0, ..., 0, 0, 0],\n", " ...,\n", " [0, 0, 0, ..., 0, 0, 0],\n", " [0, 0, 0, ..., 0, 0, 0],\n", " [0, 0, 0, ..., 0, 0, 0]],\n", "\n", " [[0, 0, 0, ..., 0, 0, 0],\n", " [0, 0, 0, ..., 0, 0, 0],\n", " [0, 0, 0, ..., 0, 0, 0],\n", " ...,\n", " [0, 0, 0, ..., 0, 0, 0],\n", " [0, 0, 0, ..., 0, 0, 0],\n", " [0, 1, 0, ..., 0, 0, 0]],\n", "\n", " ...,\n", "\n", " [[0, 0, 0, ..., 0, 0, 0],\n", " [0, 0, 0, ..., 0, 0, 0],\n", " [0, 0, 0, ..., 0, 0, 0],\n", " ...,\n", " [0, 0, 0, ..., 0, 0, 0],\n", " [0, 0, 0, ..., 0, 0, 0],\n", " [0, 0, 0, ..., 0, 0, 0]],\n", "\n", " [[0, 0, 0, ..., 0, 0, 0],\n", " [0, 0, 0, ..., 0, 0, 0],\n", " [0, 0, 0, ..., 0, 0, 0],\n", " ...,\n", " [0, 0, 0, ..., 0, 0, 0],\n", " [0, 0, 0, ..., 0, 0, 0],\n", " [1, 0, 0, ..., 0, 0, 0]],\n", "\n", " [[0, 0, 0, ..., 0, 0, 0],\n", " [0, 0, 0, ..., 0, 0, 0],\n", " [0, 0, 0, ..., 0, 0, 0],\n", " ...,\n", " [0, 0, 0, ..., 0, 0, 0],\n", " [0, 0, 0, ..., 0, 0, 0],\n", " [0, 0, 0, ..., 0, 0, 0]]], dtype=uint16)\n", "Coordinates:\n", " * stimulus_presentation_id (stimulus_presentation_id) int64 3647 ... 3796\n", " * time_relative_to_stimulus_onset (time_relative_to_stimulus_onset) float64 -0.00897 ... 0.399\n", " * unit_id (unit_id) int64 951814884 ... 951814312" ] }, "execution_count": 24, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# We're going to build an array of spike counts surrounding stimulus presentation onset\n", "# To do that, we will need to specify some bins (in seconds, relative to stimulus onset)\n", "time_bin_edges = np.linspace(-0.01, 0.4, 200)\n", "\n", "# look at responses to the flash stimulus\n", "flash_250_ms_stimulus_presentation_ids = session.stimulus_presentations[\n", " session.stimulus_presentations['stimulus_name'] == 'flashes'\n", "].index.values\n", "\n", "# and get a set of units with only decent snr\n", "decent_snr_unit_ids = session.units[\n", " session.units['snr'] >= 1.5\n", "].index.values\n", "\n", "spike_counts_da = session.presentationwise_spike_counts(\n", " bin_edges=time_bin_edges,\n", " stimulus_presentation_ids=flash_250_ms_stimulus_presentation_ids,\n", " unit_ids=decent_snr_unit_ids\n", ")\n", "spike_counts_da" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "This has returned a new (to this notebook) data structure, the `xarray.DataArray`. You can think of this as similar to a 3+D `pandas.DataFrame`, or as a `numpy.ndarray` with labeled axes and indices. See the [xarray documentation](http://xarray.pydata.org/en/stable/index.html) for more information. In the mean time, the salient features are:\n", "\n", "- Dimensions : Each axis on each data variable is associated with a named dimension. This lets us see unambiguously what the axes of our array mean.\n", "- Coordinates : Arrays of labels for each sample on each dimension.\n", "\n", "xarray is nice because it forces code to be explicit about dimensions and coordinates, improving readability and avoiding bugs. However, you can always convert to numpy or pandas data structures as follows:\n", "- to pandas: `spike_counts_ds.to_dataframe()` produces a multiindexed dataframe\n", "- to numpy: `spike_counts_ds.values` gives you access to the underlying numpy array\n", "\n", "We can now plot spike counts for a particular presentation:" ] }, { "cell_type": "code", "execution_count": 25, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAcQAAALnCAYAAAAXjzcaAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOzdd7weRbkH8N8TSoBQQ5CSHAkQkB6QAFEwBCJNRWxXAQsoFhQswQZehQi2K94b5YIiFyLXK0UFlKBUEwIWAoRepIRmElFKEAQhkOS5f8y+yZ49u/vubJvZ3d83n/dzztndd3a2ZJ+d2ZlZUVUQERF13TDXGSAiIvIBAyIREREYEImIiAAwIBIREQFgQCQiIgLAgEhERATAo4AoIueJiIrI2JrX+5iIPFbnOusmImODfXteZLqTfU5E/YnIUcH/z6Nc56UrvAmIcZIu5ESuici04Nyc7DovVI+yj7mITA7Sm1ZGenUQkZ1E5BwRuV1EnhKRJSKyQER+JyLvEhGJ+Y5m+Hww5nvvFpE5IvKciLwkIveKyIkisnpK/lYRkY+KyA0i8mzwvUdE5Ocisk2/7VvVfpdU5kQA3wGwqOb1Tql5fS4sArAdgOdcZ4SIMvsVgLkAnnCdkZDdALwDJl9/grmmbALgEACXAPg/AB+KfOfrCWmtA+B4AEsBXBueISLfgokJLwTpLgbwJgDfAjBFRA5W1Vcj31kbwGUA9gNwB4D/BfAygNHBd7cB8GDaxnkTEFX1CTg48Kr6cN3rrFtw4tzvOh9ElJ2qPgf/bmIvVNXzohNFZF2YIPlBETlDVW/uzVPVaXEJicgngl8vV9W/haa/HiYY/gPAbqr6SDBdAPwQwDEAPg3gvyJJ/hgmGB6jqj+OWd9qfbdOVVM/ACYDUADTEuY/BuCxyLSjgu8cBWBfAHMA/BPA8wB+C2C7mHTOC74zNvh7WvB33OcoAK8Lfj8/ks4WoeXeFJn3H8H0/frkf3UAnwFwG4BnAfwrWO4yAG+Oyfu2Qf4XAHgFwN8BXADgdf32bygNAXAkzF3XUzB3NgsAXA3gfXH7HMB6AM6AKQG+DOC+IN8SWX5ssN3npe3z0PTxQZrPA9i/7G0NpXUAgMsBPAlgSZDmkH0MU7V/DIBbYO4YXwx+/ySAYVm2NTR/DgBNOscB7AJzjv4jOO7XA3hjzP6PPTdDy2wM4HsAHgjy+4/g9/MAbGmxj3aDuUPu7aPHYS4Km6b9HwLwCQB3B+fF3wGcDWA9i/VOC9KaHJyXtwN4KcjHDACbJO1bmP8/JwXbuyTmvDscwHXBPnkZwJ8BfBXA8Jg03xScIwuDtP4Gc+E9OWbZtWAupHcE+/wFADcCODxm2SqO+TYwtVzzYP4P947X2QDGJByruM9kjVxHfTkv+pwz04P1vD/j8rcGyx8YmX5KMP20mO9sEMx7ODL99cH0i4psQ9UlxLcBOBTAlQDOArA9gLcA2F1EtlfVp1O+OwfA+gA+C+BOAL8OzbtDVR8QkUUwdwRhUyK//z7y98swQSfNeTD/ae8B8FOYC8FmAPYGcBCA3/UWFJGDAFwKYDWY/7jzAYwB8C4AbxWRfVX1tj7rA4BvwvxnfhTAL2DuDDcFsDuAfwPw88jyqwf5WB/ARcHf7wbwA5ibhWMzrHMIEZkSbM+LACap6h0VbCtE5OswF80XYI7tAph9/EYAH0BoH8NUwxwRLHMOzIn/TpgLwN4A3p9nW2NMAPAlmIvoOQBeC7NPZ4nILqr6QLDc92GqjfaBqZZ5LLJtawH4I4CtYKqCLoe54dkc5v/DxQAe6ZcZEXkbzEVPgu88DnMh/CSAQ0Vkb1V9NOar3wVwYLDea2BuSj8GYByG/n/pZyrMjcvPAVwFs78/DGCyiOypqk/FfOcSmPP2Sphj+2Rom2YE318YLPcPABMBnApTFba/qi4Nlj0IJlA9D2AmzE3aSJjq/08hVBUnIusDmA1gV5gb2RkwN1IHArhARHZQ1a/G5LWUYx54F8yN23Uw15hXAOwA4KMADhGRCaraeyTUu54dCROA54TSiUt7BU/Oi2ie1gqlcXeG5XeDCWKPBXkJ2yT4OeT/iKo+KyLPAthSRLYIbecRwc8LRWQ9mCrcAQDPAJitqvMzbUiGKD4Z+UuISwFMicz7djDvS0l3MaFpY5F+t//TYP4OoWkXwtyd3Q7g95E7i2UAZqXlH6bUtRzmLm+VmHVuGEnzWQBPA9g+styOMBf72zLeLT0Dc5FYK2beqJg8K4A/IHRXDXOxeDiYN6nffozuc5hA9ApMSXPzmDuzsrb1gGC9jwAYHTN/TOj3w4NlbwOwdmj6iOAYKYAjLM6ZOUguIQ65G4e5o1YAP4xMn4bQ3Xxk3iHBvOkx81YHsE6GfbR2cE4sw9Caji8H6V+TcDz/AuC1oemrArghmLdHxmPU275XAOwamdcrCZwbt28B3BU9Z4P5RwXzLwWwZsL6PhuadkkwbXyG/xO9bY9eV9aACeTLAexS1TEP5o9GfCn3gOA4/ijhvJuWkN5R0fy5Pi9C3x0X7I9TYUqZi4J0vpXx+z8Olv9KzLxvBfO+GzNv/dBxOyg0/fpg2mdgrlEa+iwHcCZirudD0s+Q8X4H7TEkB8SfxSzfq9K8OOGgjQ1NG4v0i9uRvZ0QmvZ3mLvZ02D+M48Ipr8r7gBE8w9g3WC5PyJS9Riz/s8Gyx6bML934dg+LZ1g2WdgSodD/kMl7HON/oeI7Puf9NuPGFyVckJw4vwewAYVb+vlwbLvzLDstcGyB8TMmxLMm21xzsxBckD8Q8zyqwF4FcC8yPRp6B8QM10cEvL5/iCNC2LmrRqcK4rBF7je8fxozHc+HMw7LuP6e9t3bsy89WBKdi9h8A3ZnOA7hyakeXuwL9ePmbcKzIXs5tC0XkDcpk9eN4S5+b4lYf54RC6wZR/zDPvzLgCPJJx30xK+cxSGBkSn50XoewdhcNBZAuAL6HPNDL67Nkyp/1XEV73vFaT5LAbHA4EJbL11Hh6a92esLIRdDPNoZ22Ya8RDafs5/Km6ynRezLQFwc8NSkh/dvBzCoDTRWRHAK8BMCtYzxcATIKputkv8p1Yqvq8iFwOc1G7Q0QugQkSN6nqvyKLvyH4OT6h6XSvme92MKWuNOfDPCi+T0R+AXPHc6OaB+txliK+6ndO8HPXPusLmw5THXQJgA+o6ssxy5S5rRNhTtCrMuTt9TCBek7MvOth7pRttjXNkPNVVV8Vkb/D7ny9HuaO+YSggcAVMDdYd6jqsoxpvD74OeR8VdWlInIDTPDfFebOP6zM/3fXx6z/ORG5A6b6cDuYZ3ZhN0e/E1SpjYcJep+LaZ0PmIvqdqG/z4e5kb1JRH4OUxX5R1VdGPne7jABNakLQ68xxXYx88o65r1GH++HCWTjg++vElrkFZv0EnhxXqjqVTCbvBpMNfP7YUp2+4jIu1U1bVsPh2lheqmGGtOE0v6jiJwL4GgAdwXX4F4r051hGghuC3Nd6Ol1Ibwfps1F7//ZLBF5D0wN0/Ei8q20vFUdEP8RnRAcNGDwiZKLqi4QkYdgDsIqWPn8cBbMw/dXg2lXBj+fh2mM0c/7YKofjsDK5xQvi8jFAL6gqn8Ppm0Y/PxYn/TWzrDOqTBViB+GKa2dAGCpiFwB4PM6tA786YSLa+8EWy/DOnsmBT9/kxAMgXK3dX0Az6rqSxmWXQ/A4riTODiXnoa5CSrDkPM1sBQW52twUzUR5tx5O8xzGwB4WkR+COAbGmkyHqN3/JJaXvemrx8zL247lgY/bf/f/T1hetp5NuQiB3PBFQAbATg5y4pV9dLgednnAXwEpioTInIrgBNVtddUv3du7h58ksSdm6Uc88B/AfgczLG5GuamqHeOHwXzDLkoX84LAObmAeYxzSki8grMI7HPwDQoS/Lx4OfZKct8DObG6mMA3gtzAz0XplT9VZiA+GRo+d62XR69LqrqnSLyKMwz/e1g2qTEytIxvxeFk4Jn3I6v02yYk2R3mKD3uKo+rKovwuzQN4vIZjA78IYsd+iq+pKqTlPVbWDufj4A87zuAzDF8Z5e6W28qkrK538zrHOZqn5fVcfDtFB8N0w/pLcDuEpEhke+Miq4CYjqPZC2aa79DpgGMueKSFLAK21bYU7eDURkzQzLPgdgZFyTaRFZFcAomBudHi/OV1VdqKpHwwTrHWEuEs/ANCQ6KUMSvf29ScL8TSPLVWXjhOmJ55kGdVgRveVu73P+SCSt36rqfjABdQpMbcYOAH4jIttH0p7eJ+19Lbbbioi8BuYY3wPT4voDqvrl4DoyDab0WwZfzos4VwY/JyctICK7wDRkehRDG9OsoMbZqrq7qo5Q1bVV9c2qOhfATjD/z8MN+HqNn5JucJ4NfqZec7IExF5CA9EZIjIOdiURW73glXb3Miv4eSBMSWdWZN7OMCU+ROZloqoLVPX8IP35APYWkd4d6dzg55ts0+2zzidV9VJVfS9MwN8K5qIatipMi8yoycHP2y1WuQBm3z0A4MciEtdCtcxtnQtTWjgow7K3w5ynk2LmTYI5N8L/MdLO13Wxsmq3qCznZu8/9r2q+t8A9g8mvyND+r3jNzk6I7gR6B2HTK16C9gnZv3rwXRV6HWZ6EtVXwBwL4AdRGSkbSZU9UVVna2qx8NUza0O4OBg9s0wF8hS/x/GSDvmW8Kcp9eo6j/DM0RkTDDfJr0kvpwXcUYHP5emLNPre3hOwo1TKjGjBL0WwG8jj5N6rdKj10kEhYmtgz8fS0s/S0C8H+YO/NDgLqi3kjUBnJ7h+0U8i+ABccoy1wXLfAomOIeD3myYC+8Job9TichGIrJTzKwRMFUuS7HyWcBPYO5IThaRPWLSGiYZhnkSkeEislfM9NVgWo4Cpn9U1LfDJcfgQtNrWv6TfusNUzMwwj4wTabPEJHPRxYpZVsD/x38/E8RGR2dGZk2I/j57eA5VG+ZtWD6fAHAuaHt+CfMObtXqASBoDT9X+hzh2jhmeDnkHNTRHYQkbiSVW9a3LGM+jXMc5PDg+rXsM/BNE77napGnxOV7YMiEn1GOw3m/9qFqmpT8vkvmEA2I+gmMYiIbBA8c+39PSm4yEcN2o+q+iTM88YJIvK1uJoTEdlKRLawyGucxGOOlRfavcPrFzN6yv8gvsYiLb0kTs8LEZmQMH0jrPz/+NuEZUbAPIZaipX/r5PWs27MtM1husa8gpXXuZ5LAPwVwPtirk9fgzlfr4t7ZhnW9xli8ID5B0Git4vIr4Lv7R9k4K/90shLVV8QkZsAvElEzocZdmcZgJmqelewzNMichfMQ2xgcNC7EeY/zWtgumL07R8Dc5dzu4jcDdMybAFMy9O3wVRTnN67A1TVZ4IHtr8CMFdEZsHcBStMCeUNMM831uizzjUB/EFE5sN0Vn08+M7+MHXeM1U1eif+BIDhAO4RkZkwDQfeA1Nl8kNVvSHDtg6iqk+JyL4wzz++JyJrqOo3S95WqOo1IvINmJP6zyLS64e4MUw/t7kwz1ygqheIyKEwzxHuDZZVmFLWFgB+HpTgw06DCZJ/FJFfwpRk9g320Z1Yea4UcR1MqeTbQWOuZ4P8fgPmuJ0mIjfCnLNPwvTXPDT4zmn9Eg/O/Y8A+CWA64Pt+AtMf7MDYJ7TfSIlibJcCbMffwFzzu0dfB7DyhvNTFR1hpj+Z58C8LCIXA2zTSNhjuUkmBuvY4KvnA5gtIj8MVjfKzDbvx/M/5GLQskfB1MKOAUmiP8B5vnnZjD/h3aHaczxqE2eIxKPuar+TUQuAnAYTGO8a2AuwvvDnH93wJSqwx6Aec54mIi8GmyTAvg/VX08LgMenBfnBDVkNwfrXQbTiOctMNexXyM52B0Gcy2NbUwTcW4QAG+DuQHYAubx0WoAPti7/veo6otiBkH/DYDfi8ilMPt2T5jz9Ulk2S+arYltr5T1MMxJ+ReYTp5roc9INQnpKYA5kWnnIdLtIpg+DqaZ/jMwJ+OQdAH8ZzD93ph1XR3M+3lCXgblH+YZ00kwgXURTN3/EzCtHA9HTLNimBPiDJjmvS/DlKjvh+lQ/o4M+3c1mM7BVwb79mWYAD4X5uKwelyeYf7DnRnK559Rzkg168K0ilQAp5a5rZG03gLT0nQxVo5U8yuERhIKlhsGcxGdB3OD8y+YG4djERmpJvSdo2ECdm90kx/DBOw5SO52MS3LORKa/gGYC91Lwfc1mL4dTGkoPGLJYzDPn9+YZd+E1rF7sE+ewsr/ez8CsFnMsrHHM8s2xiw/LVh+Msz/5952PgUTtOJGRBmybxPSfhvMhevJYJv+BnOB/QaAbUPLvRemX/FDMP1cn4d5RvdNABvFpLs6TGDsjbG5JNhfs2BKTxtm3R+2xzyYt1aQt/lYOdLUmUnnXej4zgry27u+TQ7mHYWE66jD86LXjuKR4Ji8AlMo+g3Mo6nEbhcAbgrWdWCG9RwJcw16JljHApgBEYaMchb53vggf333S9xHgkSoQSR4XZWqjnWbE2orMd0XTgawr6rOcZsbonp4/fonIiKiujAgEhF5QEQGROQ6EblPzLv/PhuzjIjI6SIyX0TuijRCOlJEHgo+R9ab+3bw5vVPREQdtxRmEI7bRGQdALeKyLWqGh756WCYxkNbwzQY+RGAPYMW5ifD9PHT4LszVfVZUGYsITaQqo7l80OqkpoO5cLnh/VR1Sc0eFuMmpbsf8bKvn09hwL4qRpzAawvIpvC9JO+VlUXB0HwWmTr50shDIhERJ4RkbEw45HeFJk1GivHHwXMG3JGp0wnC6wy7ZjVZbiugRGus+GtJQMjMHzBi6V+J0+aZay7yvWWmX4V+cySZtIy0ekv40W8oktWDCl34L4j9JnFWcdoX+nWu5bcC9Mdo+dsVR0ynmfQmf8SAJ9T1eej86k6DIgdswZGYE+ZkrrM/OkTMW7q3NRl2mjFdkvC9IS/sRBDvjNIn/n90g//nWXdK5bpl68Umc6BAulXkk7GNPvun8j0m3TwiI/PLF6Gm6+2GVzGWGXTh15W1diRXnqC0akuAXC+ql4as8giDB6WcEwwbREGD+c2BvFviKEU7IfYMevKSO0XEIlopZt0Fp7XxStC5ITxa2jOgHhrWkAUEYHpfL5YVT+XsMxbYQYfeAtMo5rTVXWPoFHNrVj5eqjbAOymqoutM9phfIZIVIP506PDTpppcdPbKmlbs+yDIvsp7btJxyWNAlie418GewH4IID9ROSO4PMWETlGRHrD2V0BM0rMfJgxUj8FAEHgOxXm9Xa3ADiFwdAeAyIlqupCVXUQsEm/aF6yfj+u+nHc1LmZq6bL3md1bXdYuNo3/P0s+8CmCj+at+h3+63b1eMCVf1D0LJ3Z1XdJfhcoapnqepZwTKqqseq6laqupOqzgt9f4aqjgs+VoP7k8Eq045hlSmRnWiV6W7jh+ufrrJvwLnGZo+mVpmSeywhdsySgewtTPuVAsosidmWOOqsaqy6Sq+sNH0sGftUG1Dmd6mdWELsGJclxDa1Xm3TtlA6lhC7g90uqDZtCiBt2hayYxrVsCDRRqwyJSIiAgMiNRyfA/mtrcenom4X5BgDIlWirgshqy79xuNDTcKASJXghZCImoYBkXLzpel9GXzuHkDVsj02CsUytf+Q/xgQiYiIwH6IncORaojsRPsh7jp+db3+yk2s01lv9AL2Q/Qc+yESEVliP8R2YpUpERERGBCpYr0GC2xUUh7uU7cUwDKo9Yf8x2eIHcNniER2os8Qdxm/us668jXW6YwavYjPED3HEiIRERHYqIaIyBob1bQTS4hERERgQCSiktk0+mliwyAFOFJNSzEgElGpeuPYZhnPlmPekk8YEIkapIklKqKmYKMaogZhicoPfLthO7GESEREBAZEyolVd9QmNuez5hilhiPVNAMDIuXCqjtqE57PBDAgEhERAWBAJDS7+rPMvBdJK+27edJt8jFpk9jjoMCyHB/yHwf37pje4N7zp09kNRFRBtHBvXfeeTWdecUo63S2GPgbB/f2HLtddBSDIVE+Cna7aCtWmRIREYEBkUrCZ15UBZ5XVCcGRCqFyypYXjTby8+qfcGyHB/yHwMiNZ6fF00iahoGRCIiIjAgUgO0oUrUh23wIQ8+ybs/FMBytf+Q/9gPsWN6/RCJKJtoP8Qdd15dL/mtfT/EbV/7BPsheo79EImILLGRTDuxypSIiAgMiERERABYZUpEZEXBKtO2YgmRiIgIDIjUIHmbybvubtDE9deZZxf7p+g6l6tYf8h/7HbRMex2QWQn2u1ih51X1wt+s7F1OrtsvpDdLjzHEiJVzpcSiuuSWljbt6/HdZ5cr5+ahSXEjmEJkchOtIS4/c6r689+s4l1OrttvoAlRM+xhEi1advdetu2h6jrGBCpNm17K4Wv29OkQN2kvPYoBMswzPpD/uNRImoZXwN1nCblldqPAZEogyaWZIjIDgMiWWticCia5yIlmSLrrmtfl7meOvLs+hxkP8R2YkAkp6q8sIXTdlk1V2TdSd8tut+i3y9z/2RNy3VQI4pit4uOYbcLIjvRbhfb7jxcZ1w+2jqdvcY+ym4XnmMJkWrXhSq1fnzPXxNwH1LZGBAplyIXI5sqtbzrsa0CLPvi2i+9preu9OGmpux9yABLrDLtGFaZ+mf+9ImND5BtNrTKdA39n5ljrNOZtMXDrDL1HEuIVIjvrROruusvM928wZAlmnJwP1IPAyIV4qJ1YlZVlrzKTDfv4OdVbFvdr9jyIRjF7ce0fCmA5Rhm/SH/8Sh1zJKBEZWm78MFrqcp1ZBp+Uzan74F+t73bI+/r8fI13xRtRgQO2b4ghdX/F5W8Cq7v1/ZfezKTr8NqtoH46bObeT+bWKeqXxsVNMxdTeqYYMRarpoo5rX7byG/mjm5tbpTNniQTaq8RxLiFSauLvsJgbDIt09fNSmbSGqEgMilabq4FdXK9RxU+d62fKzrj6ZPmAQJxdYZdoxXeuHyCpbKipaZbrNTmvqmTPHWqdzwJb3s8rUcywhUul8urtnMOwen84/ahYGRCpdm9520IYWq3n7OTZJnpbORbZxOcT6Q/5jQKS+qhrns+x3DFZxEe+XxyaUQPPksQnbFdaFbaTqMSBSX2W/ky9vJ+6kPJURYOvStJJXPz42ImraOskfbFTTMV1rVFMXNt5xp+p9H21Us/VOa+oPZm5lnc5bt7yXjWo8xxIiERERGBCpo8quGmPp0J36971gmQ6z/pD/eJSokxjAiCiKAZGIiAjAqq4zQETUJL33IVL78KjSEGx6Xgz3H+UhIjNE5EkRuSdh/hdF5I7gc4+ILBORkcG8x0Tk7mDevHpz3h4MiB3U74Ld5edrZQSzLu+/Mvl8Y7FMxfqTwXkADkqaqaqnqeouqroLgBMBXK+qi0OL7BvMZ9eOnBgQO4gX7GTcN/7o2rFQ1RsALO67oHE4gAsrzE4nMSASEdVjlIjMC30+nicREVkLpiR5SWiyArhGRG7Nmy4xIFID1FV1lnc9Nt9LWrbulxL7XB3pO4VgGYZZfwA8raoTQp+zc2bhEAB/jFSX7q2qrwdwMIBjRWRSwc3sJAZE8k70Yl1X1Vne9dh8L2nZIi8lzqNr1ZEtcxgi1aWquij4+SSAXwHYw0G+Go8BkbzDi3VxLAFWa7kOs/6UQUTWA7APgMtC00aIyDq93wEcACC2pSqlYz9EohbiTUXziMiFACbDPGtcCOBkAKsBgKqeFSz2TgDXqOqLoa9uDOBXIgKYa/oFqnpVXfluE5YQiQqo47mjT5qa7yZQ1cNVdVNVXU1Vx6jquap6VigYQlXPU9XDIt97RFXHB58dVPWb9ee+HVhCJCqgjueOPmlqvsukQK+RDLUMjyoRERFYQiQisqLIPPIMNQxLiNT3uVDZz8nC0+P632VZX1oavj3nKpKf8LbFpVNGH8iylJ1+2nbnSStrOr6dP1QfUVXXeaAarSsjdU+Z4jobRI1xk87C87p4RZFwi53W1lMu3dE6nQ9tc9OtHGfUb6wyJSKyxNc/tROPKhERERgQiYiG4HPEbmJApNZIu4jxAkc20vpbqgLLdJj1h/zHo0StkXYRY4dyIuqHjWqIiKwIloP9ENuIJUQiIiIwIBIREQFgQCTPsPEL+U7BRjVtxaNEXmHjFyJyhY1qiIgs8fVP7cSjSkREBAZEIiIiAAyIRM6wAVFxLvahQrBc7T/kPwZEIkfYgKg47kMqExvVEBFZYqOaduJRJSIiAgMiEXku7jlh0rPDtOl8Zkv9sMqUiLwW95ww6dmh7fQ8FMByjjzTSjyqREREYAmRiMiSYBlf/9RKLCFSKbI8n6n6OU7WtKPLxf2dZZkiwt9PS8tmPb1l8+Qt7/akbUfe42GbftwyafsiaZnwcQ//vmRgRKbtoOYTVXWdB6rRujJS95Qptaxr/vSJ7CdGjXeTzsLzunhFkXBgx/X0s7+0v4H44vbX3KqqE0rNHJWKJUTqeyeft/RQNBjalChtWiLapJF32bTSUtaSVNHjUnaptp+6WnFWdb5m/V6vUY3th/zHo0R9ZQ1sZVSRRdebdd3h5Xrp2+bbJoCPmzo3NZBF0wr/Hf1uVS0j83y/SBBNWl+RQBn33bTtylorYZsudQOrTDumzipTojaIVpmO2XE9PfYXe1mn85UdrmSVqedYQiQiIgIDIhEREQAGRCJqgTqHZVMVNqppKR4lqgXHkaxPmX0k61J0nWwQQ2VgQKRa8IJVHxetU4vi+UE+YECkRC5LdWX2Caw6jTL3k+ttaRpX27pMh1l/yH88SpSoyrv2fhcy2z6BLtmuP23by9gW1/ujTr1t7dJNAFWHAZGc8O2iXWd+fNt21/KOZRqenhQYs45lGvd70vcVwHKI9Yf8x4DYQXkHfy57sOY8eSjCp+rIOoek65d+3cckus60G4ToCD9xaaUtk/YuxfDP3uhB0dGRePPSLRyppmM4Ug2RnehINZvtsL5+/Of7WKfz9Z1mcqQaz7GESIXw2U1ztO1YudseYaOaluJRokJYpdQcbTtWbdsecm9V1xkgImoS8/onNpJpI5YQqRIuGs/41GjGVfpNkNaQp479w2NASRgQqaI0W9YAACAASURBVBL93lmX97tpaZXx/r9ea8N+zfeTmuYX3bZ+rUp9vphnzWfaey7rqAaNrsPnfUr1YpUpEZGlZSxLtBKPKg1Sx92y7egi0Y7UZUl6u3pcCSbtLffR321Kl9G/0/rNxc2vo2q6X8mvNy1t26s6r2zTjVueJUbqYT/EjknrhxgXIHrTwhe9NElBhoay2VdV7desx7Vp8u6vuO9F+yFussNI/dAF9n15T9vlYvZD9BxLiB2zZGCE1fLR0TzixJVwkhpOZBlaq0pVjaKTh01JOa701ZO1BJd1GLTwJzwtbb1Zptcpb4Bv240B2WEJsWM4Ug2RHZYQu4MlRLJSdteGfq03k55BZXk25UNJJU7c9mcZVDrLvLpkPYZp011uR5ZWwmn5W45h1h/yH49Sx/SqTPsFmujfvQt2WtVdkriuDXG/x82LDsQcXa7fwNBVXHSLDMwNJDecydIgJ21enoCTp09g+Dlb9Hcg+ZhkGXi7aBeTflXBceuO+53PwruJVaYdk1Rl2u9iVkbji7gLaR0Xnug60taZdLHv970y85LUkClPI5wiabSV7XGNVpluvP1IPeKCA6zX+/1df84qU88xIHYMnyES2WFA7A5WmRIREYEBkWrmQ4OQIurKf9P3U9stV7H+kP8YEMlakYt19NmNS3nWn6UvZhnra+JzPp/7JRJlwYBI1sq4WNfduCOuBWZacOt3EU9rOZvEdnuzdI7v9/243/Om0U9SK1mbhkC+8CkvVB82qumYshvV2Aa2rMuXvVwXuLjJ6PdWkzw3AXVtQ9Z1RRvVvGb7DfV9PzvIen1n7HYBG9V4jiVESpR1SDEbWZfv10ct7/rzclViKFLNalvKTZueZ9/nOTZZ+o4WORZJfRGJAJYQO4fdLojsxJUQ3/Ozg63T+dFu57OE6DmWEIki8jyvI6Lm4wuCiSJYlUbUTQyIREQWFGC/wpZilSkREREYECkiy2uVXHKdrypbQFJTCJbrMOsP+Y9HiQbJ8lolG2UHCNfP96roakBEfmBApEoxQBBRUzAgklNtr2Js+/bVwVU1ftr6lkOsP+Q/BkSKVfSt8FkVfat9GRfJKi+0vpSQq9jGImOrZk0nPLxamfsyyzivvhw7qg8DIg1hM55kv7Esy1yX7fqz5qNfGmVd+F2q4uJu++aPpOH40vJWxvHtl67tvlEFlqlYf8h/DIg0RFlvJ8hS+usXUOPenmCbj6KyjquatnyXZLnB6O2/MvZVW/a3iMwQkSdF5J6E+ZNF5DkRuSP4nBSad5CIPCAi80XkhPpy3S4cy7RjfBnLtN/rl9pykWuz6HFq+nFLyn90LNNR243SQ356iHX65+1xXupYpiIyCcALAH6qqjvGzJ8M4Auq+rbI9FUAPAhgfwALAdwC4HBVvc86kx3HkWrIiaLVZORe9Dg1/bjZ5L+KfoWqeoOIjM3x1T0AzFfVRwBARC4CcCgABkRLrDIlImqON4jInSJypYjsEEwbDWBBaJmFwTSyxBIiEZEFheQdy3SUiMwL/X22qp5t8f3bAGyuqi+IyFsA/BrA1nkyQvFYQuw4m+4VNo1X8jSxt1mujLwUSTPP8raKpu+6O4uP63LsaVWdEPrYBEOo6vOq+kLw+xUAVhORUQAWARgILTommEaW2KimY3xpVEPUFNFGNRtut5G+5bxDrdP52cRz+74gOHiG+JuERjWbAPi7qqqI7AHgYgCbA+g1qpkCEwhvAXCEqt5rncmOYwmRnLLpRtG0gbV9yw+Vp4qRakTkQgA3AnidiCwUkaNF5BgROSZY5D0A7hGROwGcDuAwNZYCOA7A1QD+DOAXDIb5MCBSrDpHqskyLUuT/t58XwJR0VF4mqjM7e3avlPVw1V1U1VdTVXHqOq5qnqWqp4VzD9DVXdQ1fGqOlFV/xT67hWquo2qbqWq33S3Fc3GKtOO8bHKtCn915qSTypXtMp05HYb6YE/ead1Ohe94X/6VpmSWywhUqWy3OU3Jcg0JZ9ElA8DIlWKQYSImoL9EImILFUxUg25x6NKREQEBkQiIiIArDIlIrKjuYduI8+xhEjO2QwL14a+aW3Yhjr4sJ98yAPVhwGRVvynj/4sK824l/yG50dboqaNXtOvs3u/kW9sRsHJ8zLiomO41invvgrPszkWtvsmSwvlfvmoYuAIRTUj1ZB77JjfMb2O+b51Ms+bnzK3I09adX2HhqprP0Y75m+w7Wt0vxnvsU7n0r1+xI75nmMJsYOyXkiqettCXKkx+ub1tHTCf9tcEPttT7T0mVZyDpdYk5bPsk6flVlTUMX38gbDoiVXai+WEDvGxdBtLBFRk8WVECef+2/W6fx67x+yhOg5lhCpcgyGRNQEDIgds2RgROz0LA0sXLzc15fvZvl+1qo42/UUTTfL8lkaENX1+q0sVZh5XxBdxjYogOVB1wubD/mPVaYd4+PbLlxhVa7/fDhG0SrT9bd9je5zznut05n5pjNZZeo5lhCps1xfaKk/HiOqE0eqISKyxCrQdmIJkYiICAyIFPCtz5UPfcPKXFcdfROryq/LNHxcn8K+QQ1LlM3ARjUdw0Y1RHaijWrW23Zj3fvs91mnc8U+/81GNZ5jCZGooXwr1RM1HRvVEDUUW2C6w8G624klRCIiIjAgEnmHVaGeU45U01YMiERERGBAJPIOnw0SucFGNUREFnqDe1P7sIRIREQEBkQiJ1w0nGFjnfKwUU07MSASOeDiOSGfTRKlY0AkIiICG9UQEVnpDe5N7cMSIpWqrOdUPjzvypuHNu2DPJqabyIGRCpVkedU4QupD8+78uahrLz7sA/ycJFvBmEqAwNix1V9IemXft1BMMv2zp8+0ZsLrOtSqut1Z02rinMnbd2qYv0h//F9iB3D9yES2Ym+D3Gd122iu/3wA9bpXP/m/+T7ED3HRjVERJb4+qd2YpUpERERGBCJiIgAsMqUiMiKKgf3biuWEKk0vrTMJD/x/CDfsYRIpWlqvzmqR5vOD3ajaCeWEKmxulLi6Mp2ErnGgEiNVVeJo8qAlCXtsrazjO1o6murfBpsgfzFjvkdw475RHaiHfPX3mZT3emMI63TmXvgf7BjvudYQiQiIgIb1RARWWOjmnZiCZGc4nMdIvIFAyI51aam+ETUbAyI1Fp1lz7bXtpt+/YlWTIwYtDfCjNSje2H/MeASK1Vd+mz7aXdNnRzyWP4ghddZ4FqwoBIg/h2MSoqaXt6033Z3rh+cnF5y5rfurarSB6TjJs613nfz1RqxjO1/ZD/2A+xY9gPkchOtB/iiK031e1P/7B1OvPe8m32Q/QcS4jkFV9KbETUPeyHSERkaTnYSKaNWEIkK1WX4HxumFLFtrNEXC7uTyqCAZESxV1cbAJWU7s9JA0EHbfttuuMLm97A1DnPm3iDUBvfzZ1IHNyi41qOmb4awd00kI//qPPnz7R6xIhETC0Uc1aW2+q2/7gaOt0bn/rN9moxnMsIXZMlj5VZd4Zp6VV5t1811W9D5t6jJqab3KDAZGGKLPUliUtlhKLq3ofJqVfdsApO71q9ov9KDUcqaYZGBAplyIdxNO+W+SC2IbSQJnPQbMuV+RY5gk4Seusowq9DecIVYfPEDuGHfOJ7Ax9hriZbvN9+2eId77tG3yG6DmWEIn6YKmCojh0WzsxIBL1wWecRN3AkWqIiCwpG8m0EkuIHZanKtDmO6xqbC4eO+oiBsQOy1MVaPMdVjU2F48ddRGrTImILJhGMqwybSOWEImIiMASIhGRNY48004sIRIREYEBkYiICACrTImIrHHkmXZiCZGIyAMiMkNEnhSRexLmv19E7hKRu0XkTyIyPjTvsWD6HSIyr75ctwtLiERElirqdnEegDMA/DRh/qMA9lHVZ0XkYABnA9gzNH9fVX26iox1BUuIRB7jiDHdoao3AFicMv9Pqvps8OdcAGNqyViHMCASeYwjxrTKKBGZF/p8vEBaRwO4MvS3ArhGRG4tmG6nMSDSIGWWSJLSqqLU05Q0q0w3a/pFj0ve/Ff1Yui6KQSq9h8AT6vqhNDn7DzrF5F9YQLil0OT91bV1wM4GMCxIjKp8IZ2EF8Q3DF8QbA/6nhDPBUXfUHwGuNG69jvfsI6nQfefXLfFwSLyFgAv1HVHRPm7wzgVwAOVtUHE5aZBuAFVf2edSY7jiVEIkcYDJtLc3yKEpHXArgUwAfDwVBERojIOr3fARwAILalKqVjQCRvNKnazCcu9huPVflE5EIANwJ4nYgsFJGjReQYETkmWOQkABsC+GGke8XGAP4gIncCuBnAb1X1qto3oAXY7YK8wRJTPi72G49V+VT18D7zPwrgozHTHwEwfug3yBYDIhGRDb7+qbVYZUpERAQGRKLGCD+34zM8ovKxypSoIcLP7fgMzzH2VmsllhCJiIjAEiIRkTU2qmknlhCpM2yGJnM9vFobdGEbqV0YEDtmycCIQX8nNdTo/d5v3Mvod6LT+zUESQs+cenZ/J51G6LGTZ1b+TO6cVPnZhpztN82JH0v7e9o+lnXkXZs4xTZh7bnUZ60+62TuodjmXYMxzIlsjNkLNOtRuuYb3/SOp2H3/e1vmOZklssIRJRK7BkR0UxIBI1GIPASnV1RVEg7+ufyHMMiFQ7XsSzq/I5HRENxoBIVvK8XDapMY1tOlnVGXDLauCR1LjIVcCzbWBSZkMX3jCRK2xU0zFsVENkJ9qoZviWo3XMt461TueRw/+djWo8xxIiERERGBApImtfNMqn7P3H47FSmfuiX1qq9h/yH6tMO4ZVpkR24qpMR3/Tvsr00SNYZeo7lhCJPMYSIFF9GBCpNXwNHkXyVXUr0zrGba1DVa2TE9PVHB/yHgMieS/rGKu+9skL58u34FPHuK11KGMb4tJow76h7BgQqXa2DXfiXozr84Uqbft6g3r7Fhht5O1DWmXf03rZj1LDkWqagY1qOoaNaojsDG1UM0Y3O9W+Uc1jH/gKG9V4jiVEIqIQjprTXQyIBKAd//F93YYi+arjRcU+7jfboQDL1KuOnz99YnLVPBvVtBIDIgEYfBFwKc/6e9+xea6YtRRQxktjs7wMOO270bwUFU6n16imyH4vU/RYxr3sODqvrBJd2rNr6gY+Q+yYLM8QU++MLZWZFpELQ54hbjFGNz3lOOt0Hv/QiXyG6DmWEGmIMgMYgyFVrWlvSCF/MSASUSPlqSpPwhs3AhgQyVJdd9JNeqdh1xR5rlpmaa6KIJY5f2xU00p8htgx7IdIZCf2GeLXczxDPJLPEH3HEiINEdeyz2b5IuuioazG2CSi3BgQiYisSY6PX0RkkoisnTBvbRGZVHeeXGOVacewypTITnyV6aet03n8yBO8qjIVkWUA3qCqN8fM2w3Azaq6Sv05c4clROqEolWMvldRus6fD/vXNo1CjwLa0agmrdg6HMCyujLiC5YQO4YlRLeaMlBBU/JZh9gS4rQcJcSj3JcQRWQsgC2DP38H4DgA90cWWxPARwCMV9VxtWXOA6u6zgBRlzQlyETzyQDZGkcCOBkry63/jcElRQ3+XgrA/pUeDceASER9MRhGNLdi7TwAc2CC3myYoHdfZJklAB5U1cW15swDDIhERAnmT58IfG6W62yURlUfB/A4AIjIvgBuU9V/us2VPxgQiYgSjJs6F89EJyoA9a8bhS1Vvd51HnzDVqbUKj60dqxaE/LoStn7ps37WkRWF5GTReR+EfmXiCyLfJa6zmPdWEKkVin6rKsJz8qakEdXyt43sSXE9jgN5hnilQAuhXl22GksIVLtkgaHtn3Ra1WDS1f9Fvk2lDqq3kdF1JEvVfuPh94D4GRVPURVv6KqX49+XGewbuyH2DH9+iGyeX067p/uGdIPcewY3eSkz1in85ejv+y8H2KYiDwH4J2qOtt1XnzBEiIN4uJiX8UdfVWlx7j9k3VdrkpUvpbkinK6Xe0YqeZyAJ0brzQNS4gd07USYp7tKft9e23bp10TW0L8Wo4S4ke9KyHuCeCnAM4HcAWAIf0OVfWRuvPlEkuINEjZF27XpZNxU+da52Hc1LmdC2Cuj1MWZeWxCdtakxsBbA1gGoCbADwU8+kUBkTKJKkRRdLFJUspK9y4Jutb2PMM4Fx1cOuX96T1l12tW+RC38tjnvSzHrvw8jZ5zVpi75e/nlLOBxX7j38+AuDDwecjCZ9OYZVpx3Bw7/apIuj3S7Op1cB58h1bZfrVz1qv+y8f+5JXVaY0FEuIRA1XRWDql2aWdfpYNVnWvhK1/5D/2DGfiCqR1CK3iSXLNhKRGX0WUVU9upbMeIIBkYhqw2Dolf0wtEPISADrAPhH8OkUBkQiIhv+9iu0oqpj46aLyCQAZwF4f60Z8gCfIVIr2A77Ru7VcZzKaLW8ZGBEWdlpBFW9AcB0mJcHdwoDIrVCuCqO1XLNUMdxKqNx0PAFL5aVnSZ5BMCurjNRNwZEci5tkO+4v8tcFzWP+2OYow+in/0QY4nIqgCOArDQcVZqx2eIVAmb1oTR5fr9XQRLj83HY1gOEYkb1Ht1ANsA2BDAMfXmyD0GRKoEL1rUai1oVANTQxjdkn/CvBvxIlWdU3uOHGNAJCLqIFWd7DoPvuEzRPJK1c+Hqnw+WTdfXydV1XirRFVjQCSvFB0SrN8Ft8rnk3Vzlfc8LTfDA3TbDhSftkxad5vovKznTabBx9vxPkSIyE4icrGIPCUiS4OfvxCRnVznzQUO7t0xvgzu7XoIL9frp+YYMrj35gO66Qn2g3s//qkvejW4t4jsDuB6AC8BmAngbwA2AXAIgDUBTFLVW93lsH58hkhEZKsd5YhvA7gHwBRV/WdvooisA+B3wfwDHOXNCVaZdljdz+vC6npHYdK8qtafp9qvynXW9cwu67sIXeWj7O+0xEQA3w4HQwAI/v4PAG9wkiuHGBA7rIygkPYsKGv6VVyQ+j3HqkqWtMtef++5XNq6qr7oJ60nOr2ufFT9nZboV85tRznYAp8hNoyIPALgnap6Z8y8HQHMVNUtk76f9xliHcGkS5r+DLPp+bcx5Bniawd00y9/zjqdx4/7gm/PEH8HYD0A+0WqTEcAmA3gOVXtVJUpnyE2z1gAwxPmrQFg8ypWWuXFr0sX156mb29d+e/iuVGjrwCYA+BxEfkNgCdgGtW8BcBaACY7y5kjrDJtpqRi/QR48g4zm6oxXvDaq2gVqa/nhqj9xzeqejPMc8TZAA4EcDyAgwBcB2Ciqt7iMHtOMCA2gIhMFZG/iMhfYILh5b2/Q5+nAJwJ4Cq3uTVsLmQdbtTQer4GNJ5zhqreparvUdWNVXW14Od7VfVu13lzgVWmzfAIgFnB70cCmAfgqcgySwDcB+CcGvNVCl8vmtRePOcAEdkIwAaq+mDMvG0ALFbVp+vPmTsMiA2gqpcBuAwARAQATlHVR51mqkZNfo7U5LzHadv25OZhFWgOPwSwGMAnYuZNhXnjxXtrzZFjrDJtGFX9cF3B0JdqpSZfgJuc9zht256O2xvA1QnzrgGwV4158QJLiA0gIicBOEdV/xr8nkZV9dQy1tuki1/bSy5t3z5yYgMAzyXMex6mhNgpLCE2wzQAY0K/9/t4qchbEvppe7Bo+vb5UtvgMxGZISJPisg9CfNFRE4XkfkicpeIvD4070gReSj4HJlxlQsB7Jkwb0+YbhidwoDYAKo6LGgi3fs97bOK6/zm5ctFP9PbDsiKL8fWc+fBdHtIcjCArYPPxwH8CABEZCSAk2GC2B4AThaRDTKs72IAJ4rIW8MTg79PAPALy/w3HqtMqTZNuSg2JZ/kThX9ClX1BhEZm7LIoQB+qmZ4sbkisr6IbArTgf5aVV0MACJyLUxgvbDPKk8BMAnATBH5G4BFAEbDdM6fC+Dr+bemmRgQG0xEXgMzOs0gqvoXB9khomqNBrAg9PfCYFrS9FSq+i8R2QfABwHsD/PMcD5Mg5qfqerSkvLdGKwybRgRWVdEfiIi/4Kp43805uOlMqohWZVJXlCx/wCjRGRe6PNx55uh+qqqzlDVw1X1AFU9QlXP62IwBFhCbKIzAbwbwLkA7obpkN8IZVRFsjozXhWtUNmytXRPFxzcexGAgdDfY4JpizB43NExMGOUkiUGxOY5CMAXVfVM1xmhdmMw9M5MAMeJyEUwDWieU9UnRORqAN8KNaQ5AMCJrjLZZAyIzfSA6wyQX3wMXq0tYSoqGalGRC6EKemNEpGFMC1HVwMAVT0LwBUwb6KYD+BfAD4czFssIqcC6A3GfUqvgQ3ZYUBsnosAHALgd64zQpSmlcGwQqp6eJ/5CuDYhHkzAMyoIl9dwoDYPNcA+L6IrANzxzjkTlBVZ9eeKyKihmNAbJ7Lgp9bADgqNF0BSPCzsZ3ziRqhHYN7AwBEZBTMexE3BHB5UAW7BoBXVHW529zViwGxefZDC/47tvb5Eg3C4+wvMa/O+S6ATwNYHea6sjtMrdNlAP4AoJRxkZuCAbFhVHWO6zyUwfYiyQtrM7X1mFUxUo0DJwI4DmbEmmsB3BSadzlMh/1OBUR2zG8YEZnd5zOrfyrN09YLa1tEB0zo9zd54aMwLVK/BeC2yLz5ALaqP0tusYTYPMMwtMp0QwCvA/AUgCFvvyaqWvSGpd/f5IXRMGOWxnkFwIga8+IFBsSGUdXJcdNFZCsAvwbwrVozRNRF7agyXQRgRwDXxcwbD4+HgawKq0xbQlUfBvAdAKe5zgsRNcIvAZwkInuFpqmIbAPg8zB9njuFAbFdngKwjetMELWe5vj4ZxqA+wHcAOChYNovYcZIfgjmBrtTWGXaEiKyIYDjATzsOi9E5D9VfUlEJgM4AsCBMA1pnoFpWXp+F994wYDYMCLyKIbeb64OYOPg93fXmyMiaipVXQbg/4LPICKytqq+UH+u3GFAbJ7rMTQgvgzgcQC/DJ4lEgFg/80qiLajH6KInK6qn0mYtzaAqwHsFTe/rRgQG0ZVj3KdB2oOBkNK8WEReUJVvx2eKCIjAFyFwe9e7AQGRCIiWyquc1CGfwNwmYj8TVV/AgAishaAK2HGSp7kMnMusJUpAfBrJBGf8kJ+47mSn6peBeBjAM4SkbeJyJowwXAcgMldfPzCgEgA0qvW6r7osJqPsuK5Uoyq/hTA1wD8AsAcmBGv9lPVh9K+11YMiJSoFwizXnTKCpxtu+uva3tc7Le61+nNudHQfogiMiz6AfA9AOfAVJPuD+DB0LxOEfMSZuqKdWWk7ilTXGeDqDFu0ll4XheveGi4xpgBHfPp463TefiE429V1QmlZs6SiCxHcniWyDxV1U61M+nUxhIRlaHB3S5OgTflVf8wIFKjsZ9dPl3Zb13ZzqxUdZrrPPisc3XEVJ4yn+fkTat3sWvb+/jy5NfmO1UGiTr3db91ZdnOuDSadr5QOfgMsWP4DJHITtwzxIFj7Z8hzv+KF88QTwJwjqr+Nfg9jarqqXXkyxesMiUi6o5pMKPQ/DX4PY3CDPTdGQyIREQ2GjyWqaoOi/udDO4QymT+9ImFnqvYfJf96fxLv237hygOnyF2DJ8hEtkZ8gxx9IC+NsczxIf+3f0zxDgisi+ANwAYDWARgBtV9Tq3uXKDVaZERLZaUI4QkZEAfglgMswWPQtgAzNLrgPwXlVd7C6H9WOVKXmp61Vmbdn+qrajLfvHsdMB7A7ggwDWVNWNAKwJ4EPB9B84zJsTDIjkpa53pg5vf+/iH/3pgzL6AeYxburcQetO+j0vn/ZxhQ4BcKKqXqCqrwKAqr6qqucD+CqAtzvNnQN8htgxfIZIZCf2GeInczxD/JpfzxBFZDGAw1T1mph5BwC4SFVH1p8zd1hCpNS74TrulPOMKuPzHbxNaaXMbfVphBhf1+XzeePAZQDelzDvMAC/rjEvXmAJsWNYQqQmCI9BajMeaRVjl8aVEDc/xr6E+OBJ3pUQ3wVgOoB7YBrX/B3AxgDeC2AHAJ8F8HxveVWd7SCbtWIrUyodB1QmG3HnS/hvm3OJ552Vi4OfAwAOjpl/SfCz91qoVerIlEsMiFS6aIMQXqTq0dR93cQ8t8S+rjPgGwZEilXWxZXBsT5J+5b7neKo6vWu8+AbBkSKVcUFlBdlN7jfKY6IDAMwTFWXhqYdCGBHALNV9XZnmXOEAZGIyFY72iJeCGAJTEd8iMgxAH4YzHtVRN6qqr9zlTkX2O2CqGWa3m2lCkUHp2+piQCuCP39RQDnAFgPwKUA/t1FplxiQCSqQZ0X4yxVpF2rRh03dW7ntjmD18AM5g0RGQdgCwBnqOo/AfwEwE4O8+YEq0yJiGw0+H2IEc8D2DD4fTKAp1X1ruDvZQDWcJEplxgQiWrA0gl56E8AThCRpQA+h8HVp+MALHSSK4dYZUpEzjXu+Z7m+PjnSzAlxJkwpcFpoXnvA3Cjgzw5xYBIVLGki73rMWR9UqQE3bV9VRZVfUhVtwawkaqOU9XHQrM/CxMwO4UBkQD4f1HxPX9pki72aUGAVazZcV8Vo6rPxEy7W1WfcpEflxgQCYD/FxXf8+ejst8RSCHtqDKlCAZEcsrHVxvlXadvQSfvANlRrrarrv6Uvh03cocBkZzoXYSyXqijb0gvss6sbINI3qDj0wU5Li/R8WiLppeVbX/KvOuyPbcEptuF7Yf8x/chdgzfh0hkJ/o+xDU3G9CxH7V/H+L9p/r1PkQaiiVEIiIisGM+EZE9Vqy1EkuItIJPz7LIH76cF718+JIfah+WEGkFdm2gOL6cF718OM8PG8m0FkuIREREYEAkIiICwCpTIiJ7rDJtJZYQaZCr/3qH6ywQETnBgEiDHLjZLq6zQASArUmpfgyIRBXL8/on8qA1aRoO7t1KDIhEFcvz+iciqh8b1RARWWI/xHZiCZGIiAgMiERERAAYEKkPNvzIJ7rf2LCmZdioppUYECkVG37kE91vbW1Yw4BObcKAcGkYDAAAIABJREFUSI3CC3C55k+fWMlb7bOWkF3Lla88pUOWEBuBAZHIM3UGj3FT51ZSSs1aQgbcBsuml9CpXAyIlEnRkkRZXF/A6tgHVW+jD8cxzOUx9W1fkFvsh0iZuA5EvmjDfmjDNpQl775gP8R2YgmRiIgILCESEdljCbGVWEIk5/gch4h8wIDYYb4Eoi4/0yrzGFR5PH05V4iqxCrTDutyIPJFmcegyuPJc2UwNqppJ5YQqVFYUqE2E5GDROQBEZkvIifEzJ8uIncEnwdF5B+hectC82bWm/N2YAmRGoUlFfJCBSVEEVkFwJkA9gewEMAtIjJTVe9bsVrVqaHlPw1g11ASL6nqLuXnrDtYQiQi8sMeAOar6iOq+gqAiwAcmrL84QAurCVnHcGA2FFNr3psev7bhscjk1EiMi/0+Xhk/mgAC0J/LwymDSEimwPYAsDs0OQ1gnTnisg7Ss15R7DKtKOaXvXY9Pz3M3/6xEZtY5PyWlj+wbqfVtUJJeXiMAAXq+qy0LTNVXWRiGwJYLaI3K2qD5e0vk5gCZFyyVIi6C0T/VlVPoq+YSHr8kW3o8mlqaRjmbZNdb0Lsqzj7fD4LAIwEPp7TDAtzmGIVJeq6qLg5yMA5mDw80XKQFTZfrhL1pWRuqdMcZ0NokS+lY5v0ll4XhdL7+81Nx7Qce8/3jqde6Yff2taCVFEVgXwIIApMIHwFgBHqOq9keW2BXAVgC00uICLyAYA/qWqS0RkFIAbARwabpBD/bGESIO4ujvOs16bUqptukX2Q1X5qlNV+ctSkowLhj6V5iTnpx9VXQrgOABXA/gzgF+o6r0icoqIvD206GEALtLBpZntAMwTkTsBXAfgOwyG9lhC7JiiJcQy796T0oqbXmS9/b7rW4kkTRl5rWN7s64jb17q3A/REuJaOUuId/cpIZJ7LCGSlSIXoax382VfrPu91b2OYFhWSSZrkCmaRl62+zS8nM0+cn5ToDk+5D2WEDvGxTNEVyWwJpX8+mnbtgDuWqba7svYEuIROUqI32cJ0XcsIVLlXF34+q23Sc9Lq9qHRZ+X5jFu6tzc1aREVWJAJGdcX+B8DdR1yhuceuo8hjb5TMtXGftf1P5D/mNAJGd8CgyUj6/H0Nd8kd8YEGkF1yW2Kvm2bb7lJ8pF1xHf98kgbFTTSgyItALvquvj+77Okr+6WgMT1YUBkTqBF9uhGlUiI6oBAyLVquqLMC/y2bns9uDTccqVF1aZthIDItWq6oswS4L+K9qyNU6RAMtzhnoYEImo8WyDWqESao4uF+x20QwMiETUOSwVUhwGROoEn55ZEZGfGBCpE1gisNf1m4jU7WejmlZiQCSiWF2/iej69ncRAyLVouuljTbJ8pLfImllnZY2v4x8pE1no5p2YkAkIiICAyJVIO6uuowX21ZVymx76bXs7Us7lrbVjHEvCI5Lo1+60flF8lEkHWo2BsQOqyoQ5L2I2F70ytL2i16V71IsU6OOAxvVtBIDYoc16gJE3uH5Q22zqusMEBE1DRvJtBNLiERERGBAJKpEGc/XfGvs4yo/vu0Hai8GxI4qepFpWovPui+q46bOLdxq1uYZXdbts+1vlzc/NsrcD7XI06CGVayNIKo8Ul2yrozUPWVKoTTmT5+YuRtF1ouZzbJEdbpJZ+F5XSy9v9faaEC3fffx1unc/uPjb1XVCaVmjkrFEiJZyxq4bAIcgyERucaASJ3W1OdTTc13a7DKtJUYEKnRigaGXsm0aQGmqfkGTJ5tx0PNM74pkS0+Q+yYMp4hEnVJ9BniiI0GdNt32j9DvO1/+AzRdywhElEpipTYWNojHzAgElEpijSMYqMq8gGHbiMissUnTa3EEiLVoooqMVaz+aUpx6Mp+aT6MSBSLaqoEmM1m1vRwNKU41FGPkXV+kP+Y0Ckyvl+R54nfy62qbdOHxqvcGQhaiMGRKqc7xfOPPlzsU29ddquOxwEk75rO+6q78eUKA8GRKKWyxK8+i3Tb77vtQCl4uDercWASEQAir0xgyVGagMGRPJep0ofOZS1f7KWAl0GP1/OBVH7D/mPAZG8x9JHurr2jw/HIS0PvgRLai4GRKKIfoNPd0mW/VD0Rchl5aVfsOQxpX44uHfHVDG4d56qtKLN9pO+z+4AVLYhg3uPGtDtD5lqnc688z7Pwb09xxJiB5V9pzxu6lzrIBRdvncHH85b3N9J349O73ppoIySne1yZYquM64PZtIyRHmxhNgxRUuI4dJgnlJam0pwvW0JbxNLrtUoe//ZpBdXQtzhbfYlxFv+lyVE3zEgdgzfh0iULhosGRC7g1Wm5A1WebVXk44tS/Ldxdc/ERHZYsVaK7GE2FE+DBAd1Xse1zRV5rmJ+yNOGaWuMgY3L+P71F58htgxfIZIZGfIM8QNB3THt9o/Q7z5//gM0XcsIRLVLK2Ekrf0wlIPUXEMiEQ1S6s+zFu1yIYg2fHmgZIwIFKp6ujsndQ5u8zO6HXxLT9dUMrNA1//1EoMiGSlyHiSccvZBoSr/3rHoHUk/Z6Urm8lqTz5YRAlqgYDIlkpO6DYpnfgZrtUkm6TtHnbiFxiQKRS1FFqYckoGfdNfQR8H2JbMSBSKeootbgqGfkebPKM8+n7NtWF+4HCGBApt2hH6SZ1GbBZp+9VlHny5/s2lS3pfYi594Oq/Ye8x475HcOO+UR2oh3z195wQHc86HP26VzwBXbM9xxLiEQdUFUpPE+6fHs9+YoBkVbgRaq9qqoizVtdW3d3kyxB2CZ9NqppJwZEWqFrz5Waqqs3LkXOzyxBmOc/MSCSc02/wEdHy8kyek7aMnlG+4lr2JSlsVPW6suqS2eNkmeUGpYQG4GNajom3Kgmb3P9su6kfU2rDL7lh/Ib0qhm5IDudKB9o5q5F7FRje8YEDuGrUyJ7DAgdgerTDtmycAI11kglFNN7ONg5mU2XPGZLLf/kP8YEDtm+IIXAbTnwuRK0f1nU51aZKDyuqtty2q4wvOTXGBA7Cg+3yomuv+qvIB38Vh5v81sVNNKDIhUOt+HYqsinbgLeN5O61UsW8b3XGlafqm52KimY3xrVMPWmOS7uEY1O7/ZvlHNjb9koxrfsYRITjEYkkt5S58cqaadGBDJybsMm1wN5rp6llbqN+hAP7whozAGRMp0USg62kh0HVVciGya/Bd5/lZG3quqKm5ykM1z05S2D8vav0O6Kin4+qeW4jPEjvHtGSKR74Y8Q9xgQMdP+ax1On+65It9nyGKyEEAfgBgFQDnqOp3IvOPAnAagEXBpDNU9Zxg3pEAvhpM/4aq/q91JjtuVdcZICIiQERWAXAmgP0BLARwi4jMVNX7Iov+XFWPi3x3JICTAUyAKcPeGnz32Rqy3hqsMu2YPCPVlF0N5+MIK76pa5/3qwp3dRx8f05bUaOaPQDMV9VHVPUVABcBODRjlg4EcK2qLg6C4LUADsqzbV3GgNgxvZFqbJT9rMvHEVZ8U3bH/6T9GfdapPC66j4OvXWXtd4y0qlxuMPRABaE/l4YTIt6t4jcJSIXi8iA5XcpBQMiEVE9RonIvNDn4znSuBzAWFXdGaYUyOeEJWJAJACsoqxT3L6Oq7p0VVJzVSrsrdu3KvXYWpV8Q7c9raoTQp+zI6kuAjAQ+nsMVjaeMatVfUZVlwR/ngNgt6zfpf7YyrRj2Mq0nXwY8ceHPFQhrpXpLvvatzL946/SW5mKyKoAHgQwBSaY3QLgCFW9N7TMpqr6RPD7OwF8WVUnBo1qbgXw+mDR2wDspqqLrTPaYWxlStQCPgQiH/JQB0E1I8+o6lIROQ7A1TDdLmao6r0icgqAeao6E8BnROTtAJYCWAzgqOC7i0XkVJggCgCnMBjaY5UpOedipJy6v99G/TrSN310Ihf5VdUrVHUbVd1KVb8ZTDspCIZQ1RNVdQdVHa+q+6rq/aHvzlDVccHnJ7VnvgUYECnzM5uqLhBxrRyTnrOVtY66v++D3v6L/oz+nlW/0YfqGJ2oqLTt9jG/VC0+Q+wYPkMkshN9hrjO+mN0l8n2zxD/cNmX+LYLz7GESIXVWbWUtxO5i5aLTX4vZFl5yJqfuFJrkfUS5cESYsewhJhdGa0m29ryMo+m7ou4EuKu+9iXEH8/kyVE37GE2DFlj7phWwIokkZRts9BbS/ecWn30nBdeinjOBX9fhODIXULS4gdEy0h+nDX7kMeyD1fzwOWELuDJcSO8+EClDUPrktZrrV9++POA2+3Od9INeQ5BsQO8vUi0y9fVQdvX/dLT503L1Xui6xV176WGKm9GBA7qKyLTNkXTdcXv7zrT3u1UlNVeSzi3rBRdx6Kquj1T+QYA2KHFemK0Lt7j97tNzkI5JX2aqV+urS/fNrWNt7EUHEMiB1W5C69Nz16t1/HXX2bLlpNCppVvZOxrPRt0k07r33Z31Q/BkTyjutniVWzveCmbW/ei3cZQ7WVGTiyPC/Muz7b86Xv8gpgudp/yHsMiFSbrOOTVhEAiii7b16ZAT1vC90y8hBOo+rSY9oyedbNUiDFYUCkIeocxNv2IldmMMm6nUVLLmXkuY6A43P6Za27tx8L55fdLlqJHfM7hkO3EdkZ0jF/vTH6+r0+Y53ODVd+mR3zPccSIvXVr3RSdfVTGem7aglbdWvGut8l2a/aO+73MgbuJqoDS4gdU3YJseudp7u+/V0QV0Lc7Y32JcTrr2IJ0XcsIVKiLHf0ZTZTb2IJokgwdPFKqqpUVYvQlO2ndmAJsWP4DJHITmwJ8Q2ftk7n+qtPYAnRcywhkrdsX9fkmzaVAJM0Pf9EYau6zgBRkqY/m2v6eJ1ZND3/RGEsIVJpmlBaiOaxCXmOU1erWR9e7OwjDu7dTgyIVJqiI8zUcYGN5rGpJRyb8WOL7Ne00Wiauu+IkjAgUqo6SwFVXmB9aAmbVjqt8nlpGUOe+VYa7Ne/07f8UjPwGSIRkQ0OxdZa7HbRMex2QWRnSLeLdcfohIn23S7mXMtuF75jlSmVglVU1BUCQFStP+Q/BkQqBRtYEFHTMSCS89Kd6/VXzVW3CBfpEDUZAyI5L925Xn/Vqty+stJu+zHII/UmYXmOD3mPAZGc63LpxHbb83bP6PI+zos3Cd3DgEjO+fBGeRfryfvqqDK+U2QEmqJ9/croc5k1/1WdF2xU007sdtEx7HZBZCfa7WLddcfo7hOOtU5n9nVfYbcLz7GESEREBAZEIu814flfE/JYGs35Ie8xIBJ5rgmNO5qQR6J+GBBphU7d5VMqngtpFNAcH/IeAyKtUOZdvm0rRl9eD0VG0VdK8VhREzEgUiXSLqhxXQDS3ruXJc1+36XyZOkuwipUaiIGRHKuzJf28kJc/TsBuY8BUfsP+Y8BkZxgSa46vYBVJHBl7dye9tLjurD6lsrCjvkdw475zZJ3NBsqz5CO+euM1j12/ZR1OrN+/1V2zPccS4hEHmMwJKoPAyIB8Ktayae8ULvw3KI0q7rOAPnBp5KIT3mhdinl3FJA+DqnVmIJkYiICAyInccqpHKV/Xooyq/S/ceRalqJAbHjio5IYsPXtMqUZYCBNOHvsOp4KJt9yoEcyBYDYscsGRhhtfy4qXNLu2iUeYGvM5DnVdbLf7Nui802l7V/bIbhs11n3PJlDy9YZH9T+7AfYsewHyKRnSH9ENcerXvu/EnrdH5349fYD9FzLCF2VFPvgqselqwoX/NFRP0xIHZUU59PlTEsWZV8zRfZ4Y1NNzEgElGrAkAZ29LvxkZUrT/kPwZEImpVybZN20L14kg1RES2WOJrJZYQiYiIwIBIREQEgFWmRER2FAAH924llhCJiIjAgEgOhZvH+9LsP28+fMm/a1Xthyzp1nUMBPZdLtjtohk4dFvHcOg2IjvRodvWG7GZTtz+E9bpXDNvGodu8xxLiNRILJERUdkYEKmRbDpfM3hS6fg+xFZiQKTW48glRJQFu10QEdliia+VWEIkKhGrZ/3A40B5MCASWUq72LJ6tj48DlQ2VpkSWeLF1g/OjgNHqmktlhA7qG3VSWVvz/zpEwul2bb9S9QVLCF2kG2XBd9LRGXnr0h6TdhfVBxHnmknlhA7KmspxveLu4vSmM2zK5Y0iZqDQ7d1DIduI7IzZOi2tTbTN2zzUet0rr7zVA7d5jlWmRIR2WJBopVYZUrOsEqQaDAROUhEHhCR+SJyQsz840XkPhG5S0RmicjmoXnLROSO4DOz3py3AwMiOeP788k2482If0RkFQBnAjgYwPYADheR7SOL3Q5ggqruDOBiAN8NzXtJVXcJPm+vJdMtw4BIjcGLeHl4M1JEjoG9s1Wx7gFgvqo+oqqvALgIwKGD1qx6nar+K/hzLoAxpW5axzEgUmPYXsQZQJstz/Fr+DEfDWBB6O+FwbQkRwO4MvT3GiIyT0Tmisg7qshg27FRDbUWS0HNluf41XLMFXkb1YwSkXmhv89W1bPzJCQiHwAwAcA+ocmbq+oiEdkSwGwRuVtVH86TflcxIBIR1ePpPt0uFgEYCP09Jpg2iIi8GcC/A9hHVZf0pqvqouDnIyIyB8CuABgQLbDKlIjID7cA2FpEthCR1QEcBmBQa1ER2RXAjwG8XVWfDE3fQESGB7+PArAXgPtqy3lLsIRIRGSrgsG9VXWpiBwH4GoAqwCYoar3isgpAOap6kwApwFYG8AvRQQA/hK0KN0OwI9FZDlMQec7qsqAaIkBkajhOH5qe6jqFQCuiEw7KfT7mxO+9ycAO1Wbu/ZjlSmRQ2W0imx6MGxiy1BRtf6Q/xgQiTKq4sKdJZhV8XqrKr6TN5+uAno0v00MzFQuBkQiIiLwbRedU+XbLoo8y+JzMPLVkLddrLmpvnHsUdbpXHX/d/i2C8+xhNhBVVUNFQloDIZE5BoDYgcx+JAPGvvMTgEsV/sPeY8BkYic4I0Z+YYBkYiICOyYT0RkKfPrnKhhWEIk6ojGPrMjqgkDYscsGRhR+zqr7NQd/p4PF/yieahyG+Ke2c2fPrG0ddp2dE+b78OxBFLyUc0Lgskx9kPsmLz9EHsXBpcNIYr2Vayir2NSmr70q6wzH75sc9mG9ENcYxN948CHrNO5av5p7IfoOT5DpEx8uNAVzUMV25CUpg/7q25d3GZqF1aZUqXiqpyKjqWZ9H3b6VmXLVL1V8byNt+JLtcLUnVXQWbdj1VVm5ZxLqRilWkrscq0Y6ocus0X4aq7LNV4PlTF+lAl3SZlVt/GVpmO+aB1Olc9/D1WmXqOJURKVWXJIkvJK8/6wxfCLBfFqqpibfI+bupc63z40vAkrMrSr41Kbyw4Uk1rMSB2kO2Fuir90m5SkIhbb9WlvaTGPEmq2DdJVbQ2qt5PPt44kJ8YEDuoTdVyZVyQi6yvN62OfZrlwp6WD5+Pe93dTYjiMCB2jIt+iHlkvUDWfbGLW194WpVVhlmehdat6LbHpVOnfHlWQJfbf8h7DIgdM3zBi6WlZdvy0aYTffQCGZdGXlmfXRZ9flnld6KqKqUWqV4vq4VxnjTy3mSwerXb2Mq0Y7rQypSoTENamQ7fWN+42fut07nqselsZeq5/2/vzOO2qKoH/j2+L4ugqCwqikq4kEahZLKZULkgJKKV0E8tLEtT0+xni7mhJYXrL0UrlcQ9l1xITRS0FBPFNXPBfSGXYhFxAYX3/P4498FheJaZ533253w/n/m8z9y5c+bMnXnvmXvuufd6C7GJKfX4umbCy6bJ8XGIDYkbxCYmSZSnkx0vG8dpPHzqNsdxnDRkxiE6DYe3EJ2S4C7E5sSfu9NIuEF0SkK9uBC9Ai8t9fLcHScJ7jJ1mgqvwJ2S4EEyDYm3EB3HcRwHbyE6juOkx1uIDYm3EB3HcRwHN4iO4ziOA7jL1HEcJyU+80yj4i1Ex3Ecx8FbiI7jOOlQoM2Xc2pEvIXoOI7jOLhBdBzHcRzADaLTQPi0bE4pSPQe+fJPDYkbRKdh8GnZnFLg71Hz4gbRqXsq3TL0lmj1qJmy9xZiQ+IG0al78n3RF1OBvnDukLzneQuienjZO+XEDaJTO1/dZaCYCnSbY+e2q+KNlmcjl22USt1ns5SnUx1EvSnfVHST7jpYvlJtNRynbnhQZ/OuLpbM/gYdeumwDb+WWs4dC//wiKruXFLlnJLiLcQmJ/7FneYLPFveYr/gS/HlX6w+5bp2sfmasRWU756bsTyc6uAtxCbDW4hOtckYuHrpD1yrhdjaS4duuF9qOTMXXewtxBrHW4iOUwc0UiupvX20jlMu3CA6JaHYaM5KXq/SlFLHejIg7v506hU3iE5JiFbYlTB0lTYQufTKpGfri83o2AxGIHqPSZ9NOcul7GXepuk3p+bxPsQmw/sQS0fU6LUnj1PbZO1D7DYutZyZSy7xPsQax1uIjlMkSQydG0PHqR/cIDpFU2q3VKnk+dCG2qbQTEB1gU/d1pC4y7TJcJep46Qjq8t0/X1Ty5n5zjR3mdY4rdVWwHEcp65Qhba2amvhlAF3mTqO4zgObhAdx3EcB3CD6DhOjVCKAf0VC9bxoJqGxA2i4zg1Qb4hKkmHr/gwF6c9uEF0yk6+FTVq7svfcRKgbW2pN6f2cYPolJ34V3t0P9sXfTbjl+vL3+fNLB3VXLorrXx/tk458HGITYaPQ3ScdKw1DrGlpw5Zd0xqOXe+f7mPQ6xxvIXo1B0+E011qXbZVvv6UERAjTc86gI3iE7FKFVF5nOIVpdql221r+80Lj5TjeM4ThoUX86pQfEWolMx/MvecZxaxg2i4ziO4+AG0WkHhVaRL4X8fGMY64U0Opcrbzmo9vXbQ7t117b0m1Pz+LCLJqPZh10Us4K9r3rfmCR9rmsNu1inhw7pOCr19e5ccbUPu6hxvIXoJKLai7qWMkI1raxaNob13EqrNsU+VwW0TVNvTu3jBrEJKaYS3ebYuVU1DMUYsnyyoD6NSVznSj2Teiwrx0mLG8QmpJZbPPkotd7FuE5LkSfXeUnOrdazSzrFXq7jaculXAbYDbuTD+9DbDKavQ/RcdIS70PsJt11SOueqeXctfJa70OscbyF6Dh1jrd6suPl4qTFDWIT0qwVRaPed726wMuNl4uTFjeITUizVBTVCkDJp0O1qbQ+tXb/pcKjTBsTN4hOw1JsZGoph5jU2sdHJfSJll81778ejbGIjBKR+SLygoj8PMvxTiJybTj+oIj0jRw7PqTPF5G9Kql3o+BBNU1GNYNqaqGSdBxIN9lCtqCaYv6HZukNeYNqRKQFeA7YA1gAzAO+qapPR/IcAXxOVQ8XkQnAfqo6XkR2AK4BdgE2A2YB26nqqtSKNjG+2oVTMdwQOrVCjb6LuwAvqOpLACLyJ2Bf4OlInn2BSeH3DcBUEZGQ/idVXQG8LCIvBHkPVEj3hsANYpOxjCXvzdIb5pdYbE9gYQ3LqxeZ9aBjvcgspbytojvLWDJzlt7Qswg5nUXk4cj+Rap6UWR/c+D1yP4CYHBMxuo8qrpSRJYCPUL63Ni5mxehY1PjBrH5mF/qsVAi8nApZZZaXr3IrAcd60VmOXTMoKrpJzJ16gIPqnEcx6kN/g1sEdnvE9Ky5hGRVmADYFHCc50CuEF0HMepDeYB24rIp0SkIzABmBHLMwP4dvj9deButcjIGcCEEIX6KWBb4KEK6d0wuMu0+biocJaqy6wHHcshsx50rBeZ5dCxrIQ+waOAmUAL8EdVfUpETgMeVtUZwDTgihA0sxgzmoR812EBOCuBIz3CND0+7MJxHMdxcJep4ziO4wBuEB2n5IRxYTUv03GcNXGD6NQdpTIOYWaQkiEi3QG0hP0Qmam5SikzJr+khtYNt1PPuEF01qC9FZqIbCoiJR0QLCI7iMhnM3JLYRxEZBRwSKmMooiMAU4Xka0KZk4uc3fgNhEZXUKZQ0RkLxEZBu0vSxEZKCI7RQ23iJSkXgnDCkqCiPQTkW1EpFupZDqNh0eZNjkisjc2xVMrMFVV326HrH2An2IzcvwFm4njrXbqNxr4FfAK8B8RmaKqL7dT5ijgLOCoeCSeiEhaIyEiw4HfARNV9dXYsXVUta0IHfcEzgHeBPoDt6eVkUXmPlhZzgM6ichSVX0qHCvmvsdi04jNA1aIyLuqeqKqtrXjvvcDjgZGqeoKEWlV1ZVp5cRk7gOcCCwHHhaRq1X1kfbIdBoUVfWtSTdgBPBP4KtYxfYk8GWgpQhZXwaeAgYC22Hjog5tp35fAZ4APo95M24EPh/LIyllDgJeBMaH/Q2BLYEt2yHzGODk8Ls3MBIYEzm+Tkp5o8Kz+Cw22HoRsFs7y7IXcD8wMOxfDOwK9CzmvoH1gdnAzmF/ODYx9dntKMeB4R16LLyXnUJ6azvuezfgGWAAsAlwPnBce8rSt8bd3GXa3OwGXKeqt6rqJGwM0xTMaKR1n/YFzlHVJ1T1OeBC4IsSKFK/DsBP1L7muwM7AZNEZLKIHAJFufy6AP8C3hWRIcB1WCV5loicXKTM14CVIrIecBtwAHC8iNwa5KVtKXXGxpE9qaqvA2cCI0SkpR3uyE6YF+C/wW04EjgeOF9ETgl6Jrrv4GZeFWQuDcmPYAZyx8yyRUWUI8CpqroT8CjwiIh0UhufV6w3qwfwe1X9l5r342rgSyLSpVSuXadx8BeiuXkD6Coim4X9f2GTAl8kIhskqdAilcqlwC0hrQVzT/XBWkcqIusnVUpEhonIAFW9Q1XvDPJOBaYCh2Cth5ERvROjqnOAC4CJQecbgIOB/wM+JyKfSahjNN9CbNaQY4ALVfUIVd0V6CYiByXVTUQ6BB1vVtV7I/2bTwN7AuuruSMTf2CISOcgcwHwN+BOzMU5HVsh4bfAABHZMaG8YcBoVf0AuBu4Kbh3JwOCPaeexXwEqeoTmFFFVScGPR+NGMV+SWWJyM4i0kFVb8LuNdMn+S72UfRxKMteafV0GpjlVqzIAAAVYklEQVRqN1F9q+yGuaX6YzPh9wRuAq7A3JEzQp4LgH0TyNob64u7iJh7DGsx3hR+Hwz8DOiYQOYeQBvwUCx93cjv9bGWWL+E9zwYGBFLGwkcHEv7M7bWXCF5ewGPY+vNZdJ+iH0EnBxJOx34RkIdx2BG+Xzg08CGseNXYBV7YvdrkPlH4Epg85C2eXhm20byXQcMTXjfK7AlijJpPwk6nxf2OwJ3AD0S6rgncApwfiStY+T3pZhhPAJr3XVL+F6+gXlA4u9lD+C2yHt5JtClmP8l3xpvq7oCvlXwYcNo4PlQyczEWkktwWDsB3QO+c4DvlZA1phgFPYG/oqtxRY93jNU4j/C+sM+k0C/McCDQeY0glGOGwFgHPAPYJOE97wEuA/YJ3asNSbzoYzhyCNvbLj28CwyjsBac+Ox4KJ/Ro1mHpm7YP1vw4ETggE7Jnp/WH/iNST/CMg8ny9hhvTmyLEjsT7eLbBW4kPAVgXkfTU8my8EeT/Kke9A4J6Ehmt0eDcmAH8B5uR4Nv/E+lEHJpC5Rcj/pbicsL8+cD1mhJ9I8l761jxb1RXwrQIP2VxZXTF31NiQNgBbV+3EWN7DQoWydR55PUIFtkfYH4S1EidifX2tmLt0aah0+ifQ8VPYKt8jw/4ZwFmxPC3BUDwODEh432cBvwgG4raoUeSTqQuPCnrmlRnkPQ7cF/Y3AY7DWhk7hrRRwHewVtP2CZ/P4YQWVtj/bSiLw4GuIa0bcBWwaQJ564VKf1TY7x/2/xcLeNoa+E0wcHMo0CoGNg1lt3vkHYm26ATrfvkGZlx3TKBjL+BWYK9I2p8JHxqRtBHYR0bB5x3R9crwe7PwHC7EXNpbYP2er2LBOwU/Vnxrrs3nMm1wouH0IjIZmx1/VtjfArgXq4zPDbPkTwamqOrjeWR2ADZW1X+LSE/MpXU7ZrA2Bo5V1VdF5FxsguInE+jZA3NdvR72+2EG/FhVvTmktQL/g010/HROYWvKbcGMyUqsNTQBuFhVb4nk2R1YoKrPJpDXFVuIdT629M5szJh3wYI37k+iV0zmcKx1eamqzhKbzHlTzP14nKouzNyLJpywWUQ2VNV3wmQBD2Ou8Y+xlvvlan2UmwHvqeq7BWStC6ynqv8N+32wVuBvVHVaJN9AYImqvpZAvy6YZ+JezJiuxIz2X1T1ski+HYPMV7MKWltuK9a3OR3zetyOfSD0Bp5Q1ctE5ATgVrU+S8dZjRvEBkdE1lPV98LvozFX6IjI8R2xIRdHAm8DHVT1wxyydsT6kNpUdX5I2wLrj7o77E8HlqrqMUnGkMVlhiCdFlX9WEQOx1YrPxlYpQmjNUVkfVVdliV9A8zlOQEL/tgwyJ2dRl4wio8B16jqKSHt11i/2ffT6hgMzEFY/+kybLjB3iLye+AlVT0j5Ms7VlBEBmCGhYxxF5FOwCBVfSCiZy9VPTSBjmvIC4EyLWoBLvtira6fquqbSe45yByEtSiXaxgDGTl2EvCMqt4gInthHz6LEsjcCTOqLar6kIh8ExtS0l1VvxnyHIoNXflWUl2d5sOjTBsYsUHtl4vIuSKyn6qeBzwjIvMyeUJLcDlmCFfmMYZ7Y27SI4E/i8h3wvmvq+rdkWjTB7H+HhIYw6jMG0TkEFVtU9WPQ5ZnMCPRN4UxHAdcFiJVJaRJ0Gcp1nd2HnAt1iJZkFaeqr4P7ACcGommfAFYJglmvonIHC42gH0B8HvM1XoG1pIFeIlQluG6+YzhaKyP8cfApWKTD6CqK1T1gYie84OeeYcxZJOnRuaZPof1x/UtdL8RmaOwfuVvANeJyOCQntGtFegoIgdg5VEwMjnIvDLIvDR8YN0PvAUMikT5LguyuyTV12lCqu2z9a08GxaE8RYWxfcj4FzggnDsd5jLaxwWHfkU0CeHHMFcTrfzSf/jEMwA/CCW99uYe26HArrlk3l4LO/vsb4zocBAb2xR1Oex4QWnB5kZL4hE8h2DjR0spGdOebF8h2Lj8JIEDsVlDiVL5ChwLNavWbAfEtgZeBZzQQrwLawfcp2obOC7SfTMIy/TQszkm4L1QSZ5NjuH92y3sH86FqDTI5LnZ5ihva/Qs8khczIWoNQ56HQI1hd7WZD72Wr/X/pW21vVFfCtTA/Wgmamht8dgG0wo3h+SDsMOAlrMSUJUDkNc+t1CPs7Ay9j05WBteRmp6l0CskMaf2A3gnlbYm5yjbEgmnODUasJRzvGIzE70gWsVhIXidgeyw4JNF9J5DZAeuPvDaJjuGcUUSGkAT598T03AULjCmoZwJ5mb+tKZ7NCGBw+N0beAe4HOtDPCSkj8W8AkmDkbLJvAIzqBNCeldspqNEevrW3FvVFfCtTA/WXFkvAvtH0rbFvvRHRdIKjg0M+Y7Ahmt0i6TtirUIM2Mau6fUMZ/MRMMLsshcL/M3YnCGhrSsreB2yNskmqdEMjPjBdNO99Y7Kh+4PbLfI/wtOBQiobyCka555HbAol2/H/aHY33XO2BRoKkNVxaZuwaZOxWrp2/NuXkfYgMSgi9ewVylPwwziYD1Sb2NfVkDoKofFZIV8l2ItVx+JyIbhFlA5mBDNDqq6kJVXZxUvwQyU08MHWS+F+7/PeCX2BRje4nIOcAsEekmKabsyiPvXODvITjmvRLqOFtSrMgQKctoYEsr0EdsqrdDsH7kLlogmjShvInANBHpGun7S4xa//AfVfWi0H96PzbDUZtaf3TiAJ08MucEmR+kleU0N77aRYMha64yMBNzzZ0gNhXb9SLyX+DTYtNhrcghoz82nvBhzDCtAlDV8SJyDTajytwQmDECiwItpFdamQVXOIjLVNVVmUjMUA5LgeNE5AFsTNrYfEahSHlrRbOWU8dsMoFVsef+Ifbx8zPMDfldtanWSinv/SLuu0VVV6nqErA5XkMAzSAs6CUvRchM9aHiOFVvovrW/g1zNW2c41grNiPIc8AlWFRlzj5DYH8soGI21sdzNDFXGxYNeSIWpZkkkKSiMlkzkCQTXJS376zU8mpA5gPYgPa8/XGllpdUJta3dxgJZ4sph0zffItvPg6xzgnjwc7BBov3xgJSXgvHooPy+2B9LStU9Y0csjpgIeznqer9IvI1LODjI+AMtdZMNH/OVmatyBQbe9g11z2XQ16NyPwFcKPmmWyg1PKKkPlNbKzh85WW6TjZ8D7EOkZENsHC8w9U1QOxL+PzRWRoLF93VV2gqi8XqnSxWV22Db9vwiIoOwCZAc67iA2uBquQklANmV8QkYGqujTBPZdDXrVkDhaR7VR1ciHjVSZ5SWVur6rXpDBc5ZDpOGvgBrG+WQQsxioLVPVYzLX1CxHZXFVVRD4L3CoinQoFQagFJ5wD7C8iX1TrQ5qDzd+5m9gUXsOxlQTItD5rVGYm0rAgpZZXZZnDSNAfVw55KWW+U02ZjpOVavtsfStu45MJlY/DBpr3ihw7D7grsp9oKZ6QtzM22fVFRFZpxwaS55zwu95l1oOOft+llembb/HNo0zrFFVVQEXk79gA+w9EZIaqvq2qR4vIFRImeMZakUnlLheRqwDFVn3/NDbXaC+KjNqrB5n1oGM5ZNaDjuWS6ThxPKimjomE7w8AfoWthv5vbCD1icAwDeHoRcjuiLkyD8PmOv2tqj7WTn1rXmY96FgOmfWgY7lkOk4GN4h1TGasWDCIU7EhCyOwSZF/riVY3kZssmrVhJNrN4rMetCxHDLrQcdyyXQcN4h1johsh83feJqq3hbSsi5/5DiO4+TGDWKdIyK9sPkvH5cE6w86juM42XGD6DiO4zj4OETHcRzHAdwgOo7jOA7gBtFxHMdxADeIjuM4jgO4QXQcx3EcwA2i4ziO4wBuECuKiIwTkR9nSR8pIioiI6ugVskRkUkikno8j4j0Def2y3LsFRGZXhIFk+szSUS+XOFr1tw7Uo2yr0VEZKKIfCflOfuLyNsi0iXFOTeLyIXpNXTaixvEyjIOWKuyAx4Fhoa/zUxf4BRgLYMI7Af8sqLamC4VNYj4O1LLTAQSG0QRaQV+DZypqh+kuM6pwPfCLFROBXGDWAOo6ruqOldV3622LtkQkQ6F1lIsN6r6mKq+WE0dqkmtvyNOVvbFPvL+mOakMFn5Y8CPyqCTk49qrz/VLBswHVu6Jrq9Eo6NDPsjI/n/hi2COgpbCPVD7J9kMNAKTAbexJZ2mg50jV2vCzAFeBlbhf5l4ARgnQJ69g26HAGcgS3c2wZsFI5/CrgK+C+2/M7jwH4xGZMIK1RF0o7CFi9ejC3kOhcYEzmeKYP4NjIcfwWYHn5/IRwbm0X/C4NuHSJp3weewFZHWAhMA7oXKIdsukyKHD8oJvMKoHeC92Av4B/AUmzZovnAyZV+R7LJC+kTQ3rfSNrqss/1fCP6vxLZb8Va9S9GymkOsGuBMhLg2FA2H4V7mAp0y/KMfgUcjb3fy4C/A59JWuaRPAOBGcCSUI73A1+MlXX82fytwH38FbglS/oxwDPhOkuAh1n7f+jHQd91K11XNfPm6yFWjl9ia7d9ARgb0lYUOGcb4EzgdOwf+Qzsn3YGVtlMBLYPef4D/BRWu2pmAjuE6z4JDMHWTewO/G8CfU8A5mHGpAVYLiJbAA+Gax2LGZ7xwJ9FZJyqzsgjry9wCVa5tgL7ALeKyN6qegfmCjwSuACr4OaF856OC1LVeSIyHzNKq68ZlgYaD1yttso6IvKbcL/nAT8BNscq0QEiMkxVV+XQdyhmwKcDfwhpC4LM74e0a4Hjgc0w4zNYRAapatb1+ULf6AzgBuA0rLLflk9cxBV7RyrEz7D35ATMYHcDdsbewXycjpXrBcBf+OQ9HigiI3TNFS4OwgzcMUBH7D5vEZFPq+rKBGWOiAwC7sM+Jr4HfAAcDswK78gj2Afildj/wmHh1JytdRHphH10nBRLPxA4O+hyH7Au8LksZXIvVl5DgbtzF5VTUqptkZtpwyrXBVnSR5L96/9joF8kbWzINyt2/o3Ay5H9g0O+3WL5TsAqhI3z6Ng3nPsoYa7byLFpmBHsEUu/C3g8sj+JLC2IyPF1sMr6TiJf0JFy2D3LOa+wZivlBOwLe4NI2rhw/i6Re1nF2q2B4SHfuALPS4FfxdJagLeBe2Lpu4b8R+eR9/WQp1uePJV6R9aSF9InUroW4q3AjSn/R7pjHwHTY+kHEfMKhP3nWdMbkCnjYSnKfDbWYusYe87PADfHyntOwvsYHK67Ryx9KvBogvM7hHf3F2nKz7f2bd6HWNs8p6ovRfafDX9nxvI9C/SJ9PONAl4F/iEirZkNM0AdsNZiIW7W8J8ZYRRwO7A0Jncm9vXeLZcwEfm8iNwqIm8DK7GKfA+gfwJdsnEl0An4RiTtYGC+qj4U9vfAjO9VMX0fxNxruxVx3f7AxpjbeDWqOgcr8xF5zn0cu+8/icjXRWTjIq4fp9h3pBLMA0aLyOkismtowRdiCNbSuzKW/ifsvYmX710avAGBJ8PfLcPfvGUuIusGmdcDbZF3RIBZFPeOgHkNwD4go8wDdhSR80Vk91zRp+GelkbkOBXADWJtE1/t/qM86a3YVy1Yhb0VVhFEt4yh6JHg2m9mSdsY+FYWuWfmkxtcrbOxr/8fAsMwt+AdQOcEuqyFqr6KuZUODtfYEBiD9eVF9QV4IYvO6+fStwAZ11a28nmLPO5AVX0B689aJ+j5lojMFZF8RrQQxb4jlWAyFqk7FnMPLhKRS0WkZ55zspav2rJmi1i7fBfH9jMu5s7hvEJl3h0rk5NY+x05CthIRIqpJzPvddzlfTnwA6wFORNYLCI3ikjfLDI+xFyqToXwPsTGZBEWZHBAjuOvJJARbx1m5N6HBetk440c6aOADYADVHVBJjHN2KwcXAFcLCJbYZVevGWxKPzdk7UNRPR4GjIV8KZZjm0KPJLvZFW9B7gn9DENx/qSbhORvqq6sAh9imV5+BtvtSX5SFgO1merqh9F0tc4N7RypgBTRGRT4KvAOVjA1/gcsqPl+1QmMbTaerC2ASxIvjLHArzasP7Ky3Oc35YtvQCZd2ujmCzF+p//ICIbYe/m2Vh/9OCYjO5YIJJTIdwgVpYVVOaL7w7ga8B7qvpsocwp5Q4FnlLVD1OclzF8q11bYYzVcEKgSiDzNZ20jK7H+mQOBPYG7gstxwx3YZXdlqp6Vwp9M3yURZf5WB/iBKxPFQARGYa1ys9OIlhVVwB3i8h6wC1Y9O5CKveOZMppAOZKzzAm5bmPwuoW+jDMFb0WqvoWcImIjA7n5WIuVu4TMK9ChvFYffW3BPplJVuZqwVo3YdFmT5awPitwDwLScj83/XDIlyz6bMEuFZEBvNJoA4A4QOiM/a+ORXCDWJleRroLiI/wEKtl6vqkwXOKYargEOA2SJyNjY8oCOwNea+GqfpBgpnOBlzu94rIlOxluZGWAXXT1VzDVqehfX/XB706Y0NPn6NNd32z4V83xGRxVgFNF9Vc1Wy74rILVh0am8sQjB6/EURmQJMFZH+WEj+cmALrH/xktB6yMXTwBgRuQNrYb6hqm+IyMnYF/6VWIt0cywy8nnyjDkTkcOxPqnbgdeBnlg05RvAvyLXLPs7oqpvisjfgeNFZCEWgXoQ2SdFiPNXrH/rYhE5BevL/SkW5bqa8GyewIzmEmAnzFvwB3KgqovDO3K8iLyPldX2WGTwHOC2NPeZsMx/jLnfZ4rINMxd2xMYBLSo6s9DvqeBI0RkPDaUZJmqZjVYqvqaiLwK7ELEayEiF2EfDQ9gZb4d5va/MyYi01q8N839Ou2k2lE9zbQBXYFrsMoh0Riz2Pl9Q75DY+mTQnprJK1zSH8WMyyLsQ79SdF8WXTMeo3I8T7Y8Il/88kYsbuAg+L6xM47IOiyHHOFTSAWlRjyHQa8hBnG1WVCLNIxkn9MyLdGxGksz8FYy+N9rNJ+BmtZ9inwvIZjLtDl5B6HuAJzjxUch4i1rm/BKuYVoeyuB/pX6R3pgw1reAfr/5wMHEqBKNOQtmt4nz7APmQOij9PbLjL3FA+H2KtnUlEokJzlFO2cYgXkGMcYo77n5i0zEO+7bHAnf+EfAuw4RqjI3k2xQzrMpKNQ5wCvBRL+3Z4bpnrvAycm+XeLgYeLmX941vhTULhO47jOCVERLbGjPpItSjkpOd1xgz3cao6rVB+p3R4lKnjOE4ZUJtq8FLg54XyxjgMa0FeVnKlnLy4QXQcxykfJwHzUkZUr8BcvivLpJOTA3eZOo7jOA7eQnQcx3EcwA2i4ziO4wBuEB3HcRwHcIPoOI7jOIAbRMdxHMcB4P8Bkaa+bgkHafcAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "presentation_id = 3796 # chosen arbitrarily\n", "plot_spike_counts(\n", " spike_counts_da.loc[{'stimulus_presentation_id': presentation_id}], \n", " spike_counts_da['time_relative_to_stimulus_onset'],\n", " 'spike count', \n", " f'unitwise spike counts on presentation {presentation_id}'\n", ")\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We can also average across all presentations, adding a new data array to the dataset. Notice that this one no longer has a stimulus_presentation_id dimension, as we have collapsed it by averaging." ] }, { "cell_type": "code", "execution_count": 26, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "\n", "array([[0.02666667, 0.1 , 0.08 , ..., 0.00666667, 0. ,\n", " 0.00666667],\n", " [0.02666667, 0.06666667, 0.04666667, ..., 0.02 , 0. ,\n", " 0. ],\n", " [0.02 , 0.11333333, 0.03333333, ..., 0.03333333, 0. ,\n", " 0. ],\n", " ...,\n", " [0.02666667, 0.09333333, 0.05333333, ..., 0.00666667, 0. ,\n", " 0. ],\n", " [0.02666667, 0.06666667, 0.02666667, ..., 0.00666667, 0.02 ,\n", " 0. ],\n", " [0.02666667, 0.12 , 0.02 , ..., 0. , 0. ,\n", " 0. ]])\n", "Coordinates:\n", " * time_relative_to_stimulus_onset (time_relative_to_stimulus_onset) float64 -0.00897 ... 0.399\n", " * unit_id (unit_id) int64 951814884 ... 951814312" ] }, "execution_count": 26, "metadata": {}, "output_type": "execute_result" } ], "source": [ "mean_spike_counts = spike_counts_da.mean(dim='stimulus_presentation_id')\n", "mean_spike_counts" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "... and plot the mean spike counts" ] }, { "cell_type": "code", "execution_count": 27, "metadata": { "scrolled": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgoAAALnCAYAAADoG28JAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOy9eXQc133n+7lV3V2NpRsACYAABRKCQJGiRImyLG+SF8lOvOQ59sRvsjiJX+xsz2P7TbYzSTxJJs4kcWbiLJ5kkszLJBoljp04L7ETx3uixZtsy7Is25JoUqQoUhAJYiGBBgF0dXfVfX/cpW8XqoEGN8iZ+p7Tp7urbt297v3d3yqklGTIkCFDhgwZMqTB2+oKZMiQIUOGDBmevcgIhQwZMmTIkCFDW2SEQoYMGTJkyJChLTJCIUOGDBkyZMjQFhmhkCFDhgwZMmRoi4xQyJAhQ4YMGTK0RUYobCGEEO8SQkghxB2J61IIcf/W1CrDsx1CiFcKIR4QQizoufIP+vr9QogrZu/cbv5myJAhHUKIu/U7c/VW12UzyAiFDP+qIIR4Sgjx1FbX43JBLzD/CEwAdwG/BvzNFlbpskAIcbsQ4reFEF8RQswKIUIhxHEhxJ8JIfa0ecYswu0+17V5bkwIcZcQ4pQu5ykhxHuFEAOXt5UZthqXmrj+10o857a6Av+b47+jFvmTW12RDN82+A6gCPyclPIDW12Zy4i/B4aAB4D3Aw3gRcCPAT8ghPhOKeUX2zz734CFlOtzyQtCiEldxjCKAPsW8Hzgp4BXCyFul1LOX2RbMmQweCfwX4Bntroim0FGKGwhpJRzpCxeGTKsg536+9SW1uLy4/eB90kpW9ophPiPwG8Cfwrc2ObZ90opn+qwnD9GEQn/Xkr5h045vwf8jC7rrZureoYM6ZBSngZOb3U9Ng0p5bof4GpAAncDk8DfAfPAEvBp4IBON4R6eU8DVeArwJ1t8swBbwO+BFSAFeBrwDsALyX9m1EnjCeBVf3MF4AfbpP//brOOeA/Ak8AIfA08F+BwkbtdvLaAfwOcBhYRp1UDuv+uMZJd4cu812ok8+/AIu6nz4F3JqS97v0M3ckrkvg/pT0/wGIddu3Je69EbhP168KHAJ+GQg6bavOpxv4BeAhXffzOq8/AHYk0o4CfwQ8BdSAWeBDwHM7bWtyjiWu362vXw3838A3ddvO6LnWl9L/aZ+7nXQvAf4JmNJzYlrPw1/dRB95qM3jK7p/lvXvf0f6/JV6Tg7SfEdC4DHgLR2WuV777nDnfeK5Auq9+jhwQpd7Vs/P17Qp6ybgr/W4hnpcHwbeC+TTxhT4t8CDqHf5LIpTdtVm5l6H/eDrMiSwvd186TCvSZ3+eHLcgJIztj0XUE87p7kE66auz68Aj6LWvyXgGPBBUt63NnW6X9cpAH5DtzvU+fwqKeuiM3dHgD9DnYQj4M2JNeOdwCO6v84DXwTemJKfAH4ExcWZ1W1+GrVGfn9K+jEU5/VJXdd54CPA89ZbYzaaj874pH3ud9Ldqcfncd3vq3oMfhUoJsp/ql2encxR4PuAz6L2jVXUevdOUtZwXdZTQA/wHhRXOgSOotZvkfLM64B7aK4/p4DPAG/baO5shqNwNfBl1KZxt/7/PcD9QogXAZ/UHflBYBvwA8AnhBB7pZSWtS6EyKMW6lehNtwPoCbLncAfAi8A3pQo+09Qi+pndSO3A98FvE8IsU9K+Stt6vwB1MbwCV237wJ+HnWCeMtGDRZCdKM25Ungn3W9BTAOvB718j+ZeOwFqMH9F9Qmugd4A/BSIcQrpZSf26jclHp4qEX6/0FtxD8kpaw69+/S7ZlCEVQLwAuBXwdeodm0jQ7KGUARGwdRY3MXigCY1Pl/CLVJI4SYAD6POuHei9pYdgHfC/wfQoj/U0r50c22tQ1+GzVf/gm1yN4J/ASqb1+u0zyFktf/tP7/Xuf5R3SdXw18DDUXPoJa9LYB+1GE6691WJ/3AT+IWuD+DPXifw/qdPpi4IdSnulHzaUaat4EqL66SwgRSyn/YoMyTfvuAF4G/IW+hvOdhm0oVvwDqDk8iyLwvhv4uBDiJ6SUf2YSCyFuQr3nEtVHx4Eyqq/fhiI+64ky3oZahD6CWnheAHw/cFAIcbOUMtygbZuBRIkhQG1YaXiNEKKs7x8F7pVSVlLS3am/Py2ljFsKkXJJCPEF4JWod+meC6zv1VzkuimEEDrdbagN+M9QfTCm2/A54KubqNPfAs9DzcM6ai17F3CrEOJ1Uu8qDrahiOnzqDUgprkO9KPe/+egiMm7UIT0q4APCCFukFL+spPXb6LWx+O6Houo+fg81PvwQZNQCHEL6n3fhiIkPoQitv8N8HkhxPdIKT+e0r5O5uMC6n16M2o9d9/9p5zfvwBch3p/PoYS+92u++sOIcR3SCnNPHyvrlvy/dwQQoh3636ZQ+1b54HXAO8GXqX3jlrisTyqX3ai9riGLv+/6HraNgkhfhL4f1EHo3/S5QyjDgVvQa1d7bEJylgCv5S49yv6+lngf+BQ5ajNXgK/34bq+0PAT5wU/lzfe32S8k+pVwH18tZJnFxoUs5fxTl5o6ivo6gFZKSDtn93Whuc8kvO/zucfnpHIu3r9fUnEn1k+uKONCpe/y6iNn/TZ8mTz5v1vQ8BXW36+qc2aqtO/wGd/k9Syuml9QT/qTZz4jbUhJ0Hejdqa2KO3Z24fre+fhLY7VzPoYhGCTw/jdJu0z7TjwdT7g122Edv1Hk8nGhfD4oLI4EfTBlPiVrg3Tl/ve6rxzspu4N+vJ+1HIUAGEtJ24c6GZ115w3wu6S8g/reQJv5WwFubDOXvq/TtnXY/u/X+X4x5Z6ZL8lPBXh7Svr36Ps/16as/67v/7sLqOfVTvkXtW6iRCwS+HBKOR4w0GGd7tf5HHGfQa0xX9T33tRm7v4lkFunz38+cb2IIm5i4Gbn+jzqQNOdkteg8zuHWqurwMsS6XaiiPzTOKftC5mPae9M4v41pJ/Of13n9/2J66YOa97PRH9d7Vx7Ec11bsS5nkNt6hL4j4l8ntLXP07r+zuMIoIWaOX+fRXFRRher9/b9sMmJvxxnEVO39ut7y3jbJr6no/axO9LTOp5PcBpk65fT6y/7XDiv0GX/3+1eSG+I+WZX9P3XttB/oZQeHcHae8ghRhIqdPLnGupk4omu28b6tQek3gRnbRf0/3cn3LPR1GOD3ZQ/2EUAXWKDVitqJOMRLGy8yn335ccl/VeIDYmFH485Zm3kE6UPcXGhMLeTuZXmzz+WefxypR7r9D37k0Zz2WgnPLMZ/T93g7LX68f72edRS8l/c/qvF7qXPvddu1bpy6/kXLvTn3vdy60r1PynABm9Hx/Ucr9H0Wxb3ejNqprgJ9DbRwS+MlE+j9tN7/0/d/U9995AXU1c/pSrJuGUPjARfbf/aQQA/reHfrefYnrkvYbzHYUofuVNuUd1M//tnNtXvfJuiJRmoer97S5/1P6/nddzHzc7DvjPLdN53dXm3dizfup79/NWkLhf6bNT31vL2pdfjJx/Sn9zJ6UZ/5C3zvgXPuqnm8dEZXJz2ZED4/IJovFwCgaHZFSLrk3pJSREOIMalMx2Ks7+AnglxVHbQ1WUaxgCyHEbhQL6BWol6wr8cxVber8UMq1p/V3J6ZPn0FRrr+o2WAfR7GP0/rC4HMywcbUuB/FknqOzncj7NBlXYPSxVij4a5FIwdRxMBPt+nPkER/tsHzUITcZ6WUyxukfY7+/pyUMsmGBsWK/GGd7i87KHsjXOw4GrwfRVx+WQjxQZSY5QtSyqlN5HELinC7P+XeZ1Av9XNS7j0h09nfbjvOb6IeHUMIcQNKv+WlKDZvMZHEfX8+iFqE/0EI8XcoEdoXpJTH1iniUo1PWwghhlHs1SEUd2CNxYOU8q7EpSeB3xVCHEadzH5TCPHn67y7lwOXYt18HCU+e6MQYhxlnfF54CG5lh3dCdLWn8/Tfu4+JaWcSbn+PBRhI4UQ70q5n9ff7vrzfpQI9XEhxN/qunxRSrmYePZF+nu8Td7XOnknxQ+XbD4KIXpQ78P3oPavEkr8bNBu79kMbtHf9yZvSCmPCCGmgAkhRF+inxallEdT8ktr6/tRh4DHhRB/g+r3L0gpZzup4GYIheRAIqVs6M1pzT2NBs3JAooCBTXIv7pOWb3mhxDiGpRSygBKFvdpXV6Eotp/BMVeXQMpZZqJlJFv+uuUb56vCCFeiOJCvA4ldwOYE0L8MYpyTW6UZ9pkN62/+zYqV2MEJRueQr3EaRhATdoh1u/PTtCvvzsx2zFtaKe9a673t7m/WVzUOBpIKT8khHgt6pT5oygFSYQQX0WdGv+5g2z6gLNpC7R+H4zsL4m0NsAFtGMz0PP3XtS7fg9KbltBs4RRJzf7/kgpHxRCvAT4JZRC2Jt0PoeBX5NS/nVKMZdkfNZpw7Buwz6UGG19eWoCUsqPCiGeQS3q16OUxKC5brV7J831dmPXCS563dTEw8uB/4Qak/+qby0JIf4CNXc3Q2SuWaM2mLvTKdeguZ4/T3/aodf5/TMoAu4twC/qT0MI8XGUCMhsfCbv710n32TeBpdkPmp9untR5rKPoojoWZo6Or9Km71nk+hkPd2NWk/dOdPxmiKl/D09vm8D/j1Kl0sKIT4D/AcpZRpxZXGlzSNNIz8spXxDh8/8LGrSvEVKebd7QwjxRhShcNmgT5s/phWKrkcpz70d9dJ6KHmjix1tshrR3+0WhyS+jpJp3w18VgjxcillUnHS5PU1KeUtXBzMpOuEQjbljrS5P5pIB2pjgvQ5d6kIig0hpfwY8DF9UngB8FqUtcJHhRDPkVI+vkEWi8A2IUQ+SSQKIXIoZas0zsFW4ZdRHLg7pZT3uzeEEO9EEQot0Kf11wohAuC5wKtRp8APCCFmpZT/ctlr3azjKIrAuQ7FSdgUkeBgFjW3e5xrh/X33jbPmFPrkQss85JBSnkOtcn+jHY49TIUofsO1PuTVABfDztI+G7ZYO7KNvmY9/v3pZQ/20nBmrvyXuC9mgB8MUqB83uBG7TyY+jk/Xop5Uc6yfsy4PUoIuFuKWWL8ruelxd7ODNw19M0zl3aerppSCn/EvhLrYB6G4pL8qPAp4QQ163HXbjSnhm/hdbI19RaJzBe2P4+5d7LLkmtOoBUeEwqW+vv1Jf/TUrSF2srhSTu0N9f20SZf4V6iXaiiIW9ifvnUdYgNwghtnWabxs8iNrMX6o30fVg2vBivcAkYbTJH3aundPfu1LS39pxLTdGRGfcomUp5b16gXs3Sjn1NR3k/zXUe/PSlHsv1WU/nHJvq7AHxQG5P+Xeuu+PlDKUUj4gpfxPqFMIpBAWlwtCiDEUi/Q64K0XSiQIIfp0HkZnwOA+/f3K5DsrhCihtNtXUBr/zxpIKY9KKf8cNX7n2fyYpI37i1Fzt+P1ieaa8ZJNlg+AlHJGSvkhKeX3oU7uk8ABfdv0+QXlvQlEAEKItDXD7D0fSrnX7t0xYqbNcNJMn9+RvKGJwjHgeBsO+aYhpVyQUn5cSvkTqIPoNtLXM4srSihIZaL3hygK6Q+EEEldA4QQo0KI651LT+nvOxLpXgX8+OWpqS3jBiFEGofAXFtJuXctir3j5vN61MQ6ihKfdAwp5d+h2I2DwGe0vNnF76E2ubs0pZhsw4DWr9ionFmUrfEo8DspC2evXnANl+WfUaKfn06kewHKdPAc8GHn1oP6+y0ucSGE2IXizlwqzANDbebWS9sQNuuNZxJGDv5bWkfE5N2NMksCZb3zbMFTKA7ITe5FIcSP0RSluddvS+s7NtdHFw0ti/8savP4USnln26QfkQTFsnrvajFsAj8i5TSst213sWnUfP47YlHfw3FfXhfBzo7lxVCiAktgk1iAMX6Xt1klr8iHPfUQogi8Fv67//qNBOtt/B+lFnlr6RttkKISaFMqRFCBEKI21PS5FGbFTTn1z+iTtdvF0J8V1r5QogXue/gBcJ43dydcu8p/X1HotxraIp/NpNfO5g15ZeFEENOOT7Kh4/HRa4pQog7RboSmxE1rfteb4Vnxl9HKeC9FfhuIcS9KLn4MGqTvR0lHzUs4D9GybP+P61cdQpFdb4aZYf7/Zexrt8JvEcI8UUU+3EGRd29HkVJvyflmU+iFKhegxIfGD8KVdSCl6bouC6klB/RxMaHUfbX3yGl/Lq+d5cQ4rko4uSYEOJTKLbiNpSW+EtRL38n3uXegerbt6JshD+FsvufQG0qr6OpxPdWlLLle4QQr0QpEBk/CjFKVGQVtaSUXxZCfFbX50E97jtQliWfIp3TcCG4ByUv/aQuLwS+LqX8J5TTqKuEso9/SrftuShx0gk6iJkgpfyAHovvAx4TKiCTRHGXJoAPSinff4nacinwXtTYfV4o5bFFFAfnxSg7+n+bSP/zwMuFEJ9Dnb7PAzeguC3nUJYCVwL3ozbwrwJXi3SFtrtl0wPjdcC/JN7Vq1Dv8AhKLp52sHgbykb+D4QQr0D5O3gBiit2BLUWbTUOAh8SQnwFVb9TKL2k16N0GdptWu1wCDV3XT8Kkyg/Ae/bZF7vQK3b/xl4kxDi8ygdiJ0oRcPnoUyKj6NEYJ8XQhxFjesJFAH3nTrtR6SUhwCklHUhxBtQa8PHhBAPoBQ6V1BrxfNQit6jXBzxeg9qzfqQ1pNYBU5IKd+HUoA9CvysEOJG1Ml/N0pc+THSiYH7UOvfbwkhDqA5qVLK32hXASnlA0KI30a9e4/qcVlGvXMHUDpqaXvNZvBh4LwQ4kuotU+guDXPQ43F+uLEjcwiaGO65tyXpHgRlE0TjqdSrguUTO0elC1xDUUsfB7lSXFXIv1tKNbUOZRHss+jFuY7dPnvSqS/nzYmLzT9Dry5g7bvR53YH0LJOEPdpr8DbkuktXWh6ZnReFD7NBt4EuukT3UZS7rPnpe491rgo6gFsoZSQHoQ5YHtuo3a6uTTg1ocv4F6AZdQRNt7SZhIoRbiP0G98DWU9cU/pLVVp+9HmQLN6L58FPjJdnOM9b2YtRv7Hl2nKZRSj80Xtbn/Ncrq5rwen0dRZnBDm+gjD7XBPKT7aAX1sr2ddTwztsmrbRvbpE+dM+vNez03vqTHckHPx5eS8i6gHAz9Lz3mi6gF6zCKyBrfRF1Sx3QTfSw7+NzhpN+FcijzME2Fs0XUO/BLJMwQE2Xt0m0+refxCdR8vyBTsk7av8GceApn3UQdTt6NIsynUe/OFMoKJNW7Zpt879flJj0zPolWzNtMPZ00xvvnA7rPQ9Rh5R4Ux3G7TpdHbYaf0Pereqy+hDp4pHmGHEZx6h5FvWfnUe/v36Esq3JO2k3PR5SI4N26D+rJ9uq58X7U/rSKEvX+POqQ3W6d/mEUUbNq5mon7ztKzPx51Hta1WX9EgkPkGlzZKP3Uvfvh3U7jbfKr+m2tH03zEfoTDJcJISKFnYfSjP8XVtbmwwZMmRohVCh618mpUy1o86QoR2yMNMZMmTIkCFDhrbICIUMGTJkyLAGQohXCyEOCyGOCiF+MeX+W4UQ3xRCPCKE+LyrhC6EeKd+7rBWPM/wbYwszHSGDBkuO4QQb0bJiTfCI1LKf7i8tdk8hBBXo3Q6OsF75SUyZdsqaI37P0IpGk4BXxFCfES2+hn5gJTyf+j0r0Ppc71aEww/gFKC3YlSMt0rr6xHzAyXEBmhcIkglZ16JvvLkCEdb6Yzvyd/gVKIfbbhajp3sHM3F+fN8bJASnnHJpI/HzgqtZM3odz+vp6mNRqy1SV5D03HTK8H/kYqx0nHtZXD81GBpzJ8GyIjFDJkyHDZsclN6lmH/w0PAlfRjBkAiqvwgmQiIcTbUd5zCzRDvl9Fq5OqKS5NTIQMW4SMUMiwZcgVe2RXMECjS5BfiqiXfPxQEucEcR7wwKuDvyqR+pq/KpHarYvXkDS6PUQDogC8CLyaRHoCBMR5EA2sJo5oqGteA5VHDCKG3GpEo9tHRBKvocpv9AgK5yKirlYfMiKSIARRwVyAfCWiXvZVXisxjaJn6ydiiIpC1UNfk74gNtl64FclcV7ghzGNbk+1wReIWNUXVLvinNqn4gKICHKrEmm0jLQvlUjfwwMpQHoqXaNLECyodsZ51a8ikogIokAQdan+8UPsdhjnobAYUSurcYmKQtelmUYK1aYo0Pcaqq4AjW6BH6r+qvdCblnVJ7+sxtqrA1ISF4Sqh+5TM45xTuDXdLmxKicu6L4UKn2uCv5Kg3oph5DqmlcHX/dho6jaJGJVR68OQkKjC3Ir0vabaW+cA79qxk5S7/WQQvVDveSTW1VjFedUW/3ViLjg0egSeJHqw6gLvBDddqiXVPtyyxIhJXHe0/NRtQep528dO//8mqTRLfBq4NVVOq8uWa2fo7GybCv9qjt75PzZzXP0v/qN8DGUCZ7Bn8oNnFqlQUr5R8AfCSF+EOUu/LK61M+wNcgIhQxbhmL3Nl6058fxKqvIkTxRqcjyzgC/JinOqZhLyzsDSseXWZrooXx4EW9xmVPfrXwz9R+tE8ytImoN5m8ZoHguwg8lXU+e5fz+7fQcr7A8UaY4V6NeUjtu96FpqpPD5L/wKGffeAt+TZJfjil9+QQLL7kagNLxZeIgR3SdT/HxKWS5l/P7VYyanuMVolKR6mCB4lyNKGglJPwwwl+qUhvsYWFPgf6jqh3V7bmWdlT29dFzKsR76BArrz5o864N9pCvhCxN9FBYiul+RLnkP/WmSYa+tkK9lKfrybM0hkpUBwss7/DpP1pjZSRP6USV3OwScbmLejnADyOqgwW6n1lh5aruljL8MCIKfKrbc/R9fY5wrJ/isRmmXzfG9seUo796KU+t5FE6vky9HBAXPFu2FzYIB7vIL9XxwobNvzrgs+3RJeIgx/LOgL6vzyGLamyjwCcuNPWng7lVFvf2su0Lz1Af2277sjC3jLe4TH1sO9XBgs0zHOyiVlLPF+cbNq3pszjI4S9VWZ4oExUExfkGfhiRP3aaeHiA+VsG2P7wObzFZZZuVu7zu59RvnqWJnoozjeICx75pTrLO1Wsn/LhRdtf1cGCHf/5G7roP1qz/ViYW6a6s4RXi229Kvv6KB9epLqzRDC3ytkDJUona7YPTDl9X58jLnfhVVS/m/ErzC2zPFEmvxSpdkzN88Azf9Uy3+bPRjz4qc04AdTzdPSJqpRyPdfpz9DqBG2M9QPG/Q3Kf8mFPJvhWY7Mj0KGLUNfsEPetvOHkIsV4tUq/kA/BAVkUCA6cgx/7yTxCRUBWoYhIggQ+ybwFpVHXblYId6zC775BP7IMIQ1CAoQ1ojOLeCPDCMXlRhVFIsq78UKoq9sr9tygejcAjIMyY3soDF9Br+/D1Es2rwAGicUNzY3ssM+A+B1FW051evHCB5ujf4q+sqqfmDrSFAgmp7BH+hHVqvEq1WbT7xaba1/X5loegZvfAxROY8s9xKfmMIf6Ff103kwPGivm/a2tDMoEA314R19mni1Cjdeiz+72NJ3Fs7zps9MPi31HR5EVM432wa2DNMn0bmFlrZ5XUVEsUg8PIA8fLxZD7B1sG0caQY0jPt6ENW6Ki851kEBEdZsGjN37Nj0lWmceNqOqyz3Eh1RMXhEEKwZx8b0GUQQ2Pa6z/j9fTA8CDNzqr0Lqu5+f2sgynjPLuRDjzbL1GMEIMIacrFCtLCICALbJ7asanXNXP1S+Akq8bzlKNx6sCgvkFD46nqEgnZ1fgR4BWqT/wrwg1LKx5w010opn9C/vxv4VSnlrdrN/AdQegk7UY6Xrs2UGb99kREKGbYM5Z6d8obXNoPOxXlBfjlmeYdPz5nIiiPmblSMr8FvNli8JsfOe84CMH/LAD3TDarb1Em01ivoP1ojXwlZ3NtL6USVpfEiS7s8dnwlpLo9R8+pkNnndNN9JqL/wVP21OqH6j2obvPpO3Kelau6Kc7V8MIGi3t7yS+rk6KpU35JrXlxwaNW8li8xqfvyYhz+3x2PFRfc9Je2pUj7Ffs5e4zqqx6r2B1CMrHJaWTNU7fFjB23wrLOwPO7fMZOBxR71Gnz9LJWgtXot7jUe8V9B+t49ViVkbydE/XyVdCy03wl6r2lJuvhJx+SZkdD6r8i/MNqttzimtxaJqzt19F93SduODZU7EfRtRLeaJAiRCCuVW8yiqLBwfp+/ocjaGS5dR0PXmWuNzF7C0ltj+2yvLOgDgvGHholrjcRTiowkcEc6vEQY7Z53TTf7Su+7TeMgbB3Cr1ckC95FPv8YgKgv4nVlu4BQCFpZjlkRw90w3yS3UWru2idLJGMLVgy4wCQfczK3Y+eGHDch4q+/osZwIU16d8eJGoVCQ3u4Qs5lmeKFPv8fDqkvJhRQxU9vXR/+ApoqE+Vq7qJr8UUTw2QzTUZ/OuDfYQTC2wes02y/WyXKSwWaZXWbXcL1nItXBF3HxFTT3zpUN/ymJ4xhIKzz1YlF/+1JoQFxsiP3psXUIBQMdYeC/Ke+FdUsrfFEL8Z+AhqdzK/zfgO1AeDc8B7zCEhBDil1CRCRvAT0spP7HpSmZ41iAjFDJsGXoHxuSLd/wwq9dso/vQNDIosHrNNvJLdZbGi/QdOW/ZsWbRBpqb54kq/lIVb+Yc9cnRlgU4DnJ2EzObk2FtG9avuZ5ko/uziyzdPErvIRXfZfWabRRPqbAVZgMQYc2yyw37GZoiBlFrIAs5u0FWt/kMPDTL+f3bKc7V7GbQ/cwK4WAXXi2mXvIpztVYuLaLwQdmkMU8lX3qhFpYim39RK1hCYDC3LItxxA5XmWVcKzfEgtRqUi9lLcEAEAwtcDiwUHLWl/aXSC/HNP/uaeQ5V4ASwgYQsOfmmXl5t0tfWEIEyMuKR1fJhzssmlkQRF5otZgeaJM6ZHT1Me2Uy/lbX3NGCxN9LS0FbCbblzw7KbvVVaZu23YsvFN34Ei5EyfLE300HMqJD81T3VScSUMkWf6xvRv/4OnWNk/Yss1BEW9lCe/VLfiC1FV9w0hYsQnAw/NsnqNimvU/chJ6pOjVnxRnG+Qr4RAU8QBihAz7Y7zguLZiOKpJaKS4mpEgU+95NP9zGRbySAAACAASURBVIoVWzz8ud+/YoRChgwGGaGQYctQFtvkC8QrWti+8WrVihmgKXIw91yYay3s+gQr3uQHrexl0VdWLOqTp1vyAJC7R+11AG98rEUE4u+dtGxjW6cbrwUgHOxqyvEfOmRFItGYCgonao0W0YnoKys2fWUVZuYsOx5AnDyN3D1qf5v2NabPkBvZYVnujRNP2/+2fpXzis2NFrugWPnMzLWwug3MNRmG5MZ32foZuH3v9rcL0/cmTbSwiN/fZ9MZsQ5g2frmWnRuAW9cbXimr/2RYSVu0XmZMTTlJ6+5Yw2QG9+FDAowM9cyN2QY4vf32TbbcU/MkyRM30TTM3ZeuuWZ58wYmfst/RrWaEyfsend+6ZOps9cUYTpwy9VP05FnnUIhUA+8MnNGxQUdx7PCIUMHSNTZsywdeguIm+5mfNagbH30Dx1fRJuaAWxuj5NLo/k6H9ilaXxIqUTatGs6xNX76F5wrF+q9DnhUPEtQa1wR57DcDTrHgDrxZTYBR/5hzR2FCTe1HIwe5RvGodEdZYuWYbJu5yXO5CTM0q+fjwIJS7iIOcrVcwt2oVA+N9E0SFnJW9GyJBBgUaQyXyYY2lm0cVV2Gsn0IxT6NUZPY53Wx7PCRf2EUcqFfU27NL6RUMD+CXe4nKXTA2BFOzeDddB4vLrLz6oMqrHOCHJfJT88R9PZw70E//owvIQo762B7FEamcJxobQtQaRKWiFVNUt/n0P6o2+/k7xxi6b0pttuUuy/5e1Cz0KPDJV0KljFrMEwN+UKA6OdyitGj7em6ZqubIyMlR/Nkly3avXz9muQKRFm1Ux/oJtB6KXxnk/P7tlL58gvrkqFXEBKV8SmXVupldPKh0AFZ2+HSfifBrqoyokKN+/Rj5SoiYmsW7SRGEoIhDCjn8qVlVB01sApbDEpe7kJVVS9CIynni4QG8xWUrhuh+ZgVmF5G338zMc7oZ/fQZ4nIXjXJA7tgM1evHyGui0cy3xlCJKPARlRAZTCCm5glfuJeuJ89S1e9Dfmpe6WA8mS3ZGa48Mo5Chi1DX25I3rbrTS0nYnOKdLkKdsFOUfgDWpXAtNKfea5FMUx/y92jasN2FPWMMp9RiAOlOGc2dlnM23qLat2e/s2pHZon93h4AHHydIvymqtgGE3P2HYahUWT1pwojTKdqxznnjLtRuYoILrXGieeblXE04p8ufFdTU6GVqQ0p1+gqRTq9LfL1TH1sJwSR0nR3DOnZ1eR1HBBzGna5TQYmNO5aXOLQp/DGTD1NNwGF6ZvzPgbDgLQwqVKwu1nw6kw16OFRXIjO1i5eTfdh6abiprDg8hiHm/mXFNJUSs3uhwMM2ZuP7v1S7bBzBe3H83cemDub1mszWQchQxXFFmshwxbB99DLlbIjexQG3gYQlhrbkzjY4q1rjcXdwEHteC7i77cPYpcrOAP9KtTX1BoWjvsHrXfRs4sisUmW75aVaKEchdxn5KVezPn1CJtNPpRcnmzGRAUiBYWiVeryvpCa/xXd5bURnyu6ZzP61IbmNRpCGuIfRNE0zOKUDH1CYIWlrqB6Csjw5BoYZHG9Jn0zU5vPNH0DH5/n+ofvdnba1rLXi5WbJ1a2O+LFZXHuQVEXxl/oH8NkQAoYq5atWKBeLXaWu+wptrTV7YbpLUkCQJEsajGqatoCcEkGtNnmkSc7nOTvnHiaVW3YqJemjAwbXP70SUYRBDg9/eRG9lBbmRH83nHesESCeO7aEyfIbjvG6rfKquIvjIirCnxkOY4mHki+sp4XYrI8UeG7VywY2I+es6bMuNVPVZHjrWIady2uX4fQLlCjJGb/mTIsBlkHIUMWwajo3ChSMqIn634dqnnevjX0IY0rMdluBJlb7bcL8t7WnQUbjkYyC98cuemy+7e+VTGUcjQMTKBV4YtgwgCcqO7LNvfiCDqk0qBz1+qWoU+b3FZcRu0CAFo8Ytg2PiENcv6jxYWEbceaPoJgDWa6/7somXBGzZ+Y/qMVQg0ioXezDlb75YTpOt7QIsuDIvcKluOj6mytG6DaafxaQDgT80iy70tugOAtfQoPaJk6a6YRuybaPaPqZ+uQ3xiSnFV9EncnMytoqfjh8E8Z/I3bHjXx4Qs9yKLeeTh45btH9+6H++hQ3DjtdZnQosSnlaeBFqUMl1RgisWstB1Mf4QoiPHFAfA8adAWLP+KoxowC3P+HYwSpKymFf+F8Jai58GI1LyqnWbxvRLPDyALOQQtYbVZQBs20z+BqbdrnjJnbNmzIwya9zXg+/Ma4YHbVsB6xsCaPqTOLHWi3RMvOZahgyXEhlHIcOWwbV6SLNucPUUDJIa8Cad+Z+mEW/SpMnI0050afkauOkNaxqwm7db73anRfdeUvM9LU27Z9zfufFddpN3rRrcvmxXh7T/Ltx2pqVbr7+S45FmBWF0M5KWLsnfyXa41gLtxjJ5z61/Uk8ibb6515Pj5Obdbu62e8btn2TftFhKaALIOIb6Mve2OFy65WAgP/fJkTV13gi9O09mHIUMHSMjFDJsGdqJHjplybbbtC6GjZy26ZnNCNbqSVyqcjM0cbn7sl3+WzWGmyk3TfSQEQoZLjcy0UOGLYMo5PF7mics1/eBOWka9nc8PNDCXgdatPNdLX7XEiFpy9/i2lizp12rAFOWP3OuxQojqQnvarVz47XKjbSxg987ucZ232Xhp7nudevqsq/FvgkAy6522+y6Aq5ODlN8XPkfcK0ujNmnFZPQtOawbpt1vsYywRWtuJr63vgYIqw12erQYrGRdHftausbUUfSTbErujHlMjOHcCxdWqw8dPu8mXNWOdKIHtz0dvxNfdz2VavgikdQrP341v3kHjve4q/C+qRwXDe7ljVACyfBtRox3CvTp2bcTf0sd8v1P+G46DZz07rNLvcijt6PC4kkyg57GS4zMquHDBkyZMiQIUNbZKKHDFuGi7V6cNEpO3kzbN5LzYq+GJHKZvJop8+wmWdgY72G5PVO9Bfa5bXZdl0MLqeIYT1dEuisT9erX1L08JyDBfmZT2xe9NB31dOZ6CFDx8g4Chm2FMam/WKfabewrqcM5+bnfneS9lKhnfJcO2zkZjj5fDsFvY2eSZaTVMhL69O0eid9XbRrRycb96XQPekkn3bzIS2vJJL96P5erx/Wu7bR+GV+FDJcbmSEQoYtRbsF9FI+s1Ha5MnW/U7+7nST6bQeneSXVpfN1KMT4qId0oiAaGHxkp3Ir5TyYNoYm99pBOJ6p/r1uD2bIXyNXkVavTopL0OGK4VMmTHDlkEEAbltO1rc2BrFtfjW/eSn5q29fPHxqVY7eZq+AWRVeUb0jj7dVODTv82z8fAA1Z0lug9NUx/bTm52ScVbOHbaKo5Vrx8jmFogHFNKc4W5ZWV7r5XLgBY7fAPj799VymsMlVrrf2zGuoK29vzAyv4Ruh85STQ2pHw66ABRsphvKjBqVCeHW8IOezpGRRzkbDvicpcNMIUOfgWOAqPz23qg1LEKjL+JFt8R2teDd/TpNa6ujQ8CcfJ0U7FSK00a/xZuuQbmnsnLusrWLp/jPbtsX5g6WWVA7X/BKKICKnKoDsBl8zbl6DlgxrKlf2h6PbR+GpwxFGGttW5OmcYHw5p7uj0CbAwNt9/NfAIgKODddJ2NFpk7dtoqx/qzyntmvGeX8uOg/TuIuOlKHJRnxijjEGS4zMh0FDJsGcredvkCXn5J87zSJm4XIre/nHD9KKxX7mZ0F2DjU3a7PN1+6DSf5HPfzifqS9kOEQR8KfxEix+Fmw8W5D2fGF7vsVQMXvVMpqOQoWNkoocMWwdNpCZl3uaawWZY5mls9s08v1Fal72cVFbbrL6BDX60Tl3b5WuuJfvJmHGux2rfDFwxTxoRsJFYxn12MxtmJ7oVG/VfWt+519r1q/mkzcG0/NKeNf/XBHy6CMgwtO9MhgxXEpnoIcOWI82JkXvtQk7G7ZTKNsKF6DOkPdfOM5+LtHan5bNePTrpJ7cO6ykebhabzaMTjoSb70ZWEWlEUVpb29W53X1Tj7S+XW980u5FG/T3RhypTpApJ2a43MgIhQxbBuH7+OWmx8PkCcx162uc2iTZ2DIMrZMiG4baOK1xXAMnHTElw1W7nAHrbMdxqes69Gl51mlP0r10GrFg3Egbl8/JzdANC21jALh9lojZADTDKjuhn5NtgFY308lw3mnuns2z7j0XaRYlyfEy1+3p33EulJafqafrTMktw61TMp6DcegEEKW0yx2ndq6t3TgXxjnTeg6W3DyShI6ZM8lxaGdRkkYcJN1ns3YYMmS47MhEDxm2DDKKgOaibH6D2hDbnYK9rqLdEMxC6nqwY2bOEgluuGUTVloUiy0EiddVbGE1u94IQbP0dehll0iIFhbXEDaWoNCbY3LhN5tGY/qMDeFsynDzjaZnbHkmhLMoFm0YaOPNzw053TjxdAuR4IoiTNhjN63XVcTv77METjLcs+kn069eV1G1y4SH3jup0mnvkf7eSXsftKdNTRxFC4vqkyCOZBjafN0+MnPB9Iupq1GadL1q+iPDMDOn+kSHvLaEiQ7PberUElthZNiKCnIjO+xmbpQhTf8T1uzYyDC098213PguFZbatFuHqDbIje9qSZ8UW3ldRVX+QL991hsfSxeN+H7LfwlEUm76kyHDZpApM2bYMpTFNnnbwBvanu5gfedB7n9zCnVPdW4QqLS80rgUbj2Sinju/U5YxqaMNC5DWlnJPkgLIJR2snfrZCNWum6FHcIh2S+bYXFvViEvrU3uPUugOKfm5LPmebcvzHMbiXY6Vex029ZuviXruF56853kiLjXOik/rR+SDpcOHizIT318cN22pWF07HSmzJihY2QchQxbBnM6crkGrkJYbmRHy6nNwD2xubbo5kRr0hAU0tM57GUZqsiL7okxN7JjjfKaqaO7IRuY9LnxXfa+SSN3j7YouJk2mZO0Wx9zajbp04gCr6uowkeb9CPDLZwBF5YTU21usG67TJ/mRnasabPhsNix0GlN35tPMq3b115XsYVrkjxpi2KxGTfDycv2ndNHhnvjaZNPk8acxHPju9bWu9h6UnfHydbBKc+tW1p/JkUF7txy87AioYTYJNm/yXlu8hBBgL93sqUO5rrIZ9LiDFceGUchw5YhGWZ6s9joVJ92SnP1DpInzguthykzeeJPhhBOO91uVKZLqFzIid7V4XDDYKelS6tPmp5Cuz5Pot3p2uUIJNO6/9P6IO1au+fS2rdevdP6Ja0tG+XXLlR6u2c3M//SOAqfuACOwlUZRyHDJpBxFDJsGYTvrzltuqdO9yTunlhdGa+/d9KeYJNpkqfE3MgOG7nPnDhFENhTrytDNjDPJ+vllmlOfi6R4A/0W92Lljz06TYtD1tH51TsclvMqTJ5ejbPmWdb6r930upwGE7EmrqPj7VwXNy8jH6CKBbtSdl93m2f4SDY8U1wXlwiwZyizSf53+VY2HJ1u5Nmi0YXwuUGud9GFyGNE2Kesyd2p+9cXRhocpvs6f+m61rmiLnncj/cfnU5Bi3zXtfP/Dd1tXNBcxdy47syjkKGLUE26zJsGWSsbAY2shYwG1by9CiCgPjE1BpWrz2VOZuSUUZMU5pztfCTJ2DDFm/x4Odo7rshjT2a4gw3T9eqAhabCoTaI2W8qhTyxGq1qchHa/hhkw9gNfC9RPtsPbqK9nnpeCCUR461EFL2hD8zR+ScgN28ktYiRt+h2d9VKyaIdR/4I8M0TjzdYuGRVK40yqdNTkar5YmpS8s4aSsNY3JoNmi3vmaMzTVXRyVmLQfC/G7hMuk07py0zwQFYhMSeuYcUqfz+/vWWNUAoLkxxnLCpAVlmRGvVsGEkXYsauLVKlKPbePIMVWP1SqyEeFCIjPPjBkuOzLRQ4Ytgxs9slO2+nqs2yuBS1nWpRB5rJfvhd6/2PwzbA6bGa+k6OGmg3n5sQsQPewem85EDxk6RiZ6yLB1EHa9W3PSS3rdS/PemCYXX+96GjrxvmeuuRt7u7KSeSTTuh8DVzFus/VMK7+drH09Wb9bRjLf9Z5vV8f1yk+rd9ozmxlHN//NXF+jYLlOuZupT3Kc0+ZBu+vuXF9jYuu8MxkyXClkoocMWwbZ28XqK55P76F5G6xHFvNEpSJx2KBR3kMwtUBc7kLWGlBQ09UslWcPlOiZbuDVYoKpBRpDJfwlzfItNKe2qDWQhRz1ckDw8FEbaCcqFWF2CX94kHCsHz+MyM0uqbqYQDzlLlau6qb0yGmgGdhHFvPIQg6vsmqDFZ3fv52e4xUo5FQgH2DhQD8DHz+E3D3KwoF++o6ctwGrFl5yNf2fe4qlF4zT/cwKuVlln28CRdUnR4kCZRmyWvLpPTRvAzGFO0st7Z6/oYuhh5dsMCVRa7BwoJ/iWcWq7j40zcLzd9JzKsRfqlIb7KFeUnn3HponHOvHm1umccse229+GLG8M6De4zF035QKIlXI4U/N2qBI0AwqJWsNVl+2j/xSxNLuAqWTNRWM6eRp4huvVcGrpuaRQYFwrJ/C3DJS95XpSzs39DzIzS7ZsQFagnktvORqSseX8WcXVfCmmXPUJ0cBiAKfuOCRX6orXwOBT/HxKaKxIcLBLrq+dIR4zy7rMMurjVLdWSK/VGd5Z0D/556ywcKisSFmbymx4/4ZRFizQcVMHb2wQRzkyD12nHjPLsLBLroPTdsAX3G5C4DaYBfFU0s2SJQJ8lWdHKYw1wycFRdyhINdRIGg+5kV/IryGVGfHEV+44uJlwiijCmc4TIjEz1k2DL0FUfli67+kZbF10Tgi6ZnrIxe7JtAFnLwzSeUcx2N+th2co8dt/Jff6AfggIAMigo/YWR4ZbfZkOxTovGhuCbT1hPf0bnwThoMl7/bMQ/sPXzuoo2jT/Q34wi6cBGOwSrGNjW8+LwoIpIOHNOpR8eQB4+DmDl3PWx7eSn5lv6x428CdhIl7b9TnTDZHnRkWM0Xv7c1uiWJ0/b/EzEThuJ89iMjdDotg1A7h7FmznXEk0zHh5o9reui3WMpetq62WcKc3MNSNP6giZNnql6VMNM19s1MdqlcYNE2ou6Wv1se0quqSeH9H0jPVMGd+6HwB/qaqIFTcCqRvFU7dFHj6uxtAQEY6HTHONoKAcWt10nUqv5138jW/h3XRd6xzRkTEBS3C6USmtJ04dXfSB03/NYvV0U/RwU15+5AJEDxO7MtFDhs6REQoZtgxJHQVId0rTTobrXk9jCxuXxklPi2mmgK4So9nIjBdF0VemceJplaeuW25kR0s4ZRMiGdQG6zo4MjAugZOuqaHpUto1IUy6ljbpTf1cIsF1VW3qbfJNc+ecZlaYFK104qTI9rVTnzT32G5fuMqXSWILWFP/pKjEzdvtE1cpNjm+Llzlynamqq6FRlLBtZ0IZ715ldZv6+mntLv+Ze5tiR554015+Y8XQChMZoRChk0gEz1k2Dpoeau7MQItFgauk6N2WvHm95o0+kQJrZtJTPtN0G44eiOLV6t4NE0Co3MLiCCwG43XVbSnZFeDP1k/aNXAN/ciJ03s3IvWqR80nSit8UfgcAzMPVPnJNr1Z6eKii39X20ldFxiwR0XayqqCQuj9e8iSSS4zycJq3hVcX7Qrq6T3jgN3DzM/TRdDXfOueMBKVY17fqize9O7693PYsemWErkCkzZtgyCM9TClz7JlriJpjTmxtPwN1oXFt7VwHMPbGC2rySm6Q5cebGd+GPDCs7+72TrbELisWWjSlerao4CdW1p3ETwyB5Qrdt3EAxLo3TYa67n+Qm7m6ilvVtzO1gzcnXfT7pLyLpgTCtrq7SX5oCoI1HkdLXrndGE+/B3azNpzF9hsb0GRvfIm0jN/1t+gBocSRlxsjMh3aKp8n+TfaB6//ATd9unNP6LO13u7RJ5d22z2bKjBm2ABmhkGHr4Akltz58vIWt6/owiI4ca3FCYzYR83EhgsCeKGUYKidB2sWx8VVg3eKGNeRiRekLGP0DLW+3bHHtUAdQ8nMtQ3fd9LoOkgyBYzZGdwOybXAcRLksbddZkut8yMDduGQYWrfFoAiiJEHhEgFu34kgaAle5YojklYPpl6GAHHjMrhcH+tm23FP7bYvecJP4/4kxRhugCVDSLiEiluO6zDJ+j4oNonOlnx1m9a4Zy621tsNtpV0/23yaRlXna/bj8n+sU6TEhYRMgxheLAlbxNoys0vN74rhaMgiC7gkyHDZpDpKGTYMrg6CgbryY07RVKmfCHPXk50qgPwbEOnfXOl+nAjfxqXsh7t5tKlbutGbUj6UbjxpoL80AXoKOzdlblwztA5Mh2FDM8qJBfdC1mEXZnyxZZ/OfDtRiAYXIjuwuXCRrL/S72Bt5tLl7qtl2L+Z8hwqZERChm2DML38ct9LVYDolhc68o2DK2mfJoGvLuIW/e4CRm9y9pOWgqYNG4ZrgVBO0VAc92YPCY17l2Rh1ystASIAlpEJ2mBkkze0HRNnBvf1eLC2fSX3D2KPHxccVL2ThKfmGqxKPDGx4gcF85uO0zQqKSIIOkaOs2CI2l54PaNMUFMttFaljj94rLoXRGHOybG0gRosTJJC1XtjmfatXbcCDefpBJmu3Dh5jm3/W7wsWQZ7v+NxmDNHE/oKEggzpjCGS4zMtFDhi3DhbhwdrGRGZqLdhvARs9eCTb6lcClaMeVFplcqjpfzLy6VPW4GLjlJ0UPB24qyL//2OZFD9ftzkQPGTpHpsyYYcsgfOUZ8EIX4o3MzNI08NPStjOTS0On7n43woU+10keSSW4C+3fNJfMSTPHZH026r9O0I4TtJEFSVodLnRebTS2ndzvFBul3agNmTJjhsuNjFDIsGWQkXLLm7ZRp/1PLs7t0rohmjvJp6VOjia9y2I2JoGuuMA1O0xDJ+VsaA6nkRaHoR2BY4iiTnU0klr4Bus9n7xn+ippxrlRDIs0tOMSredzwK17sg5JdLKJm7YkxQzmeWN1sVmCaD0xVhqRteZaZh6ZYQuQ6ShkeNYg7QS43kbR7n/aBtfJhpOsg/sdt0mzHi4kTbtnbHjmdTbLdvcvtK6dbtTr9cdmiJWLUeTbiDi4lPnKsOkQa6PxuJDrab/ttUxUnGELkBEKGTJkyPBtCgmZKCHDZUcmesjwrEE7drzBGouAC2Brr5d3Uv/A/Z90gNRp/knWcTsZfqf6DuuxpTfDBndDGbdjoadZBqRho3HrBBud8jebd5ouyWb7KS3deuKBZLpO0mymfBEEmeghw5Yg4yhk2DII34e4aZGQtrAmzdCg1bywRY9Axw8waGfeaGTMJg8bpVLHDLCunCvnyY00IygCNnqlieIY9/UA4M2ca7p43jfREiFQLlasmaLYN4GvoxHKci/xiSmbzusqghMJ0kaZBBonnrYmdMa8zzXLtG3SUSZNxEhjEmnMLN1AVt7woI0MaSIwusGZ4uEB4m98ywbGkosVRErwJzeok6mziX+RNJs0bQDW1N1cN/mbqKCmb2Ld/9H0jB1z10TUmEma/0mTRTP27jxZ46FR1z1aWLTpTLvcueKPDNM48bQ1tzRmq6Z+5hlMu0zE0fGxljFvcRUdFGxETjPu7pi4c9tFLDPiIcPlRWYemWHLYMwjzUbu2tEDa2zR0+TYSSU2N41LRLgbi5tnO7v6tPzdclw7f1mtsvrCvRRPLRGViuRml5DFPMsTZXo/c9je8xaXqU4Ok6+E+FOzLL1gnJ7jFaKSdvG7pN0iV+vE5S4b8hiwRIXYN6Hu69/ezLmW0Mlmo7H+DXSI7Hh4AFGtN91VBwXivh5Eta6IIO2eOi534VVWATi/fzulR043QziXe5HFvMp3cXlN+O6oVLRhvwH1nAkJHdZUmOrHp2xIaXfDBMdnhA7xDNiw2zYMtW6b2Yjl7lHEydNqY9f+I0wYaJO/iSLqXnMJDGiN3rle9NLkb5cQcttg/CG40UiTxIkpq2W+mVDamrh06yzDkAfzn2UxPGMpgxtuKsgPfLQ1LkUnuHl8KjOPzNAxMo5Chi2DKOTJ7VTxCqqTwxSPzVAf244XNhC1BnEhRzjYRdeTZwnH+tUmU+6lMVQCID81jwwKCCdKZDTUh19ZtRtaXCoiwgZerUFlXx99X5/DdzbLaKgPPyiw8PydlA8vUt1ZovvQNCv7R+h68iyymCcqFYkCZcqZr4QIVKRHGUywNFigOFejeGoJUa2T18QAQPczK8jdo3Q9eZa43KU2cUDUGhAU6D00b9uSm12iMVTCX6oii3nCwS6WD1zP0CefBKAxVCLHmHKwU+7CHxmmOtiDXyriL1U5e+ctDP7D48R7dkF5F/7sIjIoEI71E+j9WIQ14uEBvJlzlmCp7ixROzhIz6mQKPApzC2zes02W//q5DDB1ILasBeXVdmzi8R9PSxPlCkOlfBml6gN9lCYW0buHmV1Z4muJ8/SGNuOv1SlNthDveTTc7wCQYHw+jH8MIKh/dRLefJLdaqDBUpfPgFAvRxQqDWQhRz+1CzR2BDhYBcAXUB9rB8x1+TYxHt20SjvwZtbpn77AcTcMssTZbrLXYhag7om3ky/WaKhmKeyT23UpePLrA520X1ommioD8Eu/KlZ6pOj+LNLLfO2MVTCCxsAyFpDcYjAcj/i4QHEuQW48VrCckC+EhLXGngOhwhA7NmF0O3zp2YV56pynpWbd1M81UNcyKm+KOaRhRy52UV4JjvYZbjyyDgKGbYMabEe0nAh9vBJcUWaueRGDprMSbAxfaYlzHSSS5EUj6wnNrnUbWznYfBC87wU9bpU5Wx2zC5VPWCtp8w0blUaB+xC3IZvBkmHS9ffVJB/9dGRTefz3PGnM45Cho6RKTNmeNagnbLZhdiruzb9yQV+I1g5d9iMfBidW0gVUbgbiGvKlvy9UbkX2kbTpjSCpFNlxPXuXQkiIVlOfcQyuAAAIABJREFUOyXL5P92oZk7xXrPueaobU0kE1E0L4RISOrldKrUmiHDlUQmesiwZRC+j7jlAICSx/eVFVu4WkXoOADxnl14lVUrWzeKbqDkudFQn5Vni8p5pXS2Zxd88wmlOFbuIg5y5GaXlIhCy83lYsWWYZTNDKs+p0UgTI6SP3aa+uQontEf0HX3Zs4RjQ0hag0VJnvvZEv+LfXS12W5FxHWrAjC1NkqEo4N4en8PEcJDmj2xdGnYXgQUTm/RoEwCaOvANC4YQL/seNNRUtHf8D2ATQV6oD4xBQybMZYkEEBUTlPY/qM0gcod8E3nyC+dT/5Y6cV69y0CSwnRpZ7W+oLtPSFEWdY0YzRiQgKSuRx8rSNZQFY5cq4r4ecM2fCW/aQ/8Kj1G8/QO7er6pT//iY7X/D4jfjH+/Zpdj5QNzXgyzk8LTYytfja8bQ6nE4OhI2H2jRQXCVaD1HOdW024yJ3D2qlEXN3EGJL4zCq1EIdZUphUwQ0Qii7LyX4TIjEz1k2DIklRmT7F1Yq5C4EUy63MgOu1i3O622ez55vx1HolPRwsW2aSN0IkZJO+2aPtpMXheLZP7JGByw1ivmeuKHdv1/ufp8PYXa5BzZSAS0Xt0NknkkRQ/7bwrkX350dNPteP74iUz0kKFjZKRohi2FOXWZBbGdrwJ7MkuwZdv5UjAbYDtvf6k26inpk4u8y4p2/7djGSft+ZNtyo3vsvfS2pZ2PSmi2Wjjc2XtRtdCBIE9Abss7+Qm3o7VL4Kmn4lkPdNESCatsRhx6+bec4kv8+2mTz6fhpaTfKJdaUTGevkkRQNp88cf6G8r5nL/t5hCrlNmco65RI6Jj5Ihw5VEJnrIsGUQQWC10EWgwg5XJ4cJHj7atNvXtvSiWFQ+DapVGB9Tz2vWtbdbnajEydPqW+djrCRAiyU02zderVp7dtdW3vUP4NrjC11HoCUEtvFZYMQKspjHc8wNz+/fTvczK4qtvlhB7h7FX1wm7utR6QDCmiUWoqE+xDefsCaQIqzhO6aGxkTQZc1bc0ewJo9RqUj+2Glr4RCNDSnRzsgw9bHt5IyowohDtPjD1KtFzDM+pixOjs3oupZbfEgILaM3IaMZH1N9jDLNNNYS0fQM3k3XIQs5xNQsfr+yVgBlOZBzxCygRAEtpp/9fUp8slRFzJwjN9IUlWCsORz/FMzM4d10nZ0Tct8E4uTpNb4dWogObbLpdRWRek55M+dUfbRPCWNOa/ol/4VHAdQYanGOqbs1Ay0riw15VPnCMO32KqutYhFtTeI7ZVLI4TviER5f6zMh86OQ4XIjIxQybB1kzMr+EbxaTPBwFRkUrIldo1QkFxSIyl2YM5QMCgiU21qApZtH6T00T3Vnia4vHSG8ZQ/Bw0eRQUGZ9GkiIT4xRXjnTcqEcXgQyl00ghwLt91CVAC/Bj3TDarbJsgvx/QemkcW8zRKTe6Gax4ZBznEUhVRrbNwcJDS8WXq5eYJM1/uol4O6P7k1xH7JlS9i0Wo1iGsURsctvl4Dx2yhIFXWaVx636lT6F9HxjHTdXrx4gLHsHcKtBlNw9LuGhZvPHjABCVingzulLDg8TFPPmpeRa+8zp6ToWKmCh34YHV5cgvLlO9fky3dQhZazT7XhNmudkl9b9axxvo5+zLJ9h273EYHkQW81R0/oQN/NlFqpPDFPp6rAllNDYEYE1fG0MlotKorbeonMebUZvnylXd5JeG8cMIf6mqiA5N+Mjdo/Z/vRwQVOvEQ334U7PEu0dVeagNXxZyVF+4F68Wk6+ErFzV3TIVo4KgsBRTLOY5P1FmaVeOHV+qUJ8cJT81D6AccVXOI/ZNEBdyihAdHyMu5qkN9qj/QaHF2RYA33wCbrxWEb9Bweo9NIZKNm9zzVtcVsRpsYg3c454eMD6yPBmzmWeGTNsCTIdhQxbhrK3Xb4weM0akzPX3AxoOQW6rGf3v+E8uGxe1/NfkmXd4uFQy8nNfeO8x3gtNE553OdcJTU3HwPXqZOpj+tZL8nCNsqLSZ2BZFuT4oE0h1Gup0vzTNK7YGP6TKqXRLee7jM2b+MUKdFm0w+mbRtZmrgeDqPpmTUeHJNzIa0f7djrfjOsfdM2V+SSdEaV9HSYNu/MnEpynUx6d1xMO9PGyHUctp6Oy0b6GzIM+TL3UonnLbVw3U2BvOufrlrTvxvh9quPZzoKGTpGxlHIsKUQ+ybwHffH0NzkAavp37hhAu+hQ00WLyh3y0ZEEBSam874GPWhErnHjjc3fEe0YDZHr6toLR/MJhMPDyBvmGC1lCc/VKJeyrfUd3kkx/aHz9EoFamX8nQ9eRYftdGef9k+eg/NW2+FhDVlMRE2lMMdx7Mhh483nf84bo+Nd0FTP+MxkRNTLdr+hi0vFys2H1N/y5rXbHkADDdmYRFZrVpLBsCKe/z+PuXt0GxWQQERFPCLRXWyPnba1tXrKiKMm+LhQeTMnOWMGBfEcV+PYv23sRbwxscgrLW4ZYbWjdqIJORixY6B622Sk6ctkRBpJ0c53W6/3/G4aDxX4lgo3HgtcaCWwJXBAtUBn9LJGjKMiAKffCWkPjmMmFtGDA/A4rKy8Jiat2IGD0Bzc1wX164+gktkmLaaeW7uuzok7rvguqHOjexAzGRqZRmuPDKOQoYtQ19hWF73fb9A35HziFqjyWafVKzm/NQ8068ao/9ojeLjU8pLnmY/GxgzRONBEWB5Z0Df1+dY1GKBVi+FC02TyccUu/zMHcP0H63Ze6YuZ2+/itKJKl7YaBEt1Es+xTm1AXthA6+yytxtw/RMN4gCddjzQ0mt5FHvUQt7vVfQf7RO8dQS0y/dRvFsTN+R8yxN9NBzKmRpvEh+OSa/FBEXPJtPdaCpvLbt0SVbD+MtceFAP6UTVeqlvGWrz95Swq+BX5MUz0ZUt/kUz0ZEgaD7mRUW9/bSPV1nZSSPV5fUezz8msSrS+K8wKurNcGvqXvVbR5DX1uhXspTK3k2TXXAo+dMRFQQ+DWJH0pb7+UdPjvun2Hx4CBxXth65JdjooIgzgv6jpxn9pYS2x9bJT81TzSkCITFvb0Uz0bMHswzdk+FcLALrxYTFzzyS0q3w1+qEpWKzD6nm/6jdfJLdaLAt2NjN/pyQGFu2ep8GLfVRoxivVAemrbilaSehzx8nPjW/WruuWaxhRxxkFN6EydP07hhovmM0S3Q+hO1wR6Kx2bUfD36tBpQV49Fe2gE7Pwz5qFRqWiJkwcWPsTiyqmMo5DhiiIjFDJsGcpim7xt4A2K5T2+q+XUmGTpGtawCb4DtLD/DbvZPAu0iCGAZmCepGWFVmJLstrddMk8Tb2S7GgrDtGcARmGLW1z87bBm2j6+I+0jN0N3gTYIE82YJBRbjR1MX2QIjJxfSQYJPsamux5V0EyGYjI9ViYVAAF1lyzyqEJkYUrckkLHuWKGNLiKbhtc8feDTJldDcAoiPHWsUkY0PW1wa06gtEQ31WAdXtI5cb5QYbS85D13eEqyyaDPhkuCiGu2MCf8WrVascasdOj98DZ/4mQSgU5f/8yBibxUsnjmWEQoaOkYkeMmwdhLAWBoB1JERQgNVqi5jBsnPDWjMSIloevXcQps9YpzzWCZGO9GiIg2j6DOLWAwjNYXCDLNVvP0AcRizvDPBrku5nVjivFd6iglDKeRrm9FsvB4QFj64nldJkONZPvhIigxxx2MAf6CceHlAxGUIV98DXJ0Vm5lTbdJtNFEqgZUOvj21XZYY1ohNTlvVdnxzFe+hQ04FRtYq8/WbEsdPEu0cRi8tK1FCtNoMn6WBS5hlLqNx4rT39slhBanGH0H0dDw8oxciwQQzkpoo2LkF86351TStg2qEtFq3ttddVtBumO3amnb4masI7bwKg+5GToEVJhiByiTaj7GeUGr2briMu5Oxvc+qXDz1qOQc2IqjmGIAOFqXrXN2/neWdOynONyjMKeuJxg0TVsHSAxuLQ1Tr+FqMJA8fbzrsWqwoXQJDJFSriKDQ/N/Xg+ds/FZvonJeKYnq+e4Xi1aEhnZwZXUb4ogMGa40MkIhw5ZBFJobojlNSUAEBcS+CSK96cfDA3jlXrVp6A0e1ELr9/chKufVKXJxmYbhQjgncXs6u/WAElPok6I3roIsyWKefCXEO/o0/ceaXhp7tbdIt0xuvFaVPTWLdBTo0BYbolrH1/LqSJvB5SuhZvf7oDX/MZt5WGPhJVdT+sgj6sQ6PGgV6ADyx7R5X7UKN16rgijp69GN1yK1iZ0ICkqUUiwiDx9HOhwYGRSaOg1haHUPjNyebz6BdE/+jpdAf6BfmfodXrAhtmW1aj1UuoG57Cm9ywmRHdbUKdvxTGg3UdCWHRBeP4ZXi1W5jkfE6MTTLQSjiYIpZ+YU56VYRMycU4TL8KAVS8mHHsXfO0mkzR1bzFgLOVau6qYbOHtABeUaum/KEn/i5GmWXraP7mdWWrxt5h473hIxVABCEzAyKCD6yvjFYtNEs9xL48gxO0eMFYMsqGVX1BqKqDm3gFfu1bonNTu3bbmaQ8HMHJxv5QBLIM7c4WS4zMgIhQxbhzjC6y22cBWEWWgPO9rmmi3rapVDk31urRDCmlXIc43IjHmidcerT/HVMbUZF+aWOf2SMtsG9wJNhUVB0wTTnGhlrdE007z9ZqSOSii0GSEzc+pEPjzYLA/Ydu+sZS+j7fvNkt//IKBDI1uXy1qMYNLE5xbwZxcJvvkEDPTbTTnW9/2Bfm2tMQjnFpS73yBohoIe6LdKm4bD4o2PEZ2Yon77AesPQFar4Ig0WrT8w5rta+NLABwX1Q89ajfReLUKRpRw+81w7LR6plolshYAVXyteFiYW7Yuml0Wv9/fZ0VN/kC/cm890E9jYRERVJusey1uMadvv79PcQCKE3DytJL39/VQ3Vkiv1Qnv6RO5kP3aQIwrCnCY2yIeLVqTVvdPrGiEceXRrxaVealxj21o3hpLU+MtcnIMPE3vtWcmEFAw1jdaILCWJ+4Fg9+fx+xFtlIMo5ChiuPjFDIsKUQfWXiGybwtRJYqJW+/JFhpXg2PEAM1F79PLofOdniWwC0kyInJHUwt2qVF0VYI7x+jHwlhHIXJ19dZvwjZwFoDCn7ej+MqA32sPOesyps8lyNHmDhQD/dgz1EBUE41g+aqCgem0Hq03g0OYxX7rIhghtDJdBOgbzFZaKhPnVyfWaFpYODFOcbBEGBRqlIdMse4oJH8dQS0Te+RW58l3JsFNaIb5ggCnxqjlJjKayxdPMofjhC8dSSUojTsSy8yipxMU8OiIt5y9KOy11QWW2JB6FEGaMQNjh7oMQgilAS2pLAxkMAfG25AOrkOnfLgLX4AKyfBKNLYQgnERRAc1NAiSWUIuoAEqgP9pCvhHa8QJ2uDcci7lMhlmdvKTHyqSkrmpDlXnzD4r/1gOKEaCIk3rMLUWuQQ/mcMEqNtcEe8oVdhINdVhFyeWdAnBf0zy2zsl9FXuw+NE3c16PSacVFUa0rB1V6LvmGu6QdKInZReTCImKgv8UxFjRNbI1zLPH/s/fusZEkeX7fJ1+VWVWsF5tVZHeTzWY/p+e9rdmd3Ztb792eVns6HU4CZEg6WRJsC7ZhybCNEwTYhiHYgmEJkuEHZMG2/rAtG5ag00l3Op3updtdrVazN7vTmJ25mZ7efk2/2Gw2ySbrwWLlozLDf0RGMiu7+Jp+cPYuvwBRZFVkRGREsiLi9/v+vr8TR6HTl/2OodJYD4ktRLHokoHcMBt1Em0KJdSlXXv7U/yX5cjxZMjJjDkODVX9iHhr5ucfI4aliXjZVL9ZpMmNqswImS1FvkvHyqfLKMvFXvkf0m2o99OEyXG5JfZC1kqS7eNOOQKycffZfA7pPqdJlvvJW5HVCMhqEmSJhwrpUL7sdePazpIUx8kW75a6WYXGJlaOMc/KuDEaNwZ75WXYC3vNVfr3/Upvj0M218P5Vx3xv/3q/IHr+amFazmZMce+kTu3chwaNNNINgTqSzMauIn5dVz0QTovgXHutIzHLzqPRTIomVzNcZIv6Ggg9QOMem178RizSUjnX8gim+cB5AL0WLbAVJ6CdI4Ec2Y6MY0b9RpGo55EEBiNeuKGMWem0ednMWemk2uyfXtMdyA9NnF9I+TBeCzVGKTHzJyZfmwMVd/UGGbnwmjUk/6puVPuCHN+LnF/qPrT45HeyGXzMmSFsdT9q/FL37PSKFBzq+ZFs+3H5jEtqpW8xmOk2sjmaVC/p/NZjMtroRedx94zZ6ZHNpLGTOux3BHp+1L9N+fn5DidO508C0nejVyZMcchIHc95Dg0iED69ZPwQcW2724i3lpAj6MEAPSUaM8IA/6ETNVrzs+hQ5KXIfzweuIzVm2kQwqTRETu46dmERPIgJGwNQAtJldqcU4EZdI3YhOx1uljOs4IaY/WVELmSzYlcU6EcLYJs03cqh1LNDfhxr0kDbPqvxKHUlEfUashhaqqE4kpPJ1Tgpg4p3f6DE8fTdJsb12Yke6ZxVW2Xj9B8ZN1SdSMeRdaTLKEOLV1HNVg9GRdKvWxdn4B4QZJJIAJBKelS0M7v4C4+yBxJQCPRasoTQwBciydbWErrdOX7oY4siKcbaLH4xHVytLF0mrIcYlzOXg/+Sq6H+F8LF0Pzs0VSQ7sxFajOFw1OjOHsdphmCFJAsnzkg6/TUfOGDGPJJ0aXLiuFJ6qTiCu3Uzyl4hONyaNxtaD6gRh/HlW1VMvOoleg+pTwtVpTUmeSnUCfWUNLcjPdjmeP/KnLsehQStYeBfPJF/Mmucni5Z5+ZZkhC+vbAvPtDvbaoXxpkJf2UCz7W33Q7y4JtkClXIhcpFWVorozJw8Kdeq6K++INuPv+S1eAEIZ5vy+nptu8144fZmH5c31jt93NOtZJGPWg25GFy7KRe2OJpDe+Nlhs2KVJ2MCY/OzRVKV5YTQSVvNo4+iH8UuW/r9RMyNDJezDXPl+z57gD3dCuJ9iDOxRA2a4S2IdurlbF6Ad5UEewC9tpAik+9cSHptyiYkiNQK+NdPANIjoE/VZb9qFXlGMWbBN2TwkPCdWW45uJqvPA7hM2anDu7IEMsZ5u4L84iqhOJZoF7rEJ0ZxH3WCUZR/d0vMFYWZP1xoJawi7IiIQ355NkTYkmga3hfBxHw3ih7OvdB5LEOj8rNzRxhEdUKz+eyTHu4/DOPbkRe+OCdIHFxERjpkU425Tj1WrI+0qFaW5eOMLgj39BRqbMHpEb2FpZbjbOL0iOw7nTo8+vXUhyQGh3H8hokfj5EnEUhOb58qe7Ka/RRy0KQmiEQj/wT44cB0HOUchxaKhqk+KLzs+MmNB30s5PYy/f7ji/8E6f77fMXu+r/u/mT8/6x7PX7KdfO/UlLTi0337t5D/fKWXyp+Fe7HUv6TwbWY7Fp/HhPyvspz8HeY52Kw/j+RrwOEfh3CtF8Xd/9eT+byTGHzn1w5yjkGPfyF0POQ4NmmUmjPxhnF/B/tbvJap8yhSszMTKPZEW9lEZIpUJPKw4aJeubFsBYEQZTzhW4qpIQgdTCYOSXAoqNbLSI0jp8qsNzYi6YuwaMWemk/TO6hWki0Mt5sNYNCmqlcENMONcCpo3RMTS0gnHQo2VP6R7vkb1aoew4tCbd6h/1JbuAjdgcGqS4ifriDhiorDWR8SRILofYXhhIoq0/tUFKndcNG+IEVs0hGNBwZRhnoXtrwURSxSLgokRZ2zUVIrsOJ32sFnBXO3JqA+krLXmD9GQFp/g9FGMTBipEnAa2mbiFlHumeD0UURcD3HabRHnxlAproVdSNQUlfRzOhxV5dTQ3CBpN8lDoVxDsd4FkBBoRyxEGUKs2sxkrRHpRF5ZUmo6t4NycaWVMNO5Pki5mrKqkCo9tfbBvyaLiJy3kOPZIt8o5Dg0iGEoTb4bbaybDzBdV+oC2IURKWAV2ZDI7cZfzOb8HNGdRUn6uyxj8K1alZBYdTDWJCA2IasIB61ekzyGO/ckIVItHpDoNaj49iRMLYbyL6vojKhWRvd8qa4Xp3LW3EB++asFFbkQbb1+gtKV5SQUTqVK1rzCdrrhmGNgrHZG7hnAeTRMcgaU7NZI/oLiJ+tE1SLmag/DsRLXRPHGvWQR9C6ewV5EpoS2C0S1cpJLILQNmSbZdRHxJsVY7aDHks4qD4EomFKAqTqRaAgYPRetuynVI5dX4JWzsozrEp04muTUSOfz0DtS/VB3XckbWNzczlrZa2yXmWlBp0/4yllYXJUCVPEGT78DzLSS8FSlQaE5Dpq3Leal31hLNnRqQU7zS4DtsY6fJ7W51NkOVYxitdBg9kiS40Prbm6TKGMFTKXWaM7Hol+x1oOafyPeEEW1Mt3zx6h/fymRjVabVBUWqbQl1PgRRuTI8byRbxRyHBo0XfpKVRZBDUmacU+3Ei0FYRcImhUsz5cLf2tq+4vZLsgFOyZ9KeEfpbiYcAC6myMplBUZUJttEgGaExP4qhOYcaw8yFPpMD75Km0BlXrY+8lXsdcGyQlZuC6i1aC/UKV0f4uouYD29vvor76AiE/qxU/Wt1UhuwO0WpXBsQqlWNZZWUqUBoMRb0BAWk4Ka32ZjdFxMLxwO5dATKyMmhWM7ibCaSQn72jgyoWpNSWvj0WTlMKkfuMeluNgVicS8qM6mQezRzBXe4jqRNJfY7WDqE4wODVJyfMJq0Up/6wyNjbqbE0VKS3GuQ8qDmZsBdK6JHoTyooQDdxtsSrVJyUnncqPYKjTtiIfvnIWvTsgTCXx2vriuSS5U5IALF74h9duSmXOG/cI2x3EW69Li0WMaPYIWk+qX2qLq4mCYnC6JbkPrSl0pJ6EFYtHUXQglaNDv3FPcg1ULopY5nn41T+E8d4NSleWR8iT+soG9ViZ0YjVHDU3AM9nEJNO9Zj0qrgKwh7NZpojx/NAzlHIcWio6kfEF+0/mnwZKn6C0iRQ0rVp1TrYTnKUTgYEjLgNskmT0qbjdEKjbCKoNPM9LVQ0vCMz/qUT+Ii3Xk/cBHospQyMmpDjDcBw+WHi7lCn2ejMnFQzzCbEipn56aRQsG2OHlEFjMlxSQ6HFGsfeCzkMS3rrHU3R0JD1UZqJETw/ILcnMTtJgmZ4o1Z2lKTTXykTunJ6V3JOKfmJT13SR+VtHRKCXIkmVacW0GVTbsGxrWhwjbDazeT95LkS6lkVarukXTkqURiap4Tpct0ZEs8tuKt17FuPkjScqu+DF9awLx8ayQRWDqCR21k1XOfqHgyGrHzu91/Rme4mvgazr5SFP/Lr55+bDz3wh87dTnnKOTYN3L6a44cOXLkyJFjR+QWhRyHhlqhJb408XPb/uP4NKdOrVniWJo0BqPEsbTyoMI4lcP052miWZawlpTJRGJk1QfTfUkrGhqN+o79VchGLMBo1EI61XKWCJf0LyUYlSZZqn5klSrVfQPJiT3NB0n3QZ3Q02JS40SwVHnV32zq6BG1zZQehkjxQNI5ErIqkub8XHK6Tqsx7qT2ODKGsejSOGtMOkV4WksjbVnJRoOMiw5Jz2+2TLY/2SiX7LOQjnrI/i48j+/r/ypjUSiJ//GfneGg+LnTH+YWhRz7Rr5RyHFoyIZHKjxpaNynDWX7/YAnDWPcrRzsHLY3rs6nPcZPEq75WcW40NXd7i0bHplvFHI8D+SuhxyHB00b+4W4n0V+nJxu9vrsZ+NOcE+CcW2Pa2s/9ey33oPW/TSuy0LJMKvNQCIvzKh1JLupyPYlK9k8Tho5/btqb6/x2qmedP/3U3a/4/Uk8zFO3+L3wwYox+8v5BuFHIcHIUa+pNM5DdR7434XnjfyZZrNr5BefNTf2S/z9OfZ+rMY1w+l4giMuEfGtT2uH+lXZV5Pf65yB6gcAGpxHreYpfNJqFwO2UU4nVcinTtAlU/XlW4zqadRT8pGg+2wwsRlE9cNozkgVB1Goz5SN8h5TNwAqTFL8lzEOQ+yLiN1neqvPj+bkBLVfRozrZENSHqesomo1LOUJX6Om8Nxf+/03m7vq7b3KrMXBBChH/gnR46DIA+PzHF4iBPcqAUrnUVSIc0RSEcrwPYJM5uhEHiMR5CtN3uS281UvtN7KgeE4iKovqb93OPuId2egtJvSJJjqTbGiPlkE1OFKa6DHIvte4/i66KBK1Mi23ZS5/aJNsXNiOch3eZoPzojnAE19sqnH0HSzshYJW26I5aItKBRMhbLDyGTZCtdV9pcHwHcWUw+V/eThlGvEbHNcRk31+MW63FulqRPqT6nI3WySpP7UQDd7fPHPsuTQuU4BOQbhRyHBk3XpeaBY6GtbGDOOInyoQpJ1Bp1iJP6aN1NmQwpvj4dnqbEcJI49Zgcp6WIekmddirFdExoTBQYd1KATIf0xXWFyytxZsXtMDsjlSI7nQTJyAj+qHBBEYtMqf6oBUElJMqGOqo+phNVjYQtZupKh4EC22GaGfJouNFOhK2y5Mp0PcLzpObFDnUni6mK/4/HSZURrov31ss4Hy8moYDhRnt0Y5XOeGkXMGNCpQqR1WpVjNR9J0TMMSnF1TWKXKr6rcY9PbZA8pyptmE0xFVZkaJaGYNtRUdIZ8jcVlNU95++r/RGLZkv9T+R2UhmibrjkkKFIt885Hi2yMmMOQ4NVf2IeJOvjv0sS4h7VgS5HIePcZaSp43d8nD8KCFLZjzzSkn8rV85f+B6/uSZ93MyY459I3dW5Tg8pDgKWaSlkmHnRSTti9/LT5z28++nfJbzMO7a9Ol7HDdhP2S5/fi8n4Qwt1tdu5EDs30fxyNRyN57dnyz45WtI+tiyJbL1pmd973uQVkasnM57l7TvA71mp2rbP+yz8RudWf7my2X5pykxz1HjsNC7nrIcXjQNGliV6p+KXO4Mp1DbA72fGluVxoAMKIKKFw3MT8rc3A63j4xWzsOOttKjcTKgVGrQfSgT8qWAAAgAElEQVR7P0R742UpSZyREFaKf9oJKfesq4RTno/RmpKJhxZXMWe2lQGHb1zAjHM44Pm4L85ivf0RxkwL93QLwwuThEsaEFRt7EVpfo+qRYS9/e/pV6xEMrq/IImEVi/E6np4U0VKV5YJmzW2jpfk+29/RPTGBfSeS3+hitULCSrSaVO6v4XRHTBsVvArFs5Sj/WLMr+C1d82yNc+WCOqFhkcL+Gs+ZirPdzZOlHhBM5SL0kNba8N8Ko27hETwxc4az76ao+tC0dwGwblZSmV7Cz16JyvUV7yEEBQsdD9CPeISXnJw1ztATA4NSnTRq/5STKp3kKZQi/CnTSoXdukt1CmerXD5kJVtucNGcYpugtrMp+EP1VOkmPpvsyTERV0dD+ifabA9L9aofOanMfykkcQj3FnoZzcv3hpAc826J0oUF4eovtyfPS1PtqZOYKqjdWV3Az1+8OLFap3h9hrUgo7sk2sxUcEs0fwbAOrG6dAj9/fujBD6coyWxdmcJZ6CEC7+0BKP3sh1s0HiOoE/usn4DvfHfkXEmiE+XkvxzNG7nrIcWhQEs4KWX/sOJGjbDY+zZbRB0kWwJgLkGa2Z33DyWkt5ftOhJ7i5EIqw2Daz67qSl8zIqXMthSx4iOozY+oTiR5B4Rjocca//r8bJLBUnElYFQYKH2vuwkrJe/HcsUqg2Z0ZzHJwJgdQ31+VuZ/WF5JNlRZeWQFNV5ZISY1/mqcVD2Kc6DmFlIbtLjfI3OXkl9Wm7z0telNYVq0KM0/SJNEs4JPqm5aUwxOTWKvDZIcHmquxYmjMuNnLKGs6lcbSfX8pKWeVd8UEiEplREyfvbUZjUrqgWMPEvZe04TOLOuh9OvlMXf/JUXOCj+1Jn3ctdDjn0j3yjkODTUzKZ40/r6Y6x3hTTrfRw7Pr0wpBeQ7IKRxTjRnjQB7iDYicm+mzDQTjyLvZj44z7bi7eR3lykFRTHqUbuFCGyU5TAuLDFNOsfGFmo04tksllLbcLS9eivviAtPKn6VT1qs5LeLKm2FLIbkHQOi53GaZySZ7aM6ke23DjFxXHKkdnIl92Q5VVots077q8/tlH473/5xV3rGYc/c/ZSvlHIsW/krocchwYRhohoO7zvsc+90c+y5dQXbTaMMP3+ru1nwgyV0d2cn0vMwe7pFtbbHyXpnqM4W6HmBjKtcWtKnt7PnSa8djNZBLKnx3T4nGLEZ8Mo0wtOdjFRvuqdpH33IuupRVSz7ZGT/k5jsdvn6b+z76s+pPsi560ztpyWksdW0Gw7Ob2Lx+Z/tP6dnh0Vvinx+OYy/bdqJ0yN565iUbXqSL/HjX16nrJtjts4jBvzcXXmyHEYyDcKOQ4NWtHBnJ6TGR9jc6+wC0lWwnSWQOI0vIBcoGEk42BUK0vT+itn0W/cw7t4BufjxSR1Mp5PONuU/ANkCmXr5oMRboRwXSg6CLtA8Z1rUKvKFMONOmEcq6/CLPF8mWK4uynNzN3NJNvlsFnBuPkArVbFTGUgVCZr0e4QsZ0VMC06FMWhoGrT8ViuglQf0pwO2M5roFwGWVO+cn8YjTrhbBP9xj3EiaNodx9sm/VjE3wyR44jU3LffTASmqn6njaZa+cXknkklRZaZQBVoYciTr+s3X1AdGYOM56TkQyakPSTD6/DK2cxFldHwjFH5i5Tp37j3rb7CEbaT4c9JveqQl6bNczF1RH3h3LP4PlErQasbIxkHY0G7mPZTaNWA31lY9t9FbtH9FdfSLJxAtv8HLsgXVKd/vY4ZEJ0h8sP0Qp5mukczx+56yHHoaGqTYo3tZ867G78yGI3l8NnAU+jf5/1e3zeyHIUTr1SFv/dL7984Hr+nbPfz10POfaNnC6b40cO48Lhdiq3n/eyn40LaztIG3vVPe663d7fqexuPIyniXGhgzv1N42nscCPu8fncc9ZHEabOXJ8VpC7HnL8yGG/C9B+5Zhh9OR6kAXuoH3ZqY293t/pvf3cz5Mi7VNPyxbv1v7TxH7G5Hn34bMCgZYrM+Z45sg3CjkODaJaYuNPfomp766w8UaTsKBh+IL6R23cYxX8ik7lVp+HX6wy/U6XzrkJKndc2meLAJSXh/gVHefREMML6R+L8zxYGmFBo7w8pHtCPuK9BSjf1/DqEFlQvSVwNkKWv2gQWdvut/J9nf7xiMiC0pLOsARHfzegfUb6hjtnI/RAltMD6J2MmHpxjbWPp+K2wWi6HKlvsnJ9itbZNVauT/Fnv/I2v7N0nu6Wg9svUHvXSerSA425f+nz8PM2W8ciCm2dYTlCDzSKF2Li4bcbDFqC4TGPwm2H8n1BbwGGxzzMJZtCW6N/cojR16nc1rE2Bd6faGP/Sh2vodE9N+TkmYfcvjFN/bJJ5/Mu5pLNsCQwt+RCI+YHiCWHsCxpneXbJn5dYJ7t4d6fwNzS0H0Nc4uRfoblCHvFRH+py2C1hFnzsT8oYXxpg/6NGmZfx26DvSFYfTNE83WmfqDR+ndvc+PbC/G4y/sBMM/2iC5L/klxFbyf6KK/W8XwYdASBPWQ6jWToCzHG8A77lO8XUAPZDvdnxjwx85/xITh8f9depNi3SW6XGVYjtCOuXzuxD1WBxM87EgtiEHbYfpYm4dLkv+gWRGF2w5RQWD2NdxmhLOqMzg+RPN1Sks6/ZNDtNKQSm3A4Eqd+lXwGhr2hmBrWhvpb/2yiVeHxtWQzimpZ+E2I5rvQe3aJtf+/ARnftHl4RdKlB7K8S8tB7TPFCg/DAnKOlvTOuHff+dp/fvlyLFv5ByFHIeG3SScs3iaJ+SsRkM6pFKZ1rNhltm2s+Fwe4Xe/UGQn37a9/dp6zvIeCsdg6wOw9OSDd9vKORO95BFlqOw8MqE+Ov/9OAchb9w7ns5RyHHvpFbFHIcHoSAfVpNn6aJfSTkLmNKT4ek7WZeH1dur/ae1ybhsDYkT7vNT1vfQcZ7t7DapzFvT3oP+0GeNjrHs0a+UcjxI42ntTiltfSTLIZKcTCVITAt/DQufl4t0onaY6yCmA6nGycctdf97CWqlL52J6Gf/dT1WcJ+hak+Tb0qxDJqSelqfWVjWz0xDiOFx1U91fVpFdGniR+VucnxBwv5RiHHoUGzbcyjc4l2gkJUK8t48nSce2uKYbOCdfPBtrRvnKcBSOLlVZy8sAuy/OIjwmYt0U9QKaSVjLKKv1diS6JgyjTWdkFqMzRr8OF1tPOxA71gMpgqUvxkHc3zMTMx8yrtNQCvnEV0B4kEsL6yIdNQVyceS5MM2/LQIPNbRHcWH5M+HpEunmklWgZp0aWs8qJedBIxIRiNJBCet51eOpM2Wm1sVB1KcjlJk12rIuwC4bWbifRzemOVTuOt7k+JUGV1B9LtKm2GtMIjbKs4pnN6qH6OpMxWehkpnYeRdNepHB6iYCZtmvNS00O7+yCR1lZ16a++gLh6a3SDcfXWdsrulFyz0mkIZo8k+SvUszmiA5F+bj2fsFlDj3NwGD1XPlPxOCdpxb3R5Fk5cjwP5BuFHIcG4XmITnfsIjjMKuPdWUS75hGmZJ1VPoNo4CLihXFkMbwGol6D5RVQi3UsnKPFi93w9NEkYY+1+EgK38QLvr4S6/R7HsR5EoTnUVSLl0oUdfcBAohSCz52Ac0fJou9dvcBoVJHbDXQ2LZYqAV6RDFxZU3eZ5x8yozbMuopq8byCrxyFjbaiZiTUWdEAVIhnZ+AuG2QCoaqD8pPvxOMRn1EFjmdU0O4Lhpx34hzbrQ7yQIXtjsjSpUjctvxa1qhktQGKeEKPGaN6aRO4LFS40YbsfyQMLYaqPsMmzWC0y30xXay4RSQ5HogXrz1lQ1EnB/DmGkhbtyT87YsiyVchvh5S3JmZPtq22h37hGluC9D9Zyn5lmkxlzcuUcIaNek4FSSnkuNT7uDpgcjcyIEhCJ3PeR4tsjJjDkODZ91waWDmoGzJund8gDAzjkn9iLQ7bdfyrKwV507Ee7G5RrYSf74afR3r+s+rQvlsEiWe8lqfxr3UJbMePLlCfHX/unrB+o/wF88/3ZOZsyxb+QWhRw5dsCnIUmmcw/sRpDcqZ39EOj22y/lftirzp3e3yvXwH70HPb6bDfspZ/wJHoaT4L91rdXgrHdxm//fdaI9ssIzpHjUyK3WeXIkSNHjhw5dkS+UciR4xljNynpNFnvWbe537JpyeasrPXTbvtZ1rHfdp60rYNe/zSlwXPkeB7INwo5Dg/aeJPps/6SzC6C6fwF6ndzZhqjXkvCJo16LfnbqNdGvuzNmWnMmenH8kMY9Rrm/Bz6/GxSr7pW+fXHhUnudP/p/u2Ue0H9nTVdp+tMX7MfboF6TUdL7FS3anu3OdypDjXG4/q/2/XZcd8vFKdEkWNV9s10P1S92XFWZRXUM6B+3+0+023u1Od9u1WQZMaD/uTIcRDkHIUch4cdBJeedRx51mefFl1SHIPt8MJOZkF/3O+cDkVMI2x3IOOn3o2vkFUDzJZR/UuHPyZRB2P4EMDIIr9TH7Kbhd1IdePId9n+jtt8ZMun31PX7uXTz/Y5XddeG4uduCFpTsnwzr3HNm/JuGbaGd65N1JmmIq6yXJDsvceHqCvua5Cjs8C8q1ljkNF+hSdPakrqPfT5caV3elUmT5x7mRWT79msVukwG73tBfGlUsvKEmYXea+Eq2Fem3PRSS9WI07+avX/dx7epzGLWZ60Rnbp53mKN2+ujY917tdn938jCs3bgwUsu3sFPkxrr5xf2fbSpc7SDRIdi7Sn+/kpgrRD/yTI8dBkD8xOXLkyJEjR44dkbsechwq9mOSzZqCdyq302lut7DAcSbxg/R7p1PhQerYCXuZnfdKSnWQe9tPn/cax91cB3v1Yz/X7nT9uLr3CkPdK/Rzt2v3U34/5Z40XDVHjueF3KKQ41CRJuGlzezKDJ2QC+fnHnM5ZImD6m9zZjohm2WJhepVlUvXrd5Pm3iz5t5sn1Qb6loYJTemSY5Zd8k4N4g5P5dcoxedseTIbJ/VQp0mYI5IH6fuKSFlquvH9DN9r+kxzY5D9v10/9Lkz6zpP0sUTI9fdv7Tn4+bj3S92bHKtpMmoqbHKe2GSJMSsyTGNFkxS3rNjkm6fHb+x/U/+8xnx92o1zDOnUYrWCPXCjQicfCf/UDTtJ/WNO2qpmk3NE37L8Z8/guapn2sadrvaZr2DU3T5lOfhZqmvR///Oq+GszxmUVuUchxaNAsM5E7zurwa7HUsqhOYMY5BTTHkdLIJ47K690A4Vhw9Raa46DHcscCpATz/GySQyKqlcGV8rfB7BH0Zg1x455kn3t+kjdAKSuq3AV4PuaMk+j3q1wR2sBF2IVtieC4/1Grgbj7AHHiKKRyUqD6FMsDJwts3EaSfyDOXaHPz8pcBPEim14gzXmZH0P1R7PtpB8aJPkEdECcX0C7+4DozBzmajXJf2A4Mv+BkmRO37tx7rQcMyU/HecaUJsXkBLOhpKVjvNSKBj1msx9oMalXpNj5vlJe+b83EguBjw/uVdzZlrmWFhclXO6sobodJP7NoDozByaP0zyIURs55JQ8s9arYoRj7c+PyvHOZVfIp3LIrFKxNLSSlUxUvcTl0+eC9eVVpR4jlXuCr0onxU1H9mcFjrb0syqv1qc/0PzfIZ37sk2YnVPEbdDa0rmEQmGPA9ommYAfxf4GrAIvKtp2q8KIT5OFfsB8IYQYkvTtP8Y+FvAn44/GwghDi4ZmeMziVzCOcehYb8Szr8fmd/pe9qLSLffevZbJtveflwX+21rv3jac5odzyd16zyNa8aV328dqly2fFbC+cTLVfFXfukL++6Twn9+4Ru7SjhrmvYl4L8RQnw9/vu/BBBC/I0dyn8O+F+FEG/Ff28KISYO3LEcn0nkrocch469ogSe9iYha15/WnXtN4oCHven76U9sJ96xvVrJw7FXv589f64KIX9YrdIgZ02JlnXz171HzRaYbf20+WzbpjsNfuZq0+7SUhfe4gb5OPAvdTfi/F7O+EvAr+R+tvRNO2SpmnvaJr2J55FB3M8P+SuhxyHBlEpIV57nc1jNuUlj6BiofsR6y/aWJuC+vUB5mqPwalJAPyKjuELnDXpTujNO9Q/atN+uY4/oeFsRBR6EfbagMg26R+zCcryGqsfYXiC/ox85MvLQ6xewKBi4U4a9OZ0DB/0ACILwgJYffDqELy4xedOyO/MXzj22/z8N/8jAIp1F96vUlwRdH9igP1BiejzXXi/ituMqNzW8eoQnt0iXHWozHfo3akhChHVoz0GV+oEzYDq5QK9111KHztEFrjNCHNLY+adkLVXZH8jC8wt+TqxKK2AW9Mafl2g+xp6QNKmuodBS9B8L2Lp6yHl6wXsDUHnnGD6eyIZl0evaBTaGoYP/eMRzqpO6aGs3/AFYUEeXit3fe59rcDMOyFuwyCUng/qN3zWX7Rx1qVB3erL196ciVeH6UsBuh+/d6KA4Qv0QOA2dPrHZd2NqxF6IPsEEExoNH+wxeJPlphYFIQFOHJ5QFCx6J4w8RoalXsRVj+iN2ei+7K/zkbE5qzB0e902Xi5gtfQkrEoPYzYmtbpH4+ILBCFCK00pPK+dFMEZfDrEXog+3TuS7e5164TXGowOOmj9U2cVZ1Tf/gWa1tlulsO/u0JCm2d4MUtSu+WCMpQXBFsvCQoLen4dcHwmIdT9in+doWNlwRTP9DYmt7mCNgbsry5pVG+r+GsR2yc1ynfF3gNja1jcuxKSzqTPxwS/ut3nvj/LsaUpmmXUn//PSHE3/s0FWma9ueAN4CvpN6eF0Lc1zTtFPBNTdM+FELcfIL+5jhE5K6HHIeGqn5EvMlXn1p9O5lrdyq3n7r2WyZ9st3NZP+03AC79ePTnGT3O3Z7YdyYwO4iTun302UPOo4HdQtk+/Us8CTPUfpz9V7W9TD3clX8wj/+4oH79Qsv/sun4nrQNO0PA38H+IoQYmWHuv5v4NeEEL904I7m+EwgtyjkODzsoMyYxX6/1J9HKOB+yu8WSrdXmN1BQ+b2qn+va7NlnnTh3K9LYz/vP8k4HqSfzxIHfdY+7fw9A7wLnNU0bQG4D/wZ4M+mC8S8hP8D+On0JkHTtAawJYTwNE2bAt5CEh1z/Igi5yjkODzskOshi6xP/dMg6/feKUxtJ+zmsz4ot+DTcBGeBj5tu3tdd9CxfJKynwb74YzsdM2Ttvkk5fZXh0b4KX72ghBiCPwnwG8BV4BfFEJc1jTtr2ua9nNxsb8NTAD/OBMGeQG4pGnaB8C3gL+ZiZbI8SOG3KKQ49DgnShy7a+9AYHOX/ryN/gH//vXab80xKxJDoJYcjD7Ol5riNU2MPsabjOi0Jb72/Cs9A17dfBPuohAx2ibaMdcjOsl/HrE/IsPuH/pGJElCOtD7PsFvNYQrIjy9QITX1lh89stJr6yQvvdFlFBEFkCsy/b8OvRSJ+nfqCxOasRWdK37k7qdM7KPtltyQsYlgS16/L6ztmIxmUNr6HRP+ujWbI+57qD1Yfi11ZYuT7F1A80Vn88wGibFNo6bjOS770ZAtD8niF91p/fYtgpUL8sffODlobVh+5LPuXrBfy6IKiHFO+bFFcEvQUo39fonYyImj5Hf81i6eshn3/hFu9/5xxBPWR6fp3ud1tMf+U+t+800frya0EPIGr6/NnX3uWX/tmX8Y77TB9rs3J9ihdfu8MPL81TPtMhGBoMr1cwz/awzBDvgwa/8Kd+hb/x9s9QnepzfmqFiunxravncMpybl+eecAP7s4Rrjq0zq7x0uQy3/zoBQDM0hCrMOSPLPyQX/vWG5TPdHhj5h7funqOVrPL5rdbnPyjt/hk7Qhfmr3Nd771Cj/zR97lPzjyHf7k3/8reMd9qlN9JstbrPdLDK7UKV5o010rQ6BTbG4xWC2BFWGtSl2C4TEPc8kmaAZofRM9gLA+ZPL7VsKJWP7qEKNtMv09wdLXQ+rvF+gf33bdmn2N4oqgf1zDr0u+SO9khNF0CQOd+WOPuH/pGGJ+ACB5DW91CXwT7U4xeUYJdMq3Tfonh0zPr7OyWkUEOtaqhfg/v/OU/wt3hhDi14Ffz7z311K//+Edrvsu8Mqz7V2O54mco5Dj0JAOjxznf07Ecxp1wo128p6K5VdKdSrmPQujXkvi5JVGwDi/9jgfsV50CNudJAHTTr7jbJ9VX9Trfv3s2XazGMeByNa92ziMy1KZtdKk+w4k45VtO93H9Pjs1TdVp9GoM1x+ONKvLJ9h3N+79XecSuVIdMuYNrP9Uvc1brzGWbT2U049g9mxATnXmuMkz3a6HnXf6XbMmWneXv6HdKNHKY5CTfxnn4Kj8Fdf/O1dOQo5cqSRWxRyHBqieom1P/0lAKp3h7iTBp1T8mTu1aFxNaRzymD2G106X12gcsdl42wxYdYbvmD9BRN7Q252C5sCZz1k9TULe0Oepiu3YNDSmPpwSOeUPClam4KtaQ17Q2DIA66MplgPaZ+x0H1B9e6Q0vt3CWeb+K+fSPrcnzGp3PWxF9s8/IkW1btDQltj/QWTYUmewvUASg9FEpVg9jWGZUFxRaP7kk/xdgG7DZMfe9z7WoH6VRll0VsA3dc48lHIxnmDqQ+HSdSB4Qt6cyb1GwHtMxbOurRmDJpw9HeDpF9RQcev6LgNfSQ6oHPKpPQwGolKsDZlRIEaA6sfsXpRp/nethUlsjS2pnWCMthtqNwb0pszqdwbJmO//rl5jL7O9PcEzqMh979iU1zdHmcVPVL7REYe2BuCYOI0zR9s0T9m4zZkxImzIa0nhidon7EYNLcjIgq9iPYZefqv3BvirPlsThXoTxtsvCQtOLovKD8MCco6D9+Eym3Z1uasxvSlAHutyYMvVvHq8l5KD0Pchp48f7ofERXk3ypSIyrorL5mUXooCCa0ZLxXX7NwmxFn/x8ZdVP/qM3yvzWJtSnoLsg5rH2wxsYbzSTKY9DSOPpdD8OT96n1XB5+sYHhy0iPyr0hbsNg8qMe6y9XMHxBaTmgO2NRueOyPu8Q/YviyP+QAKI8bXSOZ4x8o5Dj0CAMjerdIf0Zk4dvWExfCpIwx/qNCKsXADZ3f7rK1IdD+sfkSau8JE9a7lSByR9KpbrenIkeRPiV7fC+mXdCDE/QfG+AN1VkYjGkvOQR2gZew+bI5QHts0U2ZzWOflcu/sVPoPPaFO6kgf/lk3F5jfItqSi4fmESZ8PAfW2KwqYgtOVCbm8I7A0oPwwJCxrVqx242KD5wZDuCZOooBGUYe6f64SFkK1pI+mjs+bTP2Zz5LJHb94hKOvUPoko3d/Cm5ILg1/Rqd+QG4L+cUHlXkRpOcA9YhLa0rVRXtZxlnroU2XKSyGrnyslYz15JZDhpZ6ge8JMFlt3qoDVC3nwYza1TzTqV0nCFKe+u5KEpgLJpkVh9htdto6XKP8muA0Nt6FRXgqTjYvVj7D6BqWHIaWHcrMzsSiILI3Qh9A2KC95OI8MeicKSf1BWS76rffkoh+UdQq9iNJDucD2pw2CskPt2iZhoczsNwXOmkv/mE3nlNy8zP/GEHttk8WfqnL0ux5bMxZWz8RZj9B9jfLDMNnwALiTBrVrAzrnpEaQsy43C1YvoPaJnvSpekvOxfS78hnsnq9h9SPcYxUiS252nA0o3+oybFZoXFpl440mhU2RhJIGZTl+pYdFnI0IwxdU7oa4R+Rmz5sqUl4ecvvfFsz9cxm6qwc2znpIMLE/Xk+OHE8Tueshx6Fhv8qM8OnCBp8F9nJBjCuTNd3v9Nm4+sYRKJ/kng8SBjmur+NcONk+79Smwk5umXHl91tmJ9dSuv9pjHPT7OY+2W3cdnL57DUO+30v/Qy84/76SHjk7Ms18Zd/8a09287iv3rpN3LXQ459I7co5PhMYr+L4X7KPM3NxG7ha6qdJw3re5bhcgcJgxzX1zCzgO2nvuxnalHdaeE9SIilun5cRtGdNhjpPowrP+6esu+l+/0kWR33M7+HFB6ZI0eCfKOQ4zOJp/Vl+TwtDn/QvtCfxv0+Td2G59Hek9TzB+35yPH7BzkLJsfvKzypPj+MplfOXvdp4+MPSzvhRwXPS+Pg0+oWfJZ0IdIQQiMS+oF/cuQ4CHKLQo5DQ9QoM7z4hzC8EN2TpDJvqkjpyjKrPzlL5a6k4xtemOR8cCcNKndkyKO1+EimjwbCigyZ7M7L18m37xPMHiG0DaKCJPlpbkBULaL5Q7rnaxi+wPAE9toAzR8SVhz6cd6J0JZkw/aZAoYP9esy9t1Y7RFVi0kuierVDmHFwVztsXnhCKX7W0S2iQD0S1dY//mLyX0EFYPS/S22jpdw1nyCikV/xuTIext0z9eoXu3gHqug+xHOzRWEXSCqbrPcewtlSZIENDdg2KwQ2gaFtT5hxcHouXTP1yj0IpylHuLqLYK3XmZrxqJxaRXN81l/6zj1j9r4U2WsrofmD5M2VT3ulEzkUL7VRRTMZGx685JAGNkmQcXCWerRX6hi9UKsroc3VaT4yTqDU5NYvQDdG0qy460u/lSZ3okCzkaYkDStXoC1+AhhFxg2KyPtds/LsMXykofuDdH8IZob0HltisqtPoPjJUr3twDYOl5KCKT9BZneeuLKI4Rj0X65Tmk5wOp6BFWbqKBj9QLM1R7ebJ2gIudZzUtY0GS0QdzH/oxJ/foAATz8QonJKzJVubPUS8YwqNo4N1dof+EYQVmnvDzk4RsWJ36zi7HaIWzW8KaKCfHV6klSptX16JyboP5Rm0cXG0x9d4Vhs5I8V+6xCs5Sb2R+uP72k/7b5chxYORkxhyHhp10FLJ43oTFp4Gn0ecnJS3C4Zi7D3u+ngbZcz/17bedpzke2VwPx1+qi7/0iz9+4Hr+65f/RU5mzLFv5BaFHIcGregw+PoX5Mn16i30V19A7/QJZo8AJFYGY7VDMHsEa/ER7umWPLnuTswAACAASURBVFnFEAUTY3GV9a8u0Li0Kt9zLPypMvZiG627iahOjJzMjdUOUa1M9Hs/ZPDHv0Dl/QdEtTJ6p497uoXz8aIsaBcQnS7exTMjJ09jcRXsAng+7ouzWF2PyDZH+qx3pQWClTXEiaNobpC0n7YE6CsbiOoEwrGSe+8fs6l/f0n2Kb7Om63jfLxI1GrIulbW8C6ekd1cbCf3p07/5s0HRK0GxsoG7ouzOB8v4r44m5yoFay4nN7pE9XK+FPlREtAnfiD2SPol65gNOojfd26MEPp/bvJ9Xg+2IVkjpSVQ7v7AFpT8h5urjxWDkC7+yC5H+fmStKmPj9LVC0mp3Y1T3g+vTfnmbjyCK27STjbTMZc83yEXUDzfPB8hOuiOQ69N+eTuU7Phxpf+70b8vpGPalP1QEQnD6K0XOT9kV1YmQ+nZsrhM1a8ixYi4/k82gXYGWNwRfPUbqynFjBxNVb6POzaN1NolYjsd7onX7S/97rRynd35J96W6irRiP/R+FuSshxzNGvlHIcWgQhkbl/QfyS7fowN0HiNYU5mpPfkGD/FL1fIyeS7i8ggOEyzL/jNGoy4rsArV/8gMoOmi1Klp3kzgLslQN3GjL8jMtiK/X7VnM+TnZPqCvbBButLHtQrLwhcsr6PNykbVd6e6IBi6i6KDZsgW18BlxP0Sni1arIuwCwrHQWlOJy8NYlW4D6+YDzHjxUkgW3ivLVHvlZLNkrWzIW1wEUZ1IFrjozBxW10Nc+ghtZhrNsdBXNsAuyPbihSdqNeTGxy5gv3cDzXHkwlmTJvpwtomxuEpw+qi8n3gzovqE52NevoXWqBOcPop5+RZ6rQqej7022J7LTpfozByRbSZuEwPpItEch7BaxF5sJ5sEEfdHnDiKvrJBdOKoHMt4zo2eizY/y7BZwVzt4cSbM31lA+G60Jqi8r07cuPkFdD8YbKBCZs1uZkD+fldOcflW125AfGGcr5nm+g3ZPpwG2Q/Z5sYqx00fwgra4Rn5uDD6xiNuhyHWlXOsePIDUmni9XdRN9ow0wLY3EVvTqB1t2Um0mAlTWigZuMlyjEX7uvnEX4Q4QTj/eNeyPzIzpdJq7ITQZAeGYOsTwqKZ4jx/NAvlHIcWjQ/GF8uisQzTZH3h82K4lvOlm45mcJq0UiZXFY7QFIn/jsEbamCnLhtwu4xyqEtkYpxUlQ3IPowgwgT8yhbWAvtvFOt3A+hsixtk+br5yF7kBuHOIFWztxlGHMSYia0o9urHaSjQG1MtrKBqJWRhTMxGeuNiS914/irPmYqz2C1ElUbRJAivhUbvXxporo8bgEVTvhakTVYsJzsObncE+3MLyQsCIXe2tRnrKltYPECuFdPCOtLHaB9heOUb3akbyC7kRiCWl/+SSVW/KUH8wewei59BeqVN5/QGgbmK0pgnhuegtl6our0ldfmJNj0XNHuBWaGxDONolsk6hZwepuEtXKuMcqcGoyVpQsS7GhW2Yy/48uNhKlSajgXjiC1QuJCjqhrWF4guIn4B6rYBdMueC3ppLx1asTDJsVAPpfeyG5J8U98V4/gb02IDozl7SpFmy1mXC/eE5aVWZaiRVgcKyCs1QGN2DzwhGcNTlGzDZx4zkKbQPnY3mfYcVBjzkKzlLvMYuYmmsA94vnJMcj7pt3YQZ30mDym5sEp48S2gaakyHrAtF+UrDmyPEEyDcKOQ4PMT8mvHYT/dUX6C9UEzeEGZtkRXUiMSWzsobhVdHjk5pwLLS7DyjF1gc4Qhgv3vbaIDFFC8ei/p3bcgPx+lHKt7rJwm/Gpzfr7Y8gtlAMmxWsmw/Qu4NkUa505Je5vrKBviIXX2NxVZ5uYyuG5kmLQvDSQmI2ryyuIqoThM1a0h9lMTFXe1jdTQCK71zDvXgG5+aKJPDduEdptZoMlbEqTdhadxPv1CSV791J6k1cBV0vcauIgnzfiNvXupvSKuFYaJ5PeclDFExK799l6/UTlN6/S3D6KOUlLzmNBy/OYi32qXxPWiqUpUAREOvfWSWcbcrNh+fLe4wtI4qQCSAu3cQ8d1rOY2yud5Z66J0+xU/kvNqwvWi7Ac1vLYLnJ5s06ybbG7Z4/sPlFUrq5F6rIlbWKDuWNOHH4wtQjd0fWq2K3pXtma0peVJvTY08kmHFwVp8JOueaUnr1UwLcfUWRqNOKbY86Y06E1dSbo67D3BqVaJaGevmRmLJ0AcuxkyLUjwv7hET56Z8lkSnSy12y0R3FinGOUyceLNaWu1QtAvSknLpCub8LEQ5pyzH80dOZsxxaDiIMuN+kE26s18C2UHK76bCt1uSp70IcQchvD3JNc8Cn0Zh8VmRPXfrSzqZ1X6elWxiqnHJp/b77OzWV5WYalyCqGzZLJnx2Et18R/+o6/s2vY4/Lev/GpOZsyxb+QWhRyHBq3oYDi1xC+rTlZGbOpV/mj1BapkehU3Ybj8EHNmWl4LiV9X/R4ur8iydkG6OO4+SLJJjnvfnJ+T18f9UO3B9kKQzVhp1GvQmpJWkaKDpk6hbGcHNOrbi4DRqCNcN7kP4bpocV9Ep4s4cTQ5vYoMj2G4/BD91Rekzz3mY0DMuciMDXaB4Z17I9kL9VdfQFy9ldSXZMicnxsZK2WVUT5zIBljkPeS+N89X95X3I4e90tZgChu9z9C8kTC5ZXkNd3vdBvexTMJpyJ93yPjpp4btrNSKosFK2vbY6csUJ3uyAaOeH7S95derMdlvzRnppN5TI+xpsY9nqck46N6pgBtpiXdMncWk2cwajWI0vN9fkESWNP9j/unNepojyxGoeVkxhzPHPlGIcehQQxccNheQFfW5Bew56O58ss9GrjoMLpoqy9125akvau30IuOJNSpjUBt22w/vHMPc34OalWMeAMhXBcN0Fd8RGsKIyamKVP01k+/RuV7d+DM3AjZz1p8JBfS7gBTEc+6m5jzc9KPffcB+vys7F9sFteQREQ22kkEgp66D+G6EP+ur2xAvIAAEBPxtFpVLsZXb0mNhvlZBCSkT5WGWG1C9KKTLGp60UFr1BF3H8hrU2NpnDuNWFmTMsjxPCjXg2hNIWIinVqwNdtGB6K4XlpT6GrRbndgfja5JjozJ/UP7j5INlWi05UblOUVtPMLhL/3Q/l+dSLxtIezzSQCAeJFOnYdGI4jy8aESOK2jXhRje4symcovcjG5ENaU0TNCvqlK3KeV9a2xzlG53yN+veXEiKr4sqgIiBAclcWV4lqZcyZaVmHG8joi422HPfZJhpziO5ARr3cfSD7yzapFiRhNFTP6UsLkjDpOJDaBGlOvJmqVcF4POohR45njXyjkOPwoGnSbwzJIkS8gKE2D56H1qhvL1Ip8zGAfvcBkeehuOBGfGrD8xGel1yXnOocBxGXV+ewMLZMRAMXYktCJV7kVSikfumKLAtyU+G6CIDWFMNrN+WpMt6oGDHvQLguobqveGFVXAi1UMP2yV6dWsONdnL/Q2XqziQ8UhYPtSCaM9OPDa9w3cSqEcaRH0DiCgESRn0Cu5BYRER8MlZ1Jab34vYYEp+O1byF125izs8xvHMP7UOXyPPivnWSeTNnpuXCvrKBiPsR3VncdlNstCFx2aTGiTjqJHViH3lmYqg5T1stVBuGs4BWlBELOA5azFVR4a41N5ARGzMtuXGNo0lkNIQMlTRWO9ICdPUWYn424bsQXweS4Bour8jnTFlVVtZGrF6q/9r5BcKrt9AvteWGLmVZoTUF3c3tufdHwzplmumczJjj2SLfKOQ4NGiOLZnhs0dwpwoyXvzGvYTUJm7cwzh3mq1Tk9hrzSSW3JyPTe7NGp2FsiQqIsluEZIMF9XKiLdeB6Saooq11/wheqtBf6HKxJVHRNUiun8U4QaSvNf1oDsgiMPyhjEDfut1aVHoTxs4G9F2BEVBx3EsNheqSTRD78IRDE/gV3Qqt/ro3QGDU5P4FZ3aB2uE1WLSlron8dYCg4pF8Z1raOcX8KfKeAWd4ifbpnRxfkGOS8Eksk30y7cQ1Qn06oRcMOIIj6jioMXx/qLTJTh9FOsmiXsnsUI0a8mJXy2sUa2M4W27L4AkikHvDtDiRVltTBRpT5nJo1YDVjakleDEUTQgvHpLbqQcR7L3veG2RgEgThyFgplYFJQCpX7iKKJgJmWjWjkp58URBkPbkON4456sBzBiHQJ3to4xe4QgjizhlbMIQJyZk6TPViNR9DR6Lu4xScJ0j5hszhpMfeBJ8uGUJCG6FyscuTwgqFgUP1kneOtl3CMmMEX9+0u4p+NNQqw0uvr1WVrvbODF2hRKmbF8S0ZQbH7tBcpLHv1jNjV3Vs5xbC1RECtruBfPUGg1oNNH2FnXQ44czx75RiHHoSF0DPypMkHFICxobB0vYVWl6E5QMbCqZxLZ46BqYwFRs0JQkV+WVi/AbejSnH9zZSSkzp3cNtFWgN4bTfRAEncrt/q4DQMnlg0OCxrlJY+tGQunoOMvyC/yijdMwumU7G4ZCMo65moPE7k46ysblGFbsGlN6j5YFUcu6EDxk3VKnk8we4SgYtE9YTLzW1JYyL1whP60QflhyMbPXMDqR0xcecTg1CQbb6iw0SbOesjDNyymPhzK8lPn5X1shKy9YqIH0PwgoHvCZFguoQeTRBb0TkYc/TcncRs6XkMuVpM/HLL4VZ353wh5+HOTDMsCs6/h1yOa78mNQm9Ox+pD/7igcguiQhXdb1G/IRf43okCm7MaejAJQOmhICxA//gkjasReiBwHg158HN/CLsNlXtD3IaB1Y8oL5n05h2s/tFk81XoSbtQ55RBoVehP2PG9VU58dtbicSzumf3iEmhF6H5Q9b+xIs4GyFBWcefaDAsa9gbgspdn/aZAnVaSfn2GQvdrzBoaRz9rjypL/7kJFYfap8M43uJsLrymTC8ELdRSDYJ3RMmfmWKyNKoXdtk63iJ9beOU7njElQseicK8h4fhoQVB+fmCstfn8XZiNiaNuhPS3eH4UNv3sGd1Fn991rUr8qNxta0nKOtYxGV23PYG4LgRZugPIn//+auhxzPH/lGIUeOHDl+hBHmuf1yPGPkG4UchwYtFGzNWLiTOpV7Q4KyLi0L0waDJuiBydSHQxZ/qsrkD4f0TlQIJjRKD+Xpvj9TpH9co34Dbv77czSuRjz8vPR5T/5Q1teb0wkLRYIJDWtTYPiC9ZcrlJeH9Oad5NQcWQ5WP4pFmKSVobdQxvClFUJJOHdOmdQ+GXL7T00z9WHc55crGL7An2jQW4DiioYelJITdPC5Er2TEZMfaYQF6JwTTH4Et/78HCd+s0tvrkT/uACkVWHxqzrz3iShrbE1LReBQUtw5EODiUVB55TJ5JWAB1+yaFyNWH/BxK9HmH2d+18xKa5oDFoC3ZcWAnNLAwS9BQBBcUWjN2dSuw63/3hE8T5ElsCvC8r3dR69oiwvIrmfQQvsNvSPawxa22GDeiBPxgDrLwvmfifE8E02zusUV2H1ok7zvRDDF/Tm5NdNWNDZnC1x7Bvr3Pz5BvWr4Db0ZKwnfzjEr+isvyyo3NYp3xeEtkHnlIm9Idia1rD6GqsXdeb+pRRnKi8PaZ+xmH6ny+rFCvaGYPXNkLBQICpobM1Y+BMaQVnHWY8oLQfUb0irCMD0Jen7t3oB7lQB59GQoGpTu7aJ3h1g+EWCiiWTM20KKrf6RLbJ+ssVKnd9Oc8Vi9DW5LPWl0qQYcWRVqaNiMjScNajJKmZO1XA8AR6INB9mUxKJUQzfMHsNzYJqjbtMwV0X9C8MeReLw9nz/H8keso5Dg01Aot8ebrfzlRrRMFUxLFPH9EBMjouegrG2y9fgKrFySuByXaI+zCSOZGpTIY2Wait6+UD5XOvxJzAhJ5ZWEX8GbrMgdDLLCkynuz0hxvL7YTUprKRxC9cSFRTASp8pcmuCny2uZXzm/nigC2YgU+Y7WT5E0A6L05n7g60rLGCqJgsnW8BMjFKJ0VU42h4hWorIsghaRUrgL3dAt7sS0FmBKVQX/kPtS9KCEslS1RZY/U/dg8f7yUuErstUHyucogqfqlygnHor9QlYukH2Evtum8NkXtA0msVH1SglrexTMJD4HWFJ3Xts3+qm4ljqV3B8lcGV6Y5M1QktiPXipy5PIgeaZUNIvqrxqfsFkjqNoU1vpJpk5r8VGS+yPJC1Grsv7WcUrLgSwbCyilc3eYMUdmXF4Q1V/n48VEwbJ/zKb2wVqiLBlULNxJA2c95Aff/p/p9pcS9uLMS5PiL/yDg2uR/O3XfynXUcixb+QbhRyHhtL0nLj4Y/+pPI1NaPSPC+pXYXNWw26Plu0flydhIEn161d0Vi/KE/fxbw9xJyXXwepHVG71ufvTVWqfSF/56kWdmXekDxsgLGh4DS0hrKXJa+pLWsk7qyRTQKKCCCSbFt2PpB889t1vzVhY/Shpx/AFVi+kfUaebtWpd/0LAWf/ryH9YzYb5w2mPhwSFjQ2Zw30ALw6yTjovqAcW1LWX5ALTe2TELehU9iU/8Nb0zpBWZ6OQ1vD6oU8+DGb4oq8tnPKxOwL+sc1Wu8NY3++RuecwFnViSyofRLRm5P36DYjCm2dqQ+HLH1Zx1nVMXww+4KNlwSFtk7rvSG9OZP2S0Oq12T9w7KGVwevNaR+2aT0MGRrWlpkIkteb/jSF6+sEVMfeNz/irRU2G1pqSg9DIksaVXRA7A2RYqHIK8NC9KiYfUjNs4b1D6JsPoRa6+YWH2YWAx59LJBVBDJ/OuBILI0/AkNZ0POU/37SwnPoH/Mxnk0pHeiQP36INlEPHqpSFTQkrlw1nzcqQJWL2RrxqJyx6U376AHgkIvwq/oRJZ8Zt1JOb5eHYpyn0j9xvZzvDVt0DsZUbkty00shnROGVh9GDShekvQPg9L/8P/xNbqvXyjkOO5It8o5Dg07KbMmFX1SyscpqE0AcYpFaZ1BIARVT3YWY0vrcKXLas+V3Wrz7LXpV+VMFA6JHKcSuFuan/jFCHVuCjdBPWaLpeuK1tvts6DpFPeaVzS/U2LVe2mzLhXXTvN17h+Zectq8a4n/7sds9ZhcZxSLeThLym+qCnRajGPLu7zf/3+Cbd6FG+UcjxXJFzFHIcGsIjZW791S/RfC9i9aJO+b5GZEH/uDzJDk76lK8XqNyL6JzScc+6NN626R8fjRs3t2DrRZfp3yqw9rMu9gclhiXw6xF6AGZfJypIn73dhuLXVtj8tmSYD0sQFQTFC226Dyp8/pWbvPfO59COuZw/9pCPP5hHlIcYbfmvYvZ19Je6RJerVG8JVn88oHq5gFcH/aUuE79WYXNW3ofdlifIYTkissBougw7BYr3Tew2dM5GTP1AY3NWI3hxC/uDEoYPQVn1XaN8X96r7ktLgH/SpfauQ/+4oNCW7Vh9ebL26/LUvP6CGZ9KBesvy5N/cUUkEQ+qb72Tsl/Oqk7w4hbanWIS+aDgrOox+17nJ//c9/ntX/4CVh+Ct7oMVksU75sMTvpofRl1EZYjNF9aH/y65GWs/nhA+XqBrRddnOsOkQX1z6/QfrcV8x6ixFoBwFc24NsNui/5FG8XGJYFw5JAD0A75mJcl26X4qocl/XPhcx8R2f1orx88iPJE9j8sS3EkoPZ13n1p67y8T8/j/faVjKvlfkO4e/KCITo813c+9IVpcdSBZElf1ev2jGX0rsl+sfl3AxLgtp1nc5ZOT5hQUYqlJa2x8ze2D6Itc+D7mtUbykLkEb/5BCrbVBoy9/Lt038uoxAkREnEeX70qKi+wLvt373sf+jKCcz5njGyJ+wHIeGyCTeHGjUr8pFFeRibPXBvl/AbcpNQmRB4bbDoLW9STC3wH5tA8OH0scOy1+OEEtyIfKO++iBXDT8ekT5vsawHNE7GfHwziTNDwK2XnTRAwjqIYMrday2wXvvnKVyW8f6uMTt31jAaLqUrxfQAw09iBftd6uYW3JxtlYteq+7HPkoxHq7ShiHwFdvCQatmJz3kUbltk7pXbmwFlcEgyYc/TeSmGe3ofRuKTb9DxmWBbVrckxKD0NKD0M65wTVW4Lp3yoQlGHmnZCtF10mFmPi4T15j8tfNLA35KIaTGjJJqFzTjAsgb0hiCy5STH7sUm/D2GgEzQDScK7r1O+r1O5Lb8enFXp0vidX/wCkSWJlRO/VsHoy3kp3i5gNF0iC776uY8R5SHBi1tETZ/2eaheLrB1LEJfLcRzIeh+t4W5Bb3XXfRAY+tYRP+4/DF/vU7wluR1TCzKTQKAHmgY10sMyxFea8igCcOyhtU2EldP7ZrG2ucEXh3EkhPfi+DqP5GbBO1Okdu/sUDjskb3QYXIkhsB//aE3FRuaYT1IZXbOrXrOmF9yNF/I0mVYslJ5vTIh3IDFlkw9QONoCxdIKUlHb8uaFyWxNXugty0BBNaHGK6vXEwvrRB+baJ2deofRJSvC83CfWrck4ACm2d7ks+ui+o3h3CMBdXyvH8kVsUchwa9KFcCA1foAcaVt8Y8ctXb0lfdmk51jhYD7HXBqxejNMHH9ewfqeBsx7F3AQzZrR7tFcKNN/r8eDLVWrXY27DR1rS1voFk8bbJlEBpi8JHnxJlimuaPRORpz6ZZfbP1vk6D8qEJQjuCf7VLkz4PbPFinflxyHyi3BcMXBbQhqn8SRFgtqkYb+ySHBqpmc+M2+Rm8B6lcFQVmePGe/GeE2DPRAIyzIBUXxBqy+9O3XrqnFUlB6KHAbBvP/UKD7Pt0FG7MvfefN96KED6B821Y/YnjfwOwLooKGuQXFVZ3+cTkWZl/QeFuau73G9iKl+4L+6wFG22T6e4KN85I7ceSjCLehM/09wda0LDd96f9n782DJMnu+75PZlZVVnV3VXX3dPV0z3RPb8997YHFcBfAksZBkFwBAikeEiWaNnWFZclyhELhI2wrbIUkh66QTFGiGKYkmKRpUbYkSiZkEAxZAGhyyQWxWOxij9mZnWNnpueq7pmuo6u7rsz0Hy/fq1fZWVfPUQPgfSMmuirz5Ttz6v3e7/j+ktQWLN773TPMztiktsRPS3VZ8BnszAvBJ73pkax6NGZcJu4GFN50uHtOjDl3XTihrj+bJP/rU2TCDTb/vohYkb4nznqZ6nOLOI0W688mKbzuU9vvkL8I6U2f/V+zqM9CsiZO9KUTkCqB++YEyZrQpBz6N+vszO9XPAqloykm73o4jYDKoSTl4z6F12HhywnqMxY7BfH+CFhUly1mLvjUZ202Ptlg8d8laU3atKYsnKZFasvv8qEA4Xtz+F9XuPBnhEYk99szJENNQfpem/wVC7sVsL3fUZqIxd+pcv+seN8911JrIxEE4BlmRoNHDOOjYDA25KzZ4KWn/qTi4pe5BnS6Zglpy9V9A6Cb/lhPHiWfAZEXQacq1rM5Jhb296SHht02b6DrOVmmqz2ZbCkso/9VuRcitMrRa7p9O9pv/X6c34LeR70NEImIZNKjQb4BgMofoSfDiibK0tuOy5ZpuW7Xug5sM0xSFfW76JedM24OZIKq9rUbXesVV1bvk/3MSfxvvYdz/EgXtbSkptbnQJ9XQM2tXLvG80dJv7um1t+fn8H/1ntd86X7Kci6gtyUSh6l9y2aPXL/6dngp/75D+4a1yD87If+T+OjYDA0jKBgMDY87DTT40S/tMmPMsXzdyIGzdde0mx/p8AICgbjgDE9GIwNVjIB7c4pVT9VScjTmTxZxkE/yct0w/rpUSU2ClM4y3rlCRHoSletn9ydhXmCcqXLa132Uz9FyntSe6GnQw4OLcKFq+o5qT0IclN4Fy/vOh3L8UbHoT/bK2W17HtXGuTjR/DCxFVyvpyFeXU61tuMRgnI9qLaAHnql9/lPMvU1/rJuytbZTif0TWTn9Wahn/jol3sTLqTBEzTukTrjDut6/2NPg/sSmkuy8dFsUSjK/Q107UiXqmM/cxJlTY9qp3R+ynfRQn5bqm5Ke02M5ikUAaPGkZQMBgffKHNUj/A4cYLWgbAyEYQ3cicmWmVVVBugN6d4q4NEIALV7s330azO2MjnR9k+aMtyZKiYW7RDU9u1FZlS6QIln1Mp0VqaG2z8nfqBKUylkxJvFlS9enwNkvdG+TKklBHhxuSbqaQSCzsV5kQaTRFdsLwr5w/KeDITS+x0C14OMePiH5eWwtNKGmRpjucM2+zpIQE2Q8pUMj7+iZoafNBo9ltTpiZJiiVuwQPOSbZZ7nOcry6qcGnW1Dpep/SafFu0C2Q6CaSqFAk3w0vIlz4O/WOKScS5qqbePRspY6WCTK4cJV2RPshhQMp9Oh9iIbZyv5YCZPrweDxwwgKBmNDaybN5uc+SvZ6k5vf47L/6w2RDKrq4RxZpJlNUltI0JqyOPCFG1SfW1QJgQDSG03Wz2TIXW8r8qPMlftsv/ysqH/SZvrtEi0t8ZSg0RWMiPWc2Ai2FwTTo5eyyF5vKlrp/a9W8IHGXAZ3YweAqz9+mn1vBVSXbZb+Q4XrL+cUMVF7Uvzkz75tsbV0JCQNElTCyZIjHCBDZ83Sc8LDbfoNEVrpJ0UER+KLp7n/gojPm3w/1eW8tlOAmQsFqss2tWNNFr68yuYJEbmw9JVt7p3JsDMvoiimL7Woz4poAEFlvcz+rwun0O39NvkrbeozS2IeNz1q+w+LJEYhQRRAcmlaZE+811brIhJurZK/uMXt78sxe75F+tYMfkr8lPhuAs9dwml4VFfSzL5yk9ILB5i8tUh9LkV9xlEOfnIdk9UlmikbTi0Awpkxe0M4qKY3PUXrnb3RZvJqBadcY+3HllUCJ/kuNNzOJmpVGlRXJwVlc+hA6TQ8rvxomsP/ps79Y4LWO3ujrd4VSeKUrAlnzZ15S0WVeClIbQUdAq1wXgGVbCxV9bGbvppjLwX7v96geijF5J02lUMJ9n+1qCX6gvR9j/VnkzhNQTrlp2xqNXJyzAAAIABJREFUCwmSNZEkqz7r0JyymLzrMXFzG+/9r47638zA4IFhBAWDscHyxY9y6WiK5d+8T/1Alupygom7FpO3PO6fSjK15gE2az+2zNSax77XN7nzH4XZCm9us/Bba5ReOECyKjaYWXefogaWtMJ2U0QV7Ht9kyCVoJVzuzeRmo/TCEjfqlI6O6020lYoSNQWEniu8FQvvC42EXczwFlbZ/9rGZpZm9ZkQGPGZv8fbOO5DslaguxVsctnr7u0smIzq66kyV/cIntjgomb29w/myS5JTbNiS84QJXpSyKFcn3OxmmITcjd2GH74ITIH5Ca4cDvtmllLZ76gsheWDvgktoKwtwXLTJX7pO+JQSgyom8CItMiVwai78jNBf1GZGnIFlpMHm1TenstMqACJDaqOGnsrhrJUqfmGf/+Xu0C1nun0qSrE2QvyIEtObcJKmNmqBSbrSxG21By33fo/TCAdL32iTeucrU/Bz1j82z/6tF/FyG6uqkypngp2ySVSEgHfjdFp7rUD2UUpk40/fCVM3ZNM25Sebe1MwHYVpnp1qnFqb7rq5OkqqKzTZz5T4bH5snWRORDKVjgqJ6/6sVqmGmULsVkLvuUTmUIHu9TfaqoKZObzS5/oMTzFwQgsv0+zsqvXhtv2B2TN9rk6w0aOVcWlmH7LU6M69VCdJJSmeF9sZu+kxfarJ1ap/qt2SBFGtjkX53jfrpJbLXm6Q2atz4QyKMN30fJs7fEZTh7W6fsgALPzBR7gaPFsaZ0WBsyKfmg49O/bBQWYNQ3Yc2bj8/qfwJpL3dz09iXb/dKZ+bwmo0lT1cwj+6rHJG+PMzBBeudtmtmZ/DajQJ3JTg8L98m9aRRRLrVZHHQdqpV5ZUOQmdw9+p1vG/9V7HvyGsF6B+ZJ5kpSFyEVy4KkwihTzOelmp2KMRG3IOmJ9TuSj0/BHRHBVWaF6Q8yajR1R+ifk5VS4oV9Tc0miCm8Ir5OGt94UN/vgRrMoW/vyMylMh/StkLgU1/uKmeP5OEXtlSeVkAKH2T6wsd7UnTSrBoUWs67fxjy53cnK89T7Owjw0mkrtL80n3p0i1olVseayrjCHBYB96QZWPod3p9jxZTm6rHJC+NfWhEknXD+9n8GhRZpzkyJ3B6iyqs0wP4ZV2eryAwGUmUa+I9F3huJGx1dEmsLCSAa5FkBnrdyUMFnJOQ2jNaDj6yHH+bXgP1Cu31ZOCfOn9wU/+asvD/ifthv/6MP/3DgzGgwNIygYjA1xUQ+P2pO9HzXvk4CH1ZdBdMwP0s7jnK8nZW2ioZmD+vSo+h2Nepg/vS/4iV/9QyPX8wsf/j+MoGAwNIzOymBssBwHy3VJrCwLR63QmcuZzpNY2C/+hfcAVcaZzotTloxMCD/Lf9JrXDrgJRb2qzqdmWn1fGJluVNW8zRPLOzvqkt3apOai2gfusYV9lHvn6xHtqn3U14H1PjlfdmO3rdecyHL6ZuULK8iP8KTd1yEycD1islBIPvRq2zctUHt9otQiNYRrUvvT/Tzw0K/MNhomQdt92H228BgrzAaBYOxQdcoPCknx73gYcX17+X5YdoehpcAem+Ae+nPKO2PUm+v+uHh9H+v/XpcMBoFg3HAaBQMxo5hf2x7nR6HOXX1K7vXU1t0g+p1So9rW78mT8rRU2icJkP/rmssZNtRbYa+wUbrjHIT7BWD5nbQ6XoYDUNcdk2JoNGIFR7ixjqKNmOY66O+t9G56ndvGAQIHoVR/xkYjAIjKBiMD5alNjllGtDU57qaXUI3C0hOALnJ6Wr46A9w0GgIhzKdKleaEWamu8wf8r5uIrCfOYn9zMm+mzMIfgW97zrsTHrX5ryLFyJKAKT1Rzcx6GRA+mf5XRde+gkZEv5OfZcJJ07w0Psl51tfg119Dh0A9Y1RX+O4+qLrZ2fSXe+CszDfNaa4+qJ9leVkP3WTlj4nkhchrk59/u1nTu7qgz6GaNvyr51Jdwk20tQk+6bPY2Jluas+y3WxHMOjYPD4YcIjDcYGy7ax8jksjcBGJ0kK6nXl8d2+dkNFP6gTqpY/QGcFtEF8Dr37g7LgQwjqHfIewu+6h30Xg+B0XvHzB/W6igQg9NCXz0pyHCudxnLrBOVKF2mOZDWUG12g5ywI25NCj4SjEU8pwp5Di9jlmhqbE7IDWpJhMYxakGRL0sMegEZTEQ8B3URIoUe/7I8OSU4lCYvkff15b7Mk+hSSKuksm7L/eh4OAObnSMgoDbmmGtmUdWJVRJOEJEz+Th0bzb8ijO5wplGkSUoYOH4Eq9FUkQbQHaWgC046w6N670CtlzONWp+g0cALn7XyOai3RB+OzykmTntF8FJ4Fy+rPBGSSEufa/UuhGsr50uSK8n3SkVAhO34uQzBa78Z/V9kwiMNHjmMoGAwVgTlitqkosx7nmTcI9QK1Ov4Iesf0EUrDKjkP/5OHaKUuLowEraj6JnDeiSTn1cqYy3M44D6cVc/xfW6YFsMr8n25Sakb/6yH850fhflr7wv+yg3YzH27gRIANZOHS8sozNCErYlKZp9ydYYhhpKISRKQU0mvWv+uuiftfnVBShAbZrQWSfLrXeZYqTAIIUKPfTRC5MdBeFzer1yrHI9VeKrUBuj+pjuZlpUbYZ129r7JOmqdchNWM1vWLczncdrNHomsPJKZRw676ilCx+hwJBYWcYLk0lJAUiyV+rMoLqA2PUe67TdUsCSQpbxKTMYA4wzo8HYsNfwyOgPuIHBdwuizoyF03PBj/7KZ0eu5598z68YZ0aDoWE0CgZjg5VJs/W5F8ldKCsyIUmsBBCkEljNtvosSX/kqTGxskzgpmgsTZO+XBSmBqB1ZBGnWseqt/CvreGfO0VivUpjaZpkpdGpJyTucdbLbJ9aIFltKdIlSXpUfXGFZNUjtSFYFr1sGqdaJ0gl8F3x38d+7bwiZ2ot7RN1IAh+gpDa2Gq28bLi9Gg32up7fS7F5NVKF7uhs7aOPz+DVW+xc1iwUGau3Ff16f3X52f74ATZN24rUiJnvSzIfEJVPE8fw1kvKzKr6g8/R/7NDcrPzpG+1yZ9uSj6/44guvJKZaxzZ1V77UJWzPs7V9n6+AmyX7umCIMAZeqQayIJp6zrtwXZkiQxCkmH/KPLah4k+RJA66WzpN9dw5+fEfMVmn38+RlBkvT6JUGolMtgV3ZoF7I41bqaBzlGq97qmqP6gSyZK/ehuEHj+aOqf3JdE+tVRbDl5zI4a+tUX1xh4ua2IM4K5z5IJ1XdgCKP2j4o2DYlo6e7VoLiBu0zqzjVOqWz08y8tt713knSL6faMW8p8q9wje1LN9j8zClmX7mJdXe306mPcU40eLQwxi2DsSGwIH2vjV3cZOvUPrylgvqBt8s1WjmX5twkXjZNYy5Du5ClsTQNTx+Dp49RPzKv6motdahx5aZBcQPrxCp2o027kKWVdXDWy6qexpz4wa4fmcfd2CG5dg8/l2HnI8cpPzuHPz9DeqNJ+nJR+AeUhbBgl2tq80xevi1MGOkk1ecWSV6+TWNpmnYhS/1AVm0aIKiDnWod301w6/tnSa7dw2kENOcmSVYaNOcmacxl2H7uEPUDoo/uxg7uhtgM5Ubr5zIE6SStnEuQSlBbzQmGw0YADUET7LsJAjdFkBZ0zPbKktjs3BT1A1n8c6eY/p0PaBey5C6USV8u4hXygn75+aM0nj+Kde4sVrONn8uIDashNtXG80dJVj3BENlois240RQCSLmCn8uQvlykMZfBLm6y8UdOC6Gv0cSqbFE/Mi8yaoISnkCYCJyFeUFffXoJqy7oob2lghIa3LWSYItMJ9k+OIHVaJJcu4d1/baqK3BT2MVN2oUs2wcnsMs16gey2E1fCKOyvfVQQK23cKp1dg7P4hXySiDy52fIvnEb+9INRf0t78l65Pral27gNAJF45ysNASr46FFPNchSCWY/fJV2oWsoKx2E7SW9mFVtmhlk1RO5MV8hkLXzuFZGkvTgmF0fo7ZV26yfWpBJVIzMHicMKYHg7Eh7+4PPnbgPxYb9euXhD12SSTMcdbWO/S24SYk6Xd1auLW0j7B8x+eIr1smuTl20ozYZdrgk75lbcVna/UXEjhQp7eKG4oymJnbZ3WkUWRu6CyI7QMCEdCKcxQ3Oh8D6mlJe2yfvLcOTzLxPk7AJReOKByQDjrZUUFbZdror8hPXKgbRggcj3IMcqy8qQuT7pyE2tlk2Revag2Y6veElqXd9c6WTIl9XK9pTQBraV9JC/f7ioj0ViaJrUhhCWdWlnOiVfIK0rl+pF5Uba42aHCrmyJep8+psYuxyIhNUlRBKkEwWtvE7z0nNDmhJTYau2lBub6bdpnVtWayc1cp7xW813cFHTVYfteIU8r55J+N/SfkLTYobAly6mxlWvqXQrqdaU1UPUWN/GWCtiVnQ7ldChcNpaED0j63TXhdKpp0qR2RY5J5q5IvHMV5uf4/eu/Qnn7llIhzJ2aCz73K5+Lnbd++KUXfsmYHgyGhhEUDMaGXPZg8LGkIIuRuQ5AczbUohqATirjEEFuqstMIJ9V3u5LBbF5hRu4dDbT8wdIj/T2nbsivXIoEADKk92qbLH93CEAMq9eVJ7pQDc/f8jdL6MQVF1h3gHlPBfJQyA3G90zXvfYl3Oh0kfLcYZ5BPR69br0qA01xzIqImwHOqmS1bxq3vjSEVKmUrZXlvAuXiaxskz72o1YLgbdi1/PL6HSUcsoFhn2F66DhJwH+VmOVY492j/d0RLoStmt8ktEIjVUWc1xU6X8Dt87Gbkgc2FIwVDmpYhG0Mh+t8+sCmE1Mp/RsUEnNwbQFR0h51y942HZP0j9bleuByMoGDwOGEHBYGzI2fuCF/mU8mzX4891D3wVeaAndoKuH9U473z5rPRQ10P3ZPn2mVWSa/e6NmxAbdZyc4v2SzpSyr7HechHSYJkPdGx6u3JDUv3jJfo4oCICFH6PX0eonTL8r7aoLRNT9/oo3Xq3/Xx+Dt1JbDobQeNhgpvjNYVpWXWIzJkHbIfcWRNSrCRoa+aQKNzTEBHaNDLyPdKFxhkvfJ5eV8XOqKRH714G6JCnsSu9zdM9KSHqirBKPLuqaRQrd+i3F43goLBY4URFAzGhriohycJw0RgPK62x9mX7zR8O89lNOph7tRc8Nlf/pGR6/mVFz9vBAWDoWGcGQ0MDAwMDAx6wggKBt92iOPDH/R9LxgmkdJeEZeHoF/bj+IEHNfuoH59J+BBE3fpf/f6/IPUoSNg9DwPJteDwagwPAoGY4OVSmI9e7YrwoC33lcObzSayjNdRRpAt5f+2j0g9JiXHAPFjY7jHnTF7MvoBNwU26cWyFy5rxwLpTe//633BH/ApRv4O3Uan3xGxN/LfjeaVJ9bJPvGbWFjDh0eJfeBiiaobHW82qHjjBj+9ZYKtHKu4AXQnCG9Ql7E5of8DCBCIn030c0XsLYuPmt0zTJyQHrfqzmrbIkww5D7QUZayLnRo0x0h05rZlrxUgAEF66KkNMwOkPSRUtHPxn94B9d3hV5IPkT5DhlZAcIzgmdL8Eu15TTpT4vemSCPz8joly0d6CrfwiHVme93HnpwvnXozQAtY7tQlZFHQT1OszPqb5JZ075ful9U86Y83OKi0GOXXcqVc6doDgUZP/luwqo91WuNYioCevSVzEweNwwPgoGY0POmg0+kv6M+h6XAVCnHwa6HP3kd0mfrDvayfqin3s5x+ltSUdDvV0J3fkumpwpWn+va9H7EnFUyzIaoYvWt4eNPW78+nXd8bJXFsa4ursokiMOhnH16s/F9aNXv+Og35ORFnJ9oo6r0HEg7KJnTqd7zl/cHEQdGmMjKzRnSOk0G9cn3SlVUkkrh9SIE6gekSGF5agj5av1L3b5KOw7VQg+80uj+yj86kf+mfFRMBgaRqNgMDZYqWT3jzHdIZDyROeACimUSYYIr9Fodp3onfCkK/M+RMMOrXNn1Ukc6DoN02iSWOkkk3K006Qei+8Qht0VNzsJkXJTKmxQZyoMypXuZEuhhkBP4CRPuEGzTSKfE0Q8r50nsbCf+mlR3g3nQmopgM7JVp7WZbshZ0FiZVlxSMgQPNl3O8KSqEJFZTItUFwTTshY6OcncUL+APms3OikQKPWMtRSeEsFHI1RU4VMhtoCua4yAkOtS7jxts+sYr92XggCjWYn2sFNYUmGxGtrXeGK/vyMSNokk0PlcyrUUI1Xi4YAVKiqd/Gy+K5t/vp3fX6cBUH4pUcuWCEDpX9tTbxDMqJnZlq0GwoMADSaneiVsD/6vcBN4R9dJnjtbTVu68bu7JGGmdHgUcMICgbjg2WHdLVTlJ+dY/oPbuHnJ2mHDHvJtXvUl6YhJPtxZqbZfu6QMgNIeubk2j2qL66QfeO22kTsZ04S1FtYoYnB3Qg3KzeBpdEjJ6stkpUtvEIkFfN6GYob2PmcOOWFRFDbB/eR/VoTP5WgfnpJqMFDyl/7mZNQ3CTQiJPaZ1YB8FwHp+EJ9sf8JFunBDWws15WJD5BKiHIp9ZK7HzyGQDcr3wLgK2XnyVZ9XDX6Kir02llXpBmlK1T+5i8msSan4HipqC2DsmJPNchtTEpCJrCDb+1tA+7kBfC0/wcgWZ2IDdFK5vEfm2tkxkxnCer2RYmlvwq/oWrOKFK3T93Cis0U/jzM8qkAeEJOjQfADgNj9KxDHPFDcWzACJ7pJdN08omSd+qYq0s4YWkRbJtq95S4+DpY1hyzRpNglQCL5sWc760D0ICJmliajx/lNRGDctN0QgJrdK3qtjlGu1PfRhnrUQABPMzSqCS36m3aByZF+veaLL93CHcQh4qO/jpZIem+dwpnLV7wgTTXMQHRdPtq5GEBEtLBVhbF+RZoIis/KUC5eNTzFSO4IWU3CTMT7bB44cxPRiMDZJHQZoPdCjSG00NrGcghM7pNapO12P5ga5rQJe6XL+v8zFEuRl0DgT9GQlF2iRJhGQKZq1dvS7JPyBVy7qtOxrHD6gTuGr/3Fl46/0uVbk81erkQbo5Q9ewqBO4RtoUVa/H8T/o9ahsi5q5Jo5rIDqfEvoa6ZwL0FHLK+ImjTNDN4Ho74KcY50UKc7coqfx1s0H+nzZz5wUtNA93gOdj0NfW/391bVZsc+E5FU6N4bOoSB9LaRpLbGyzO/d/FXKzaJSIcyeKgQ/9L/9KKPiX3z0nxjTg8HQMIKCwdggfRSGyRYZJemBbh+COJ+AXvcG2fIfNvZa7yCfh73W/zh4BHrNsbwnr/W6H0doFfUr2Ou69ZvLUdHLB2WY8sM8E70f5VEwgoLB44DRYxmMFcP8UEfLxDkZyjJx9UXv9So7qqPdsBhms+/3nP45blMatX+Pg2xomPUY5r5c637P7HX8D2MeBo2lX/lhnvl2JYYy+M6C4VEw+K5Hv3j2h/lD/aAbVDRS40Ge/3bHg4xllGejvAlP4hz6gT3yPwODUWDeGIMnAo/yB3jQj3yvULloHXFETw+jX4OuSfTSePTazHrVZbmuMt9Ec06M0p9eZeNIhQbV04swa9CaxT2j/ET6PKvXH13XOIFsFE3QXt+TuOeeRMHE4LsPxvRg8ETgUapYB53k5QbQrw+Pon+D1O6j1jGsaSVoNPDCz3FmnL32J67dYbUo/fo6avtx5oph+hrXl17+LcP0Y1Q8jPfBwOBRwGgUDMYGy+nEhA86UeqnrcTC/q60yL1On3GnRnma1v/q5aP3o/d6jiVyMu11Uh90gu/X91Ew7Mm010m6X9t7UcP3W8/oOgyqZ5DGIm5No+PpV4+ukegnfA27LtE1HzSGkeZ3D/TNhsLZYFQYjYLB+JBK0v7Yh6nvS5C7UIZUQlAar5UEWU4hz/bBCaZ++4IgCSrX8O4UOyREGvFQ+9wpmtkkmSv3aSxNk353rYvaWNJBW9dvU/6Bk+Tf3GDzXIFkzWfq/D1VTtLqeq6Du1Yikc+pa0CHbjckSiq9cIDchTJWvUUj5HtQZEZHl2nMZUhWW1RX0kzcaeGsldj4Y6eZvtSklXWYvFpRtM+SqrcxlyFz5T47h2fxXPGj3pq0yV4TYXb1uRTJqkey0sBZL1N64QDZqzWc9TLbpxbwXIvJqxVIJcT8nb9H+dk5chfKNOcmxXOS30BSP4d0yE61rmifdw7PMvHGdUFgFNblNALSt6rddNkhdbOzXlZU277kPXjrfXj6GABOSOnsLRVozGWYOH+H1tI+WK/iSAIqBDV3Yr3K1ql9TJ2/JzgqQtImwRNRoRVyEgSpBM25jOpn/UBWcCJoffDdBHajje8maGWTTJy/I4ioKg3skCa5fiCrrqc2aliSgjokPto5PEvm1YtqrADO2jr+/AzVE3mmf+cDMU9hXZ5rMXX+npjD83ewji7jrJcVgRUIPozEepUgnaRxIEt91qE5ZbHwW4KjoX56CT9lq3faaXjw+isP+J/OwGB0GEHBYGxIP1Xn5Z/7KgBPp9f4C//PnyJVsmnM7+MXfuCX+S//4E/w1z/8L/lrb32WnVKaM0fLXDj/LJ/60LsAfOXCcX74rCAkulS9S6uVYjF7jyvVNvdaWTLJFh9c209ios2+6S0+feAdAL7wQYW/97f/L/7ct36aTy6/z62dPNvtFH/7qV/nj/zenwdgYmKbVjtDbsKiuJ7DSQqaHPfNZaY+XuTM7CZXqmm81j02gbmJba6c30cin+azJy5x0N3kva1Ffn/tKXITdT594Bu8sn6YTy6+zc3GDKcnbgFQ9jK8t7XIleo+PrP4Nl8vPcX3TH8AwC984+N84eM/D8BffP+P85dXv8SXyk8DcGsnz4FMma/cOMZ/ceILvLt9gJfzb/H5O9/Lp/ed59fWvofD2XvcrQsB52f2f4HrjX384dwb/OnXf4aPLtW4Uk1zOFvjSnUfLxXe4Q/n3uDPfeunqWyIDe9TZ8/z/105yk+e/gYXt+Y5N1Xkdj3Pl795mk996F2+8rWzOIUsXssm2E6QKcD+fJX7tQkyKSHU7DQP02pDMuHRamdIJlJ8cvk9/u9vPkdmOs8Prr7Nq3efovj+Kk5BPJNMtWl+UOC/+exv8PmrH+PTB97ke6cu8lcvfo7K9jZOfof/dvXf8Pk738v1ygw/e/KX+Uvv/SR3b03xqbPneTF/hb/1By9z7sg1fqzwOr++/jzb7RQXbu3HW3cIfmSR/Sv3+fFD3+QXvvFxAFYOFDl/q0B6ssH+/A6FzBZv/M5xEsfEpr4/X+T4bI3f+N1TnPvw+wB8/b1VfuET/zt/+Y0/Suo/SwPiufrODv/96pf4qxc/x48f+jJfLz3FdrvN0ew61dYmr90RLJmtdpuzCyV+rPA6P3v5+7lXmuKzJ97m0k8VuFGaJZMq86/O/hI/8faf5P995uf5K3e/lyv/abepKMAwMxo8ehgeBYOxIZ9eDD42++MqcY8XMgRKal9AnQqtZpvm3CTu65cIDi0CqKRGVnjq10+QifWqSG4UUgTbmbR6Lrhwle2XnxVMjqAoiYN0UjD9IRgIbe0EbF+6IfqRTqskSTLxkl2usX1qgYnzd1R/5POy3iCVoDGXwd3YwVkvCwrikE64fWZVnSy9bJrk5bBfuSmCdFK0KxkCw++SWdGqbFF9UbA8Ws02QaiVUYyR+UlqqzmmfvuCmNNQAyBP1DJhkuyPSloVon5knvTlokpUJTUqkiLbn58RpEBhgqvkK28LSm1JQZzLiORLIS23FzJcShbF1pFFxVbphYyciZAyWmop5Jxun1og8+pF0d9DiwSphOjT5dtijUINgD6ewE2pedWTjvlHl7uSbFmS8llrU1Jmy2RQjaVp3LUSfi6D1Wxjl2ud5GBaIi9JIy0TgwEhA2nnnVTvxYWrggAqnHM/HzJnhmOR75VMgPZK8V9Qqd1SksHMyfngU5//ieH/04X49Zd+wfAoGAwNIygYjA3pA8vBgf/qL2EdqJNMtanfnCK9buMnYeaCT33WpjENO081mXw/RfaGT3VZ3AeoH6uTfSNN66UKvJEjWQMvBbWn2hz+lx7VQym2lizakwHHP/oBH/zmKs3pALtp4acCZp9dp/VvC2y+JOzOqQ/ERmW3xL/2BEzeDGjMWGwfEBqFxLZFa9pj9psO5eMB6XWb2rEmyfUkqZJF4dM3uV+boPXaDLmPFdn59/NUzoj7fjLALzRJTzZJvpJj+Ueu8s75ZZyajXWgjtcSLkOJWy7Byg4nDtzl3TdXAHAKYo4+uvQBX/7madyiUAY2p33sFnjTQoXulBJ4022smrifXrfhuQrJV3JUzjTJzdVovTZD6/S20AS0bGjZLH8JnL94l7u/fZCdpzo5F6xQk5KebNJqJvDW06TXbZrTPt50m8n3U7ibAbWDFs1pn2CyTe6dFNWnfCZu2RQ+fZPbv3cQtyTWpj0Bfkr85rQnAhLbFnbTIrENzWlxvVVoQctm+p0EflI85zTFmuwUwH12k2o5w8S7aWpPtbGaNnYLUiWb1ultkqk27fez2E2L9qQf9jegfaABpRTBZFutV+0pMW/LX4KF//oy737hBM5HN/F+f4bZ99qUDydY/pGrbGxPcv/NAn4yYPKmTfUpn1RJzEOQ8pn8QPTVbkGyBgd/4iq3//lT+CmL2sHOu7b4Ux9w8fefEu9Zs6MJWPzYTa7d2kd6sglv5NR72Hh2m33TW1S20/jv5Lj2i3+fxo0bRlAweKwwgoLB2JCzZoMXre/fdT2OrU9ef1Av8DhK34fpWf4w64tj8ZMYNkxPlo2b0730Vae+HtTfYfq1136MAr3+Xp+j49LfD72vw/S31/vbr1/DXAf4Gl+m4t/rEhQ+8c/+aN924vBvv/cfG0HBYGiYqAeDJw4PsjlGEfU4j4bO6bkHZHvR6AdZT1y0hIy+sFxX5ECIidGPjkP/Huc5HxcZYbkiR4Hsr95H/Rm9/9GxRfuhb5LRcct/MusbjfKkAAAgAElEQVSkfE7PZxDnlR/thz4W/bOdSasy+pzpdetz3SvCIMqZEDev+nvjzEx31nFhXkXQWOm0+KvNnTOd73o2sbB/17W4d6JXqG20/3H1xI2x65o52BmMAcaZ0WBsaB6c5OZ/8jGa0wHTF6Cyaim1f3M6IFO08FLgJ8U/twTuZsD6ix4AucUqO+enyRTFc61JUW5qLWB7v8X26TqUUkzcEvJw9obPvactPvODX+fffeUcf/zTr/Drl5ZpfnAKb7pN5oMUdkvUkayJfmRvtKkuJ9gRpnUy67INj60lB3czwGmuUj5sk7/iU10+QrIGE3c96jM2919oMfl+ivwVDz9pUV22aU+Iug9/+io3/9WqUmPnr/hs7xfmlsZ8m9lvOuzMi8OjNMcA3H1RmBSSNag+V2fl1xw++ImA2T9IUj4ekKjZ+KmAfW8FrD8PiZpN42AT92aKmQs+5R/bgjdy5K/4bJ6w1Zz7SWHOoSTs5TPvWDRmLNzNJWoHhbkmU7SoHRT9BcgUA+6/0FKqfD8J+Ss+dz7VZuHLCarLNvVCaLYJ+5UpWrQmxTptfLLB3FfERtiaEmN1P1Ok9PV5mk/VmXnFZfOMMFEA7HsrUCapTFGYPGTfG/NtMjcTuCWwmwGbZ8SmOvdNi/SmR/H5BJM3A/yUxey7Dda+xyV/RbxL9RkbJ7S4pDc96jMO6U2P6nKC6UstSkeFvSu5JepM1nxakzbJms/WkkP1KZ/8+zbZG228lIWftCgfttn/Wotm1qY+Y+OnZASLaMdpCrNK/orH9n6H1mTH3FU+LkwcO/MBhdd9bv2QR3I9SfPnXu36PxSACXc0eOQwpgeDsSGfKAQfOfufY12/LTL+Ad6dYld2P9xU17VolkkJmYlRZm3UoU7h4T1Vf1i3zLoY1OuqH0G50pWpMA5BQ2T0a1+7oa7FqayHUUXr7QSNxq524+qR3/WskdGsmFGyIFk+mgkxOq648fRSv+vmnLg50scXzeyp91dqZ4J6PbZML7NBtH7dhKBntYzOYXTOJaLZMfVn4+aglzmrn/kiDlKToc+lvlZeqbzL9DB9cj74+D/9Y33rjcNvfN/PG9ODwdAwgoLB2CB9FB6GT8KwP8b9nh/EyCfrTyzsV2maR+nf42TZG8VfYK/lRh3Tw56Dfv4Se2kzWp+e4lwhIrhKoUbiUfpdWK7Lq/UvdmWPNIKCweOAMT0YjB0PY3OP+gbshQp5EBOfRPvO3b79jjv5Pm4q3mE29V7ah7h64k7Ggxz6HsRZdJjnokJC3DPDnOJluWh98rtcbx36tb20uxf0qtOYHgweNYwzo8H4YFm7qJilEx10Tu/6/WEQ3fB0Z7g4hzHdqa5fnVGV/67hxGg19rpJPiii44wTHOJMG3KcceMdZSxxwkScoNKr76PgQbRJowhxw743/RxV94KHUYeBwYPAaBQMxgYrlRI+A8eP4F9bw5mZJqjXBTFSqYz9zEko10gs7FekR/7Tx7BC2l1JQgQhWVJxE9yUIFAqbuADrZfOCkpoSRHcaBLkpgQl75X7gKDSLR3LMPd7RUWrK4lxgnRSEBadv9fpeHEDa2EeEIREiS9/Q0UHBBpZkSTb8ednOuRAa/cUCZCO+oEs7saOInlqHVnEcx3Sl4sAXb4U3lKhaw4ksZAkUwJBg5y8fLuLFtlutLEv3RAET2v3OqRLIZ1zUK7QPndKEBOBIoxqF7I41Tr1A1mS1RbJy7cJQvrsKEmVqksbY3NuEqfhiXkFvIuXsZ85iZ9KwGuaf4Kcu0ZT+Vv4R5cFCVduCj+XEWRa71wV19c7GgA5P/5OHevEqiCB2iyJOcvnBLX09dv4ITUzxQ0xfyERFG6qQ7LVaApCqZVlRXEtTQzSf8HK54QJYmG+Y4rQKLGD3JQi+pIJuJzjRzrvIXSRbln5nCK7CsoVQSh14apYh5UlvIuXRWTEdkTjg8ndYPDoYXwUDMaGXjwKOqQ/QC8M0gQ8StV3FL1s5rpD3IMizrGvF/S56+cI2MvsINEv1n8YE4PlitDOuL7oZeLa6zWn0fHI56IOhnvFg5pORq1v2OtfC/5Dl49C/uT+4Ht/8SdH7s8XP/4PjY+CwdAwGgWD8cHqPgnF/fhHhYTohtJ1YovZRO1MGl8rr/9g69EQ+gkZEKdPxGlOnj5V2Xp3lIC/UxflgISkKg5Ps4A4Le7Ud3nQy/55ofbELm6qk7SsN86zP8oZEN305TXd4TIukiI653p/5D1nYV5FdUTnzo+02avOoNEQp/CYqI1BERVRHwq5xr36rOpOp7HczlglrbSiaHZT6sQvIedGaiYSC/uFxkvPIiqjS44fEfWFmgzZ10E+Hr3G2UuI2yU8WEZ7YPD4YTQKBmPDMBqFJxUPGmVh8PjwuCNOHiXiNAof+8U/PnI9X/r4zxmNgsHQMBoFA4M94Dtl4/lugFkrA4MHg4l6MBg7ohEK/crtxQN8mOfi7ve6ptfXq+979VQf5rlBc9Tv+qjz0G8Ohqlv3Bi2f49jHL2iPEZC1PQQiPDIUf8ZGIwCIygYGBgYGBgY9IQxPRiMFQOdtzTsVYU8zHNxZYa51qvve2Vs3GtfB90bhiRp2PoelCficWLY/j2OcTxIFIaC8SkzGAOMRsFgfLCskTbUUdTDo5gBHobJYK/oF1L4oH0ZZIaI+75X8qG46w9zXodR2w9jtpJlRjEDDBpH9NrDIpIa5hmZFMqYHgweJYygYDA+jHA6GpUGOXrqjaYjjivrTOdV+uNekOmAJWNkXCpqCZm2WLY7ip/AKGPttXkN0i70+j4Mhqn7YWoehjmNR0NJ5TpZ584KEqZMWqWWjqaV1hFdqzj6ankvmnY6rq86g6PONKrf6/d+GhiMG8b0YDB2xMWXw+7Mg1FSID2mP5rMR36Xn+OyBEYxDJGRrNfbLGG5ble70Q1C8hhE2x0mpj66QeljjOZoiEIlM9LmTXIC9CIpGjQ3er3R/vQixYryJER5MoYRHnr1s1fd8q8cd/vOXbhzFyWS9hA44jgNdESvyTXwhhiD3vfoPCm+iBg+hbjvxCQyNRoCg0cNIygYjB39TriW63YRD8WVjf5Y66RCg9ITD+rLoyo36FQfHa8+Rl0giatfCTPavV4bVL8+9qp3UN3ReuPWbi/zF/d50N9hMew6SYzqb/Cg/XnSfUEMvrNhTA8GTzRGNTnIZ3p9Nz+4Bk8KjJnB4NsFRqNgYPBtiO8ktsHvVjyM9TNJoQweB4xGwWCskI5c0pkr6hwYdSzTr0UdC+Pq7Ofhr9fRxecfcTqM3hvG813/3stRTe9ftN6o53xiYf8uZ0l9zgbVGR13rzFH+6fXGde/Xg6B+pgHrYEsHx2f/qzeTr8ohLh+9puHXu+efj+xsiw+Hz8ysJ+DokHi1iHa12jfuuo0uR4MxgCjUTAYK4JGQyUXgo5/gXQUjDqpeZpjmO5YGK0zzslMP4WrdMHpNIRtymvtM6s41TrBhaviWm5KJXuS6Y6dyo74G6ZAjqZ69gp5nEs3YH4Oq7JFYiFMPFXcEI6GC/Mi5bWWSEim2fZ3RL+caVQaZJksyiuVlWOiGr9mL/d36iphk5y36HPSEdELo0FUoqPQWVEmOZIJqLxSeVc2Rpl0Sc8Iqa+V7kypz7+EbFcmXYrLrqmcVZ85Sftb7+1aQzln0kkzuknL9ZTpueV6+/MzACotOYB9aBGu31Zzp5w1M2m8O8XOGPI5gnJFzY1MICXba9+5q9rV1yOatCr6WXeMleOIc+A1MBgHjKBgMDZYroszkVebIW4KGk3xY7uyjHenKDZUoH3txq5TdnBiFf9b73VtsEB31sZGU23k3p2iaHNmGhA/xI5se34OGk0sN0XinauiTwvzYvPX+9xo4qw3AXDWtsSGkJsiKFfEJhKWsys76ru3VMBZL2NVtgjm5yCXwW+28bL7sJcKOGvrtI4s4ly+jX90WVSwXobcFDTCto4fIUgncebn8HIZWCrQnMuQefUi/tFl7MoOQTqJXdykflpksnTXSgTpJP6FqwQvPQdr9+DpY1hr60pw8XMZrGabRDj3reePkvjyNwCUkAQiq6Z9aJHaao6JL71JUK+LeZdCUrlCcGgRp1zDz0+KTRiwDi0SpBIkwoyNAFZlC2+pgNVsE9y5izUzjRU+q9BodjbbVEJpjYLcFFZlSxXzlgo44bsTuCnVF2tmGtwUVviMd21NzGM+h12uEZQrkO4IAXY5LQQ8LRukfAf9c6ewG22o7Ig20mns+TmscG1s6Agi587C2rp6vwAxL/NztAtZkpdvq3FJQUkKMuq9Dt9lPXOnEj66ZWJR3pgeDB4xTPZIg7FBzx7ZK1xQbuxBvd4zfLFfeGVc+GQv6Cd7/QQfV64fUdJeWRlHwTDPDuon7M1Ovpcwxzj0mt9h6u11v9/7EdUo4aaEwABKqyI3ZPmu9Qu9HbaPD9OfJJo9MntiIfjwP/7pkev57U//PZM90mBoGB8FgycCveLHZSy8VGX3gm7vjW5icQQ4cXZ3GWEh+Q88zSwwDGR7w7D+RYl6etnao/4Yel8H9W1QGGiUoCjabr9nRxU04urrJ7wNIr7S1zg6L73KSk0BiFO7d6eIvyNO71JIaN+5G8uNIedfN40NWoM47oW4Pg+ab1mmF3yskf8ZGIwCY3oweKLQL569F7nNMAQ5OnSNgZVOUz+9RCvrMHX+XsfvoF5Xdv7YOnrY1YFdJ864E2V0k4zej55kvcbuE3ycBib6eVj0I6TSBaA4W/suv4GwXFz5YfumC2n9num3PtIfobaaY+3H2sx9xSVZ8/GTFun7HnbTx0+Js9LEG9fVs8rMUa9jLcwLk1U6TRDDX9FrvqJles2d/n0v4zQweBwwgoLBdx2kA5744S6TuHOXBODJ+wOe7yW0DCJNGgW9TtvDbCR7aW8YEqph+xTnZLmXvkXnbxQBSK6ttVki860Gx7/U/1l9zXUHTeno2otUql+/d/dn9OcMDJ4EGEHBwKAPHoZ9+WHaqL9TsJc5eRAB6GELTxLjXtsgMBTOBo8eRlAwGB8sa5fKXIa7Seh2YDuThvk5fOnBHpaVpoRouJq0SUs1uPws25ThgrIuQDmyJVaWodHE2ywp73dZp79Tp/HJZ0jfqhJcuApPH+tEHZRrKlKhy1ku9ML37hRVv/W+yrql93uvkD9pkojzg5Ce93KO5Jh0z3o9bE+fP9m36FzIcno9cg6dUC0v10kPr5QRBIAqJ51Spbc/aGGqYdihHEfX3IX3ZBSL7Js+Hj1iQe+zfC+iJiCVDyOMqpFRG9b12wSHFmnOTeK+fkk5OTZf/h7cjR2sZhu7uEn1xRUmr1awrt/GCusA1DhxU9SPzJPaqIkoCzel3lt7RUSlWJWtrigOOSfR91bOlxE2DcYFE/VgMDboUQ+9oG/+Kgoi/GHWNwYdctOSP/ISuu1cbWgaP4IMoQRi69XrH8YnYFiHv36+DL0c9Xo5bg5T57CIJnsaNtJC9ivq8Dds9EmvenqV6VcusRKGm4YChhKM6AiFEJ/wqtec6gm24t6Dfv0adT2i6xyNepg6vhA8+/M/M3R9Er/3g3/HRD0YDA2jUTAYG6xkgsRc50SpcygAKoZcxq37uQy89b6Kx5ebub2yhH9tTX2Xz3t3il3hbv5OvZMeWp5GJU9CcYNgfg57ZYkgnaSdTWM32tiXboiTa8gnAOw6AeqCi9RuSMQ5+UV//KPP6M6DupNhr5OxPFl3kSyFhE6yn7rHv04C5EznFSlUkJvCu3hZ9U9qU4JyBa9UFoKV3GQ1/gR5Mtc1AnLO1ck91F5Eww8d7TQun9frYGVplwAn3xVvs6TalaRdMuzRz08KbQ8oLo0gneziXEAj0sJN4WiaDuf4EUGeFXJpBOkk1vXbYo7r9S5hVM6VHsYr11F3yIy+D/q1KEmTXEdFfsXezCcGBg8DRlAwGBuCVlv9wMqNwHLdzoYT/lAG9TrU6ziVNEEm3dmoZdRBcUP9SKu6yxWxGW6WsFeWxAYRQm4w/mYJJ/SMt4GguEH7zCqJ9Sp2KoGzts72R44DUDqaBCC5FQDzZK83ufozBzn6iz7bcymKzydoTh9k4paNnzyCnwS3BLWDPomajZ8KSJUs3M0AP2WxU4DJmwG5621uPpskf+Up0vfa3D/tsv/VCu2ci71RUyREraV9JNbusX1qgYk3risSJ6+Qx67sQG6KxuFZ0req2MVNsVGm8ljNNtb8DNRbYk4bTTi6DJUdxUZIcQPyOXYOzzIhzSbQrfo/s0obSKxXRbk3rgvh5OgyvpsQbIZhX/zQBNN+/ihBw8OpCiGGpQJ+s41Vb5EI2Sv9ZluYaxDERABBSvwsOetlWoUsifUq/rlTONU6lmbaaXzyGdyNHWw3hRMKOkE4RqveIgBBkIQQ7qxKh1lTCoC6ut9Kp+HpY1DZEe9YOk39yDzu65ew02lIp6n+wEmyV2tYLGOtrePPz9CcmyS1MQPlGu0jYgx2o00r55KsNLCabbxsGqdaxynXukwyraV92I02HijircQ7V5WAJImn7JUlMYai/iYbGDweGNODwdgQNT08bsewUUh74u7rJ39p5hiW5Ciqpo5eG8ak0uvZuPaj5Ea6dmOvqvNBbUbvD2orOtZh1yE6llHeo17moV5mh159eFzYbXpYDJ7+R6ObHl79ob9tTA8GQ8NoFAzGDvlj+zCjC/o5sPX6wdedyPoh6kkvNqnePATR5+LqiH7uxQgpw/6GqU9HtL5eMf36tbhNdJQ2o/cH1RPHPxCH6Psi8y7E1d1LeBj2nRvkZ2LMAQbfDTCCgsH4YFldiXT0qADpca/b0qPe/lY+BxBrG4dOFIX0oLfSaUFFurKkkjNZriu80IsbBIcWhYd6mBTKLm7iLRWEar+40dVG+8wq9mvnxcn/6DLOepn2tRtdERLQfTKOOsxJ6MKL3JiizpjSgS6xstyd90L6F0R8AnY59YXP6xEO+tzKZ3QHRjuTBukHEqrmo973im0wn1P9iiaWAroiHvQIFT3CRNnoYfd8rSx1+U/IfuoJr9Sch8m3gG7n1WdOYhc3CXJTbJ4rMHGn1TVH6ctF6kfmSb+7hj8/gxOuvxPmbgBiozHke6FH0Mg5jKOp1iNw5JrrmpHoNT1pF5vswqPK9WBZ1svAPwAc4J8GQfC3Ivf/MvBnETQU68CfDoLgWnjvZ4C/Ehb9G0EQ/PIj6aTBY4ERFAzGCrk5KGewRqNLhe/TOUlbrtu1CUknO8IyMhOjLlQE9bqwUYchdxbCF8FKpyFMpmQ1mviHFimdnWbmtRatbJLk2j2R+GhtvctTXm6UifUqXkMQLyXWOpufdMDUf/RlRkLdkVH3to+is9FozIxhu1IIUQ5vmjDV0Tjs3qBkFkVBXdydx0KfQ92pcnd/y8pBT25isi+SmEi1qfXJzujRJx1NhjUzjTONckzUhSW51kpgCEML9fmQbVuuq74HjQaW9lkltspl8NwEXnaR2gEXuxWQ2qhhXb8tyh5ahEaT9Ltr4Kawi5tCgKUTJirXUs2L5mjqTKM+6wJMNCOkmi+6NWDOdF4IvpqmJ6pBGjZi5GHAsiwH+HngB4A14OuWZf1GEATvasW+CZwLgmDbsqw/D/wd4Ccty5oF/ifgHBAA3wifjRFzDL4dYHwUDMaGYcIjHzf6hRlKRE/r0XTKo4QBPi48Dlv6t4uPyaNs+1HX8zW+TMW/1+WjcPYf/smR2/3ay3+rr4+CZVkfBf5qEAQ/FH7/7wCCIPibPcp/CPhHQRC8ZFnWnwA+EQTBnwvv/a/AV4Mg+LWRO2rwRMBoFAzGh9D0ECWa0dXgwK6wMf0ULjUMeggedE5ktqY6l2VkqFxw4WoXEZG6H34OGo0u9bsOeVKVIYLSfKGGFmNuAFTqYF3drwsjemrhqHCiq/V1QUQvp483aqqJqvT1OdFzX+jRI/q8Bo1GV7hkV04E+VwMyZWuBeoKmdTGCnSVl2GPUr3fpYEJzS1qbmLSNusU23roYdTUokwn2jugvz9yTnXyI9wU7Ws31HoF5YroUxiloIdKRkmuZN36OxK31oqISns+lhKbPTMzzlmW9Zr2/ReDIPhF7ftB4Ib2fQ14sU99fwb4zT7PHtxLJw2eDBhBwWB8CIIue7W0c8sfSflDqat9Lc3+m1jYDzv1LjOD3JBkOU+z/aqNKFRjS9OGk04r/wW9P1JAiPPO9zZL2PU6AeHmQzfro0TUX0BujF1mAc15T984oydNZSqI2WiUY2WXyrp/fgZZj74RWW59l8Am58Ry3S7/iy5fA41pMoj0Idpn1f6dYqwNXzexSHOSHKtXKmNFNtxO1ENH+LHOnRXho3eKXYKEMx3+1TZ8UQddiZ9iTQWar4AyLdwpKhOQvul3CJl2+4tEWUL1cetzK+rqzKflulB/aBrgjYcV9WBZ1k8jzAwffxj1GTx5MIKCwdhgJRM4U+KEKGPzKz/1EfIXt3DWyyJePiREsk6sYhU3RZx5SH60fXiWzJUOBa7UFNjlmjiNnjurHBGd40doF7JUV9Kk73t4rkWy6uGnbBGLX9lh81OrZK/Vcdarok43hY3Y5LpsyZLMKOxbcGYV1qtYR5cFbwGouHmA6ok86Xtt3LWSIu7Z+chxMlfuA9BYmlZz4qds0reqggcgnaQ5NwmAu1aiXch2zV/bdTp1htckhbQ/PyPmrd5SGTEBcf36bexnTqo2rHIN+9AiXjaNXa3TznYcLRPrVaxGk+pzi6Q3mtiNNrz1vtAsuCn8XIa2m8BzHZyGRyubZOL8HcH78M5V/KPLNOYyKlOju7HD1sEJlanTB9q5o7ivX2Ljj5wGYPbXXsc6sYpdrlE/Mk8r6+A0Auymr3gJFC1yLkPQbGOF/iblZ+fIv7lB201QfeEAcIB7Zx32ve2Ru1BWHA3bByfIvnFbkXP5+Um4fpvgpeewXzsPTx9T/Ad2o41z6QbeUkH9YPrzMyTSaUrf9xS5C2Wseou25HzIZcT7S8jjUNmifnqJZKWB7yYIwvfCmZ8jSCfVOgGKXEppJCR9dSjYUOysjWhA5Ht4BLgJLGvfl8JrXbAs69PA/wB8PAiChvbsJyLPfvWR9NLgscD4KBiMDbqPwuO2b+sYFAIXVz5O/d8r7l4vr3vpx/EuxHEY6J/jzBnR8nqZYUIFo2PrFx7Za7z97o3CvSARx0rZb04GIaoR0qNOgNg12RVhozNdhmygsq6oWaHL0ZN4c8Og/uoaGokoj8LkscXg9M/9qYH1RfHaZ/7mIB+FBHAR+H7Exv914KeCIHhHK/Mh4F8BLwdB8L52fRb4BvB8eOl14MNBENwfuaMGTwSMRsHgicA4hYRebcepxaFbba9f0+uL8gRIimFZn1QtR9se9F2vo9dYomr/aF39NtheXAf9ysX1YVCdgzbOOHPEqH2MM81A73XV1yQ6h1Zkw/YuXu58jpnPUdOEx5WLS2X+uBAEQduyrL8I/BYiPPLzQRC8Y1nWXwNeC4LgN4C/C0wB/9KyLIDrQRD8cBAE9y3L+usI4QLgrxkh4dsbRlAwMDAw+DaGz6PhUQiC4IvAFyPX/kft86f7PPt54POPpGMGjx1GUDAYGyzHwcl1VPG6U52MKtDVu9AhWZKQhDd6ymB5XaUbDp3WdK913VO9q2wIb7OkYvT1PBLRhERouRFkvdKBUpaXDm8yYiDaX+VBr7UvHTmlH0T72g2sE6s45RrtazeEj0GYEtm6frvjCBq2Yc1M48/PqMgONef5nEqYlFjYL/JchJwB+vwAu1JD46aUb4Z3p9hJyBQhkbIi6b/1VMk8fazjZNhHKwHdJE3yXdCjJyS5lYzKsE6s4n/rvW4Oi3CegM5cpdNAuXs9Qh8H6c/hLRVIrK3HpgpXKa+194/5OUHidXRZ5JHQ7ks/Az36A7oJwmQSqi7uiEh5r1TGiphMDAweB4ygYDA+pJJiw5zOC0fE+Rm8bFqQGV1bU4mcujYr3Ykw/JEODi3iFDfV5h+kk9iNJo5kzqvXcY4fIUgnacxNCqKdcgWr0aT0wgFyFyax6y3BDhj+sG+//CzZr10Tzn9asp9WVjifpW/NUDqRJ1X1Sd+qEly4inVilaCQx24uUj6Rpz5jk7vexi3ksZttUc+ZVexGG99NsD2XwmkEZOTGnMvguwnhELdUwA+dBAG2XzpI/uIWXiGP46ZEcqR8jvKJPPl6Cy+XoXlqAefKfRrPH8VdK2GXa2x/8hkyV+6zc3iWzJX7VE/tw2kEJLOnaLkO6XfXlIOon8uI+Q4dH6Ug44cJqOpHxPdkpYHtptg+PIvnLpJ94zatpX1YoZNeO5smsT4lEjrlpoSj6vk7Yh0rO4L9EKg+t0iy6pG+XFROfyAcBb1sGhpt7MoOXi7D/bNZCo2mSqIUuKtsZ5NMQJgoCyjXsEPhJzizih32Jzi0SBAm+QpAOKk+cxLKNZX9UcKu7BDU68LZcV1kmbTSaZWsyQrr81MJtg9OMHU+zCxZb9E+s0py7R7e0WXRVm4KP3RwtRtNHFnPelU01mhiISIuKG5g5XMiq2lEKJKChnP8CFz66gP8hzMw2BuMM6PB2JB39wcv2j+gTtsqq548uYWbh/qRDk/DKtugdlrT7/n5SZESWOMKADoaAC0Nsa4V0LUGKuwtjoUwRFzipjgHtC664ojmJOrcp8fu6+3p/AvR2Ho93C5K7Syd8+Q49RTPEvrJX4e/UxfCT6iVkFoQlfI5Qqsc7Xd03qTGRAp93lIB3np/V/s6x4Lsu9RgyDFEE2PpHBo65DNd3Abh+satm96ufC/l89GxKW2TpvmCjh+CvtZqfULNgaxHn8Ooo6ak6waU9uP3t36DcrOobA0TxxaDk//gz+wa9yB887P/s0kKZTA0jEbBYHzwfJx9ITVyIQ93itgrS7QvXu78oOZzQkhIp8VpWufdh84mH9LuBrkp7OImhLHy0Q2wdWSR0t2mQNMAACAASURBVLEMTjOAsx9i4k4Ld63E3U/Mk9oKsFsBrUkbL7XEvnd2CIDaAVeUB7Jv3BabVW6KdiErTpCFvArZA5Qmww9PltvPHSL1pa+rUDwLcWp2oEulr6v4pbbEXlkCwE8nOxuPm8KXBEga6ZHc1KQ5AVDzKEPspJDgLMwThJoMKlsdk4V2wrYRhD5yg3VmpkUYYeEY9qUbBOlkF0eF3ICdmWkCKbSEGh4LoLgpwgRfeRsnnRYhhOFGa8/PCC0JgjvBz0+qdQvclEgzffl2SMc8JWi4XS2R11IBOydCZWWuh/IPnGTzhEP+io/dCnCaAcmqR/VQCi+1RHvSYmrNA2DylqDlprKFde4svhv+NF6+DW5KjH1+Bqvewi5uYOlkUcWNLqFxl7kqFOws1xXCW2gWSSzsJyhuKCFZrq+cz/a1GzjHj+BfW+usTcUc7AweP4xGwWBsyFmzwUfSn+k+9UeYEeWPp56YSM9HIJkduzj4Q+inPujkB9BPxTo7YJSxUA+Bi5L7yM96MiC9v9CtfYiGLOobaxwhT6/skXERC4NCFfX+98KgctG8BHHkUnq5uARHo4RUDns/LvSy3+cHbTMuNLbXc3sN+e3X31frX+wKj5w4diA4/rOjaxTe/MN/w2gUDIaG0SgYjA3qRDg/hxWSCznvrgmWRC0rovzeLmRxqnWspQKAsl+zVIBL4vRlNZrCrJBKYDfbNOcmaSEIi6z5GeXYZp1YxS5uUj8yz/3PLZO90cZLWdw762C3IH/FJ39xi+2XnyVZ9XDXhDBgNZrCdyJ0hGwt7cOpCpv6vTMZctfbJKstagdcJm81lI+BJEYilaCdc3HWSuL0emIVu97CqmyJE2tIxuRu7OCsl9Wpv13Ikli712U6scLncFPcf+kg+X/9TUUUZNVbws69sqTqDlIJlQRL+nP4uYzQhoTaGD/0kwDEXEsioLAOW2oFKuEmjPBpkLZ3OUYu3eiwIxbyOJUd2oUsduh3sHN4Fs+1yH7tGiA0LPefFyRRc79XxKpsicyNoW9EstLADgmQkmv3hFmq0SRwU4q0qHR2mum3SzTnJtl41iV/pQ0giKJeO8/tv/Bhln79BqUXDlCfsUltBaTvC41CfdYhf3GL29+Xw90Uh6fCl650zF4RzY8knJJZR+XcBukkQSpBYl1oRVpzk6Qvh4m8wvdSasUkBbjSJkmNjHTKDU0eQMdsszXxMP7rGRiMBKNRMBgbnrSkUMOe1MdJDmUwGIM0L73uR0me9GvDEj096ncjSrhkNAoGjwNGo2AwdkjzQC+mwjhnP4hnxNOfkZ+jDoZxCZlUoqIejIZ6m0BX8qOoQ50yLWgOd9Kkoqdehk4iI+VvoIUmKme68LtsI840I+sClF9GHHujnKu4Oe/1jO7EF+esGZ0j2U/opA/v5D7YbeKIu6Y7aOqQpqZof3VzQPSe/g50mVCiDpDzc8L/QIs8AJTWR0YmSA2AngvEOX4E7+JllSNEX4t+QoXe936CqjLlWLs5E8xZz+BRw2gUDMaGfhqFYe28j/oE9+2gPejl07AXPM7xPom03b2SND0piNMoHPtfRtcofOtzRqNgMDyMRsFgbLAcByvZ2Sx0r295TaYMlifJaCrpuJNpVNOgn55lOVlPbNnQRqwn4/EK4oTrrK13pSPW24s6P+oRAbpjX9TxMs5Js9cpW++rJEzi+m2VpyB6ylYe95FcBTJssCsqJCQNktoS6E4RrfoW1iUJnfS2ZB4EQBEI6c6j0jdED3HsSswEihRJrrdO9KQIjugOHZWnfD1ttv5OBYcWVZinVyp3SJritEWyfkTUiaWTaun5HiKaFj31tk44JdczqgGSz+raJr1snNOo5ThEEewtzbSBwdAwgoLB+ODYgqnv0g2xSVW2VCpg6LAwWkeX8QA7DA1UP9BPHwOEU6NO1kO9hVPZwtssdZzOGs3uEEA3JQSDhXkCLSGQMzONV8hjX7rRlbo4kOmhNbMBhMLFzDTs1IVjm/yBbzTURqabNOR3XXgRuQI6m0eXgBExl8g2FeeAZCIMNz2VQlmDJKqSm5tkVARUrL7luh21uxa1odgiJa+Ftmna5RqBFEZyU4LMaLOEd/Gy6p8zMy3IgiRXgsYCKUMGpRAgQzoDOomXRBhkiqBep3F6Cff1SnffQlONdLS0w2flWitho95SrIZS6AS62Dz1FN8KxQ28iKklyluhOBim812mBt2sod6LyDWgS/BUQptmKrFOrBKE68yWEQoMHj+M6cFgbMgnCsEL/idi/Q9GUftGfRKidYySsS/O2U33Kejlv/Akqqn3iidlTMOYVOLWVtdMRX1UomurqLaH0OgME3I5Sj/3EtYaZ3o4+vf/7ND9kHjrh/+6MT0YDA2jUTAYGwLPA2t3RsEoBm1c+vWowNHrubgNQzcHRAWOXpn8HsVmOu5oi4fZxl6FDsvdnQEzbqOOq1c6O8p2vcj7of/ttNE7W2XctV6mgVHQ75lh6wsCY3owePSwx90BA4NB6LUhRKFvSoPK99ow5LPD1KELE1Hh5EEwjED0sBDt917H0eu5YfscJ9z1E/gGRV08Ssi29HdmEAYJwf2uP86xGRjEwQgKBk8Mhv1BtFw3doMb9sf4Yfzw9lNDx9W/lx9+Oc4H6e+gZ6NzNopwNMxzw/Z90Al+lOfjhIy99qtfWw/jPYrra/R96pqHmPBIP7BG/mdgMAqMoGDwxEBxC2gbZHSz1FXOUfNANKmRXt5y3U7uAO2HPs7UMAiDnum16ekaj2HaG0az0asvo2yUw5TtNbf9nomOd9Dpudd6P4igN6pQOUo7/bgRRsFIwprxKTMYA4yPgsETg6gqt5+tPu5aL5u28kKPqVe/PyxGPYXHlXtYZoRe/h0PMp64+15MO8Pa2OOcVePK9nP2i65Z1NGx1yn8QTQVo5hN+mlUHnStH5dvioFBLxiNgsFY0e+UOeyP/KCyvTbRQU6UDwO9TsOjagL2ovmA3rb8XtdHqd+ZzsdqJqLX4ua5l7AX1URExyHvRxkkh9UQDOMTMCr6CU+j+lLE3R8oyAWj/zMwGAVGUDAYKx7Eca/fSXQQBvkRDIO9+A8MEk4GXd9L9EC/+qPmmFF8FHRirF5t9BIOej2nm1p6bZpx5phh1jP6nOW6JBb2K5KkOETNLs7xI111j2oaiZuPQfNiYDBuGEHB4InBKI5vD+I810sVPqzvgF7HoH70ux+3wQxqX9+0hvVz6Ff3qNTPw5ob4vo36iY4ig9AP4Gl10YeNBq079zt4k+IK6PPkXfxsroe5y8zSIMU178HdY4MAmvkfwYGo8AICgZjx6BNdRSMsnmPYr+ObrTD2PWH6Wf09D2ofX3TGsbJcVDde3V6HEVIeZjYi0YlzhwQdc4cxsejn+Cjv1PD+kpEYbQJBk8qjKBgMHY8ih/Ivdh6+6HfJh7Xdj9fhKjQoeiOI9oCXSUu23am813X+52wB2kf+jmL9vMTiNYf3XT7+R/EXe+FYYSYYSIT4srtJYnWw35PH8QvwsDgccJEPRiMDZbrYp88SXNuklbWYeq3L7D18ROkN5rU51I4DeF1ZTd93LUSjaVpnIaHUxWObPUDWZLVFsm1e/j5SbxsmlY2yf1TSQAm7vokaz7pjSae65C+XMS7UxTJm3IZtg9OcP9kgmQN7GZA7nqba3/IIUj5uMUEiW1I1iB7o83EzW0AfDdBYr2KVdkiyE3RWJrGTwl5++65JMkazL3ZwGl41OdStCZt6rM2s+82uPlxl31ve6SqPnbTJ31ZJEry85M0P3Icu+mT2qhROjvN7JevUn1xhfTGopqvnTmR1yC90aT+4gqTVyvUD2RpZm2yV2u0ci7JSgOr2cYu16DRxDk+B8DWqX04jQC76dPKOngpi/y/f4+tl58lvdEksV6lXchSn0upsVqAs16mfmSe9LtrVMM2Kyfy+EmL6bdLVD5zivzFLQJ3Fc91aGUd6jMO0+/vUJ9Lkd5okly7h1fIs31wQvW/lU2SrLZw1qsqf8T6J0Uyqck7bbXmfi5DdXWS9L22Glv9QJb0rSq11RzJqkd9X4LijzbYN73Fxrtz+ElY/N2A8mGH7A0fgOy1OusfmmDirrerLrl2AHYL8lc8WpM22etNnIZH7YBL7kIZu1zDK+S7EoPZWkppmegqqNfxjy7juwk81xHjuLa2K+lUcGgRLlwVuRwuXFXJtKxGU+Xi0NOQW64LiUx3HRhTgsGjh8n1YDA25KzZ4CPpz8SGwEkMCg2LhkD2Qy/TgX56flihaHH1DArpGyVddFzo4F77brmdjJa97kO3ViOaO6HXmHr1eZh2Hsb8RNf8/2fv3YPjyLLzzt/NrKqsQqGqABIAAXaBaPDZ7LfaPaOeGY9HI+/saGVJK68dsiS/ZYe1smR5vStZlr3Wy+u1VuF9ONb2xtqytesNK7wRfoRshTW2PKMZj0c709Nq90y/hmySGJBoEgRAAlWFR2VVZd794z7qViILD3Y3QdL5RTBQVZl58+bNZN5zz/nOd+5lrNLG+rDXda/PVHJMkrUeimcfk4//0g8fut1Lf+Bns1oPGQ6MzKOQ4YFB2st4rxe0u/0gk9NBMg3eL/dyWjvJSS65z2Hc4fcaBx/W1rBaFmntujUxDhLbP8i2g7R1L+MzrM3DGDP7PR/vla/yXo/NlnoZPmhkhkKGo4MQQw2BgxAP91vNJleP7srZrIr96SnaZ6YIllT5382Lxxl5dxvR6dkSzm5lQdMv005u+gSyOqpCEdr1DFjXtCnTHK1v4E9PES2v2OMBW/IaUGWcdTvy1AzeyjqyOqouZmUN6JdXNiWjzX62fPEz55CvvGH7PdCPoKBKL+vrZ2oCEXaIa2XkpQXbV3NOWcwj2l113sUlVZLZlJnWpbvdz6bUs/lLUCBaXrHHmdLR5pxeY0uV/a5V++W/NXrLt22p6HinjTdXJ7p81f4Guszz+TO2xLgZY9loqnFpbLHx4ZPc+t2Cmf8g8TsSP5SUrt0lrpbwl1bt2BvEtTK+DttE6xuEn3yW0rW79CYrNoQiOj1EuztwXnNP3VLgSa+GKbWd5jlxv7uek6Q3g0H5iAwZ7guy0EOGI0NVHJPfKn7vUXfjocZBMkbeS1bJYY/dz03/QeL9zJ4x7T1omQhpoYe5ewg9XM5CDxkOgcyjkCHDQ4wPOu3usMd+EGGcezn3g9jeB4KszHSG+4AsPTJDhgwZMmTIMBSZRyHD0SGlZO49NXOPDPb7gWRGhfmc7M+wLAYDl2Nh0vIMTFzcKxVhakLxCQzfoK22iVqV3uKNgZi+4QFY/oBu25+eAlB8imfO4V250f9d7+tyL9y+mHQ+t5+G/Gh+k2FIbvqETftLg+FYmLZcIqO7zVx3MqY/LM6/1/1x2zf93O8epbV3r9kVGTI8qMgMhQxHBuF5+NX0lMHDvJwP80J+ry/tg0wEe2Vt+GM14pT+7JXxAX2Cm8lOiBPHA2qbHktDmrPt7rSVsuPlqwMiUL3FG/azrd6pyYJeqUj0yhtEun13X1f22L0ej34WhWnTGAlufy350oERboo2Grovjf51OWPrbktul855k+O5X0aDbW9IdspBwirJfe+LkZDRzDJ8wMhCDxmODDKK7Ge3EmHaihp2v3T9sdqu40QQ7FIKTFY5NPuav2a7CAK8Z58Y+G7aMt8PMhHs9ZsppGT+HeRYc1xyv2ErWvN3l5GiPQVp53LHuz9RD2pPmHExHgGA3PQJlX3hXF/aWMU7KvvCHdOkAJG7j9kvee+S3hh3e25uVh2jvR1JwyB5PlfhMk1d0mYrOM9A2t/kccO2pWHYfub8B20nQ4YPElnWQ4YjQ5b18OBh2KR80GPf74yHexE4utd9Hwbsyno485ic/cUfOXQ7V77vr2ZZDxkOjCz0kOFIMSyl7aAv+L1yzvc73nWJmxi8ye/v1o8D0J4o0JrNMXZF6QlEgbCS0PlmSDhRolPx6JY98lsxlYUt234c5PDCHqLTY2u+ysi723jNHXZOHyMKBCPvbtOtBn3Z5i+9S/vMFHHBI9/qkltt0XhOSTCXb4Z0K3mCtR381QZxrUz7ZIXStbvsnD5GsLaD19xR561qmd/X34FnzllJ52hS12bQssxxwaN4s4Us5NSxK2uIWpXW8zPqnAtNq4cggwJxtYTo9NT9KuSUnsD1W2osa1VkUICVNeSpGWQhh9TX7682kEEBWcwPtCeam0T1SdU/rb8A4DW2rCS3v9pSmgerOgzhSCiLYhFZHe1vDzuWk2E0Iu5+7DHGX1ll8+Jximsd/FabrfmqvT5ZUK9A78oNwhfOUry6ggwKVpo73+rihT22Hxsh34oIXr0ywPcw1ySro2r8HO6E0c1I0wcBBvgbe4WzzDPuj9Vg49HLcBBCRMBHpJQvp2z7XcDLUkr//vcsg0FmKGQ4MnRPlNn+yHOUF5psz1fxQ0mn4lG802N7Ok/xbsTWdI7tE4KR21LVbbjTo1tR7ww/lESBoFv2KN6N6FQ81i/41K7FdEYFfgf8jsTrKrGdrRM+xfWYm5+OyI30kDeLxJMdZNfD38gx+9wtbn/hGO1zIxTfKTK6JNmsC3plSX5T/Vc59kaL7cdG8ENJOFEiCgTtcY+xKx1ufygAyrb/nVFBXBDkNyVRAbZOVPA7FbqjAq8jWXmhytSrPe4+eYyR2xHLn65TXI+J84Kt6RzdbxmxBsqdp0oU12PyrRyrn64zdkWJHYX1MYo3W6rOhTO5bZ0MqHCOOMjhd3rIoMCtj1c58fI2ola29R7QtQ6YKNF+cZLa5U1bY6MzUaZ9oUah1WchqOvV49+RRC+M2zHulj2iwpS9hqggyG/FlIMcd54qUdiUeN0a5Zshq98yQn5zivJyj3yrS/PC47THVSS0sDlmj43niuo5eLqC35GMvbFB+8k6tz4aMPPbIbc/FHDiqyG3X5qleDemeDdi8b/wqb3jsTMJZz+xwJvf/hiPz93mylsz/Mjv/SL/x2c/RWHDI/zuUeiqc4qRM7CRZ+TmLNsndX2IuQbdV8bpPrmNWPQpbOTofOpJcluCYGMWryMprsdwoUa37AHqeqJgDkDVzJis4XV6RBVlkPZ07QeAndPHyLe69HQdkrhWxmt3iaslctowap+Zwn/1CvJjzxOHPcTXHslX9l7Wj0/GwjhyZKGHDEeGByX0MGwlt0sVj/dGTku252YBHGT/g5I7h7WR/M3tw17Xtt+1DzuHwbBtBxnL/fq/13nd8yfHO43/slctiXt5Fj6IsEda6KH+Nw4ferj6h44+9CCE8FBGQhf4KJD0KJSAnwB+REo5fZ+7l8HBI2meZng4IHwfYvacsEyqGiRkj1Gpf27dgbTCRgPZBintp5H/DPbLpnAnjGHpfua8psqgyUZwswDS0v1MXwfOMTerXN6OrHRu+kTf3Q7K5d7c3NUXK9lspKbHx6z73jCahZY/HrjGWlVJNQeFgXMPyDU3dLjFSbM08tFMTcDKWt91rvsoi3ko5OD1dyz50I67U4VR1Kr9DW4apxknsGmbSblqUCme3rNPIC8tDMhfp8E8O66rf1gRr6TB58qCm3uYbCNpYKSlcibPs+u49yml+KghhPhZ4Gf0Vwl8aY/d/+4H36MMeyEzFDIcGWQUgVAa+AOTHf2XpTu5Wwd4wnAwiHfauyobAvjnz9haCaZt24c9jAEzscUwqBswV7dlg805Tf/NS9+06U4WImgPnNsw/M02M8GZehBuloJsNFXdBKct6Osk2AlqZY2ek3lg2wg7yJU1JPQn33bbXg8ra7Sen6Hymqo5AVi9BcMDyOl6Dq4P0ltZt/vIWhnP1IkARFCgp9MxjV4DAM1NYFTVS9D1D/zzZ4gXl9R1O4aD4TLYe6Lj/v74GFF9UtVrAGuw+MaA0jUhvFKR+NJC35vQTvfguM+AGUt38k4ag+Y+GO2KnD6vayyIILD32G3DTS11nwPYrQlhjvPHaioNNOEBljy0yoyf138FymD4B8BSYp8QeAv49fvXrQxpyAyFDEcHIdQLWq8EzYvUfBdB0DcinFV20kBwf7NiRI7gj2huDkxuZlXpT0/Ren6G8kITLi0gLswPFDNyMUBQ00aCe15RLIJO77Pn0ZNGst/mN7PyNpOP61EAdvVh2GrYnBvYRY7rLd7YNQkJfW47oYUdop02o1+4BMWiDRi73g9vBahV8VbW7e8R/dVxDogXN5AMFswyBoApDmWLRGnDzRg1riEXrW/AM+cUaXFlDbR3wZ24o/UNWN9AlorE6xt4jSKRGdMgUJ4EXTTLd4pmmWtOCzO4aaTmePcY10tjxjnaaIDj1TJtRmF6eChpJOCMYdLIdLcdpnLmwwAp5ReALwAIISTw96WUN4+2VxmGITMUMhwZRM4n/OSzbE3nmPytJcWsL+bpTJQprCl3du/r30B+7HnaEwVb+S+s91ecfhjhr7ZspUO/uUn7yTrFqyuEL523rHWAbjWgdarA2Ds7bJw7zfYJwexv3GXhDxyj/O44W48JvO4xTn2mSevDJ4nzgtasx4mvhrY/2ycrRM/PKKIa2EyD1sXjjLw7aTMdvOaOzVhoj3u05qGyAFNfXmd7vkpUUCTI4nqM35HkWxF+GCkSos6ciIMc+aU7gFpZb58+Rr41Q261ZVfZ8dQ44USZfHNSjceVG4halbhWRrS77Jw+ZqsfilabnA4biJV1ODurqmQCTJ6jF+TwW206E2UA8pM1ulU1AeabId1qoImkc4y+fQdZzNO6UKN6qYFsd+k+WccPI+WBabWhscXO6WN0npugeqlBa76KH05TvNmic0Z5OgwxdeTdbbYfG7GfveYO7Sfr5JshcZAjCnz8UOluRJoQ2Jus0A18CmtbegxCNh8bISoIind63P5QQP2zTZa/5zS9smDrsZjJV6EzKtiZEpx4pcutj+QBKK3CziTktqF2LWL7xCz5TUl3VFC8G+N1pSXSutkSvr7/JoPDPpc6M8UzlSjrk3jNHWWU6ewT0elBIYe/tEr7yTr+0gY5k8mxuKSMJZ0lU/ryZeUJWtltJD/skFL+/FH3IcPeyMiMGY4MDwqZMcMg9kpZTfv9IO0d5piDkCfvpR+PApJkxuD0Y7L+P/7oodu59gN/5cjJjC6EEJ8AfgA4BSStISmlzF4UR4hMmTHDkWKY8pyrjrjfscn90pQYk/sn/xo+gvmbmz4xVGXPPd97VeBL6/9B9k8qUhoVwySSY2GuK01tMHnO5LHGFZ9UTHTPK4JAhRzGalb50OWLDLtW95+rOmnac/uT3O62l3ZP3bZz0ydse+7v7zfea5uHeR4edgghfhj4LeAPAmMo3oL7L5unjhhZ6CHDkUEU8nhzdUTYsax1eWoGoXPJDVHNFjZyBHYAeP2dXTwGwMalAUV4W20gG016T82Tv6oEgtxYv6lNAP14tInDm+0uBrIJHL6DJdk5RZFA8RpkoznAszCwfIspFaYQzU0r3hPrOL0dAy0iRNhR+ywuDZDnXF6HIQiysgbPnCO32iBaXhn4PTc3q8bCkCfNOLp92WjgPfuEuidOsSmCAr7OPomnxpXLvN0mPjtLrAWUQBkmsjo6QIwUYWeXABP0a0wIncVg0H6yjn9mBlZbasYw/Ian5pFgwzMGca2MvLSgSIZO1oRsNC15U+j7b/kBDpnS3Bd7//R4WsPIucc2O8MpYGXuhSE/mvuf5KrYTBCdGWKfAy185XJUvFJRjcs32YVHwCn83wG/CvyQlLKz384Z7j+y0EOGI0MWeni08X6FCPbSTXiUcJDrSws9PPbXDx96WPjBByf0IITYAr5HSvnZo+5LhnRkHoUMRwbh+4h8Pw89TdTGYJgcbnK1N0xUJ6mlYH7bD8l0NltIyM3TT6w+gV0aB/FO26ZVJr0Obp/Nal8Ui/YcgF2RuhOmu1p3q0UOhGG0lyDaaNiUQbdktMnw8B1dBXvOhD7DQEro9NSustXmmAHNBLSHAEXINKt2NzPCyh/r1b9sNHelJvpjNavpYDNQnGvzz59R3haweg+uboKbYWLgpiK62TbJfZPPTrJ0tpu5kpubtc/pXuWqTTv7aTvs0lTwH0kl498BTgOZofCAIjMUMhwdfM++aH2TyDBXBxgIPUTrG8S1Mj59TQBATaRhpx+Ldty/8sI88tIC3lyd6PLV/gR/dhZ/aVXl3be7dpJ1JxqTuy/bbeVWDwpsX1TCcJ6ujSA6PWQhp/Rldb5+76l5PJ2BkdP9E7qugd/cJC6qUEtULeEZMaEd5ep3XerxTnuXVoQ8NQOXFgbElmydg+amdXO74lXeXJ3e5auKU3D+jNIvmJrAd0I9tB2jAQbCBCYEASqF0moX6LoK/lhN9VlP8LaWRFMJKonrt2BqgmhxifjFi+RWW2py1+EHk4EhCzn8ZpG2zoQorJXxdAjKPAtcuTGQ6mn0IQTQ+Y7zFG+2bFhGvPg0YmkVv1ZVEsjhDKLVJi7k8ByjibCDf15dowSojuLrsEhczONVR9k5fYyRt5eRQQHPCQkYo8sYdK5ehblGABw5ZrPdhtJqVTxU6AZHE8I13rafP8XI28v9cNO1L+z+f/TwO4V/HPjHQohLUsp/f9SdybAbWeghw5HBhB7M5AfqpSkvLQysnNNElIBdee4DBZ4cgaQkzErU3c/dNykAJWrVXYqFrifAT8TU7QpWH+eusM1K1O1DUrXRxTBxoOS1u9cG2LbTrts9zpU3TraXNvbGg5NUojQTbzJO7+4/4F1xtDCS9zZNpdPto6uCaFbjaQqHxhuUNt7uvTDndK/fVXu0466NBGMIuB4WV5DJ8lYS3i53TM35zbUlr996W9qDOhy/vf7Pd4ce/od7CD384Qcq9HADqAKjwDawnthFSinn7nvHMlhkHoUMRwYRBPiPn2Hz4nEqr92iWz+OF/bofuxp4oIiOgdrO8hOzxbLCSdK5Ftqpbk9UbB6BqYKo1ntGxXHH/fdQgAAIABJREFU+MwMUeCzPZ2nstimNVdkZLnL9nSe/FbM6Nt37KrRrHolsP7t8xz73ALx1DhrL4wz+ZlrQF+lMJwoUbzZojtRZrviM/LuNnGQI7fa4u53nKa4HimtgVMz9F44i7e2hWh36b1wFj+M2J4oUHntFvFT8/hXb9Fbvo337BO2ymMc5Mi9uUD8zDl1HbrtuFrCa+7Qm6yo75OqqNPWyYCxl29az0fxZovG02OMLHcJljaQxTyRHpvmhRq1r61ZGWVzLaaK5OZFVTlz5N1taO4MUM7jYp5cUNAFjNpK9jko0K6PUXxL5f7v6PYEqHPWJ4n08V5zh1AXQ8ov3SGulelOlAmWNqxHZ/viNKVrd7W3RF2rv9qyFSABZKuNr6s2etVRepMVQq2vIMKOqq45USbQXgFTOCu32lLHF/N4p2ZssaYYlMejuUn3jPJAeCsdmJrg9rdNUb4dUVzrsKX1NY596V3iFy8qKemwp8iikzWoT7I9UWLkNUXCjJ8/Za81mqyRW21w92OPAVC7vDmgrWDuq/fmAuLFp5HNHaiOQrVEHOToBj7y5ZHk/6KHVZnRxWd5FPwijzAyj0KGI8PDTGbcj3iW3G5Wt+4qN4m9ij3ttdq+l/7uVQDpoG281/3uJx7EPu2FYf3dTWasy5N/7fAehW/+kb/8wHgUMjz4yPJTMzxQOEi+uKsZkJbLf9B2kvumHZPMxTfYb9JJbjeESPPXaAG4//Zq2+wTbTR27e9eR1KvYJiexF5VEod9P+hEu1dFx/dTD2C/tg7b9710JNJ0J9KOOez1DdPESCP1PspaChkebGShhwxHBpHPkXtslvaZKYJXrxCfnbWSyMYdK195Y6DyYTw1DprkltMcAFP1ULz4tHXlxrUyvpbPNdkDJrRh5HUBS3g057Sseu3y58oN5MeeJ2f0F+qTeFdu9LMSDAnQkBN1XFvUqpYUufHxxyne6VG8ujKwf3x2Fl+7rI30s+j0ENdv9TMATIGmsEP7zBTFt5Zs5UZTFCmeGgego134spjHa2zRrR9X4Qkn08LXoQLR3ARNtDS6BqysKR0Lc3802dPoW9j7pkmKcbXE9mMjVL6yiKyO0nhugtrX1vqu9Cs3BqpZenN1ZDGP39iy42/OAbDx8ccBbBtG+jgOcuSv3kK22/SemsdvtRHtriKpzs3SrR/fpaVg7rtsNJGnZux45K/eshLf0NduiM/OEk6UGHntupK4NloeJqTQ3CGnpbHDkxVK1+7a6/T1M9dbvAHPnENq6e3ti9MEazv2mTTnd59Hf7VFqMM2huQZ18r2XEaPontmBn+1hVjI7/6P9JA7hYUQf2y/faSU/+h+9CVDOrLQQ4YjQy04IT/04R8fiBsbpntYH8MPIyKt5W8mT9loDrDxzaRo0hRFrapewK22jbnb/XRZ5K35KqNv3yGultTE7JzT1BAw9SFEp2d5A6A0/MHJjNAv9+2L0zbObwSewhfO2hoR7sSOjvEbESMjOrXx4ZNULzWIKkU78RnOwchr15HVUcL62EC9Abe2hMvh8MIe/tKqrTEA0HhugrGXb9r+m4mwfWZqoJ+GsW/2d8fcFUkyx7mGTTRZU9cfFFQthkqekdeu28nZGD7x4pLNFDBja2CuBRgcr+u3rCBXb7KC32qzNV9l5DNfI37xojpWG4LRZA3R6Q0aT/radk4fo/CZryqRJX2eOMjRreTxOrHt5+bF46pgmB4XU3vC1+JVblGxzkQZP4xUHQ6nnoOp12H6Y2o/GHTPzFgjSNgsDcXoMHU3zPduJc9rn/2faYS3B0MPv3APoYc/+uCEHoQQ8ZBNdnKSUj6SeaEPCzJDIcORoeodlx8d+/0AlvVv8uWTuegGLlveZYabNpKKeTCYFZHMxXfhZh9AumCQy2x3NQOsDkKiv8ksARdJTQj3mCihHDhME2JYWeLkZze7wWX+J7MAXO6C2T+ZHTCQWTA3q1bSQ87vXoNpe1gWi5upkjwmbfySYzks1OBWZXTHz70Om3kTFOz1JHUQktUdzbOXzF5wPyfPnXx+3X2T/XPPbfb7cvgbNOM7fUNhvi5nfuHHho7LMCz+sZ9+kAyFtIyG48B3AT8I/BEp5Sv3t1cZXGShhwxHBuEpioyoVe3LGbArLpNyhyta46QziqA9MFnLdn/SSxNhAnaVXYa+kSKM6JAzoSbFcIwxYwwSd8LGSZUD7H4iCFLTBgegJyhzza60MNCXQG63ldz01ATeylpfttmEX4yUsknfJGEsTE9ZjQZgIJUPGohaFbN0M20lRZF8lK6Dt7JOtLyixkt7RWSjSaRLNRtXe1SfVJUSr9/qCyfttK12hbluEwYYEEmqVWGjgdR6DybddEC6W4tBuWOaTA81OhoDUsxjNRtSib7+DaXl0W4PaCT4+tl0OQTmXhudjJwOM7GyZp9Pe59wjJBEv6zENlj5cXM/rcYCfc2IaHnF/p95lCClXEz5eRF4VQghgP8WZTBkOCJkhkKGI4OMY7WqclTu4p02Uk/85gXtTni2VgEgl2/blzGwi6BnJkgzeceJbaZNUMel5by7qowwuLJ3V8XuqtHdz10puvsY48NLGBeEnUGPhp5IoqSuQHPT/mZy/pMGlxgfQyb65aowAta4itY31KrdqS9gjpUbDYSeuO1qG6BW7XsYVtaIEl6CvE77FOsbCNdrYcbPqa0wqLrZ77M7SRN2EMUiuWmthGg0DlbWFMGzPagbMXD/HS0LU9sjNzdL9PVvqOvR28y+9rqd+xg5HgJ/rDZQI0OEHST9ZyjpsUl6iAArBGafhbm6qt8xPgZhp2/oaA+YDEOkjPhPDF9EGQoZjhCZoZDhyCAKBfzHzwzI97orTV8T4WR1FFHM42uOgdAEL3+sZnkAYmWd3HTfm5CbPjEQ26ZUtMQ6U0BKFItE9UnCiRKLPxAht3MEKznCqR7lb+bYOteBrocY6eGtqtj6xJNr3F48xlMXb3Ci2OKLv/UCuXMt8rmIUqHLqeo6r375WyifbdBarCELMfkNnzgvKWx41K7FbJ/w6JZhdEly/NV1VR6v3WXz4nH8UNKpPG51DkRDcQc4O6v4FIDX2FJqj/r6aGxZASCzeo20doFvvAtz9QGvhAnvmFW7rwtusb6BuDCvxrexZYtZmbCOePFpVYyrWLSTmfXQ6HPI6iho4qkw3oR21+pVEHbw3OJHkzV4/R276u+emcF/UxV16rx03mppoImPUX0SzxSg0voS4uwsNHfYOX1MEQ2bm/jnJyw50Lt+i52XzuN14kFdCc0lCKvqGgprW7Qu1CjfDPFbbVZeGqd8O2Lk3W3uPl0hvxVTvNOjOZ0nKgiK6xFbJ3yq13t0Kmq1X7zTo1vxrUaH11EmquUw6PsQ1SeJOz075ua5NgaPPz5mCadeu038zDnE1//D7v9Ij3b0+CVgc9+9MnygyDgKGY4MVXFMvlT8Tvs9TckuqZg3LC3QxbB90pQdXS+Eu08yLp3cZxiScWq3P0mlSbe/af1Lqvi5YY5h45Gmj2Bd7a5b3Im1p/0dNo4uZ8CtL+Gex0Vae8lxSOMM7NenvcY52cYwDLsPe312vx+0L8Oez2GcBpdr43qtvFKR3974F7s5Cj9/DxyFP/5AcRR+JuXnAvA08PuAvy2l/Av3t1cZXGQehQxHDvOyTJL+ZBgOxP39sRpD6dHuxJ7yIk6bEKNQFWGKLl/dbZxoIyIZUkhOGu4xyaJNwwh2ewkdJSchs68xGIxxYyY5d2JyiZ3J6zdwQynDJkAXhqxoih2Zdg33wpzXbdclTEZ6HPyxGsLhe5j77JWK9nfX/W+MRtMnUxTMvSbTt7RJ2SWmunLPrpy0K62dlLt2ryVyniF/rGafDcOTcPueLA+dBuM5MTwG10gw98iEs9yxjXfaiNwjSf7/uZTfQhRP4a8Df+O+9ibDLmSGQoYMGTI81Hi4JZyllI8eQ/MRQ2YoZDg6CLHLvW6zCvRK2l3ppa3Ekytgs39yNZ30LlisrFm3rslj36n4tqZAt5KnU/Eo3lG6CqZGRL4V2e+dUcHxN3fYOFciKoDfgbF3dmye/9YJn+Nv7hAFPvlmiGdi6V++PFDO2D9/hnhxqb+KdlbgboqnXZEmVpyG6Jkz1SUdlzVTE/QuX901Hm74xSXqAURhaMmEhs+Qlgpozm9LVWvGvtum7Z8JN7T7qZ2GW2IzA3SWg0twdVMwTRvGw2BgsiLiHc3LoJ9ZIMPQEjbdzANzTpNhYENdzvPkZkmYypO+5ljI6ii+FnaypEmnVHhacS7X++J6uVxSa9LTYrZJ2SNDhvuNzFDIcGSQoyXEE0+rok+NLTydcgfgj6HKNrfaStBnfEwpEhpyHwyo+xmRpG41oHh1xSozduvHlejP28tWmbE1X2bs5ZtKZW+iTGFti16lSO7NBWCK8kITb2Wd7pkZStfuUkKJMQGMvbHB1nyVuOARrO0wAoytbdG8UKO83CPf6uK32jQv1PA7qmhVeUGXpNYCOsXVhipsNTVBuz6GH87QreSV4XBhnrhSRIQ9NubLFFqDwRavE9uCWV6njre2he8UPto5WcHrjJHXJM3Sly8jT83QmShD/XcBWHGl7fkqI+9u05lQJL8ekP/SG2x+4gIA+VZEXPBsES7RaiOfmrcGj9REQjP22xMlgrUdRKdH2xGg8jozSLBqg9vzVU3a9CjfDIlbbbpP1vGWdFhCizmZvrYu1Kj95jfoPTXPpi5+1X3hLHHBY+S163TPzLB1MqD2tTXCF86Sb4aETl/k2Vk6E+eJAoEfSqJAMPqFS4Qfe5qOHsuNs3nGrnTtc9J2Co6JTo/2yYq9t1ITT/P1MQprW8TVErF+zoK1HcJqQFcXsIoCFSowyouALX5lnl/v+i0an3qC8k1lJJgCXxsfPsnYF79p00vjShHx1UeTzCiEGAF+CPgEcAy4C/wW8CtSyp2j7FuGjMyY4QiRLArlrq7c8sHJ7UkMI+XB4Ip2GPFuL3Ka+W6IgMNWg3sR1MzKeK9+HOQ6XexV1GmYN2UYUe/9hhtzTxODOmw7aePsbt/reIO0e5I2JsPu00HahEGCZNqzMWwM0gSW0rCrKNR8Xc783J/b85g0LP6Jv/QgkRmngc8D51G8hGVgGpgDLgHfJqW8PbSBDB84Mo9ChqODEAPkM+sCd/L8kyxwk8tu4BIdQWkHDEzmxSIiSGgQJM6ZZky453DVGt2JwBUGMsI4vcUbA+EAs78bEnHFmUy/0ialPVn5p2as/oQZLzcjwr0OeWoGLi30FRh1yAGwxDx3rN2+W9KeFv1xBY9c1cZdio9g3fQD2g4JjYHkfXDvqTt5x4nnwiBy93HGc4AsqdNF/aXVgWNNeCbZr4HPzjmT/XXDN26oYuAeahKmez0mdGRrb+iwRdoYgSMIFgSQzrl82PFLwDjwcSnll8yPQoiPAv8M+J+AP3E0XcsAmUchwxHCeBQOujI86Co8aQjstcLeyxOQ1nZaGp/BsOPTrue9rOTf6/H3cp79vDnJ34Bdk7BrkCTTItOkoyFd5thVzUwz4A5yH/fq617eh6SnJK2Nw45XclvaeJnPqR6Fn70Hj8KffKA8CqvAT0kp/2HKtj8F/KKUcvL+9yyDQeZRyHB0EGLgBT/MZW1XhcarkPICTXMjJ9MI3X1cgloyVx3oV6Q08rwaspgnp1eopiog9CtT7qqYaNrTBa2ijcaAJyKZAncQuBPNQV3W7v5pxpM7/km4q/qkgZVmnCVX1SYVNe0azL1JhlGGuf9d74M7Zml1EZLjBDhqnIP9cK/B7B/vtHfVmkg+N8laGODUA0mkZQ47XzLMZsYrabR4pSKi+UimR44CN4dsW9LbMxwhMkMhw5EibUJIFoFS+6j9Imey30sIyWWSm+/uNnv+xO+WOmj6kAhtyJ02EVo+2rkOsXgDCUSAcCYtOzE51+mK6ZgaFe41JEWWkuPkGkvDOABpk0y00Rhg8RukGWtm7E3/k+OU3Hev8U72LWnoJftzkPaTGhJJAye5Mt9Lu8I9l2nTrfORNOTcSTxpAEGfx2K2ucemcUuGGYnJ8YrCFAlnCciHOz0SxUP4o8BnUrb9EeAb97c7GZLIDIUMRwbhefhV9eLcizTmIllF0Lywk56I5Eo7rT13onJd3d6zT9iy0KLTo/H0GO1jih0/cjviztM+pVWI89Atw85jPcRIj8prRZpPdTj2cp67H+6SX80D0J3skhvpUf18ibsf7jL5H/L4HUlUEJSXe2yczVO8q0wUk3oZFzxWn8tz4qva4Ch4eJ2Y9nH1X7Zb9gayLGQhR7caKDnrdteWOnZLG/tjqHLRun6EGB9T8tjNTTz6holIEDeT4RXDizAr7GThLMMlSZvoB4y0fTwbSY9AsgLkQUIj7rZhpMPkfq4gkrs/UxO28JVJqwSszLKRlzaly002iJtlI1bW8Z6dAaB9sqIyXTT/A+iXoA4K6rOW6fYaW2xfnEZ8LiXr4eHH3wT+kRDiBPCrwC0UmfH7gf8MZURkOEJkHIUMR4Zk1oPBQSeANBzGpf5e2kxu24vRPizWvd95Dir17G4/SJvJCXc/vF+ciIO2c6/nu1cOwkHacMc8Ldyw131N40/cy3XIMOQrfG5Qwvnxupz52R/ft80kFn/opx4YjgKAEOLPAL8AOFYTt4GfkVL+/aPpVQaDzKOQ4egwUiQ3NatWWu0urKwRn5217HQj3mNi+6bQk8sZsAWlwo5aHesiQGZVbT9rzoC4MI/X2CJaXiH85LMUb7ZsU2Y/U7qYlTX1F8VNAJCXFuCZc/D6O6ra38oaYnqKuFZGXlqwfbRVGnXufG+ygtdq47W7yGIev7Gljink8FcbyEZTlW7W20F5lcOTFQCrAZBvdelW8taT0D5ZoXizhWh3Cetj+GFkPQyAFXfKt7rkVlvEi0vk5mbZ+PBJW3iqo7UkjEaFGV/Dv5BBYYCLYdrxp6fsStot9+yVishTM8hLC5bVb7c53hqvudMvswy2MFi0vLIrvu89+4QthmWLSS2v2EJU8dQ44votK5okT82o+6wLTqV5m9xCWWjRJNxCZM3N/vOmBZTQY+M712q9C/q+iwvzeCvr/ec3KOCHHVVEK6EFEi2v4Ovnx2iImOfY9S6Ykt3izu5X9qOw1pNS/j0hxC8DF+jrKFySUg5Tbc9wH5EZChmODp5QL8ClO+qlWCyqyQP9skSL0tTKiLOzRK+/A8+cw1/Vqo21MpyaQTS27MQjgwJRpYhXyOGvdpRYk36R+9NTqtJiUMAfHyPf6iLaXeJqyQo1ERSQU+Pqd1Oxsd21Xfanp4g7PYQ2EnpPzeO98jaiNt/vd3MTb67Otq6W2D4zRfDqFeKzs9YwMGGBcKJEPsgpkSFn0pfFPLKQo3TtLoCdOGR1lNwqdjIz19CbrOCHEVHgk3vzFp0XzuKHER4QrKkxDetjBADNTSoLW6qCYqVIYW1LGRZhh/aTdfJNtZrtVscovrU0YJzlVluqL8+co10NCJY2VOrhaoO4mCd+8SL+0h1od+HCPDHQvjhN6dpd4hcv4oU9656XxTzy7Ky6b8V8Xzdo8hw0dxDFPDGw+XFVTZOww87Fabz6GMHSBjxzDrHaUPf+yg3is7MA9AIlbmUFjUpFwhfOUry6wvbFaUZeu46HMv5EU52yWz9OHoiLeXqTM1qkq2MNKqYm2HhugvLNkPzSHRrPTVDUhlnuzQX7rPhM2WqevTMz5K/eQtbKyGKerfkZygtNZbyAqqo5eY5ukCO/dMcaCLKYt2EL0emp6qf143TPzMDGI0lmBEAbBW8fdT8y7EYWeshwZKiNnJQf0dUj4522zTk3csqyod7iQpdAji5fHShOZPPxHS+EWRkaL0NUn1QrSqdyojmf20b4wlmCV6/sylgwRoaNwT9zTmU2MEh4MzLJBmF9TMk1X7nRlyY2K0XUStJMnLz+jl2dR5ev4j37RN+7Ue0TvmUxr1bV5vqgHy/Xq9n4xYvkVltsXjzOyLvbdhI2q3HjCTCr26S3RVy/Za/DehRM9ofO9zfHu54X0x+3gJS5JsDuY67RlVKOX7xI/uqt/oPheIzSVuiEHVXcaW7W9snVZjD9s+NmJmDtGbHPWIJnYPpsuAHm+TOw91Fft3t/3BLe8pRWGNUGlhlzOybmudZKlcb7Zc7r9sO9ZoICv33zH9MIbw+EHqb/6uFDD9f/9IMTehBC/K/AhJRyFxdBCPH/AMtSyp+8/z3LYJAV48hwZJBtHSsuFpW7uNG0RgKg3NV6QjdGAqhVvT89pcSUalX8pVX1gm637UtYNpqqnoCe1GV1lN7ybSt+5E9P4Y+PqTaKRfJfeoPeU/NKv99kIZg6DG6o4/V3rAvbKxWJp8b77YQdFT5ZXCL3ud+xRkI8NW4Pj5ZXrMs89+YC/qpOl9TGT276hPKC6IlHhB0VQllcQl5aUBOnCbU4BoOZGPNLdxBhh9G37+BduaFWze2uGpeVNTtRGcMnunzVGjry0oLKJmhuqknQEOrQ4YdisS8gpKsvxotLNgwgg4IlAnqlopJhXlkbCC+wsoZ48en+fZ+rk1+6M0CGtNCeC9Huqsm+WEQGBWRbZYvEtbIinzpGmtu/gfumx9I8Y0xNqJRE/dyY8TfHmusVRbWvMcZku60+62uKLl9V96bdJqpPKqNFe7jMOU1oQYYhMijQe2qe3lPzysj5+jfUM9doWgKj+b8gq6MqhNNoKmJp2IHokfTEfw/wb4ds+zfA997HvmRIQRZ6yHBkEJ5ni/dYF/6FedCu9/bJCiN6JZgDq3poJhWvVASz4jKrW/pu+mh9A398rF+g6PwZ4mpJGRaGE6Djwt5cHX/pDj2tJshO2xb8sSs8GFipEhSICzm7qoyrJbyggK9j9vLUDFy/ZWPSvckKuRWtq9DcBD3BigvzeO226ndQ6NcCdFz+1iNSHVUZcZoJb1adxvix19XY4u53XqT2z/4j8plzeGhPyWRN9THswMo64vwZu8q2E5oTapHVUWIdWjD9McacMGGDlTUVcrh6y45FtNFQ4QHHy0Jzk95T84rjYLwZ+v66qotCT5jWm2K4IkGBsD5G0fAK2l1ldFy5oYwpHYaKX7xIjDKaBrwTkzV13UGB7mSFfOjw5lxVy1oVHA+BoB9SMsajuDCPMHVJtHHC6+8gLswjr9+Cyb6yZ7S8gs8U3vQJ5Mpa/6U7NUFOe8tEc9MafgLlwRLFvHo+i0Vyc9qrUMjzCOIx4PqQbUt6e4YjRGYoZDg6eGpKFLWqcj2PjxFdWkCUinjFIqXrt+g57HIr03xB8QGEmSi1+12aVZ7xGExPqclhaRUJNg3QVFmMv/4NNVGaFbReqZrJkJU1JFo62AmD2LBEUFBERO1eNu5sw68QK+v0Nhq62FUHv6UzGKYmoLlpCY/oyQA0kVCT6lhZU8YGEF1WfbbEwVMzyo2/eAPv2SfwV9Yh7KiJZmWdeGqcY59bgPEx5JUbNkxivC+R/m5X2XN1osUlWAYvYRR5K2tgrnuuroiltSq8/o7VnfBeeRupDbd4p63CAvRd8sa4y73Ztn2xcFfqYFf3vj53vNMG7b4PXr1CrA286PJV9WzoFbhoNJFTE+pZCgo2DGINIW1URcu3yTuGpH2mrt8a8O649T18PWYmxCEvqbE1/TWZEJ7DiTHS1bnpEwOGqQn2mpCE0GEgeWkBv1aFoKCIstdvgX6eZDGPt9KBXkr1yIdfR2EdOAt8IWXbWWDz/nYnQxKZoZDh6OD5iAvzRJrgF9fKUJ+EKzfUar0+SW6paHPJuX5LTTjGbf7MOVUh8dpdNSnp1aM3NdGf5K7cINaTrSGu+efPqBfvs09Au2uZ6II+h8HEoG0+u1kZa9ew4UWY+Lc3V1du/pV1wvoYhTVFFMxVR9ULv1ZVZEXA0xO5Vx0FHec2HhSvE1MMO9DcpP3CWVvp0T9/ht5khXzYQepQhizmyU2fUJO16afhHly/ZSdUUavi16qWROcvreJrzoEICjaUYQ0dPY69+nG8V9622Rteu63CF2M1tf9cfcB7Y3QGvKkJZXSAdfN71VHiagmhzx1N1pSyZXNTeXmaRTv23lxd3d9qSYVmnNAGUxOKaDo1jq/H3rYVdoiLeWRxHG9lHe/ZJ5Bm4n7mHKw2oDqKPzWBXFlDXJinW1GTen7pDugxcTkyolZVRhGoMQsK1ngxfehNVuCVtwdqOHjtNvLZJxTnA8WB8cMIcb1NrMMS3lxdeYdMeIh+Voks5vGccfIaW4rMeOehNwrS8O+A/14I8etu8Setq/CXgd88sp5lADIyY4YjRK0wJT868X0DvyXJhtAvBiQcVz2oCdcNQ7iSzQNFdRJEvN7iDVsAyfAHxPVbuwR4XOlo278UPYTD1JIYpl+wl7ZC8rxp+6dtS6tJcJDaB6741GE0DfY7XxqGjZW55rQx2K/CY9o5zPFu2qXhWRwURqExWZ/i/dKZOAh21Xp4vC5n/sqfP3Q7i3/mLz5IZMbHga8CAfDr9MMN34Uqg/WSlHLhqPqXIfMoZDhCyG5vV9VDV/feMONNqIDmJjIM8fQqTcLA6s+s6NhpD2YrONUeCTuD7SYME3cycaWj3RoRadr87iRplAnTJjazHb3SNloPspAjp/UUTLVAt4Kl1BkJbjVDU/nRhCRMNULAsuRztSq9xRv9WgFO9kdSf0IGBaXhoDkK5lj//Jm+bkIiy8KVnBbFIv5YIjvAZBc4WQSmz/HikrrPmqTqZgPIRtNWjLSZLHrcTVVKE7oxHiETMjD3OmkIGOPQ1+PrPfuEldZ2McyYswRQfcx+IkoHNcxMG7amhnledeaDaww/irUepJTfFEJ8CCW49CngOLAG/AvgZ6WUi0fZvwyZRyHDEaLqHZffyrfv+0JN+w4Hr9a4VxtuO8Pahz4/4rAr5g8aB1F7hIMpArrtJT8fpt3DKh4mPyeVDId5Zlw5aVduOlmiNT7tAAAgAElEQVRyeq8+HOSa0uozHBUeRY9ChgcfWXpkhqODNlLTCvrA8Bd3sg7AXvUckvuY/UwbaRNH2u+msNBeBkYaRBAMHOOP1Xb10/VW7Hf8sAJKAzUJ9rkW005yX7ed5Oe0/YZtP8hknHYuc63J2h9p+7nX7RZVkmFojz+MkZB2TaavH6SRsNczm3Z/dkHe478MGQ6BLPSQ4UhhXeIOF8B1Z0cJ13SSRwDYFaV5ySdFmZKcBYD4mXNc+lMjBCs5pl7tkW9FBEsbxNUSrfkyfkfSOJ0jtyUZu9JPicw3Q3rVgLXnAma+2CScKNE+5rN+waO6IPVxHhOv92icztF6PObEV6AzqhaB1es9mqdyHH9zBy/sEQc5vFab7flq/xytCD+M2DoZUGipvILStbvsnD6mJKcLOcKJklVc7FYD/DAakHa+88I4x19dpzNRxg8j7jxVYuxKh7jgEQWC0bfv2PZkIaf6ESpG/fZjI2pcQ0np2l3WPjpF5XrHjo8Rt1r9jtN0RwUn/9UNZKPJzkvnARh5e9mW3TZZIUa8Ka6VoZBTbQQFti9OE6ztEAc5eoFvx9hcn6+VOq1Ms1bS9DURsv1k3RbC6k1WyF+9pcSYpk/YkERcK7M1X6U97rNxAcrvCrpl6IxJJl9V47t9wifOw8wXm3SrARtnC5RvR/Z+3PpowOiSpHK9Q/t4juqlBp2JMu3jOco3Q27+7hHakzG5LY/xSzHFuxGdikfjtM/cP7lhSYlhvZ/tUVjbon2yQr7VJQp88s3Q3gej3plbKlpyqjw1g7j8pf3+S2XI8L4jCz1kODLUghPyW71PAQy4j4FdpERX99/1NBiCmetydov27EX+M3D3T/IJDoph5aDT+m3i7ibGbtIOjYiPTR90BYNMOp9DxkzjVZiYvbw0yP1Kjq/RoxgwyhzugGnXXJsoFm0KozluL1KnP1YbIJG6fUzen4FxYbBqpbnHbpzetJckbaZ5K4Z5MA5TPMwtM53kqBijNEkAdc/pVqNMq4Dpfk6GX5LP78u5L9DorPRDD3P3GHr44Sz0kOHgyDwKGY4MstPFn1Ev3eTkYF6SMf2XqDvZmn3NZCrDkEi/VKPE5JF82ebmZunWj7P0yRFGl5Sh7HckXlfSHvdYf0oy8R8F6//5DiNfVavr2jW12m6P+0QFGLvSoVvx8UOp6jNoMp337BO2GJJLrjMESmEIgmM1S7jzp6eUaJGeRK34kEPGM323CoKJa7MKljp91J2EzO/uxOxO9qbglgjalmA4cE6H1OmSO5McDtfAijYa+Gj1RX1PTKaAe7zbjmvIgDYK9O+m/ci5LkMajXfaqWEqd794p01u+gR3v32e7e9rEH5NZbuEjylPx7GXlZBRryw4+dm7NC/UqCxsEU6U2Kx4dMunOf7qOlGliGi1CZ8/RenLl1n+dJ2xK4pAWljbovPSeYK1HbrVgODVK0gtwLSLzApWg8KVnDbPuGtQGEPJH6shNyIGIR4FHYUMDzgyj0KGI4NbZjq5mnIr/e1XFnlY3N4gOYklV2vJdmRyMnJFn5zaDsk+urUHLNHOrYvAYE0LwGoRmGwCNxXTrT4pmpt2EnE9FEl2v+vJcJn0wC6jIzlurvfGfHcFppJhnzSiobvN9Xokx81NNTR9c3UI3FW72cf1TOzHF9mPAGvum4GbeeOOn7uve043Hdf0323P7JvmBXNhvDXJFFzXi+Liy+1/PUhmnJuVM3/5HjwK//VPZh6FDAdGZihkODK4hsJ++CAyDPaa5Fx3M6RnPbhI7u8e47rb07YNM2zer2tOW727YZbDZEYcJMviXsM3BznvsO8HPfZexzQt1JN2jw6asWG2u31M+y35PdVQ+Ol7MBR+5ME0FIQQo6j0yJtSyu5++2e4P8hCDxkeCrzfRkKyzWT7yUl/v4kvuX/ymCjR/l7tmW3vp5GQbM8N1RzmPGltJbcnrzXZj/36udd5h33fCwfN5NirL8n7NeweJfdLM1DS+nCQ3z6I/wMPCoQQ34XSUXgOlZfxYeBVIcQvA5+TUv7qUfbvP3VkhkKGI4PI5xB+sEskyLDk41pZxfvHx4jqk4iO4gkYWVymJmwJZVPTwbhrjcu/e2aG3JsLfUleLf5jpI4By6TvVgPigke+1bUyulGlSH7pjmLrgy0f3D4zRfHqCnGtbAtLAbbt7pkZy8C3cXlTLhgsI9/IJZvrNYWetp8/xchr1wfKTJtSze0zU4MlsZ2xMf0DaJ+ZIt8MEUAc5MittgYEnnj9HVU2u7mjClattmxfgIECU9FkDdHp2QJX3fpx8kt3bP/jammgpLW5n24lTlP8CNhVjtnef73NLXIVvnCW4lUl4WyON+NsCyq55ZideyGDQr+oFP3siY2nxxh7Y8Peu/aT9f45nJLUwMBn9zk1XBMY9BoNC1MMw7D93HbsNvHo8RGEEN8L/DPgs8BPAb/kbF4A/jiQGQpHiCz0kOHIcJjQw3tBcoWYm5slrpW58CtXePUXXiDfirj7ZEC3DCe+GtKt+JQXmnQmlHHQrfh0y0pypLLYtqlsoFIJu2WP9jGPrcckpRUBn1iHL4wTjkGvHHPsDUF5ucetj+QpvytpzcPZX1nh3d+nYvLBuqS4HrF1wmfsikq/q31tjfUXJ2kfU+ed/vd3kbomhqnZEE6UKN5sqToAukZA4zk1IZZvhmydDGiPexTXY/yOxA8l+VaXrZMBlYUtRKdH+2TFpln6S6u0vnUOP1TvhJG3l62BZM5t1BtNSmVutaVqOHR6dCbKKlXx+i1iXVnSTMxRpUik0x+NkWOyKyxPwxgMK2tW3bH1rXNUvrLYNzJMTQuj1qjrL7jHyOqoNarUQOkKm2dniYMcS58cIb8FJz97l/bJCqDST2Uxz8bTYxTvRv0xWW2wfXGa9jGfymKb9kSBymu3aJ+Zon08R/FOj1sfDYjz6l6XzzZo3qpQejdHryzJbQkmXu9RXOsQBT63PxSQ13ZU8e5gyej8VkxUEGzWfU68vM3WyYDtE2rMRm5HFO/0eOXlv02ruTQYevhL9xB6+LMPTuhBCPEfgd+RUv5pIUQO6AAvSilfFUL8l8DflVJmFSSPEJmhkOHIYAyF9yMWf5DYubvdMsl1aeWt+SqN0zm6ZeD5JjurKtuh9K5yupnsiPJyz3ocwvoYfhjZvHd3NRtPjdOZKFN8a6lf1AqnIJTjTZC6nLBdHVdHbdsGZvVuV7t6FW1W3oQdK3VtyJEuoREYICSmucRdMqG7T5oy4TDyaW5u1lZNTMbn0wiKSVKiC3d/9/4llRjTiIwuMTOZ/tr41BPc+q4ubBQobChDLHysw9hrBcIxiPMwfimmNau2tSdjonLM5FdUxkv5dkS37FG7vGk9ObKQo1sNKL61NKDfYL1f5rlwKme66aaG4JrkJLhEVH+sxm+v//PdHIWH31BoA98tpfxNIYQPdOkbCr8H+LdSyuLerWT4IJGFHjJkyJDhYcbDv9ZrAhNDtj0OrN6/rmRIQ2YoZDg6jBTpfOJD5FtdupW8UuLT7u3eZEWtohtN1r73SSZ/a4n2mSnigmfdwqBUCYOlDVW06PwZ4mqJ3NIqGx9/nLEvfpP2k3XigkfxZou4UqQX+MQFj14nprA2Do0tokqR8kKT0q99A/Hi04h/2UNe+hqt73meyoIqVORphUDXpR28ekXl8F+Yt+EA78oNmJqwLu2bf/AMcR5GlyIKrZhovkpxrUNnomxVEluzOY69pb57nTFbWro9UbBhgEjzDVrzExTv9PDDit0eBYLKa7dY/xMf4fir69z+tin8DoTjgpHbMeOvrLJz+hjNUzmq13tsTec49kaLWx+vMnJbqQiOvL3MxodP0i17jL2jrvXOUyUKm5KR5S5xwaN07S7rL07a7wBb0zmK6xH5VkS34nP3iRwnvjqFH0ZIYPVbRjj2lgrnFNc6tObmGVnu0pzOU7u8yfrTT1JcVyv04l3lQfE6sb3Pt//gGY69FZJvhnQmSgAUb7boPH+KTsXD70iigiDOC6KCCvFEgbD9KS806elS0jsTBfKtiLGXb1K9VEa0+14SW+q5qPQUxPVbHNO8FsPT2L44TenaXSuMZUMbQLS8QqDLY3uNLVvCm6mJ/jMTdmx574HjnzmHbO7YdFgRdiwHxnBD5FPzsNpCbA+XfH6I8ZvATwshfgNo6d+kECIAfgz4jSPrWQYgCz1kOEJUK4/Jj5z5IdonK3gdFa8trKmJu1tRL2xjFIR6kvA6Md2KlvptReSbId2qenmayahbydM+5nPsS+8STdboVgMrtQuwdTKgW/ZY+xbJk88tcuUL84xfitk+4VG71qM97nPsjZaKsWvyn9AVFU3M3ZS4Nm5kQyg0xD8DE8c3csmdiTL5ZmgNIugTAY1WghFn2gVNyNu8eJzSr728qxaAq3lgXdrjYwP72HLdkzXVBz0RupNkVOl7efNLdxRx8eotCApsfPgkY1/8phJwujCPLORs32V1VBlspuKjQ0q10suranI2bRrSp6yOEldL9rzWANTHuGNqyJf5q7esm79bPw6A32pbMqV73+JqyUpT51sRi9+Z59gbgsp1FS7yw8iSOc19NoqZ8eJSXwLc4VZAQk9hasKGjEw/jGpjUpsCGNCVMEqWJmyTTLM0v/1/zV+j0VsdDD381D2EHn70gQo9PA68jPKN/GvgjwH/FHgWqKHCEDePqn8ZMkMhw3uAEOIa8PullF9L2fY08C+llKeHHV8LTsiPnvzD6osmnMlTM1bZ0PwWbTTwnn3CZgQMZAIA0eWrAzUjumdm8F55u9+Gw7Y3kzwwwMi3k6qe4MykFU6UKF27y+ZFNRFVvrLI9vOnKF27OzAJRpev2gneFSYSujw09OPMAyWw6U8erjCPnVC0MeEy7EWtaiegpNCPuR57bSYTQLP0rQiUgR7jJPHPtGNghZ/CjpKTrk/iXbkxIOls+AmmNke0vKKMCUep0pzbFZiyIkzOca5UtbkOQ150y1sboSZrIOntlgdgiI16TJKyyMYAcLMyZLttM2oMMdNfbdh7LYt55KWFgT6Y9izfQ1+LK71tOSyGm9JoEp9V+/mrDdpnpiwZ1PTX3F/T75e9zw8aCqdm5cxP/TccFos/9hMPjKEAIISoAz8PfBqYAu4AnwF+Rkp54yj7liEzFDK8BwghYuAlKeXLKdteBL4ipfSHHe+WmU5Tw7NtGVVEPXnsJ440TPwoTVzIrRcgalWb7hjVJ+H1dwYnVbApjO5KXISd1FS5tFoMrlriQepRfFAiUwcRIdpLwdEYNnuVYN5rrJNpf0kConuuYSqaA5ksTu2KNHXKJJK/24ncmcTDF84qMqqGa9hBX03SGHhJA8RVkrS1MhLhCnc/V63SHQP3Or/C52jGdx45QyHDg42Mo5DhvWKYpfkisFuDNgFbMKc6iq81AeIgR+7NBVukCOjnzzuwhZPCjm3HrJxzc7PKM6Bd4bI6irFYXE0F2W5bzX1jhMQX5pWLfHqq76LXE4gxEgDkpQW8hGtf1Kq2dntSH8J3Vui95dvIjz2Pv9rqx7zNdn1NRt8f+saHgSsRDP1JzGQEJAsp2RoTWpvAnZzdlb05l2nLrK5ZWRtY9Q+s9oNApThqd72bneAWv5LtNkL3zxgL8TPnEK9rnsfXv2GfCbOPPDWDr8M8A/fezfQYqyHbenwcD4HhA9h+6zF1jQk75sZLYrQgUFUsTcaK0fMw98Zegyu5nVL0yk76ZuJPeDTsWOtrMEWmhtWsSPsfJR7ytZ4Q4gf3ElQSQvzvUso/dz/7lGEQmaGQ4VAQQvwF4C/orxL4V0KITmK3EnAM+Cf7tWfiwGaS8QEfiHba6kV8+apyaZt0uBeftmWO7bFgJwGvVLSTAo0mMgzVxKnblGFIzuTb6xWe3GgQ0694GF1aAD0RGSPB5vwnVrjGTW9TC5dX8Obqyj0Nlm/hdWLyzdDGyaPC45RvhuycPkZ+skK3kqd07S69yYqKb690iF+8iPemUwVSx8f96SlybqigOgomxW6yhjelSJom9bNXKZJbbSmjK+zQe2re9ikueJS+fHlg0oyfmgfAv3qrL1RUqyLOztINckSBT1ELVol2F6GvVRbH8dptmKvTeG6C2m9+Azk1DpOKrBdrIzCvL8cfA7HaIHrmHHR61gjp1o/j1ScRqw3iQg6CAuLCvB0Gb2Xdchy8Z59A6NRSwIYOZLuNCArK63N2Fqn5JsZQcsMzBoaz4emx9a7cQE5NIK7fwnM8S7I6iqhPIjs95Ne/scszkqz7YY2k4mCGnwmDuWmx6D7aEI4eZ8O7EJtDHXQPM35FCLEipfx3yQ1CiL8F/GkgMxSOEFnoIcOhoAVQvld//eMo8lEyfSkE3gJ+WUq5Paytwwou3asrfj/X+n7HwuFLFB9kn/uJvc79fvfrvdwn2H+s349zvR94P8JGh+3/V+RnB3UUTs3Kk3/x8KGHb/65Byf0IIT4q8BPAt8mpXzV+f1/AX4U+D4p5a8dVf8yZB6FDIeE/g/7awBCycn+gpRyYc+DhkAU8uROzlrXvJFhNux54zI3aoCWzOisBO3KUMsZ23466nyy0UQ4/AZLYNNEP7daoT89NSBoJE/NEFWK5PTK3vASwvoY7eM5Cq2Y5qkc0/9mSa3mr9wgPjtL4/wo46+sEtbH2J7Ok9+KGXl3m85EiSgQjLy7PZByGZ+dRXR6CF2S2JAObZVJ7ckwq1OXRe+OBbBr9WpWrkayGuhnbWivg2+klB1pa89x+burYpcoaYiHLsFQnprpr7RN1oDjNTLtAQOcABO/30Vi1ORSSyi8fsvebxM68sfH6J6Z0d6Y9UF1RqPM6MhC29+1J0IW81ZZsn2yQvBbX4dnzql70u4OCFzZ57LRxNVW9M+f6ctJa3Kk8UQNEGX1b+LCvFX/BKwipwlFWXEmE76ZnkLcSPEoPORrPSnlXxNCnAR+QwjxUSnlVSHE30SlRn5/ZiQcPTJDIcM9Q0r5J99jA4CK1+fmZpGvvEEUBHjV0YG4ultOeVes3rDmdYjCTKwmfGH4AoZXYCdcJ8ZtshW8UtFOUubdG3/9G+TnZolMjPnSAmKuTu5zv8MoakU4rfsmF2/AWA1ef4djq6r9wlqeYKlr8/RLOpXQ1irQk65xezM1QU5ft8veB/AYVE00bu7+qrTPW3D5CcZtbfgV8U4bpqfUuC2vwDL0HLXEWHMFhFs2WYd5Ijf9sdFU59JjDprgV6vaYy1HZGVNhZMc40dWR+19E8XigKKjMRrctmWpiFxeQQLeyhqSftnu3uINvPUNFe5x7r9MKD/ac5uaDA7pNdB9Di4po9BmddQn2b54nMpXFi3PxI4jfWNNONwFU6tDXJi3Ko3eyjoCJVkNIBpbBJoMK4MCxat9UqzhWAB9Bc9GExkPyj4/QvizqGyHf6v1FH4Y+EEp5T8/2m5lgCz0kOGQEEL8DCqkcFN/3gtSSvnXhm00oYckc97NWtjLpXsQBr+7z15llfcKFewlYeymJg5j8rvpc3ZgEqz7vbI93P2T++2VdeDuMyyjJO2c9xJWOSySfdrvHkJ6WWb392G/7ZfdsVcf3bF9r+GE92PcUkMPP3kPoYcff3BCDwZaYOnfAB8F/qiU8v894i5l0Mg8ChkOi59D5Tff1J/3ggSGGgqikCd3/AQEBTxdSdCshK0XwcnfN659kUhZdCswJlPcRK2qCiZpcZ6173uSnSmh6jlsFHn8nwqCtR3kK28AegLTue3elRsDLH0YdO+j3eluNUmzYjWaAmJ8DNhdeni/CTltkvJKRaKEgWFWtUmjKdn+QY2nZB2FpNFj3OFuCMH1Xripoa4Whttf6yXZSZAJnfoP5vyu94K5er8S5MqaVUw0sN4kJ4zkVuuUhRyL310l2ICJr4UU31pKLQ9u20toNOzqF9gsnY1zJYrrEZWvLNpQgTvu7pgbYqZbB8KtOunu70IEAaTocH1QEEJ8B/C3UA6aX5ZS/mJi++8B/jeUMNL3Syn/qbMtAl7XX69LKb8ncey/H3LaCrAJ/KgQ4kf1b1JK+Yn3ej0Z7h2ZRyHDkaEqjsmPjv9XAznjaYWAkhi2Ek/TJxi2Khw2od4r0iZfe02ObsBeq9u0lbObHjksZS7Nk3FQkqZ7vqSXJFmwaSDn3yn+BFiWv8tbcLkG0OeTuBoM5trM/sm+AQPhl6SWgTmf28dkqWcZhrZYVpryoXtt5nxu8SrT3/2Q5rlJu6dJ7PUsJrfdL4+CLs50GfgUsAR8FfgBKeVbzj6PA1XgJ1Diaq6hsCmlHFRGG2z/8xyCXSGl/ORB983w/iMzFDIcGT6IMtNHyYJ/WHCQyev9Pt8HlXHxn9r9TjMUHvuJwxsKC39+X0PhI8DPSSk/rb//NICU8m+k7Pt/Ab9+GEMhw8MFb/9dMmTYH0KIKSHEqeS/Ax0bBPZf8vfDIi1ePaydvX4/yLn32ude+v5+Hr8XZBje18l1L6/QYTwf7n3xx2oHHv+D3s/7hQetP0PwGOBKJy/p3w6KohDiFSHEl4UQ37v/7hkeZGQchQz3DCFEFRXD/EPAsDffngoxbuw76QLfi7To/g57EyCTrnwTe5btNpFzvKtOaLgIxkWeLOTjpq4lU/ZMqqfX6am6EkGB5U/XGbvSId8MiYMc7YkClddu2UqZfqtt6wi4BajsNbh1CEz/ggKt52cYffuOYs5rJr5XKvbj9yYF0E0V1al7rKwNuNvtufQ53DoDrlCRGQdz/a6stuvCd8ffvT+2zSGy2snnIi38kiyYZI5xz2nat/fU4TvEZ2fxmjsDQlpu6qe5v3tJKidDSZYbof8mi0GlkU69Z5+wKbFJGeo0oq7opqVHit2/7Y8JIcQrzve/J6X8e/fS0BDMSSnfFUKcBj4nhHhdSnnVbNT8hlellJv6856QUg7jNGS4D8gMhQzvBX8H+APAP0ARlw61TBV59fjZlEedc+++5C2J0BAbE5ObK6XrykG7+7kZBqJWpfPSeXJvL0O7bV/ElkSZkFkGE6vvtxXpmHektR7k8gpxGCJMjr0j92xe/JP/d1/XX4QhJaBnxuEyJJPe/LGaVZIEIFFPANTEUvq1l4nNJOVOupcWQI+PMEWbiqb4UlVpGji1ECw5cXqK2HzWFRH95qZN1XQnezP2yYnU7GfH3Pkrw9DuayZOKys9JHvBJXBakqujJWGNPtPeWM2Opz9WI3zhLNvTeSqLbfJLd5TB9MobxM54RmFIbnrQYB0wEh1pZrdvrlFrrtk+N26/i0U633Ge0rW7tuBYbmkVqY0EoF9cyxQXo2+UuKm/7xPW9sl6eBeYdb7X9W8HgpTyXf33muYjfAtw1dnl88BLqKqRn2c4X0HobY+kJOXDgsxQyPBe8B3AT0op/869HCx7EbIX9usSGHEak0c+1l9FiqCN50wG0Ce2uUx8GYZ2YjRwSXq9xRsEyyv0nEnJnWjM36Rr2BYCMitabdBE4aDnIgpD2GjA4g1rCAxsOyDSVp/JjARXU8El25ljzW8mW0K29SpeFyNyYcZLNpoDRY+MHoHtg5G5diYtM5GaCdycx1ZkDDu76heAmvziWhl0NU9r6GkjwDwDrnS1bDSVIdgePJ9pzxAqPbBaDMGrVwh0G9IYo7rOhutRkO1+ESdQz5Wp0yDDkJjBkElyte+OY9Ir1lu+TeEzt4mcfXuJ8XD3TcKQMKWMdm37gPBV4JwQYh5lIHw/8IMHOVAIMQ5sSylDIcQE8DHglxK7fRKl3mo+Z3iAkRkKGd4rLt3rgSLnQ49dblp3Be+VigOr7SQL30y+wzIl7EsfBtzAps1hk2zyhZ+cuA8TWx/mdk7uNywLIq2fyT6ac6T1y1y3u1pOplm6+7opmq5XxlZJdAypWIsaAbvKZPeWb4MbbkiMhZn8zL0w99ycz9xTEvub766XB7AeneR+ZpsMQ2vgiS+9hjvlukZc2r1KI00OC2+lfXfbSNu2l1bHnpB8IMqMUsqeEOLHULoGPvAPpZRvCiF+AXhFSvkvhRAfAv4FMA58txDi56WUTwEXgf9TV5f1gF90syV0+19I+/z/s/fmQXJk+X3f52VWVVYfVdXd6BPTB3uAAQZz7GKHo52RRiLFpUmKDNMMRfjQFRalsGRLsnVRl21JQcoOhY5Q2NZlhaRQOEzTDku2bEsKakVRKy6pXe2uhkvMzmAxmAEGC6AHaHQ30F1VfWRWVebzHy/fq1evs/rCUQA2vxGI7q7KfPney0S+3/sd32+OpxN51UOOE0MI8TeAREr5R05y/uOoesiRIwuPuhx2UNhX9bCwIF/4qT920CmZuPHHfuppJFyqAq+hkiY/Bd6XUjYH26sckHsUcjwcfgH4H4UQFZQ41AP3ACnll554r06IZ30RydEfJrTyGO9v/vycHCnL60+BYkZPP24KIf6qlPK/H1zPckBuKOR4OGixlmXgJ63PJU9pEpLLfgePdxF5UovH88BHcFAYpt+x/apgDjv3cYz1JNd2wzsnu/DJTntaIIT4GeDPAX8fJU1/D5gBfjvwM0KIgpTypwfXwxy5oZDjYfAFHuY1JQT+uTNdpchyObM8TMNm3QMyqxpsNj27lNCmETZZ5WcX8K7dhj45BI+CmOio5x538erH8ugyNtqfZZWb2v3sV65ol0hqtU074VEnIerkSn19nfTo0kTre+1SRWvY/bZLZ3W/e2iVnXFklRjqMQD7SjefNNx7fJhOx3cJfh/w16SUf9L67DKqrLIO/H4Op4vP8RiRGwo5Tgwp5S89zPnC82Bto6soaCXS6Z9ZC8i+djQJjyVdbC9Q/lg3Az6pjZCUCnznx6tMf7NDZaXcs8Dp9mwNg56kv9dfork8wu6Mz9Sv7RIHPn4U40UdRKujyhLpr+dw6Jyki6M2bvoZQzbsxVDLMouohU83ObGwtGAWebstl6vAXVzthVVXLoggMJUmhaWq0drA4hkTjs4AACAASURBVBCw1SAZKitjQnMY7IX45XLXYHMWbzMHqRS0nxqQPboP6djsMlq5OAdrm8aA0Emr+rlIpsdpp1LSfn2npxKjn/Hk9svcizdfo7k8wuZ5n6QIQ+tQud1RnBapnPaT8vCIZ9yjANRQSZNZ+CLwB55gX3JkIDcUcpwYQojD8g+klLJ/tqKnQpFarliGYSqiRJfIx9qVFpYWzCIIIBbnzMJsLhiGRK/MU9QCQboOPhWLErfuwuIcL3xZiQJlvdCzKgzMmN//mNF3IzQ3rf4PpJPP7Rf8SRaKbhnlfs2GrEVNGwHx6poyLtJFVKI8KR6qqkCXDZpxnF9GXr1hjtFCS+L8Mr4WWopaeNOTar7PLiBaHbyUWAognB+j8KVfNUaAvof+7DQyKOFNj3eFj7TxtjSPr2W2ATk9rgLSt+6qhR7w1zaRYUh7/hTeu1dI3rxAYX1UyUpXh/CCUreNqEVhVpFPceuukhZfmkecXUCsrCO36oasyqvvENy62yNf3i/81I850Rz37geMvgsuR/GjKl48SUjlGcbXgV8H/GLGd78u/T7HAJFXPeQ4MfoIu5wCzgPrwEdSyi/0O/9hqx6+C16gh+IwCelHET55EvN8Uu/Ld9v9z6p6mP9jx696+OSnnp6qByHEa6gyy78L/CO6OQr/MSos8RPAh/p4KaXLT5bjMSP3KOQ4MaSUvznrcyHEGeD/Bf7iYW3YHACa5tdINGfEmLOY8fTvbmKYe/5xVRYfNm/AxuNKlMySJXa9Gi5DokstbJgxdbsOTXO8udUztzYjps410HkKNuxjdE6BLdNtwiKpR0JLQts0yrZKpA5laNpjwHAz9MtJ0bTVTE8SzY9Rvq48Ta4M9JPAYzNsnv293rfSn38p/WdD0JWrBjXafN16wsg9CjkeC4QQvxP4E1LKz/U75nHxKHw37jTh0Y/7IG2NR9HeUY/vx4HwqA29ZwGZHoU/egKPwp94qjwKP83xJKd/5vH1JkcWcsssx+PCOnDuuCc9ipd7VhLa01qieFBo4LCFsZ8X4bA+ZbEAZiHrWke5Zr9xHXRfDmI+7JfzcVDC6PNoJPTFM77Xy0sfn37kMtM5HjmEEKeAP06vCEyOHDlyHAlCiAkhxPcKIZ56Pe7vBuQehRwnhhDiBvv3MyVUIhIoZcmDGgAwpXtG3tjiQrBr9qE3bq3Fguzael0KJ8PQxKrtdsz5Osu/3C2PtEWXdL+S2sj+yoo+O1n9t51r4Yoh7SsTnJ2mc/N2Tw6F/szE723oaoG0ikHWG0bjQZd12vF+ghIyKJFUh/BX1tV81KpKSdIqOUxqI0reOpWjBpRUdmPPSFijSxbBlFrqEkcta61LJUVjW4k3QY+gE2DKHk2pY1pFIctFgK48dtpXI29tjasn50GPUYuK6QqalPdBI3xlHj+K8Zsh3tom8fyU4tHAUrLMyIWBx++hOKw80+SZZMlMP+MQQvxZYERK+V+nf38f8M+AEeBTIcQPSik/HmQfv9uR5yjkODGEEP8L+w2FELgJ/CNbfz4Lbo7CYa7sg1zox3HhH/W7pxHHqq/POPZhNQ+OMpd2wqj7PZwsgdANl/QLw7gLrp3k6pJQPUv3XcPNUSjPL8j5P3L8HIXrf+qpylH4EEW49PfSv/8tSoX9rwB/HrgupfxtA+zidz1yj0KOE0NK+ZOPtL0DXtxZ37kVEAed229hOEq8/aQY9GJ03Pl8VG12uSAezTVh/w7/OPkM+lxXEvxhMOh7+5zhBeBjACHEFPB54AellL8khCgBf32QncuR5yjkeErQj+DmUWEQ2fHH2fk/6jYf1/lwcH8f1320yZGeBjzq6pKjHyz2fybF8f89XYhRIUuA70N5Jb+S/r0OTAyiUzm6yD0KOQYGUSriL58xuQKgaHZF2EaWi4hbd1WeQXVU1cB/e8XkHAAqBr62QXJ2QcXfq6Mmzq3b8NY2DfuifOcixZX73Vh52k77zJyJW9s5AHJxDlkqwPsfd3MfqqOIqEXn5m3FFJnmGgCGc8DOhdD0wpphUusl6OvYMfSsz3ScX0QtxUrZ2EaGIZ1Xlymu3Ddsh6KxTfvMHIX1pmIvbOypn9duI8plkulxk0Ngz4s4v4wI24ioRVIbASCuqHkpXL5hcjnQDI1g+uHmQhC1kNVRpd2xNE/80XWTYyGro6Y/ZmyLc3hrm2aM+t7JqzcMu6NobAOYnI/2/CmKK/fNHMZTNXj/Y7yleTNPRC06q/do/ZZfx/ClW7TPzOG9ewVvad6MvbN6D+8zL5v8k+TNCxRX7iv+jjdfw2vsdXMm0rnS19B5HDovQudf6OfQfk5kUOo5Xt8/UPk2yZsX8C/fQJ5fVs97rUpSG1HzonM0ghKdqYoa39e/3P8/1LOLy8DvEkJ8Ffi9wJellO30uwVgbWA9ywHkOQo5BohaYUq+VfyRrtYDqJfx2kaPCJFrHOjFwxZ6MgtaCp0wZx+zjzAoFaQC4PWX8K7dRi7OkXzrQ5Ok5wpK2YRBZvEfHzMLQzxVU1TH6YteLs6phbixTTw/hb9eN0aIMWbqO139grML5hjdvoZLiqRJi1zhpCzxLG3ouMmh9oIH9NwLo62Q0mbrn9o4MQtg2ncbyV6IOL+Ml2oqaNhzb9rqQ5hkSKGsa2nSpYOSXWUUde/t6y8ZQy+en0K++4GZFxt6HC5hl2vs6cRKI0rl5E3YGiFucqL9nb6f+nlyjS7zXDnP2VdW/w8ayf3eHIU//Mf3jecwXP/Tf/xpylH4EZQSbRFoAz8ipfxy+t3PAcNSyt86wC5+1yP3KOQYKPQCpnfFMjUSvKFybyVEush2pioUtdZD+nK1s9d7FvaghLAqDGyhocLsDDS28YbKame7sg7lMkmpgH/uDDS2lfERtRBBifb8KdXPd6+ki+k9CpbRQBgSvnGW4lc+wNOL8lbdHENQUoYIalES6QKqKxwKSwtqPtIdqb04AEZoyfZ46PlLpseVBoOewzDsqZbw7UX4/DKkrIZ6LuKbt3sW7n1u9bUNZFphovsjolZvFqtVRSLDkPY7rykWxKjVsxOXYaiulfbTMD+WuxUVupJDe2xMu0GpO670nhSv0626WNs0AlIiaqn7vbKOXJpHpkakFo/SRpr2KOjr++kc67lPpseNuJZYnIPaCIRtfK0zsVQ1nhgAeeuuMtzOLiDe/9gYXrYBZvJidIWKdT9BURHy+kskrQ7i1t2u6FZQQhQzXtnP+F5PSvkvhBAXgDeAS04S9C8D7w2mZzk0co9CjoGhKibk2+UfA7ITDrP+1sdm/X1UZGXGH6QaeND5Wee6u0jb1XzQOB9lroSb9W9f3z3OpbQ+yrxm0UEfpRricYzzUbeZ1f5RYCtZ2mW8ttfnKPLfB103s+rhvzqBR+HPPD0ehRxPP/JkxhwDg/D9vsx9enErzM4ol276t3u8/WLNdCkHgfIQ0PtiLszO9Jzf4463Fnp9ffc7+0Wuz80aS7y5RbxVJ96qqx2usxhkJbL1+0x/7vZJz1c/YyfeqvdIObvzpHfv/eBqRfhjNWQU4S3N7zMS7H66fXYXdH+sZvqtf9r/7DFltesaNu782G3Yc2Z/p/+549TnuUZpv2OhG5bS91obBDKKDNeFK6lttCxs4zKd38x74O/nURDy+P9y5DgOckMhx8Agk8TsaLMWB8DEdPVuzF4EtBvaH6uZF6694BSWFtQL+6NeOgcRBEbIyLyA05e8PzsN0LNwekvzFGZnKMzO4I+PmWvp803flhZ6XP7eUBl/fMz0xxVfklFk2tPxbXOeMw+6LX+sZkih7MXOHpvuqzdUNkZSz0Keuvj13PtjNTo3b5v59Wen1T9nEdX91AJeyc0VvKGy+VzPmTdUVomCUdQ1osLQjFGPzRam0n3U59iLqj3vuh/6PNdgEkGADEPTL71od1bv9c7v+BjJXmiMOD1f5r6nJFBmntP7qJ8x3S+7n1o8y36e9PH+WM20bRs9yV6YaeBquEahjB+VkHWOHEdHnqOQY2AQpVI3Ez1sE82PUWxE+Cvr3PkPzzD3C/fYvnCKyiUVU2/Pn8JvhjA/Baiaqs4r8+xVfMobKWNf4FNsRHiNPeLqEPV3XsBrS0buRHjNkN3lKsVmTLviM/zpLmJ6nPbkCN7GDmJ6nAevjRGX5pn86hrynYvEUQevscfuxUUAgo092tWA8FSByo0d/DTzPgGSQP138pvj7C5X8SNJOOFTfhDjtRL8KKYd+JQ2dogrZfxmSDg5QlLyKDbbtAMfXplHRnHaTkiSViBEelzXbiPfuUirUmT40i2Vn9HYo/7ZSUbuRLQrReJAUGzGBCtbak6rr5k5b1cDvJUtxJuv0a4GJCWPOBCMXrmvYvZAa1LF3P0orTA4qxa4vckh4kBQuXSXB++8wNgHW2wvV83cJ0B8Zpry9TUksP0fvUXlxg4AnXRuokqRYGMPr7FnqimS6hDtakCxkXIgtDqIswvqGKB54RTljRbtSpFwwmfsgy3ufd8Ep//pbXa//zxxSZixBxt7iPU64ZlpShs7tN4+RxwIhj/dJawGJBcXGb6ySnhmGphn66yK/1dvdXhwoUjtkw5x6TR+S1KeqrD10hBjH+/RDnzK11VehP1ZkCax6jyFTqVMYb3J7osTxMESo1fumwqR9vwp0M+wNc/ByhZUh8zzUz8dqGdrZZ3mW0uMXhmlM1XBizqID3TVYI4cTw55jkKOgaHqnZJvBz/aGz5Ik9uyGP4Oi527OQdZ52q4LmWgJ1YP3fwC112sjz2M7c/NE7Dj1/1yMfQcyDDsK9ykj89iK+w3NtvdnyW3bc9bVg5IFrVxVn7AYee448hicMyay6zP+uU+6J+a1tv+XVcaaK+M3uXrJM6sOXSrSqBbvXGU/AsRBKZcFDBeJ7s6Qh9nV0aYRFdrHN/wfol6Z70nR2HhDx0/R+Haf5PnKOQ4OnKPQo7BwTJS9QvWLh+DbEa+fgubmyOQxcTnvsh72nByDWzdB3cBSaxr6MU3K8fCXoi1295uL2uxtkMLWQuwyX84wEjImh/7nKz56WdMuddyv3cXxqz+2f20z0uc77Kufdg89Lu+ff/07wkgrXugyy3d6/S05YSLdHtZ/fWGyj3PhHmurfCX3S/3Wva9132zj89DDzkGgdxQyDEw2MmMWQtcP7iLRtYLHrLllPWLPMvAOEh6+aCFK9kL+y7IWX/bO+nkgP73S/Ts1z9/rNYztn7tZi28R7lGVnv2gnjQcf2ucZQxuvep37PhegEOMm7071njP+xeusfYvxu6aMsgO6i/9r2yP+/nmdrfyPOTnCiEmAUWgbL7nZTyl598j3Jo5IZCjsGhVIQQvM+8bBQDNcEPKKY+79ZdxUJ4XeUp2OyLXn2HpDZCXCkrFkHSpMe0bj+pDuFf6zIAAj11/O0zc3hRB3+9DlHLsBfaqolhGnN31RhFY7ubIKfr3DVS/odEx9nXNnpr5lO2vs4XvpdgZYukOkQhZZYUjW3TD3MsGAXHnjYtRUXD4vfqMv56s4cMyU6s00qRlApmjLrPhptg5X7PcGzCJZftUaxt4n1mrsum6KhaFmZnSKbH1RgsgilQ6pT+yroJCcjFOXVfHVZCl9kwnp9CvP9xl1Wysd3ThlaG9BuTZu40dC6BzUwJig3S+8zL5jg/JcEy6pTp7/r589Y2DYsoYEjAkulxZKmAv7Kuvr91tycxEjDEYCLlVtCKovoZs0nFdA6KGcPNp45++aEhhHgB+Fng+7O+RjFFPH+ymc8Q8hyFHAODqx5p47B8BPu4w455WBxlZ97vPOjPEZHFX2DnV9i5DO4O1uYv0Ndw1TT7xfj7xfqz+n3UsZ4EWXNwlHOO+0wcJd/huNc46Nqwv9T3IG/VUa8rgoCvhT/fy6PwwoJcPEGOwsf/7dOToyCE+CfArwf+EvA+sG8SNFNjjsEg9yjkeCpx1Bf1o1i8DntBZyW52Z8fxc2e5XLXOQKua93NH8hqK0ud8TA1zcNi+kc597g4bG5tF/1B5+ufR+nHw47nYZ6prHOPYiQc5bp9v3/293q/CfjDUsqfHXRHcmQjNxRyDAyiVKRwasa4dpOzC8h3PzDUvcb1DKZmH+ipvzc6BqnrtrN6D/nORcRXLqmM9qjVFfTRGhIp7792oQP7dAa0CJIR6EmFi7TgkSwXSb71oerTUFkdbwn+6Lb02NAUyKl+hclsT3UiAOKPritBIouO2s6AB5Wdn7x5geL1u73ueeiWG95cQUaR4jIoFdSczs4Yl7Yenx6LLt8z7nU9FynfQlIbUVTHr79EEhSU8FRK56znVrvG2/On9n2v6aH3iUmlYRATKlhXC2rn5u0u1fKtuwhrjgydczqWzuq9rg6DJdKk+63vXfzRdaP/YASk0pCFfpZEudzthw4DOHoiyc0VpWFhhbJ0aMyEWG7d7WqVpEhqIz0aIuYZSefYFgwzCb2pToXuH4DYfi5f2Xvkwk9PNfLQQ46BoRbMyLc++wfNAkHUon0mjVOnuQNJbaQnDmzHhZPqkIkFA8g07p5Uh1Qb126z9/Y5hq+s9rTtN0OExdsAGCGnZHq8qyKZLmbhmWn8lNuguHKfeKpGuxpQvr7WzZFYb5o+JUEBL+qYnz1tW7kYuxdmKd9pElfKauG3hKWA3rE09uhMVShcvkHn1WWldpmqQe69OGFUEvXcJUEBvxkiSwWiySFzncLlG0RvnCVY2aIzVSGcLFHeaFFYb6p2rqzuU5HU19Kfi7BNUh1CtDqm7+0zc0qZM81jAMy98eo7xoCI5sdISh7Dl26ZnIjCepPOVMXwC8hSAdHq9Dwrbi4AYHJMAMMJMXxltTt/qchXa3KE0saO6QdAu1KkfKdp2u1MVcw9dPMo9H3QCqU9Sp7agEnbKK7cpz1/Ci/l37DzaZoX5xj+dNfwQ2hFVHvuZLlIa3KE4JvX2Hv7HOGET+VmyM7pgNp7G3zlzv9Gs7HSG3r4gycIPfzZpyr08DPAGSnl7xp0X3JkIzcUcgwMB+UoPCk8iRyH5xWHVVfkePTYp/XwwoJc/AMnMBT+3FNlKPx+4M8AN4B/Djxwj5FS/oMn3a8cXTyXfqwczwaS8RHE2ddY+cEqU++pnV1jsUBSElRud9iZ8YnGBX4Lgk3JyGqHVqXLOr497+O1wWtJxq61SEoe4YRPcSdh4/UCwZb6LhoXTHyY7jxHPOovetQ+SWiNCkrbkuaCx9R7bRqLBfwWtEfVe7i4LfFbkuJOQv1F9V9l5hu77JwOKDUTWhWPpCio3Ay59/lhCjuSzohg+J5iByjuJGYMldsJ5QexGd/YNXU9gFOX91j/3DAAldsd/Eiy/tkiU++1CSe6yd7lBzFxIIhLAr8lCcd9RlY7hBM+zQWPyu2E4k5COO4TW4UYY9daNBdLbM8LWmMJEx+I9DiPaFyQFGHuqxE3fqJIactj5FO1edh8VVL72KNyW83d7R9PmPo3Rdqj6v6E437PXG3Pq99n3m2zdbZIcVvSHhUM34tNfzXikurX7myRVtrGzC8p7/Ot3zpDa0wy8qnqW+2TDiM3GrQmR/j0+wOG1mHmaw3q50ZpjQpG7sU8eLnAxIcd4pIgHPdISurcaAxGPpWUttV9bC4UiMZg/GrMvbcEtY/UtUfuxTQXCukzAhMfqvvgtRJKGzvc+cEJJq60zfPntyTFZszW2RKnLu+ZZyKc8BVT5Kqas7u/vsjiL+ziRR3uvV01cwGwM+Obe6PvYzjhMfO1Bg9eqzCy2mHokwfc/eEZyg/UveUXnktmxr+T/vwe4AcyvpdAbigMELlHIcfAUAtm5G84/Tu7ce3UbW+7ukXYVi7d63eV/G/qCgZMvDteXcMbKhNpmeeleTpTFZWnYMfmddmZLnGMWjQvzjFyo6HK7FKXsi7Hi6dqxn2tY9KmD9e6RD26ZFFErZ7YtqhVTZwcuqWd2gWu49o6PKDd/rrkT58DGBc2YEIjtryx/ZkuyZPlIjvLVSpfv6nc22l4g7UNM1ftd17Dj2IK600T9tBUwjrMosfWvDjH6JX7PfdJ3LqLqFUNZbJX3zE5BsnZBRNW0mEWu0QyqY2o8IlVUmnmM80f0SWM2h2vY/o6fKPvvT5HS0jbuQgmlJCWwMpSAd7/WCVHvnNRPUtfuWRyKfS9iTe3VMmnzn3QuRJrG2psK+s9Ja/R/JgqpU2xe2GWYGOvm9eRhi90iEg/0yYPpzrUE2IC2Hv7HOU7KiQiwjb/9pN/QL211uNRWPovju9R+OjPP1UehaXDjpFS3nwSfcmRjdxQyDEwaApnXn8J0eqoWnaLBc8kKqborN6jsLRAvKpexppG1ySzpcl4uqbehk7S0wlyGlo50U7k0/X/up19in9L8z2JgD0JcQ53gU0BbXMuyHpDGSCaL8G6vs0f0DOGWlWN/fWX8NfrZoGF3mQ4W9Zaz59uVyfL2eWUmmLYcDNY0Itl5+btHjZJM3cONbI+B3ppo3V/TNKglcyZlbApo6jnvuh7rw2xnmta+SQa9tx0bt42z40et91/PT+aYlvPs55PbZDoc+0EWllv7KN3NmOJWsawsK9lQyeWGuM0NXx0cqw5BvUMf3XjHz53hkKOpx+5oZBjYKiVpuVb/g+bBcXmwLdfyofFv126XFdXIatWX9fwQ3dB1de14bLq2Yx/J62Pd5kD3XZsBULbCNFwr2mPJUuLwZ2fLP2CLCZDnaHv8jXYc2JfV8+3PU/2tVy6at2eO0d2Oy6/RD++CE1aZBZautUx2tDJ0sZw2R6zmBRdTgv7eHsMWc+b207W524fbOPUnl8RBHy9/S96tR5yQyHHE0Ceo5BjoDBsfuluWr8gNTWyN1RG9DnGNib0rljv8PViq3d+hXTRNeVp05OGf18Egdm1+WM1s4PVIj1mNwuGSS/e3OrpqynVtHbftqiU/tvseqMWIuguwD07VdJdZFAyu2zjlt8LTV/sz4wks5ZJTktFTbvpIql31nqHq3fSCb0LdM89sr0S6e+2JkeyF1KYnekRWrIXZq19wPQkPhjPhgxDsIwIbMNNlxamO3otg62fBX2fdL9kGBJrTYR0QdbHyKBkxtbjAbHCHa5nRhsc+lnQct12mS6wzxjScyWC0JQ32sf3SIKn3hAdLtKsoqKxjZfOQzfsVVdz8unzx8wIIIT4YeAPAOfJpnB+8Yl3KodB7lHIMTBUvVPyLb5g/j4u695RGPiO0y4cnQnyJEyCJ2UV7Nev41QbHFf3QeMoYz0Jy6GrcXDYbt3+3O3TUe7JUdgZH7Z6I8tz47bnGmMHPRtZn2VVPTzrHgUhxI8B/xT4ReCHgC8Cw8A7wE3gV6SUv2dwPczhHX5IjhyPCY6R6tLeukJD7jH2S1bv6vRxBy027oLoj9UM61/Wd/366CIzBn0AO2O/hdnu50FshO6xB8Ed20FCRfa/rH675/czNPotfkdhwrSvb9/7rD7166d97x6GbfKwudVwWSaz5lyrjB6VZfJIkCf493ThzwF/C/ix9O8/K6X8zcCrKI2Hfz6gfuVIkRsKOQYGUVKZ/PZCZ7/ctcvWH6vhDZXxx2rGgLD/6WNFuWzCETpurY/XP93FR4c43D7oc/R3hdkZCrMzPdczuQT6XCuZTn/nGg+2AeQaNvp3+xw9Znfc9rXtucpqz/7c/d3OD7H74x5nQjm26zzthz23WePt1wd9rHtdd66yvAp2f+w5tdtxwyjunGWN1Z23wtKCWfCz5lTPgX42XAPX9ZrY99NFlqHZr1/PGV5GeRQSlBlTAJBSfgT8NMqQyDFA5DkKOZ4K6Liw3pXp5DGd+a4/84bKvfHrFDIMTQ4CgD/GPjplD/Umgu4L3I5D2yp+nnU9O5at4+Q6ll1I4+Sd1XvIeqMnAVDnPthJmva1bZhs/KHsBEY7L4N0HDreLqPIjMvOizBjdxY3m/IaMDkA2iAjLStkbcPE+3Weg/5pJ1qaeUqvrea/1q3iCHoTR/VYdR6InS9hw60mMIl9UYQolyksVVVFw+wMfk39rnNK9FzYFTB2VYNWtzSGh3WsndMRr64ZtVH9vc65sJNg/XK5W+mQXsduv+cepPkQwpoLPVc6h8ROANX3QAQBiOcyRyEBOlJKKYRYR0lNfyP97g5wZmA9ywHkhkKOHDlyPLuQIJ6+UMJxcRVFtgTwLvBHhRBfATrATwHfGUy3cmjkyYw5BgZN4XzSpET778Mklu3P7fJJ6O5c7WP0Lrhf+eNJE+EeNmHuKOiX9NevD0fp01ETBfv9ftLrPgwO6stJ27H/PkoSZb829Gca/RI7XexLZjy9IL/nPz9+MuPVn36qkhn/ELAkpfxTQojvRSU1psxaxMDvkFL+XwPrYI7co5Bj8HBfklmLv/4OshfCw4wE+3x9rMtd4Ma03Zp7c6xFEpSVcNgv0e8kC9VRFg8Xhy067uJ2lLaPYjy5Wf9uu1nXzernwxou/fpv9/GgNlz+jqxxZH1u33eXuyPr+dDH+GM1FZw/ZA78sRpsZg3uoJE//ZBS/i3r918VQrwO/CgwBPyilPLbA+tcDiA3FHIMEML3KSyomKxefG1p6GQvRL5z0dDZCh2HtrgFDKWv/tti6uuhbLZogk3sl96afS9lw0umx5WsMnTZADXNbm2EcHKEwpfumbi6js0nZxWHgb+yDmDyHkzdvpVboRn7NCsf0GWNTCWue6Dlsu3YtZ7HVHZZt6Pr8WW5aFgobUZKTT+cTI8jbt1FLqaqk5ZiIijFSsPWmM5hvFXH+8zLhnrZltcWtSpiz8pRcGXCUzlqO+dEUyQb+el0rADx/JTph5aPNmqiaxvI88uKQlrLTqdt679luYivKaI1HXStSiGlnC586VcNP4KWIJdRZOYv/ui6yR/QqqX6vuhn1lxnbbPLfkmX48KML6X3tnMmRK2Kj5WL8eZrXSVVLPbOtU1F+3z5BsLv6mU8r5BSrgB/b9D9yNFFbijkGBhkolLwrPtXPwAAIABJREFUTHIiXcIbndxYvH6XWLPUke600pewPt5+8RK1zEvcfanrY22SJ79c7mmPclmR3+jdrtUGAKtQrk8Tp4mKaneaJuO9+4HaserkvrQSQpxfRqxt9uhAUB3tWbxFuUxy9QYS8NY2kJYBAb0Gja+pnAFxfpnk6g1IqZaJWvjlMjS2gVFDSiTWNoktQqB4cws/KKnxrm2ye3GR4foO8VTNSDwn1SH8RrnH0BJnF/BW1tX542PsvjjB8JUWcnocCfhMG00FUh0IDW0MJGcX4P2PVT9SbQnfknbWsstGSyFqqV15UDLaEvFeCFdvIHSiYrqoy8U5xNpmlxipVu0aUptbxigpbewgg4Dk5op6tobKJiETIL650qV3ro4aLQ3zDI2PGf0MkT4+wnqWdLKleT5rVQhKxlgCukZrmjwq1utm7rQ+iLh1V5UBrDfVXO48n4VqQggB/DjwfcAp4KellDeFEN8PfCylvDPQDn6XIzcUcgwOUppse/NRFJmXrYwisyBBV3egZ8GFLnue3UYYgpVFb+tEeNOTvZUOdDP39TUKWhsirSDocQNHra6xoV3nYdjdRadMh/pYeXWNTtSrMeADgl76aO0tEOUycbqA2bCNIt0f79ZdRHpe5+btnuP9MKRjZd6b8QFyqLuoxVt1Sl+8p4yfm7d7PNmxHXKpVZUYVq2KjCI6q/cI/vUWjI8hr66li3k6HykrpK2RYNgcV7vCSbz/MSKt2tBz5q2uEZNWcKQGij9WI7m5osZtsS7Gm1vGgEz2QuS3PkTqahbLg4Sm517bUFQCqa6Izcio+omZK/3c+NVRc39kFCH0/Xp3C1KDVlfoJOnzKsOQJB2vud+1Kqxt0LFCH4DRgtAogHnu9fPnrW0o40hkGArPeOhBCDEO/DzwFtAERoG/gSJb+n0o2ek/PLAO5sgNhRyDgxgqU5hZMK5uf72ufm/ssffiBMOXbhG+Mk8SxRRX7tN+5zWikmfU9AD8VInRm5/qlj4Gy3D5htmx7/6Wz1K5dJf2/Cn82gjR5Ajl6y28z7zM7ukKw1dWVTnk2QWiyaFU5bBE9Mo8wcoWfmPbuMGjySHExp5y3Wt1xKhFPD9l+l9AKQd6rQRvZYv1/+BFZv/JJyTT4+wsVxn+dJeoGpCUPIrNNqIZsvvWEqNfvoo4v4y8dZfkzQtqfM20LLJUQLQ6JKUCSVDAi9Suv5MqPXpRBwFKXCs9pgMmbJOcXaATFIyCpEAZN9EbZyk2IvyVdTWGVL0QuuqRWvEwAZg/hRd18IMSnakKncCnDZS/TY+SYmeqgmyGJJUyhfUm0fwYxUZEuxqo663XjeJisREpA2R6Ut3AVCAJYPMLy1Ruhnira7TfeQ3AKDQmtRHar8xT2tjBT3fgRh2ysad253sh4vyyUewUqWKnv7ZJmJ4LwNRLeK0OydUb5vikNkLr4iLDV1bh9ZdIAK81R3O5yvCnU3jXbqtQSG0ZSgWSVgdRWyYuFczznNRGSCplNRelAqI2gpeGekTYZu/FCVoVj/L9DuXra7TnTyHXm3jVUbY+O8nYN+6Avncr9+HT+IT/255q/FVgAcXE+O8AO+72i8CfHESncnSRGwo5BodOR2ketDp4a5sqDtzqIKIWw5duKdfuVz4gefMCSW2EYkPtosPTaiEb+uQBoBY0LVmc1EYopBLFhG2iN84ycqOhPl9vwtoG5XrV8OuXUQubqFXx1+sMpzHieKrWXURQBgLA0Nc+ovPqMn5QUrLG05MI0nh+1DIL7tAnD4y09anLe2pxDtuMfvkqyV5IOd0tagXJ0SttRLlMNDlC8WpoJKjjitrZFtabpj2/sd11e1tuap2nIKYn8VPlQVK3u7+yjlcdVcbAyro6tjpK+foa4ZlpkjNzxIFPcO02pIZCUhvBa+wRb25RXFFyyNsXTjF6RUlSF1fuU4xatM/MmRwBLdFctHIsRNRSxkBjj3JqdHipOmY5jd3vvn2OYEPJh7fnz6quf3uF8XfXjcSz981r7L19zngZvLVNyuk91/koImz3SIK333mNYkOFLfxmaHINCEqUr691jdQ0r0QuzaswESCvrjEUzivPi9Z+qFWpXFKS1dSq5ljohky0caXvebG+Y3I14krZGH+isc3Q1zbw3jhrjITiyn1zbPVq3fTNB3YvLsLtXveB4Lkoj/wJ4E9IKf+tEMJNwriFMiJyDBB5eWSOgUGXRz4q2JniNhnRUUv7XLhZ/Pp4OLiywK4OOKiE7jiZ+/36cFhbD3vdk+AklRpAT2hGt3PUssFHhaOWPB5nvk9y/X5wyyOHTi/I7/nPjl8e+eF/91SVR+4BPy6l/MXUUGgDb0opv5nqQPyfUsrKYHv53Y3nMzMmxzMHm6L2pFS19gu2s3rvSOV/WSyJui8ud7/+3W63X/lhFu//Qf114VL39uvDYbCNi4MMm4NwGH2wTat8WLnoQe3EW/UeNsOjGAmPmtY4q3Qz61p2f7Kol7POce9p1vN+lGfiOcRV4If7fPf9wPtPsC85MpCHHnI8FXAXwodBP0Kcfru1o3ANPGkch+PgKMcdZizZyFqc3fnImpt+/ArHvbfHOf5R3Z+s8Rz2t4amjD7snMN4GQ5D3+Oefafw3wb+phCiDvzv6WdjQojfA/yXwO8fWM9yALmhkGOAEL6PKPa6l3Wmt8lot3nuwVQGwAGaCWkbtoaATnS02RntagYjGJRWO8TW57augbuTdLkNTBljWjOv+2y34WoP6H7aC44OX2i4ZFDugq2Pt/th/3QX8SwCKa2TYDgm2E8cZJ9r5szSwtD9dO+bPW49drv/9vhdYidXN8Eev02g5J87Y8od7e/3iUPZ1QQ2n4ZDxmSPQc+l7qtdcWNra7gGla0JYT/XLtx76M61ee7Dfac+85BS/l0hxIvAzwB/If34X6Iewb8ipfy5gXUuB5AbCjkGCU/sc/XqxaKwVDXJYz7dEsjEOj3LeIAu0ZEIwp7FxxYM0sfrz/WCr4WKbHpnjz5eh1C90LVRoX/aZYqmbM9a6OwFUPdDLx7a+NDHZRlC7t+GnVJ/l5bxkXIDZAlEuWEaPfdZC6uZY6cP5noOg6WMop77pM+x2Qddw8PdlcdW/+z+uOfb38UfXd+X1+Au/ECPwWYv8LGzyNvho9iZry6cUkcLdviq+xx2jQBtHGlmRre/9v8Ndz67E/JcJDMipfwzQoj/GRWCmALuA/9SSvnJYHuWA3JDIccAIdsdRDmbStgstmYR2p8vAN2XsRte0C/g2Go7y0VsL1L2sfbCgCWDbF9DK0Rm9cu9jntNO4/B/k4nYGadn7UY2boVeh5cimo7z+Gwfrq01XabrjcGsj0HWW1n5Vm447Nhz6t7jL3z7xdayjKoYnf+DwhDHTUc0C9Mk9WGOwe2QXhQPwYZAnuSkFLeJGdkfCqRJzPmGByE6Fk8bdgkTAch6wXq7ib1Z5kLbUrm5PahK1fdDVHYL207gc0eg+2NOKjP/RbW4y4Itiw39Lr3bY9Lv+S8w5JI/bGaMQ50G/FW3fRTG0v6GvpYb6hsfh41mdG9R7ot/Z3+u58GR5ZRlXVt935l3bN+iYxue+413cRO+58djtDz2e8a7nlH/f/wLEMIsSCE+A1CiC+4/wbdt+925OWROQaGR10eeVK43gL9+8O097A7wWdlF/ko5utR4lmZt5NiX3nk3IJc/r3HL4+88hefqvLIF4GfAz6vP0p/yvR3KaV8/kUunmLkoYccA4WdzKeTvTR0kpidQwCYY0x4wUm2014AN4mwZ2dmaSnoHaqdpGbohFPXemFJcb7EFv2wnfNgL5h2PL8n18FJDNT5CHp8tnHhDZWJo8hcl6hlrmW3qfvgJoPqcISdaKjPcRM4XW+EOx9ajEvH1O14vxFbsj6zr1GYnTEaCXbCnr5OVpt2X+3EQw070dFOKNWIo+zkTpsK3KZ4dq8lUi0Newz2s6ifETvR0dCIW2GZHupx5zz9zGjRKJ2EaXu43GuKchmx9lyul38fWAT+KPAhvcyMOZ4C5B6FHAPDo/IoHLarzdplHvWzk/bHXszcxL2H8TZktXWSY497/aMc/6h381n39aBruHP7KPtznHl/nHhOPQpN4CellP/3oPuSIxu5RyHHwKDLI4Ge3ai7yOrvs3ZqPbLL6c7O3omBojY2aoJYSoxWCaPZtVleAvf6+lxwyiSXFoy4lYnfp7F5u9TQHG9nuzs7ZcB4MLSSJnQFoZK9sEfVUDS2TZWHFr4iavV4Z8xO1smt0Dt57d3QlNJaYtsbKhvPi1ycQ37rQzMnPfdjdprOzdvGC2Iv8Lq81PYKuBLZGvpeJG9eoHD5hjkP61o93pr0Xul518+Anm+tBmmExYKSoe62Jb0B410y5bGpR0bfDzss1a+E19wD2wORikbp+XCNDPsZsA0RVyjMiKHVe70u6sT9Hz1jWCH3IjzVyJMZcwwUxlW/11VpFLUqIgi6C2IUIRfn9p3bU3OevvDjzS2YnjRKifHmltEKiLfqyt0cRcq1HHYXH2McBCWTiFaYncFbmu9Z2LylefzxMQqzMz2LrggCU4tvI9lLF53xMbVwWpLaolxW7aWf6TEWZmeQ9UbPsTKKugt/dVQt6uWiWgRTZUbvMy/3yBzr44zUdBB0M+03t/DPnVFKmbMzypjaC0m+9aGRXJaLc2oBnZ7EW9vcl4Sn5cBBcRiYss/xMfXPMhLMd+nx+n7re6TvBXSFrIy7vVbtGodOO/5YDaYnVQgiZXaMt+rq++lJJe2cPguy3kDcuquMirVNRK1KcnNFuf3T56ezek/Jj6cLuBanKiwt9FSm6P55S/M9xo5/7owKxZTLRtpcP+O6DZ2kWFhaMM+Gvu/6mbN5GoDufY3aPIf4i8CfFkKMDLojObKRexRyDAwyUXtDl2Cmc/O22nmF1ue37uKluyybsEbvGjtWDb3eHQJmR2d2nqtr3fJGqy9moa9Ve2PjDjmOl8oUMz1JcnPF9BesmL7jhWBILZbGS5AuDJ3VexSCUtcb8a0P1UKspa2dsjnD2/DRdbUIpxLT+loSHTdP501zQpTLvTvkzS21wDW2uzkZOs6/NG/mT169gQR8y2uh8xEA47nQ82UbSWYx1bkEaa6FrDeU8eCQTMVW/ogxGINAqXqmfdPS3qDKZ/1zZ4hX7yE0EVLqTems3lPKkZYst27Xn51GpAaKnbOiJax75j81KP2xmnkmzTNXLkNQQqbyz9oI89L51LkO2ssRb9URe91nQM+ffs6NMRNF+JZHw553D8AzUYfus/uMexSklD8rhHgZ+I4Q4mvA5v5D5O8eQNdypMhzFHIMDFXvlHyL41U+HScu/6hwnDafRJz+UfXhuDkAj+q6zyuy8hjccs6HRVaOwos/efwchW//pacqR+EngX8AxMAa+8MQUkr54pPuV44u8tBDjqcSbi059OdWsGvbdd3+Qee7te76Z9b14fBFOuv6/cbjHu+Oyx2jzU3Qr49Z/ANZ13FhkxkdNFa3/X5jcNs6bu2/O0cuZ0G/47O+y+JFOOgeKCbP3rbcNuy/3Xbc9kyYIoOMyu6LzbdwJIj9HoXnAD8D/D/AlJTyBSnlsvMvNxIGjDz0kGNwGCkjL17Eb4ZsvTZG5WZIceU+7flTeM2QuFImnCwxcqMBpQJ7k0OEEz6Vm8q9G06W8CPJ0CcP2L5wimIzpgMUGxFJUKCw3gQgmh+jfH1NuaW/cBY/iimsN6l/dhK/JQnHfSq3WpSvr5HURvDWNtm9uEix2caLOgC0q+pFXr6+xu6FWcp3moSnK5TvNBFhm85UheL1uxCU2P3+84x++SrRG2cpX1+jeXGOkRsNwtMV09fKpbsktRFakyP4K1vIV5fxmyFJqYDfmESWi4iwjSwXARD1HaK3z6k+3GkSV8p0Ap9gZYv6ZycZ+8YdZL1BcnaB9TcqTH1Tjb2wXic8M02wskU0P0axEdGuBvhRjN8MTd8l4EUd/PU6uxdmzXVakypsXNrYITpdodhsE06WKG+0iAOf0sYO4tZdOq8uU7h8A7k4R3i6gtdKaJU84kBQuXSXeKpm7omIWsRTNbzGHgCdqQpe1EG01FxTKuCvrNM+M2eOl0EJgL0XJwg29lRbK/fZ+vxpau9tmPlPpsfZWa5SuXSXzhtnCU8VqNzYQbQ6ePUdktoISaVsxqvvq7ryPOXra4Rnps1nwUqa4zI7TVIbwZ+epDNVobByn3iqhr+yTvjKPH4UqzEAuy8MM3KjgVffoT1/Cn+9iSwXaU2OEKxsmdBO59VlRDOEUsHMTVIdol0N2J0tUvtoG9HqIMI2orFN+8wc4hu/vP//0bPvFD4F/G0p5X4RjBxPBfLQQ46BQYce7HK2LCEeOJjKOKtsLascUB9r8yy4OgKuMFBWprrbT32uWxbptnHYNeyxuKJVNrK8B+4Y3bZ1Fr17jn2drNDBQfOYBft4HVu3285KcHTnwJ7PrHHafbd1M2A/G6fb3kGkWgddL2seXD6KrOfBbcfW8rDPd8+1r2F//7Xw5/eHHn73CUIPf/mpCj18EfhnUsq/Oei+5MhG7lHIMTCIYgHhBabkzV58dTmbX6sST9UQ739szrNJaaCbOKcTFw25jVNSaX+mSxhtIhz9XZaKoJ34aJfDke50QSXqGaIjqyTQLpczbvlzZ4g/um5KCu1SP7sCRFdWZJEqGZKfc2dgbUNl6FvETO4cedb4XHVJU0aY9t0+B8dgs8sAtSHgfeZlVW5ItwxThl1CKD1ONT/dMlOTTEi3kkEnh/YkIkKP0SOro+r+WKRThdkZ07auNNCkSrbOQ88zmGFM2M8jdEml7ORL937542OIoEsOZi/y0C377XftnkRJi2RKJ9maRNm2Q7gkeR48Cn8E+IdCiE3gi+xPZkRK2VcXK8fjR24o5BgYZLsDQffFrheYeHOrl8vAqkMHMnkOZBSZBUa/wPXnOiPdfnH3VAC4notUp0AvxEaNMb2eESTKqIro7v4sVcL0Gvo68VYdXLElXX1g7e71NUzbmsHR7MZTMShd8eHIMmvY47N/10ZNsheCdQ98yw6zGQd1X10jQQQB8uoNEiuXwmVLtNU6dfVB5+btHu+RWz3SwxCZ/m6qAyxGTNM/qz+mfyknhchQxOyRi07ZGF3JbT2v+jrGa5QaVRr62kb91DIOexgrrfui595m61QGTS+HiG73yHkMzx6upD//1z7fS/K1aqDIJz/HwCDKAf7MdE+ZXby51eUVqDcM4Y/eLeudJHRL2gpLCyqGndb8azpcUS5TWKoigxLxR9fVcRZlr0k4c9zD3UW27vzd65LOyma3FSih6z7WO1R3l9lDgPSFswQrW8rTsDSPLBeJ0hyB4JvXgO6uW5xdMHH84sp9ZFBCRGmyeNSisKTmK56fQqysq7LP2gjy6o0eIirR2MbXPABByZQvgsp01jtpUNLf8eqa8mBELXj9Jfxrt7tUyKkRIs4vI27dNRLd/rkzKi8hXYg7q/eIV9dMqaCeH9t7Ulha6BpTlqdDlxJqD4Mpi0z7KywyLnNPHPpobbT0GJzaUErP09/ZRpvxZljGm006ZdN7u0RexgA5d6Z7zcY2HtB584LJY9B5KXGlTCHNufDrOybHg2/8y33P3HOAv8Dz4Bd5jpHnKOQYGE5K4XzUagR9bL94cdZxJ4WbHwG9mgQiCAwPgOE00EbN6y/hr6yTTI/j1Xe6ho214wVgupvkyNpGl+gnKNGeP6UMBmuhjze3EOeX1fVv3e05XtYbhp1QpOGddjUg+Oa1nuNIjY9kelxdVyM1yoCuEZDqFmhE82MqGbA6hL+yDmDYH3Vb+rus9rVxGM9PdednbZN4fkq19e4HRs9CX789f8okVeox294NN+/jsBwT+94e5Rnpl7ug/44dj4L9vX2+G7LQ/f5G4cvUW2vdHIXZBXnmPz1+jsLlv/r05CjkePqRGwo5BgY3mVHjYRdtF4cl6R3H8HjUeNRjfRQY5Hw8aTxrY93Ho5AbCjmeAPLQQ44cOXI8y8j3ejkeM3JDIcfAoTPp7biunXyYpcJoI8s1bMe/sxjyXPcwqFhxOFkydf/+enq8JR51kp3nQV6Dx+U5yZqTrGS4fmWfbpv6O+3K7+eh6deHk4y1nyfosLayxqxzBaI3zlL+9grtM3M93A1eqgGhx2nacnI77NyHfqW4h40hR45nDbmhkGNgEJ5HYTrNcNcKf2CSv7B0EGzhHZNZniYnagGk5OaK+axz8zbeZ17G0yV7aV6AG3/uqQ549wpDUaTId27eTkl40r5mlNVlxbP1d/bi4NbC68/c49x6fHeRzaqzPwr6cSWYRdSKh7uqiXZ5pE5OtMtFs8Zmz4FdUuj2Ryc2Qi+/gB2Tt+dZX8c2Al31RX2MO5fauCl86VfpAGL13r7KQt3/ngoYa1xZBpJ9b/p9Z89HP7iGlstHoase9pVH5sjxBJAbCjkGBhnHPYuILXusKw7AETqyYMSjtuqQtqNL7EQQkHzrw54Xbr9F3d4p2wucTubrrN7rkba2eQxEEBqBJVOxoc+xsv2ZnjQ1/7awkjZsjOrhWK2nEkIvnq6RoHkY3AVWyyybEk6r4sKt7rDnV1/DXexdGex+yYD9NA3s/tv3oaescaveU9KaZczpvoggMEaC/Z2+hj7XLsfU9yuOoh7OidgSjZKLc3hrqnzfle+2RaKy7oX7uzverO/dY7Lm1J1DGUVI9tMJPOuiUDmefuTJjDkGhpNWPTwO2AaCDENVkVAdAlR2vXznIgBx4KtSxbQCwavvKOrkPiyKOZ5e2GEGXWGhCbSS2gg7y1WKzZjwVIGxb9whqY0YUikN29PxJMIMWcmMZ3/X8ZMZP/hreTJjjqMj9yjkeCpwnHh0lgv+OKWS9u92W4Wlha5HwmJ0jIMA8a7ihPFAyQZ/dB0gY3/3aPA0xLaPWw74MMc8DI7aB+gNE3hL84ZzQ+oF3yJyGr6qzi0CnfS8JCPMYHtvjtqfR4p8r5fjMSNXj8wxOFhKePaibX92kEu2p6kgyFQM1NDqhlkLhr6GNhLsa3dW75nf9b/jygYfpDrYD4M2EnQfBtnPrGu7CqDu5/1g32cTtvjoes/nbrKre3xWmCCrL0edk+eYaTHHc4bcUMgxMIiCSswSb74G9HL7aypgzbrnegDs4/zxMcWMl7p/RaAofHVeQWF2BlGrqs9mp80xtiS1vQC5BoZuT0sR29LA+js758CVDu7H7Nh3Xo6wgLj97Hf+UY45CMdd9Fyj6LCqC3eubTltnZzozmWWFLd979127L4cRfpa54hkeQay2rXHZxuC/e5D1r1TOhX7n0H32cyRYxDIQw85BgbZidUvqeCTLVikF1eTsOhkhEM3eU3rKtgZ8HYZW5ZIEvRSN9vUy1nJcXYbblJgz3cZ2fgadvWBTQXs6jD442OKqfDW3S77YWObZHocefWGcptrpkG65aT+7LQp69SS09612/sEjgxVs75OyogoopaS2a7vqLkISipJM2VC9NfrhqlRlxfa0tGaRbGwXjVSzcE3r7H9Wz5L5dJdZFAybI06vyOeqiGDAoXLN0jOpkZhS8k1y1KhJ7TjN/aQ5SKdSpnC5RuQ0lwDRtJZfOUSwtJp0PfReA0OqFCw76c+xhbQ0gmn2jjU3qYeYye9Fy4rp309myVSJ1uaqgbrGde/J5D5PKmbRB56yPHYkRsKOQYGUQ7Y/vG3APBbkuFPd/n0N1WpfdKh2IxpV3zaIx5xSTCy2mFntsDYx3tsn1Yv5urVOvXXxsz3W2eLTP3aLs2lMuUHMVtnixS3JSOrHR5cKDK6EpMUBeUHMeufLZIUofZJgteWbM/7TFxp01gsUN5MqF6tE56uEGzsEU0O0ap45pqyVEC0OrQmR0wfyw9iis02t39gmJl324QTPuGEOqf5PQlT34RwwsNrSaa/tsmd75tg7Jq63ti1FqWNHfZOV9iZLeC3JF5b4i9XzVw1F2aY/eUH3Pt930vldoeRGw12lqv4kVoldmZfpHKrRXiqQHJulM3zC7z4c/f49Pe8SrApqdxqceMnilS+4zH3Kw12L87RXCiY/k18ICjuJLRHPNqjEwBEY1DcmSEuQeV2QiUosPXSEI1lFTIKtqD2SYf20hRxSVDejGkuFPBaFZrL0J5qU/yhVxj5VOBHs+zMFohL4C9O01gWBFsTjK7E7M74JJ9/ldEVZTiuv+ExdhXiEkTjgton6THFKtGYuq73uVdJitA412Hi13z2picIXwoZ/o2/geF7krGP5/CaIfXXxtid8Zi40qZ8p8nWa2OUH8QEG3t4126bsltZHTXGTvvMHCLqsPfCMOG4z+RXlYZD48cuMPGlGyTT4yTA3ltLlDdaRqehNTkCjQjmp4iqAbuzRYo7CcVmjB/FNJfK1D7apr6s9DuSoprHsQ+2EPNTtKsBfhSrhNmVtFokNd62l6uMXrmPvDP8qP8b5shxKPKqhxwDg656OIhUKetvG/0SyFwvhH0NI9lbLrN7cRGvlfDJ7xBUJ3do1oco3AlIihKvLRi6sAVfHidOJQzm/1WD7/x4lfGrCbszyhBojyiD495bsPz/tQlPFSg1E4KNPaVxEJTM7lxfV6sj6vJGU8Jnf5ZqQ2i4ngfjmtcql/RyIuj5sSs67DLELMVEmyvAnjtbNtveNdufa1ln6BVi0m24/XIVFu3xuVwSdhtMTyIa22ZeAaU9kX4Xf3R93/V0X6FrFDQvzhGOq/DX7oxg95WQyqUyjVdbjF0q0R6BqffaxIEgHPeZ+KCp9DBWtuhMVWhXigxfWe0KcqVVE3pO9e96vK5X4CT5HfuqHmYW5NnfeYKqh/8hr3rIcXTkHoUcA4MoFfGXlZqen7rYO1MVvHev4A2VFYve9TXCM9OUr68Zt3hSGzFteGEbEbWUGNB6E4C9FyfUjrHVQYRtlbS2OEehXCaZHoe1TTZ/7ALDq21aFY/qdVwnAAAgAElEQVTN80WK6xIujyNfbVHYESRFwcinks7aOJPvdV/o7WrA4i/sEgc+rdESOy8Ixq8mFHcSSlsFts6qhUvtiitEv6lKXILiDoxdU/1qLo9Qe28Db3EOGbZJzswhmiEibNN54yyiESGmx4lLBTS9TvPinGGMlK0O/tqm4XmQ1VGEJZwEkFTKeFEHv7Fn5pXrd+l84XsppHNabER4QQm5tgGvv0RYDShtKLVCgPDMNO2Krzw2dyL8ZkhSKeOv3FdiU7fuEr4yT7CyhUiVLksbO4iwTfQDn6FV8Ri5E1FYb5JUh5T6IeA3Q6LTFQqXbinD4uwCNPYgLUeNqsoYLDYiZFCgE/j4UQyXbxg1UTk9ae6zaHVgUYlAJdUh5DsX2VwqU7kZcu/zw8QlOP1vdvGiDvVzo8YD1R7ppmjN/LuI4r9q4TXqzP/jFg/eeYGZr22TBAWKTShvYPofzavcF6+VsPoj85y6vGe8WI3FAtVbswQbe+y+MMzwpzWiySGGPnlA/bOTVG7s4KX3ZO/FCYYv3VIdCEoqbLSyrsJmr7+kQkhBieTmism3YbWbAAwg0n85cjxO5IZCjoEhHimZRb5dKRIHgrgkKP3AZxi+ssrW2RIzK2rhjafUCzdOa9s1io2IaHICr5UQXjiFH0mCjb3UjVsgnhxh6zf/+vTocfwWbM9P0H5ll3i9TGFXcOp9FQnfnRFM/ZsiI6tt0xf/nlTu/NRN7LUluzMBU7+2y9Q3m5y6XGDndEDl6zcZuaHi/Z2pCqcuQ/H6Xdpn5vCbIeHpCuU7TVqTI4z9yneMUqQ2cJLqEHGlTHOxxMQHESJsKyNnSu2MR6/cJzwzjR/F+K0OBCWS2ghx5RRx4FNsRBCUjLLkzg+9TKlZZHi9TjxVI5ws4UVTFBsRW58/TeXGDv56XdETn10gCQokJY+d5SpxSV2zerVO+dubNN9aUmOv77CzXKVdmWXrbJGZrxXwo5jNN6co7iQ8eLnAzL+DpORRbLbxWj5x4LP+wzOMXWvjtdQ8b700TnEngYuLtCpeOrdqAQeo3GpRbETsvjBMe8SjNSo4dXmP+g+9zPa8z+jKJKVmws5sgfKdDl59h63Pn2akUqa4ch9RG6E1OkRzqUzzexJKWx7rnxvGa0n8Fqz/xjavv/Yh7/+d19me18tsicZywNB6lcrtDmMfbNGaHKF8fY31H5incquFH8UUG5HJy5DlItWSMjZqH22rRT5Ywmsl+CvrjLSU2uVQQ3kwqlfryohKDY1gY69r7AUlvGu3oVZVpF2pweAtzffkrIhi/srO8eSRP3U5BgY/jInP1vCbIcWV++qFmbrm480typunSapDJl47nC5srUnlUShtqJ1vsLFHEhTUzjZlQiynrl9vqkb1lnqZtyoe4bhHayyh8PEwk1cT7r0l2fj3Q4aHI6L3xgk2MbkNcQnKmwmb531m3lUJf3EgmPh2xPrnhik/0AaGR+niIsVmm53zNbMg7F5cpHynibe2yXCauFfa2DFyyTIM8aZqsLaBtwZ+rcrkZZWEKBrbyOoouy+omHRlvU75+poJRcRpoqK3F8KbF3qlmqcnqb2nXPGy3oDVNYZ5Se1k1zbwXzhvFiUAr7GHH7Uopvdl98IsgDJU5qcoNmMKl28Qn12g2FSL5ewd5b3xgOJOQuXSXUavlNh7MTXaJksmNj/7yw+UoZR6Mia/ukZnqkLx+l2GgfCVeZKSR2Ox93U0euW+SVYUYZtqM2TkjvKUeI09go0hZEmdM/Yr3wGUHPb9N8apn5MsfPYuw7/4AhMfdqi/WKA9Ipj69z5l+8sv8K+L55jfjGmPqvNHVjtM/etVI9cNUE69V2Mf7ynvTBpG8oKSSsZc22QoJWDSz2zl6yq0Iaujpj9efUexQNZV6MMEz9Y2kOm5WjZcs3Tqyov4o+sq3La5hTc+Bo0M5o48epzjMSM3FHIMFF5jj70XJxgK21BvIBfnEGubeEvzjH3jjsrOTxc0ohbeWosgzdLXcWmvVsVPM+55f8XEh2W9AVM1E0ceAsrzY8z80hbbF05R+fpNJr5SSnf1LbYvdFRyWjNElgp4jT06UxVG7mAWDxmU6ExVmPh2hB/FFNablFMXuL9ep7auvo8nRxi+sgp0KwT8lXXjYYjnp4wLWusXJLUR5Ooa/sq6iaNXLqmFyMxDGp/31+tqkTm/rCoGFudUkmW6cO29fU65tWtVxOIc4tptdX6tSnmjRfTGWYqNyBgYmoUS6HGHw5Aybs4u4DX2KIJJ5AQoX1+jkrrIty+conLpLklthNJGWrUQFBChSiRUn++oMEiK8JV5/CgmWNmi2FSfh5Mlimlqht6Bl7+9QlKdonD5hsqtmKrhXbtN59VlfKCpEwubIVNf/IRT3xxHliqcDlTIYfSKmuvN23N8z7v3kOUicaXM8Ke73YcxreiIp2okQYE48Clt7JiqjuZbS1S+ftO4+mUYquf11l1l9A2pipLk5greUBmZ5nPIMKX5TtvX67rO9yAokWxu4U1PIgD/3CRErcwKCrw80JDjySM3FHIMFmsbDKeJYHJ6Ui10VkKcKSWrjSBuqdUj0foB55cRYVu9eIMSvP+xOT5eXcOfnSYJCrRTlz2oUMXeixOUN1R2e/H6XfxmqBblr99UyXxp1xKgsKaS7HSwQ0YR3s2AYhozTqbHGfraR8jFOTWG2giFyzfwF+fMYlYEUzpYvH5XGQFhG9HYRpSL+LMzygiqAzoWrXeb6VyYxTE1LrRnQdy6iyiXSa7egNdfMuWUQ588MOEJWSogpie7Lu6oo/oRhlAuI0sFEw8Xac4DqJJMwGggEJQQrSLi1l3KayrfQ5+T3FxhdG3DeDqYnlTnbW6pMsybW1ZCoXKjS6D87RUj6FWMptNZPgXvf4yYnUYGJRNW8Rp7yMU5kqs3ELURRK1K8fpdCEoMf/G9noRFr76j5tQaSzI9zsRXPjU5LoX1pjE2dVJm4fINNb9bdQqAlyaWekNlKpfS7kUtSMXIRH0H0pJT/Zz6qCRUf1aNRwAyzavoTFXMNfx0fPFH1xFvvoZsdWAthOoo8eoa4rwygghKiL1QGSZtW6osR44ng9xQyDEwyDBCzFSRqSdBpoudv7JOZ/4UxcaYWrQa28ira8r1GpTwNLdA6s5vVwOCb17rCvxUR/HCkHh1jUK9gUhJerR7WLt+zY6tOsrqj8xTvdWhsfgipW3J+M9fMYqJOrEMutwCgHqBp1wH2sARt+6q3fpXPlC7SX1O1MK7dlsZISl/ArUq8uoNQw+sd59uBQGkVQQ3byOWFkx4Rs1haBay5P2PEZYUsrc0bxZMGYZI0tr988tq/nTVQzpn2jjR6GzV8dLkSFDGiRe1ID2P+Skjv+wNlZGLc8pr8uqyCVXoZExNlyxS8SV9nfaZOQrrTcUBkVYIFOoNEjDaCn6jbISaRAOStP/6Hsh6Q81ddZT45kpXOGusBqlnRoYqWXTr86cJxz3GrrXYOlvi1GXlxSiu3Efo6pSohU9X/0GLfunEUU37jPYI0PX4aO2PeKtuxk7qKaCxjXdzxXBDeGlipj9WU/duaV7dl9TzkHzrQ6RT8SH8/eqRuShUjseNvDwyx8DQTxTqadA5eFjoMk677E//rQ0WtyRQ1KqGRrqwtKC8EBZxlMl8h31ljHZbWWWh7k9dgpklkWz33S1TtNkzTV+s0lZ7nBq2ZLT9ne6HJhuyFTrd44Ce8s6s8sknhSd5PZdy/Gvhz/eURw7PLMiXfvvxyyO/9T/l5ZE5jo7co5BjYBClIoVTMz1yvtBlaIRu/F7vinWdPHSpdnV2uK5l1+1ofgGbR8BeHPXC1LGEgIDeHVzqkjZ9Thd5kwfh8CMA+353Ec9P4UMPd4HevfrnVLmoTJPbNOwdtzdU7tk1J3vqer7um+YQSPvrp/aF9qoUZtWYdBveULmHzVB/rhkBAdBu/XQHb3MfeJ952eRGiFpVcRtY/df98jSTYlqZ4Z87o+7XOxfxL98w7nvtVQIV2vGnJ7vx/XcuIlbuI3SII73v5j6kngedPwB0vT5pG0QtU0ZqwzBUpmGK1uRID4uk8RSk98I1mmx6ae2t0c8TZNOQHyRS1tO3g+ib871ejseM3KOQY2Coign5dvnHelzuQE/yVhZ9c9bu96Cd5WGkTVlwd9MaLqWvvZvP6udBu/2jwB2f/t3+zqYAdvtuH2/PxUGLlj3Wfu1k9c+9hv7dTcqz58T9TKPfs5B1rX59c+/VYXN6VA+F7qvdpk3PnXX8cT4/CC7h0vDMgnzpt53Ao/DXc49CjqMjF4XKMTgIgTekdv3xVr27k0058KHrfta7/KwXa5aqn2sMZC2Iriqk/U/3wb2eXhy029wfHzN9txUq7Z+2DLHtyXD75woXaY+J3W93cZNRZFz15vtyuefvrLnK+tsVK8piEbT7Cb3hEC3GZIttyUgpcNoLq55fo21heY/0P1ubwh2vFlAqzM50j8sQYNLX09fIEmOy27TPtY/V17PHnOyF+OfOGEEwUauaZ8AVjrLnx50/fd0shdGDfs+R40kiDz3kGBxSb1bByiy3KYL9c2dUApx+QU5Pquxva3FzQw42pbBN1ZxMjyOAOCXl0SRPjcUCpy7vsf65YaZ+bZed0wG19zaMG9uIDqWZ/yaUsDRPUlYVADo0sntxEUCRDaW1/oByw6dVC1pYqSeckkKUy6p88vpdCkvKde2lCW7JzZWuyztNrtMiUaByGmx3uKFdtlzxdihDj0XUVDIp05Nqrs8vG2bGpDYCabKiG07RC6VMqwb0vXLzLsjYzRvjIijh6zb7eC7sHA074RO64k3GEzFUNuPQ8wsqYfLe54bZm4JousPQpwWj8aH5JsL5Mcrf7s5NMj1OeLqiqkeilipb1NTbOj9kbYM4NXhkvYF/7owJi/ljtX0CVFm5HHoMes5cb4w3VDaiXpmiUJCHHnI8duShhxwDQ9U7Jd8OfhTozQuw3d12WMK3Mvrd74Aed7b+6banz3PzEkAZHZrgRu+AszQK9Hn2MTp3QcN16+vr2ol69gJaWFowsX/TH2txsHUYesaS6kFot7etn9BP2dCdb/tck3+Rwg1puPNpX8Nuf18Fh5UvYgzC2Wk6N2/vC3G482znY9jzbGtU2FoXbkhA3yN3oc1afO0wkj7fHbM999o426cUauW/FGZnTFWJzkUBevruJp9C1/iz+/bVzX+8P/Twn5wg9PA38tBDjqMjNxRyDAz9qh6y4C4A+jM3N8BedLJi08fJEcg6/ihxf/sz+xh9XmFpwVQ3ZF3Tbt9dqI6Ti3FQ++4Y3EoCd1z28VljO+51j9NGvz5nhRH6tXVYjktW++4x/Z4n97jjzk3Ws90PX+dLNJL7XUNh+v9n711jI8myM7EvIjIzIknmg6zMLLI6SQ6bVcWurq7udm9pela90mhGa+1Ia1swbBgr28AKtn8aWL9/GIYXMLyAf9rwGobXtow1hF0tdtfyagFZD6+0q1HPdkulnpp+VVd3sTlVlV1kJcliPpjMiMyMuP5x7jlxI5isInumi9I6DkAUmRmP+4iKe+453/m+ZXX1SzgKP/ibmaOQ2ektSz1k9mfCpr1IpwHtzDx4eMLCcVoA2TTsw2kxEulFKxFON3aJJ11LjjX6Pe0+Tzv3LMeY4/as+037+1kLYvqYZ13zNN+d5fOzOifTrheeYhzMaz+tjaad1kmgC2Ybu8yev2Vgxsz+VNo0ENc0MNdZXvSndRCedr+z2mnveRY7S7uedey076eB/p72OZDkTTjL/b5qgN60SIb590nnnHbcpj0rp42OnObzsx6TWWZfhWURhczO1dIh7zQmAIhBcUByV5d+cZpkRsBxPAHXtpsleZwnN3Pn5rVNgJrZZiDmVJjW7mllfUCcu08D3aYdByDBLcHH2kVPzk/n1JmUiH9Xvi9jl8ZymO3h79P4jTQGga+XJm9KczCYmAueF+X7iTExx8hE/U8bt3S7eczN8sd0O4RjwrgXj106/5+es/QYp8dH5tEs7Uw9f+Y10u1hOykK8axUTcKyIENmX7FljkJm52eWJaVr/ALlBchc5M2FMB2+NvO7YRDAqcYvVjPsHwYBoF/qZqiXnQTg+AJlFz1xEswXN7fHuVqDmsIUCGiyI9dNgBABPJUN0fzcBOcBSeBcOr2SRtHzedPuZSLszePZTEAmI+75XJMVkcfLcl25hrnAmRgMyxiDdIULH2+2aVrOXgUBoImmuKKAz5Hx8JOAU9OJCI3PLNcV2udE/3VZZxqLYDpY0lcN1DzurCVBj+bYp/ki+NlPgC8N/QcZCxOv0slEoTJ7/pY5Cpmdm1n5HHDjCqzdLikc+mORic4tXgTcQlwOqEsgo8Y8oKWF7XsPYXke7FeXRMoXjZpw7DNLYFQuJkSP/PUGaTHol7LVO0R40KFFrFmnc0cTWN0BcgYbIV8z3GnDuvkKcO8hnKvrsIKRHCfGLIAAiVchWWLJOg5hnRwBuzckPQF9L0bHs0CTau/F7dWshFyuGDbryO12xZFQK0uwugPKK3JKYLUJtPdIBVIrSapuT3bXzKbI6pQA6T843CZmW6yUYRkaB1FjHg73qzwn8tGmM6DKc7Aa81Dvf0L90UyUdqMG5eUxqs3C22wnxsy5WhMpZx4zVsRUvk9sjrt9BM0q3PfuxYv5qy+JvkXUmIfVPoBztSZzbG2sISx5UG/fpnusE3tjvrWPo2uLopyZW9UMkwApa37wmbBcHn5zA3N39mEDUF6ehKGGPqybr8DuDRGVi7AAWK1d2CBHiaXF+ZkGgOjmNdi7feR0+a7dPhDBKqdaEQEsYSBt1mG9bzxj/HxlEYXMvmLLMAqZZZZZZpllltmJljkKmZ2fhREpKrIKY3uPSIl0/le5Bdoha9IjuAVE738Sn875ZL2DdBYbscaAllUGIMqP0f0WVLcH7+OWSACb+ANVnoM1IqIkdXcrzmEHI2II9Lxj12SdAdYOiCqzJO1cnqOdeHkOdvuAFBN1dCC6rPPjwQiRm6PdqqFDIG3XERArGMXESPreamWJwvm+D6e1S/LGiw2SxC55NKYGwZIVjDC5vgb73kNEl5dJmbFSptD2TltLXnuIykVMdh5jsvMYystTv4KRzIHIJ7sFUvLsDiSSYvUOkW/tk8LizWu0A19sEDnU+5/QLtnLC/eDFYxg+WOKJqStvSc7cFWeAxo12u27BaBRE6lm72NScnQWGzRHWnNisvNYohEJ6WyfyLByixcRfrqJ/OY2SVUHI8zc2ZHnAFo6GwDwwWfExtiYh+V5KL17P/5Om130aC7be3B2u/EzN/RpnLgv3R6peq42kd/clrYxcZblj0lzolGD3R2QPobvy7OJKERmmT1vy3gUMjs3MwmXbB0aB5I5YQBxmH6n/VTgoJn/5fOY0Cca+sJoaBL/pNkGOc9ukjalAWpsaYpj8/4MrgMg4WbGGVgba7IwmLwK1s1XoG59eCyPb5pJsJS+l6mnIH9zykETHAFIpFHMcL9JbAVoTIJmXARwjKGR72fOj7STjzUcHCZdMkmhEuOsr8O4kWlzzbgCHjOzn5xeMMclLe7FbTh2XT2uaazJMRptg+BrGseEOQ/mOJl9MS1BlKUlsQEklEOdxYaweP7z3j9Cd7Kb4FHY+DfPzqNw+39+No+CZVnfAfA/AHAA/G9Kqf8u9f1PA/jvAbwK4K8opf6B8d1fBfBf6T//W6XU3z5zIzP7U2NZRCGz8zOlkmV1jRrtQuerCa7/cKct+Xdm57M8j/6er9LO+Oq6vJxZTZFpdQFyRKL7LVmoePcNIMYBBAEdf+MK5dANtL5d9BJtUitLdPx8FfZqkzQONN0yEFccKN+nXWTRi9UfuwNaSPX9wp02LU7aSWBUvQly4/urbo/uH5CGBAPiWA2SowQMuovut2JnyMBaoFGT38ODjkQF7KIn7XaqFdoh67YCtPiKOufGGl1L40qcxQZUEMg1AMSLb6VM4/jqSwgPOuK4qJWlOLqj5/kYAFDPBUALdW7xojgJggtp7xHT4WKDcBSeR4s260ccdKjPfgya5XFUQUARBA1O5PYA5CzxeHA0g79PH8sAUkA7AH7shEgZpZd0ZPk8Zm5EMILq9hLPHM9TNPShogjPwyzLcgD8TwB+HsDLAH7JsqyXU4c9APDLAP5O6twFAH8dwJsAvg7gr1uWdVyuM7M/M5aBGTM7VxN63futE8q/4kqEeOE02fGSUQCOFgianSsZUjTFJpIfRqUA7545wKumlOqpTlfOUb4PcDTCrJBIaVJwBcRk57FERizXFcpo+VsvNGb1AY9TekyAZOUDo/nTdMPcX+6bWc3BVSJmtCYdqWGZanE+hn5iDLg9ZgVJOhLCVRA5z8OEx15HeyapCod01YBZQREh3t2kKaHtopfYibNjye3hsTbHRSpejJJaMwqlgljAyuwfzxd/lq7OAaDnxU9EE8xnL1GFw+WmxvfJCozjFNIyRl9NUPjrAO4ppT4HAMuyfg3ALwIQRQyl1A/1d2nv5S8B+F2l1BP9/e8C+A6Av/uVtDSzr9wyRyGzc7fTMNOdVG9ulko+ba+VcAy+RDuexWj4rGPNksc0AdTTmB1PS9iUZg88qQ3mMWb7zR28fDfls6e1iR2ekxgxEw5c6v4nXX8a+2GY+j5M9Ot4+09z7XSZYpoRc9q4nmaOpo3rSe2ZNs7pvj5HZsYXAJg84y1QhODLnvvCj6ldmZ2DZY5CZudnFqVamdSId90ARPXQ3DWqFSqDFNO7R8nx+j4szjUHsaRzOh/O9zDz2QASWASVOt/Mn5viSel8NF8XgISlzZ2oSaQkeXNdcpkWVTIFmkz8wLHcv/G7GU2QnbYWuwK0sBKXRna6gkFgrIQpTMW5cS4r5BJUa2MN1oPtY5EL5l3g3/k+MuZuAQhGCa4HU+0zcZ2UGJb5nUneZEZAzOcgLezE4xDdb8m/fD3AwCqkIiqJ7wyMBpcz8hzJM6axEpKeMUi++HsTi2MKiwkJmIHDSIwfAGzjx2U1y7JuGX//LaXU3/qxXT2zf6EscxQyOzezbBu5xkWRXebcLABEBx3gxhU4Bmsg7m7BxHwzRiFs1qHuPQQaNYT3W3Dmq3CqSQCbpbkFrJUlhFo62dpYg9U+SIDbVBBQLb7mdEC64sCQVlblOTjQCPtXlxC9/wkm3/5z8D4mZ4Hz9qZjIQ7CyhIUQKDGlDImL1Bmrp//5jw8Ox+ygDRqVPFhfBY267BGE6nFD5t14B5t9JgTgOWro8os0B0kFyXdR9v3YXUHgrWw2gcItYx3IpSu54MdAr6Pras4osos7C7hN6LGvFyT+8bOGIIRVKebkIrm8WGHjNtvVcqwVpakwkHGSjsDPOZ20aPKjo014MG2ODt8PUfLgDP3QTT0Mbm+htxHWmZbV0IwitB6sA2FpDNhFz2qYjAdOV2No9wCcL9FgMthjPGwugNYQ1+wJgBIfrtaocqVSpnSWNpxtgr55H8ihS/LzLj3DDDjFwCWjb+b+rPT2BcAfiZ17j89S+My+9NlGZgxs/Mzm167yi1IuR6btUGlfGjUiEBIA+ecxYaAvKxKmXZ2vWF8ydUmlZutLNFixCC67oDAfHe36MXt+1RK5xZoF7qyRL+vLsPuDmhX2O3FZXUaQBl+ukm/b6zFi8LNVwAQbbH73j16qev2msC0BCETIKV8vDDbq00B44mD48UATTRqAoqUnbwGKIafbgroT0CUtz6kEjvtYDBJU7jTpkiNBo4C5LBwiaUqz0GV5+g+wYhAk5VZAvtVygmnxy56cK6u06IOnYPXi79yCwRc5N17+0AiFPw7A1gtj0o6lS6HtFyXzm/WpTSR/xWg5MoSYSvublGEwZT59vK0e9eLreV55FDe3aJn6u6WAA6V7wvREUDOh73aRG63DzRqOHp9BdH9Fh3DfRr65Ozp54YBsFyWyqRZDGYNP91MOIB20UP0/idUArzaFFCu5XmCybB6hwjrlRjIWZ4DwucDZgTwxwCuWJa1ZllWAcBfAfAbpzz3twH8nGVZ8xrE+HP6s8z+jFpWHpnZuVnZvqDexLfl76fy2U+xdGnas65xEm3ySb9Pu/5prsP2TI7+U/RvOrDtOOXz09r3o3zO/ThN+6Yd+7SxSts0Se2T7EeZ+9POyY963EnP1NOou82+pfsHAH9k/9NkeWR9Wb30b5y9PPL7/8upyiN/AVT+6AD4FaXU37As678BcEsp9RuWZf0EgF8HMA/AB7CjlLquz/33APyX+lJ/Qyn1f5y5kZn9qbEs9ZDZuZlVKMB6lXbj1mgCALD9Mf2ty8TQqAGAUPWaFMNHr6+g+M6nQNFD8MZl5HtaNGk0geWPaVfZHcBfb6CwN5DPwpIHp+/Dv1RC8fMnCJpVOEEIp09kRbnWPkU4/DGichG51q5EA8bNC3B2+3Jt/iz30ZZgKJQROYjKRTi9ISwderf8MYJmVUiGwnpF+j5YKyPfD6UfAODoaMmkXoK924e9sgRVyBGhTzCiXbKbgx1MhKb64GYdlU8PhU7Y/JcpkwHACSiR43y0BWuxgf7rS5i7sy/kSp1Xqpi/tSu1/WG9gsjNIbfblznov7kKb28EBdAOXM8dAKHMRjCC/3IThb0BBmtllG5vEymV7gePAW9Z7JUlmSOeMwDwL5VgjyLkewGOXphB6fY2RSCY6llHpuz2AcJmHXZviKBZRb4XSNRJeXm6b2+I4YsLQrIUVWYRljzYt+7Ama9ivL4Eh/vpFoje+c4Ojq4tIt8fI7+5jfH6EkLXQWFvQDTWOiLClOEIRhivLyHf2pd7WP4Yk3oJMMerdyipBf/lJtxWJ9FOph0v7A2AT98+/h/pK9rrKaV+E8Bvpj77r43f/xiUVph27q8A+JWvpmWZPW/LUg+ZnZ+pCM5ulxaJQo4WWS8vL1I0asJM6G22xWng0PjM7QcSunbfuzH1WQIAACAASURBVEf6DKMJwpIngDGAFsSwROHb3kYF+dY+rAfbsEcUxi3sDTAu5WH5Y3p5a8ZAeeEbC39+cxvKy6Pzis7jByM4fT8BtLR6h/QTjEjDQS+WdneAqFwUNkHlFmjx1n0v3d6Gt9mG3RsSu19rlxYMLw+nrwF27QPY9x7CX9fpk9GE8uitXVmYF35vi8Y1GMUO2L2H5Cx0B/A223BbHeQ+2qJFXzNO5vtJ1r+Ft7+QFAxAjJCh68jiGTXmMffP7sIOJjSmus/sKCkvL4ult9mGf6mEmS+OaIz8Mc17twentUtskne3iBGz5CG/uU3jdb8FuzvAqDYLd28I7+MW7N5QnASeU7gF9F9fgvVgG0evrwAg58ptdaQt3H9rNIHy8pi5swN/vQF/nUCn4xKlK/yXddqhvSepp5nbD4BgBO9RX55BO5jE1y/PQbkFTOolOLtd+OsNjNeXxBlAMCJMhKkBEowQfrpJWBINgPQ22/Ls8twBxEBp+WMoJxOFyuz5W5Z6yOzczGRmZEuHZdMyyvx5+tjTfjftOnz8SaH09HnT1A1PqnE/KYVx1pDztOPT7ThNeuJYlYKBvE/3wWz7tOtOU82c1r708c9q22lSBOa1+Zz0Z9Ou5VxdJ3Kmp5TCPitNYI41kJQAf9Yc/qjpo3fVP0FPPRFvYba+rF7618+eenjvf3126iGzzNiy1ENm52aWbcf0tJqZLkKyhJCNqyK4kgHAMd4E8yUsJXGpl3ma0pcXFvOlbVIAq7deh3XrTqK8kYl60qWXbOZCwO1g+uZEWwNiMYRud6IsUJcOyjUPOvG1WJa7UhZCKUAv7PNVWK7Rb+DERcyarxJxksF4mS5VNMeMWSOlfYaSZJofgQmIeFxzq8sJEGaiTPSE83ls0u0yqz7SctXpfjjVClXDfLpJ3/UOMTHKEc37JcpsudLBiEzxeDIFd+KZStFtm04W/w0cp/0+dn89TuZ88eeT+w9hOQ4yy+x5WxZRyOzcrGwtqDetn/3S5z9tR3bac/9FtbMCF/8s23n26VmAzx+3ZRGFzM7DMoxCZudmVp4CWrzz5t8B2r061Yr88Hfmj3m8U60kvsstXpTr8mfO1fVjwjyJ76sVKfNL3+NZ986tLh873rw2W251OdEG87t0P/kzp1qR/kg7jb8t15V28zkmfbFpCW0Now3mOOdWlxPXM9s4bYzTbTcjENPG6qRrnjRG6XHhceVxmNYuPs/sm3k+t8/st3kv8+/0PKbTN+kx5ePNZ8kcm5Oep2nP+knPSsLUl/jJLLMzWOYoZHZupibhsbytsBnqUDSL+rCZZECmmQI/rPmggkBC+s58FeGnm7GIkg4zh52unBd2usS8qF/w6VQEf8aLMLc1GlKtvLAbpsLMcny1ktAtML9LLwJ20ZPwfTT0E/TPYadLJE9FL+6voTlgjhkvmrwocpvMRYivycepbg+q25NzRQzL2LkzNwN/bhIG8T34+9zixWNUxiaOIW08RrJIs6hVECREmFjsyRwHvq+ZWuAx5GO4rZOdx/Idj7+pOJlbvEgaEfoZSY8B95vbyuMv/dcpBHPMuB3mZ3w+3yuNfzCficwyOw/LHIXMztVYJZEXJV6g0rsseZEbpDpCVGS8bNM7VyBJz8sUwJbrCk1uOgIhCosgxyWdy2bVRlOimY8x6ZqBJNe/+dLntorSpT6Ox+EksKQpe8z9MBc6c8x4IbVcl4iCOl0ZM2e+KufZr74k/TKxAiZGxNzpJkSYjLkQiungZA2EdESAj0tcy3A4WBaa58hUz2ScCI9LYkE3nAv+EYyH2feioUJqOFqW60r/+Rnh47gf4rg0ase0IUwFVHM+uN0SZfCOU0ibf9tFUsFkp4VpzxNjqtSZfzLL7CyWYRQyOzerzFxS37j670s5HACh/40a81CFHMZlF97HLaIfBqgMkNkSuRSvvYfJ9TXYwSTB0shllvnNbajyHKJyUervuXY/LHnIa94EgLgMZr44Eu4BKXUrEYiMy/u4/t82eA6YSwGAlGPmW/u0Q1+JKZ7zvQCRm4P19m3kVpfj2vzWvpQ4ct28KlB6JqgVEzX/lqaY5jaYPAnMQcA8BcotwOodEotldyDg0ahcROTm4PR9DNbKmN3qQRVyUpanCjm5JgCiLV5Zwqg2i6hgw3vUl/aNyy6cIERuty/jRpTNA4ybF5Bv7cuY9zYqqH73hzLXIvNt3IeZFMdlF95mO8GcyPd0WrvCZWByK/RfX0Lp3fvov7mKuX92l5g9jbYDkLbyM2I+OzyG+dY+xs0L8GsF5PuhcHFM6iUZX7OEkTk7+PoAELoOvM229H1UmxWeDPPcUW0W3sct+C835Xzmxhg3L8hxf/zHfxNdfzuBUbj2i/8xzmp/8r//pxlGIbNTW+YoZHZuVsnV1dejnzmOVNfCTkzpzL+zcFLaEqJBU0R30qj5k8ranlaSmLaTyubMagsWmTIrB/ierJNgtoWrKDjCYu7o+Vrmbj4RodB6AsxxYEolc8WF6BtUyrRA871Wl4mi+f1PEpUN6chIumJE5kRrRdjtA7kmjwUfAxiiSpVysn2pOTUFlThqY4pvmeMi7dGERXALcj8WEove/+TY/HJ6SeiSp4ASJTo1RazLHBOzGiPcacszaIo98XiYqQ2OJpjPCI9X+hnh+X83/B10R+3MUcjsuVpWHpnZuZmKIqP23ZcwMCvm2bqszX71JVjdQUKtEdAvWreQeKlG5SJw35cwsSrPEXbL95NlZkbYmp0IU3mQz7V6h3TPVdrpmSqMifB7auGOhj4U55tffQmWFi1ytFgQC1GlFxlZkN0CQiMN4FR1GH1jDbi7dewcVihUIEGtdPtUEMBmxUdjcbZcl851mzKGkgYyFmQuRY2GPqCvy7iMcKcNJ4idHFkItaOXUNds1IDeoZQBqiAQoStRw+TSVcO54XLOtJJkNPRJxImfC99woho12O0DaTsv/CamQ1I97AgYXAyCndHPmOW6CYeBx4efDQSjpBqpgVdIAF31uJiOr3zOIlKmQJruo130gEMkLQMnZvYcLHMUMjs3s3IOhYWNKAIA/YLfI/W/q+ukVqiFiMzjlO/DggbLleeAZp2EpIyXNSsIwvNg3VwGWrtSWw+9A4VP8r+qvQerUoajHRC090QhkBn1pM7e8wCdQw/1fXnhZm4IALTIPNiGatRE4tjyPORW9SIKiNKgvdoUFkfV7RFeglMZelds+WPYGtCn3MIxpUerdyjtkvZxXb7nIbdogBD1MQA5QNbNV2Ab4kqszOnsdmlMANiaQluV52hseSyDEVRjHjnGBmgHzQpGopRpdwewtMz05Nt/Dp45Rm4hdpo8EvyygVipUkc9HCCRQuG5svVzw/PkeOQ0wS3AfvUlEgMzxsqpkqgU2IHTcxddXobTo7myKmU4um+sZBk15mH5Y4T3W6Ru2tqlvus0iuV5iLw8sLIEW4t+MU9EmOJJAJCQEuc0jPLysNxC/OzqZx2NGjDImBkze/6WOQqZnZupSUi8/ECSjKi9F+/O23tCkEO7zMeJMLHl6uP04haazHlI7vzwwWdQq03aqRsMfnbRQ3S/RREHDm0bZEzAcdQvKydOdh7DOugAxg5bdsbaAYiGPqBf+hNN/BMZ4WsmTbJ4odRgOwCkIQDA5oiJbmei7ZxS8X1MUv2aGOMFxGFu7oOMT9FD9MFnCcKr8KBD42qmREAVKTnEBFcOgHDoS1QBAMBy2r4PpaMd0H871QpyH7fiVIopVW200XJdicpw1ILvnQjJ87NjyEqHnS7Afd85PnfR0Id6/xNYDHo1nhF2NM0UgERLWLkyCEgDRB9nFz2ETMBkRALMiIEzX01UvXA6hOeIz41McK8fV2xYQx9qHOMa5DpZRCGzr9gyRyGzc7d0nh6gED1LEgNxmoF3rGJaZlny5sZuPjzoJBZ4Z76KyMtLLpjz9JbnwVpZkkUZAO1OzYW7MU9t7Q5kYZAF2sBFWK4rOXN+f0c3r8G+decY+yCfl0h1BCO5fjofLzl+I3KRKMErelSe6RagDGfLZE7k8kIeM3PBdSplEmvSwlw24zp01IVTE87VdaB3SOcY8AKRn9b9oPEoUNRCR3Bi1kr/WJieQ/iTeonEmVJslsr3pRrBjCwxRkLplAxVg8QpCKZunny6KZLipvgYQFgFpnfmSItd9IDVJiItOpVbjR0/jgwkqjU0TsS8Brfb1tdxODLApp8bblN0vyVVKtwv3N2SsbfsrFAts+dvmaOQ2bmZVSiQSp8WPIpKHmxTUc+PF9CxXjzMRRmNGqH93QKlahvzmJQ8EeJxAFERVF4eVvuAVAYrZfjrDeTf/lAWHBZ04tAy2ntxKgAkxgRQSB03rkCNJnDaBxLuV7otkZuL+xCMgEqZ1APnq4Q7qFcQaCQ/eodQAMZvvQLn4xYm9RLym9uUl9cKiM6uLrsLRrRgl+coxL2xBrQPiE64kENOVwDYt+4gunkNufYerI01aaPj+7S7b8zDerCNyfU1ateNK8C9h7K42+0DQd4XvDyc7oAqK7o9cpaadVhaTXPcvIDOlSLqv/U5outryG9ui/qhqDEGE4xZvbMHWowBWUzH60txxQund3b7iAD46w24xsLLlS8WV3Iw3kOLL1lFT9IS0c1rcDa3Ya0swQIQ1GaRL78CpUW4LO0oyD1Xl+E3q3D1ZzIHHKXQ82xVysDlZWC3S+kqL09OR3tPRKoOv7mB0rv3YW2sIby7Rdfyx+RkXl6mdAVA83W/RceVPNiFnMxnCKqKsPwxsLGGcckDsAS8+zs/2n+6zDL7Epa5p5mdm6nRCHYwkZd2vrVPcszlIr2YdRTB6h2S5PDGGn23skQ/Xp4W0vYegmaVXsbBBFG5SIu0W6BQMjsWrGrY7dFCfeMKLTieRwtbs07IfS8fV1xo6WKlF9qgWcW4rFMfXNan88pHL8wgpyWord4hosos/HUNONTqgkBcOqd8H5PraySfDZDM9UGHnBa3QIqPlVm5f1ivUARCVxjALcBuH9DC4xZkF86Ol+WPZfysSplAcd0BLI/klBGM4LR2EV1eTix07nv34L53TySz7XsPEXa6GNVmqTzV9wkf0fdR+78/psX51h06t9URh2NwyaU+FGxShTzoiLJmdHkZqjyH0HWoFNb3MW5ewLh5AVYwgjNP8tBWMCKeAsafgMpDJ/WSVMPYgS7nXCEJbgQjcjYa8zSfupySlTyPXpihNpSL8ixGlVl4m210X6tJKaYqz5EzYERI/PWG4BIAKtVkHIYVjGD1DjHzxRGd2x0QQLc7kPaa5bvjUh64cUVUS8dlV/4v2PceIix55IQWSEac+3n8P9KX+MksszNY5ihkdm4mYVReyFmOuTdEdL+VOFbd3YL1YBtOa5ekljk6EIxgVcpw37tHu7t7D+llzNdabdIC2T5IoOoBehmzQ6HubslCZHcHslhYwYjuXSkTuC0I4W22aYHoHcYpB3+M0u1tikR0B/BfbkIVcnBbVDFh9Q4ppH7vITkTbgFqZYk4HC4b9MvzVbq37pf0s1EjTgS9GIYHHYT1CsJmPV64FxtUr69LIKNyke5TnkNUmUXwrVfJ2XALiG5eoxuyQ3J5mTgF3AKiy8vUJi3xjUYNucWL8D5uSQoGIL6DaOjTvCw2KBqjgZgAUPndT2B5HrxHfYpusNAS9G45GJFsdHdA99jt09h0e7GTp9vgtHZpMR5NYLcPyKnUpYT2vYcy7jZHR3pUHqB8H3ZviMLeQJysuTv7ItHNZrcPoNwCqt/9ITmc7QOROAe0w9iYF4lwaL4Ledb086t8nyS+e4cJQq58a5+eu/Ye9c0toPjOp/KMsZR6dL+FyM3Js6HKc3Bau3FkKcpW+cyev2WOQmbnZqpYiHe0AC3YWrFPQHb65YsbVyjUrBcaQO/kdSgejZrsxriePmrME/mPXsSiy8vyklZuAZPrawB0fnqxIREMfsFbvUNatG5coUW5XpGFzBpNaAHWC2zQrArqHcEIbktjK4IRlJenHWYwkZ3npF6iHXu3R7tHHc0AaNHiBTlqzNPvhkNijSbkULhEiMTRj3HzAu12dQ7cGk0kumH5Y4SuRZ+5BSKh8n0ib/I8ulYwQViv0MLU2kXYrFNE4z45CKo8B1XIkXMQjMgBW21K1YN/qSQRGnBqwKcoBvdJFvC7W3E6RY9TVC7SLr9Bu3pnsSFOUKRTJpY/hvJ99F+nahBnsSFYDNXtIbq8TGPOoEMdebIebMszEt1vUVRFR27gFuT4sFmX+VI6VcQlsXy8Ks9BdXsYNy9gUi/FVRhuQdoeNuvUZsbC6HuolSWEO23CXmjnjx3DsF6BvdokB+HuFs2NrjBhB3qaWersP5lldhbLMAqZnZtZwRjqhTnaKXd7gOcBOpzMrH6yK/vgM2C+isgAkEUHHYzfegX5t1sQ8V2jasE2dnR2eyRkPLzDt++3KBfsugJSE8Dgg20q76uUKfKgF+OoMgvb82DpsDw++Ay5ogd76BMOga29B/VpF6pagSWRjCXBQuQ3t2kxZVKmWx8CTM+sIxyq6BnnenJdq1GjBfjWHUQgUGR0vwX7PqA0hkM1arQ4AlQ1Up5D6fZ2op9WpYzo7haw2EDuo62YHIkBpXoXG22sSbvte3uxvPeNK7B0KiIc+pi5TR8r3wd0+aRd9KTsz+4OBPBorzYFXBgedCjiYOAxlDdP+IPra4RNKVLJJHqHiFaIeZEdPgZyWp53jCmR+6tuXJE+mXwc7KQ6wYhKOJnlUs+vs9sFdGmkEFrpZzS325cIijIBigAiN4fcvYc0D9DOq35uwHoV+lxLO0ucGoGeUwVI+mS8ThGGzDI7D8uYGTM7N5utLatXf/avYTxro/RgBP9CDqWtAfprs/D2J3CCEKHrwAlC+LUCZrd66LxShT2mZzbKW/CeUL5/5s4Odr/VxMKHlOsdlxz48w5KD0bYe83FzOMIYcFC7XttTOol7F8vYvZxKG3x5x3M7kzgLziY2aHIhNvq4PN/5yIa703w5CXyqRc+mWA8a2M0Z6FwqHB00cZcK0SUtzB/axd7P9mAM1I42LBR3AX6X4tQfw8o3fcRug62f9KF2wG8JxH8BRszj0McXXRw6R8/xKN/dRmlhxP48w68A2qbt6cXjmCCoxdmMJ61cbBh42v/uIfu1TmM5izMPg7hBAr5/liOAyDHrv3DJ0JN/eSVEsZzFhY+DlDYGwil8ZOXXXhPIpTu+5Q7B2CPIvmu9HACJ1AYLOYQFoDZxyHCgoXxrI2FD/voXqVIj/ckROhayPdDjEsOwoIFb58W73HJwdydfRzcrKP6YQf7b1DUpPRghKhgY7Co6arnLbgHCs5IofphB4O1MvrLOdS/f4TBJRfOSCHfD+FfyCHKW6h+2EFY8tC5UoQzUrDHCrOPAoxLeRQ/f4KgWYV/IQdvf4LC3gD7b8zLcYU+9THfH2NcyiN0LXh7I7S+NYOl7wUYlxyMZynwerBho/HeBHN39uWaUd7C0UUblc9pfOxRBLfVwRd/+SIW7ozhLzjIDyI4gULnch6Lf/BEIl8HN+s4umhj5nGE7os2im0lfW+8c4CHP7+AmccKh00L+QGwcGeMP3nnf8Thk4cxM2NtWV3/V87OzPjHfztjZszs9JZFFDLLLLPM/ixbttfL7Cu2LKKQ2blZJVdXf778i4mwPov3sDAQ57BZVIdzzQAkf2uKQ6X1IZRbIJCjUd6ovLwAFiV3baQpWFTIFCvyL5F4kPeoT8A3LaoExCF6U5+C6/qd+aqEjc20h3AO+LFCIhP7qJUl0U1g48+4LJHD3iYTJOfxwSyQRU/6Zo4Pi1Spu1sxm6Qu3wQg6R7/5aZUZAhddrdH49/eEx0Fp1ohRkNd9sc4EyAmneJ28LgIDbeeI2akNE2qDQxeDOEWAGQeuJQWmjUSMPQiDF0K85lgHItJjmXOT+J8oz/R5WVJEZgUzIn5NO4FIKGHYfljEb/i9IY8x1q4C4CkjXisuY3f2/67SVGo2rK6/pe/RETh/8wiCpmd3rKIQmbnZ44dLyQAIi0UBEALIxm6DybbIZPUgHAK1sYaLaKapU8Abiye1OlCaWY8q3eI8NPHsBcvwm6PiFFQLy5M7jTzW22EIB4G5fuwPQ8z2tGY7NC5aO/BCcpC3QtowiiNOXDQQLSxhghA7qMtoFKWBV2V54SK2HqwjbBZJ3ZHbdaDbcJrAELhzJgJ+D5yeuE15bABCEdEeL9FJE+az0FEklabQpSEB9vAxhom738C+9WXhMo4gdR/+0PCI9y4gsjNSY7c0vwPVCmghZN2u7Gj0d6LF21dvQG9+NrBiLAXPE6eB1n1DEeF6bmFEMpwwKL3P6GxcV1h5EzQZvNc6CoQLmdk/Q3R9DAYIXOVMrErauZMcRz0M8ZEVaJeqitqoJ8dc2xVt0fPr55DZ7Eh2hJW0YNtkoZpbI5UVzDVNB8TjADtSKLTBexUiWQGTszsOVhW9ZDZuZkaT2QhUStLouhnPdiORXR4gRj68jubpV/udncgzIN20aPFYb5KtLeVMpxqJWYk9H3i/jc0DWSBApUn2kWPqJjLc7Sj08h4uAUB3wGgtvPuU+suCHd/MKISSpZMrlekZFN2kFqkSUB8uk/R0Mdk57FEEbg8Mux0KVow9GPynxtXEtoXrBmR+2hLyu5YIIt1FnjXa3cHcK6uS6RCrqGrSezVJjlhvSFyHxEKn5karUo5rlhgp4ZZMitl2TWnLTzoSATFXm3KWIY7bYp0sNPIYxAEFP3QnxND4jLN6XyVCKN4DAxHwZmv0nOgHRhVnqNn5dWXZJyd+Spdx1BzZCVTFmcCDNEnniPNGMrRC7NvzI3BzzJX7uQWL8YVItqixnysILnTJuDiahPj9SXhluDKEOfqulwzs8yet2URhczOzax8TlQU1Y7exeudIXuwJk0v78rE9K6R+fNVeY50HG4RUt2pVuIdrUHXHN3dAjbWYPvjuO6/UYNdnktSExuhelkMTX0EvTBGQ58op3mx1Yh/aA0IuIU4LM9t0Ix/LA4lIWxDQZIVJwHdlily105rF+HQh7USV1QophA2KLB5Z8wy0qJpgTgywzt3jtgAgAUktAYSKo+VsjhUZjVAuNOG3SXtA+6bKs/RzlynOJyr66IMivZBIvUxuf9QRJiU7wOar4GVJlkHwm7UgA8+I4rqThfOVSMl5fuk7WHIcrMuBbiNBv2y+fyIfoh+7sL7rZieudtDuPMYztV1ocl25qs0P5rNkUtP0ajB0pU2cowRTVB3twCuwFhtIrq7RZU2nwak7aEVVDmNpECKq5ll9rwtcxQyOz+zbNEmcLjWHKAdq87F51v7pATY7SG3uoxx8wJCl4ohvc22qCxOrq8hCiZyvXG9hDy0o6Fz3dHlZahbH5LsMzsJmvgI0DoOzXoSC6Edh/E6HcPhd9WYh6VZDp1KGePmBdjBhBai3iGF/oMJJpqfAB98Bty4QuRGjXlySoySu6PXV+DuDenz9h6V7X3wmRAj5Te3gaFPXAM3r8Fp7Utu31lsAAb3guUWEJaL1A9dXhc15kWemiIqY6I+1mWR0fU1OJtGXhxIaBYw9bICBEPirzdQqMwK3bQ1mtD81als0vE8vTMeY/jiAjwvD782i8LeAHZ3gNziRYxLHuwuOQiMPXCqFf37LLES9oZAuYjcbldzWXSFRZKprHOry4i8PCx/jPH6EkLXIZIlf0wqlL1DSmWV5xCWi0C9gomRTmG2S+5nVC7CvveQ8CB6PINaEfl6CfnWPjqv1TD7qITQdWDtDaSSwX+5iXwvoEiGxmREzWsYuw49rxozAyBWwvRpXo++8xrGszZmdsZw3rsn88yRDQCw/OPOYgZmzOyrtgzMmNm5WdlaUG997Zdl58i7M1M8yXJdEffhfxPSyvo8U1gKgOw6TTVBDjHzcbw75lC4+T0fk76nyP0au0MhgdI78bDTJWdEpxa4HczjAEDSFLI71jtes79ALJjFYkrO1XUBQ7KyIbc9FlxyE8A6wSiY4luG4JKkTPRnAjTUUQe5tzE+gjHQEaBpYD42U4XT7K85vun2meNhnmOOBZukC4DEuHD0hiMn5n3MNsl1UiJUPDYm0DT9fKTBoBzdMttrPpMARBmSVSNNATBul7WxJsyXZn++1/l19KL9GMx4YVm98gtnBzP+0a9mYMbMTm+Zo5DZuVnZWlBvWj+b+MxcUPjvab8/6+/0dZ5mjDs4zbEn2dPuZy526WPMxeo093eqFVk8flRLt+tpbUiP9VnucdK1nzYuAMT5SS/oJx2XHpvTPANPe96+jD3teT3N9U2HL32O5bp4x/9N9NSTzFHI7LlalnrI7NzMKuSRuxTL9Zo7Pkvv0FS3h5Bz9qmdajT0ZXEQ3ICBqAfihRWIZYC55I4ZAZUuRTNBbZOdxwkpYbPUzcxtM40xYx0sboeRW+bdLu/8OcvM5YuCtNd4C0Hlpxa9xC5cn58YsxN2zwBXkdBOVgCX2nhny2Ng4jE4OqLubskxZp9kl81lfEa0xdyBm7n50Kjw4DalP+coB88BY1E4oiIRID3OlusSQJGlszVDZWLeVpvxWBsRCJl77oMhT52OTPCzZjqWHMERKW99/fCgI79Pi5hNi9CEna70mY3ne5pZyKoeMvvqLXMUMjs/CyPCGCw2KBf80Zbkx1V7j0Bj1QqF8bUAVHR5Oa4SGPqyILJZlbKA4dgpUEbawayRByACSnwtpha2XFde1lz2CEAAa+aLX6h4NWiSOQXYwZAQv17kwODA+SrQO6S2MmiTF49GDbZetPhvKxiRbHJ3AGtlifLvnALRZZqT62sks61FtXih5FJPtbIEuzxHQDxNX5zTVMhirHUBILfoAe0DhIAsvkq3weRjADtFvUNA39MC5eBVIUfYDD2+jMNgx8/kYABih85BXNoZ7rTJqdBpqtziRaE35vA/8WL0aGHV6kXcRAAAIABJREFU7WHHjmmuJXqkd+2m82TzXM9XCUxb9BJgUKtSJtAqKAKh3nqdMB7aETAdTVWeg51Kw3A7JUKiHZNo6AOXl+M56vaSHBhab8TZ7QL3JZiQWWbPzTJHIbPzs1wOaNTgN0lSOLq8jHHZJRW9lSVC5pfnEGrAm5S76YXM5CXgazi7Xai3XgdaRLPrvndPQJD51j7G60sk2dsbwvLywINtPHnrBSz83ojK0gA43ktU2jiaQBVyGJddOJvxDs9/uQn/Qg7VP3okRFCozBK3QBfAB59hrMGMzm43CWwsFxFo4OLYzZF8tj+GWlnCpOTRog2QkqMGzgFA5OVp8XObtJCASKhQJscprFekjNHyvDjHzSqYTHqkQZzQughcGqm8PFQhJ5LVAAkkMW+AowF9TlCG1R3QeGp9BF7ElFtAlCiLpHsHtSLs8mUSyuJoQ6OGcb0EpzJL44u4DFEhJtNy3AJJOwchbC3hHWrCqVFtFtGlEkYlG9XvjqD8MdCoYVIvkbMEwPLyiDQgUtQ1G/OwmfhIV4qM33oF3iZFHcb1EsmfjyZyXFCbpTYEE4zLLgqVWYxcB87KklwfIBBk5OaQ2+2TTkUwwXi9QZLZowkcNLD7Lernwod9oLwMazRBb20W1d0uuj/1NZTvkhMzqs0i3wswXtccDruAKsXS2GJZ+jizr9gyjEJm52Zl+4J6E9+Wv81c7FnzxM/CL5z02Y/TzuOe/3+w08ztl73Wedqz2jLt+3fVP0lgFOYuLKtXvvMfnfne7/6d/yzDKGR2assIlzI7P0s5qWlgnZk3N80kyRFiG+Pc9AvWqVaOAeIs100cb95n2vF8T/M881zTyTGPsYse5bBTfTDPfVqb0vc76bynHWv2a9o10uc/7Z7TznvaMWdp50nXNceV/37W9U/6btozNq09gIFZ0WM4bX6e1g7z+nx+bvGiPEvpfqXPleoT815WlnrI7PlblnrI7NzMchzklpeF8ta5uk5ERYgrERJgREbBm3n3bi8BiAMAuAWh+uX8/7SSOCH5MYiJeHFg0iOAgIDpEsGIz9cm5xsEUJbrCohwsvNYQIF8fRkHw6kwj0+MlVFCye0w8Rnm32ngo5TceR4s1xcwIgMC02A70TnQwDsZhyBIAOumAS3ld90fxm0wwNDUYoiMcWbQJAAZI3PO2Xg+0yWX8j0DQfX8MBDRfJbMsljuq1mKaYJJ+TnkeWHdB/4uXXqbflb5eeC+8nXZ+H6J8lKjfUA36dxM8ZEyMGNmX7VljkJm52eFvLAiOlwlsNqE8vK0GB10iGoYkGqC3OLFJPCuUaOFiDn9AWJj9DX7X7kYOxSryyIEZVXKCREqO1UjL3S5wQi51bLk+sG5bV7w+bwbV2CPJoAmEoIGCHJfJi834X3cAliTQDsoaVErxlfwgji5vkbt0SJQ6voaDi+5qH73h4Twb9YT4E4Tt9F/rYbS1gC5FhFG2R/FIlDWyhIcfW+utMDQx1iTMAEA3ALsV1/C8FIJxc+fCGbE6R0K1sMaTQj30DtMsEOK5oUGWloba5oXiDgnLLcAG4DaWAP8MZxGDRYzSxY9RDeu0LXbB8S4qCsqFJhqmQSarNEEuLslzw26A0zWl4igShN3ARAnhcm7GADK3+cMenChiy5qQahmnciedtqwy3NCQsWLu3OVcBFO34djCIZZH/hUsaErKthJsg1RM8aDCKmS7xOp2HoDbqsDSxNZMWmW9Ynx7GeW2XOyzFHI7FyNUfoHN+uolIs4uDqHyqeHBBjDGtAd4OAXrsF7EsLdG+LohRk4gd5CvbiA0LUwd4cAf/7LTThBiNxun5gAH/UR1IqY2SWNhHG9BL9WQL42i/5KAc5IYaE7wOFaGaX2AcbrSxhccuGMFEq3CQjoX1rEzJ0dhCVdTlebhfvePYQ3r8Hq6xLE9gG6V+dQuu8LCHLnpxdQvTdGvj+mBSQIhb0wLF1AfnNbFlugiHHZBZpVOEEIf72BqGDDezQroLyDm3UsvP0FAMDbn6DzU1+DM1KY3eqh8/VL8PYn8ADsfquJhQ/7sHtDlLYGBBR0C7Bv3UHw1iso7A0QNYnt0S7kELklhOsNHF7IobQ1QKgBegAwKXkIXQcztx8QYPTlJtxWB0evr6C3ksPib7cQ1ivobVSEpbAAQBVyiNwcQrcJu9VB97UaKj/YQ9CsElsiSC/h8JsbcAKF4udPEDSriAqUCbVHDXibbWJ+BGjs63T9Jy+7qN5bIDBo2YUT5GDfuAL0hgTeXFnCuJQH1pfg9H342sk5vHYBYYHasfedF3HhPdLQYMZNAAhdB/6FHLx9Ak/2Vz1UP+zA7g0R1isIri3Ce9SH8uYx1s9aUMrDHkXI92irv/OvvYj6ezRnT37pDeQHEbz9iYybuzck5wYAMIfhiwuwRxEKewMM1soovTvC4JKL8t0ulJfHuOxiXJqBV/IwuORi8jD1ylbImBkz+8otAzNmdm5W8ZbU10d/QXj9gVha2Cw3THMDsAl3AGsNIJYi5l2jlLdpRH1ayMe8J9+La9kBJHQN5HgjbM0h6bTKodl+IGZ0PCZvbPARcPmgqb6Y7rupkij9ZgVLQ8lSxsJgSzS/U+U5hJ9uSj+jyqzIHnP6R4S0mHuCz9W002ZaIlEGOl9F2KxTZYkhoczMhSZPgCh/mqyVRlQkut8immYQxXZCv4K1KXTkRkS2DJ6Ek8ZJpK9Tz4PoX2gJbct1Y1EonXKQOQISaRtpj6l5ocsyeVyE2VNfT60swfLHxzg3uOLEfK7CnTbeHf82upPdGMy4sKxu/KWzgxnf+bUMzJjZ6S2LKGR2fjaZxPlvvahZwUhq3zkkzi9j80XKFh50KG2QWgjZSZA8uqY9ZrIcIM6Pi1iRPi+3Wk7IVasgIIlfxFgAx6OcPDs5gglALKKUM9pguS4cY3GVhV+HwEPGJLAgU3sPCjFdsaQzWMJYS13Do3FyqhWgPEeyxbofdtEgPWKcAIsj+X5C2EjdD6BuvgL73kNxEEyBqjCFd2CQppAImbiMgw6ljRYbdH/fJzlvQ/iKhaIsLs80KZ8NESUVBJJa4IXX0ccp348JsfRnJjGXUHv7PqBTDgAAXtjbe5gY+AeTdtliEi6mqDaItnjhBzS/gtb7MNUvZU4MgS0ef/Mzvo/5/ISdLnJIOnrxmCCzzJ67ZVUPmZ27sTQygJjsp1ImgR63IHK8svhrGWTlU04+urwsMr0sLwzQyze3ukyLuVuQhdMU2eHj+D6mVDNAu0BGrfMiBIAUEA1tAFZSDDtdUoU0aKF5AVK+H1dYzFcp8qEXAUbEA7RQCLPiqy/Fstg77ThioXPlqjxH12RWQUDy79FQA/k6Xek/ELMQ8oInlRmtXbqvjq7IsYgXMpF3btSoD6wGWa2Q/LN2BuzVpjgPJkiSz1e+HwMbdYRGrgckIju8uMq8uQVik9TnRAbxFo8Py0irlSVyhMpzIuHN54kEuW57mnEzt3hR5K/5O5YgdxYb8hnLQVuel4g88Vw6i43E8Yn2aoeTx4jHmJ0KdvSk7/bxqgcrOvtPZpmdxbKIQmbnZiqK4nQCM+kxmj0YIeJQdBCj1535KiafbgLQCPduD0pHHsK7W8Qg6PsCeuNdcW51ORZNYmZEXZVguS4B63basIxdIy9oZrVBTu/UeYdnRigs102IJNlFT5gVhb1PX5N32glK4PIcLIAkrrXZWmpaNWpw9MKaW7yICVMRQ4e0NdNhuNOG0gusiBBpYCSrPrKUtCyMzAKJGJkPxFUhLO/NbIGqvSdRAty4QlLPhjgSMyOaVSxA0mHgqAz3OS2YpcpzyKUkvmUudYnhVJEmg6USbkEqKELNtimU1lyFYVyb6ZWZkln5flypwZLil5eR240jFqbYV4I2utOFWlmCo8G2kq7SYFDoPiMYyfzzM8OVGZJ202MedrpAPiuPzOz5W+YoZHZ+ppSUj3GpGf/LCzQQayTwgiwVCQCig46Euzk1IakF7QTwztAs4+MSRC5544WEzS7G6ohMJwwgkR83TUoOeVHVC4yUw3Ho3gj/8/14cTLbIJEIo58c4ueFMhr6Qk8teA52ijTanvvmVCuI3v8EADlKMgVBII5TbtFLcC0kHCB2GvS1pEzz3kOgSGF9FQQJHQPOuwOIIxpuAZG+7mTnMRx2OAzj1IVoWeixkzSI+R2Sqozp78QxARLXA3Bszk01R0CXTOqxEdzDB5+RM6rbk3h2OI3DuJW7W4hMgahOF5ahZ8HtMZVOOQplloAqfX3LdYl9Mm0ZzCyzr9gyRyGzczPLceR3M9Rqghbtoneslp5D2umwOICpdf/HxImGfgxa831YOnTOIXvOLzvzVXlhs/ECTaC5eJdMi0yMWeCoBzsN0f2WvPhDY3Fnx0IWI9YGSEkqszNkue4xSWxZnIySTv6cd69cUhh24rp8k8MgLYhljm809GVHbUZhGDTKY88LtZyDOJLC/YQRQTExDiZOwQSI8vzyGHC5bHpO0KghvN+ivi02RE/DlG42280RB45iHFusDV4FwaVwOoOjW9XY2VBBQA4Tj60fOxhAnBLhZ5efTxYJS8uOMycFO0HsiFrt+P9MZpk9L8uqHjI7NytbC+qtpX/7GLkQcHpKZiBJuDNNpnfaNczjTFZF83rm8envnnYfUx75tBS909pz0jnpPj/NzB2z6SBM67NJ/AQknZRn3XMam2K6X+lrpcf3LHLQ6XOe9rykx3ZaX9JzZgJOzyK9/bTnIm3POjY9d8AUCueFZfXqXzx71cM///tZ1UNmp7cMzJjZ+Zllyc4yTZebNnN3ZhqD35xqhXahJoufDtHz9wxM5N0l349fwioIkuBFg3mR8QjTqIfNtssuOU07fXU9QRdshrg5mmHS+ZqUwSb1r23sWhn8OI0G+CTKaNMhMFkozXEwwXbm+PN5ucWLx+6ngiCx+51Gg83jaN57WlsZYGiOQdoZZMstXhQgogk6NemRJZKgxy89TuwUTGtvmhrcbFe6n+Z1zHN4rtKfceRExnV1OTHXznz1uHPsHI8oWOrsP5lldhbLUg+ZnZupuSKCv/Aq3L0hEeZopr2okMOTV0qofjaEo0mN2t+Yx+zjELNbcRmd9WCblBx/6mso9CO4e0PkdDg5unkNvuuQomSvhoObdeQHEQYXX0RUsFC9N8aoZKPQjzBYzMEZ0dvTX7Ax8zhEoR+ht5JD+cEK8v0xfJde0IU9Uh7k6wHAeNaG9ySE94gUDQt7AwRa+S+320Xn65dQ+QGBB5UmM1KFHHDvocglT0oeACIJCkse7N0+Is32BwDoDnD45iq8PUorTFwHQcGG92geg7UywoKFKG8hP4jgBAr5/pgUDLUSIhH3OHACBe9RH2EppmK2gwm6mujK7g0RlUmhcFJ2ERVs5PtjuUZUsKH6YwAxUdGolMfMnR0cXVvEqGTHBEPXLgAAnEBh5vYDRI15dDZoka/8YA+Pf+4iFv/gCQFPATz+6QUAQP37RxjrazqVMvqvLyEs0CZ69lGAYSkvhEvdxTzssYK330Bhb4BJyYPT9zH85gby/RD9lQJmdybI98eEUwgm6K8Ry2ZpawBo1cdAEx/lewGUm4Pq+xhrxchca1/YQLuv1VD9o0ewVrTa525fzlVBiLw+lhUs+d+jFxdQ/HwuURqJ1SYpjpbnSBWzkIOt0y/Db1yFuzeErWW6nXsPKY3Tz5gZM3v+lqUeMjs3q+Tq6s+Xf1FQ3mG9Avvew0TeGkCiht0kQ2LynjTJEIAEsFG4A66uC8mN3R0kSI+YlIjvZRLoMNUzW/DGZeR+70/i3PV8lUo4/XFMysNkUPq6DEIUfQXGIky5P2MeAIj+QZpsCMCx3D6AmPDHi0GEAIQiWsr3jDHjcXPmqxhrRkO+J1NjMy2xyHy7BYybF0TWmimrAQglNZMgAYjnWPNTcHuYfIhJtgAiO1J3txKlpfJMADTWD7YRXV4W2u70vAsupVETMi0gJr5SXj6pKaErLbjNJg+HRAI21kQ/JE0OlQapmvgPs4qCxwKIdR64XeZzcwyfoefze+2/lyRcml9Wr/3sX8NZ7Xv/8D/PUg+ZndoyRyGzc7OytaDetH72mflpti973En4hqdhHqSqwHjhn+X6T2vTafuRbtNZjRfZdB78xzmOpznvedq0vP9Z23Ma7MC06z0N0/IsO+n5SGNKjmEUMkchs+dgGUYhs3O3075MT1rY07nldOliOs980rXMPDtXB/DvaRzAWds/DSx5GjPbBByX3J5m5n3MMsyT2j/tXLOdJtYjfWwaqwDEBE7pz582htM+T19jGj4kbWnQ4rPOmXbdZ43ZSfOX/vwkZ+JZ5077/bwcr8wyAzKMQmbnaTMerOuvAAAiNwc7mMDuDaG8vIS9AVA64vIy7N5QRHQAwAlCjEt5uL//Pkbf+Ql4j/qw/DEmWkCIhXqc3S7CegXDF2aQ74ekyheMcHRtEf6Cg4W3v8C4eYGupXPf+V4gbdr+qTJqP6BrFfYGCEse+qseZnbGGJccwU2EJQ9jLRLkfdyScH336hzmb+0KXqC/NkuiP4Uc7HsPRRhLeXkRMUJ7D5Prawg1NiIq2HD3hhjWiih+/oRC5P4YQZPC8flegHHZhbfZxrh5QYtNAdZoglFtFt5mG1FlFmMtahXduCLTwP1lfMLwhRkAwOxWDzs/vYDFP3hCCpFeHpHOy0flIqk7PthGdOMKglqRcuqjCSYlD3YwwaTswglCKfO3tNrk0VpZhLzMVNDRtUUAQPGdT3H4zQ14eyMRDJu/tYuDm3VUP+wQvsNot9PaJVZNLcjlXyoJ3sBp7ZIYFwCb8QhafMsOJohcupbT9+XZYSEuFhaz9Nwm8AcfbWFyfQ35zW2EzbqMpdPalTQMp2CGLy6g+M6nccpLp2iichH2vYdQK0sIS158zdY+EY415hP/XTqvVGH9/T849t8oAydm9lVblnrI7Nys4i2pb7z0H8Tsg4bksvLyic8n9ZK8qNlYcMg0My/O+fiwXqFFQi9KnJs2KXXt1aYIH0WVWahCTqsThpSHN8Se1MqSLFYARAYYAMaGxLG01aBWZiyD1TuMfzeknhMcCQbNMtfZi1CTwV+Q0MDQYE6TMdDaWKMFnY/XfWWMgdA/G1LfAGLRKJbD1gyFgtkw8AUABLsQVWZpYeVxMPUpWF5bYzJ4PHn8TOOFUt3dIu2P62uxBDZibAdSss0JLQmNT4ga8+htVFDaGogzCkDmUQSsNEcCYzZ4TLmdAGSxN4XEACQcAXZ207gSE5cAxNgQkzAsasxD3d1KYDoAwuq8a/0eukePEqmH17999tTD2/9XlnrI7PSWpR4yyyyzzDLLLLMTLXMUMjs/UxFJAzfrhPouF4nVsF4CQCyLvCvkaIIVjOSn/+YqonKRdoftPVjBCHZ3EEs3M5d+a5d28EMfdncgAj1WpUwMe4sNuo4+3vLHsEYT5HsB8q19RJeXEVVmEVVmEbxxGWHJI/T/B59JOBsA0RQHE9kJW8GImPu8uCySKyPCg05iFy3CVa++RJoMnkfh/Y01WBtrCXbJsE5VEyI0pHfUqjwXVw4YYkKqkBMRJ7voSQTAevt2UsRICy8FzSqF56sVqRbgFEdUodJCq1Km6I+Xpx17ZVYqIQBI6sNfb1B/br4i4xI15jG5vkZjXSnD7g4wXl/CZOcxzblPIk5hyYPlj0lgSofko8vLxB55naSn+d/ofkuiGc5ig+5RL9F4uAWoQg7V7/4QkZujiodCDqPaLOzeEHZviKBZxdHrKzQeboHYNI3Qf3R5GXb7AKqQk5RYWK/Q7n9lSaIiqtuT51Dm4cYV2EWPIjmuS1EVt0C6D6amRKUs82aKkrHZq01gMpny/+hL/GSW2RksSz1kdm5Wti+otxZ/SULqXHIGJCl1JzuPpbQxTTFsyh7zgglA8v29lRy8gwhR3sL8rV1JaXDp29OYA6dZmvI4TUzEZlYbTKumMI8zr2OCHoF4oWAdgmn0y9PaPY1hEIAIF3G5oin4lGYiTBM0cdjc1FNItyNdLcIlf2aahEtcTWnqdL/5WPNaPE7m5wCkXJHbN15fQn/Vg/ckhD2KUNgbyJzbq02Eml7bHDe2NPnUNDupGiT977TzEgJjXBqp0zpp+vJp7JXv+L95rOrh9W99idTDr2eph8xObxmYMbNzNV70TQ58NpNPIH65x4u6ucCzgA+gF5hOFzPdZdijBvwLOXhPQtlJmyqOci/tiPACyhiA9Auf72k6KNNK6cIpyHVhbTT7NWVhMX836a2fhYCfVl6XbhsLRAFI8k9o58c8Pt0my3UT7U6Pifk7Mw+m+8gkT+Z8n9SvyLivWYmQ7hM7O9y+XHkOC5vb6L+5CntExFzRyhJs30d0vyVtMfUk0u0wHZNnVTOk2/+0+QlTc2u5LtQUJzB97ROdD2Rgxsy+esschczOzaxCAc7X1qUCwXvUl+8YCGbdfAXq1oe0kPN5WuhIlecEhJcA2nUHGH5zA/3lHKr3xhjP2vDnbdz/+Rcw88jGZOYiZr9QGDYsXLw1xmAxh8OmBbdzEZ3XR3A6Ocx+sYywAFz6Q2IJ7Fwm8Fv+UMEZKRxdtLH03R72XinhwnsHsB5sC5seEAMc2RkxSYCixjygF1yWgLZSgDZzAQOS+gvO1XXZgTrVSgJEx8RFliawAiAkSWGzDktXJeRb+xg3LyDP46jH1X51KQ6bG6C8qDIrIEy+DgMkrY016qsBeAzrFdijCaVp+j7t6Jt12Kw2qQGhzm4X/nqDKlH0vCYIlXpDqUSQefd9DL9xFTN3dqDcAoJmFd4mRaPCnTaUl0f3ta9hPGvDCRQe/1svwzuIULhUwqhkwxkp5Pshch+3EqF97hcAQJMuRboiBYidLNOZNImzzHmeRp6kgiAhvS2S4xuUPrH1eLIDw2ROk53HsYR1LxOFyuz5W+YoZHZ+ZlMEtf96jCb31xtwglDK0SI3h5ze7aNRQ1QuIniRqH69R33s/LvXcfGdHuz2HibrS8jt9hHWK5i7s4+5O3Sbmdu0wCz+hnFvo3pi5vYINV3KuPQ7tDDZt+5QZOLyMmY2tzFzOz5V+T4WNItivUULTTj0MXP7gRwTHnQQ6t9NxUEAiO5uxbwNzKLoFuKFQ0tsD79xFcV3PgUAHH5zA3N39qGuryFwHXibI0zWl4Ra2esOsPeTDczuTDAqXUJpayCUy7YuIwxqRdijCE4Qwl9vICrYgA7TVz/sAJjDYK2MuTuxlPGoNguvfQBglpgZgxHNSW9I2ANQ6aDdLUjEpv/6EvL9EE6QQ+dKEfXf34+di0oZYb2Coxdm4O2NYLsFFPYGxx6Nw29uYOaLI3oubt0humN2aNwCOZXBCJPmBSoN1RUcznwVEYDqd38ojpn7+3G6oqAjCcr3odjB5MdROyX51j78Ny6jsDfAuJRH7iOqlmn/hz+JhY/1rr4XwAEwbl7A4Os03tZoItTdPPYAYI+acb8u5OBpvAf0nMzcfkA4ncta/XO3C9y4ArR2MV5fQk73e3J9DdEPns2FkVlmP27LMAqZnZuVrQX1De8XjuV72Z6GEwBwLKc+7ft0fhyA4BzM3Hya+tfMI5u543QuPU2GZFL4ThMzepaqpIkHmHbcadUJzbTINKzBtD5MO25au8y2pOcgjVc4iSXxWf2cds5Jf6dtGk5iWr7ffDZiqfB43NLnpvt/0rh8GZvWR9O4DWmMQqnaVK//zNkxCn/4j/6LDKOQ2aktiyhkdn42V8TRX3wNYcFC+W4X+2/M48J7cSUAi/KErkO74FqBdtW6Bt4ChKAoaFaFJEn1fYz0zu7xGyV4BxFKWwMEZReFvQGs7kAUGxmVbu12ZSfcXykkBJ9YMAoAui/SLjE/AIYNhfp7EQp9OrZzOY/6949gBRP0rs5hZod25lHBFpKkw3+ZtBsK/Qijko2jiw7q3z/C4JKL2UcBDi+5cs/8IIp31Xq3i90+1PU1GQsAiZ38zBdHsHtDISeyV5ao0gIG70R7T3QSOF0QNutwdru0M9/U+gyNeYQlD36tIEJT+da+8EwMa0WELq1Zc3f2iVjo8yeYvHEZ+V4g3zuBgj2KEBVszNzZwbh5AUN9zcFiDqUHIyHHAoh8q3OliPpvfY7+m6tCksUkU93Xaqj8YA9RuYhx2YV/IYfS1gBOaxe733kRszsTuHtDKDeHw1qBiJs+2qKKCT2Wystj7415zO5QquGLb+YAvIhCx0J+APS/FmH2Cxu96yMUf1iAX4+QO7Iw+4WF/KESoalRKZ8YFwCI3v8k4SSZzqbJ18FpE46oPNHPPxNp8eej2qwQeKntmS/zPy2zzH4kyyIKmZ2bzS0sq7dWfhmjmn7BFmyEroXZrZ6oMPqXSsj3xxhcclHaGiBycxiXNF6gP4ZfKyDfD9G5XIAzAryDEPl+iC++6SIqKPzUtz7A733/ZZSX+ri5+BBvVj7Hg+ACfu3/fQvero3gtSO4P5jB4MoI+d08JpcCNOo97H1cgz22UNoChg0Lto7GD66MYOUjoFNAoWPjwochZh8FGFxycXTRQenhRJgaOS/v7HaPCTUlRIXYNGHR0bVFhK6FmS+OROkQAPx5G+UHtECNS3n0VnKYzFqo/SDA3msuBi9EWPjQwtFFC5XPQxw2Hcy1QjgjhdmtHtrfmMeTr4/xtX9gobeSgzMCnJGCPSbcxXjWlsoQAAl2zEAv+t7eSNQm84MI3t5I5sNfcJAfRPDnHczuTDBYzGF2ZwJ7FOHxT7i49IdH6K96yA8i5PuhzLm7N8TRCzMYXKT8u6MxluM5CzOPQ/jzNgqHCqX7vozzzGM639ufiBOZ74cYlxzs3cjB7QD2SMEZAZ0NYDKjUPqhjdxAJe7hHdB1woIl1wIgjJjM4GiNJkLOdKQZPr3NNo6uLWKwmEP1s2GSDbS1S86BVkRlgip2yswxLd3eFoyO5Y+hvDxGtVm+UcZLAAAgAElEQVS4LcI2MKOn3Rvi7Ue/in6vlYgo/EvfPHtE4bu/kUUUMju9ZY5CZudmlUJDvfHT/4nslpg5ESC62uqHHYxqs7ITDesVRG4Og0sUluVdJb+4871AXujWaCI7aQAC/ptcX5PSueLnTxIv4eGLCwhdC/48LXje/kSuyZwHYbNOOXoNcIvut4AbVxLOwFhjJTj/LSA+JJUio8qsgDYBCI6Bv2fHAYCA2jgSAreAyf2HkmaxPE/uo3QUwaQj5l2sv96QckETaGkCFI9xPuhyxnHzguycGbx4eO0CSu/eh/9yE97HLWkvgx/53mG9QuOonQ/e1fPCaFIbAxBnBSD2RGZOZMbLw2sXMHdnn2iQe0N0X6sJSJHpqu3ugByyG1fkuQhqRS0fPkHnch7dn6AxKPzQQ+O9CUli66gHAHSuFBHMW7j4R0cJWmweJ7t9cExxc9y8AKfvC0U3Az6j9z9JsjI268LhkO8F9AxpACmAmP1SlwXDLeB7X/wquqN25ihk9lwtcxQyOzcr2xfUW6t/NQHoM7kUnMWG0AUfW0CBWELZoAFOUO9q48+4tG9aftz8VzgZ9Ata+X5M38skSakF3BREMqWFTY6IdEmeeT++Dy/KEnFI0Qgn+AMMSmS+JiPlTapoNqY75soItbJEtMa/cZtIge49lHkAkJSN1vfmCge+L49vdPOaUDYn7m/IR4sctb4Wk17xOKYpm805TWNITNlpoW1m+WqQA/c0rgOzeuFYXw0KcZNq+iQFUZlDg+YbjRqGLy5g5vaDeNx7h8eeFRPjMY2bw8TVhAcdvBP8P+hF+5mjkNlztQyjkNn5mVJSAw+9cABG7fxOG3ZXf8aAQuO4SC8gYacLdLpQ+gWcJieyi95UPgJAL+xBII6ECgKojTWou1vEitgdAOW5BIui8n38f+y9XXAcSZ4f9suq6q5qNPoDRHcTIBvAguDHcMiZ4c5yj7M7Xp135ZM2LsK+CFm6uxdbtnSy/HH2kyNs2bKsOIdsKfxiP/hFYSvC9oP8YDkcexHr3du7ndvbm7uZFTXHnY/lkEMQS7KHABsAge4G0FXdXZV+yPxnZxWqgQZnyJ69y18EA0B1VVZWZrHzn/+P348ldvR6vb9+npXzDtX569ArHSiBTi+308mlkmV5StMBw0Un3GjCWqqD31lDJMvxWNAbGh5UYigNn9IPPgabKQONTXAgZmgxaYDYc7WhgubDdcDz1H2IzdFeXVfjbs+UVZyeQysZrM3Aau6o/AhdB8IulxC9/7HoI/X5/Y/BaUFeqiOUZYXWUl09BxlIVs5TuhZhwUMmqKm2k0qQepKivyIMhShrob3ooPbOzlCnAlBGAisV4ZSKiv/BynmKEwIY8ngoQ7Hrw33QQEjnaoaL4rjQDD4ySMigpP4qPQz/MJ/D8EVLP2xg8HnBGAoGkwNjwy/JhBCP4kgAlJve1tzlANQO0sawwgGAqku35W4UQMxFn8xuB+QCSUyCrX2Er1yA1dhUrJC0YDtzp9VCQOenSRcTuY5dLqnFk8r7aNFgrnvI2wEglnGv7zLtmbLYeXd9xb2uL5RkLEQPGsOSTOJbkAYGLUgUVqA29OoPAl3Xr88io4kfhfUqbBJ3qlXAm1uCUpqMJn/Yb51ngIwtor0OqyXYABzyKhBZU3sP4c6u4pjgl5bBmjuCVvlBQ4hoyTnsv3kV7nv3BBV0rYLWpRLyjwM118yNMzhSX2g8nJ811PvmbuXA/D4yrf2YsanmoJRX3p4kEZPyRMl3jfJRknwYadUm6t2S17DrV4EPPhHnyP7SO8HahnXf4MXDGAoGEwPLZod8+g/XYyGDQbUAixa8VhuWjNczDHUMeKuN4PXzyHoZMNkGKxUVWQ73fQTffBW5+09VLNuvl+HJNpR+AJEJBT3g/ALQ2BQx9OI0bN8XyWXf/ioAoAcg05mH09iOhQeSHgudRdAul4TBIb0iOisk8zxReVCvil02AOvVeUR31kSGvNw50/LAi9PAzu4hQh+d2Edf7AcbT4R+BCDGUI4b8zxAW8SZ58HWXed0v1YbTqsNlIpAcVqoS957NJSOLhURLc4jyjqAptJJn4XVEixa7KRBwmszQNMHPvhE7bgHV5aR0XM1Li0DzR2xIL//MVi5NPQgbTSHVSs//Fdgc6fB3SyiBw2UtHh+VJuBRVUdO7vKyLJnytrOXXqAaP7KJYTS+KPQF5fvVvTgEbjrDtU4KTfFzapcjqQHS7FgAocND3lcD6vwIAAjI0FjslS5DcOpGbZrPAoGzxnGUDCYHKTAjdXcwdNfvYypjT68nzXQubGEqU8PwC4t4+BMQWWGh9WSYBmUO/O9y7MIswx2IBfGK8voFzLwHucRyQQ4nSmRtffgvreFgZQ8Zm/fwgDSxZvzxAJRyotFXPNcRO9/DPdOfCfIy6WYVwA4HAcnJGmRBxtPhpoJmrSz2u0/XAeT7moC5Tmw2szQc3B+AQdnpzB9exr9agF+ZQlhlqH8k8cIqyUlk928kkN2j6P8oSBHomRQAIgyZ1F44CMoZOA97sA/U0CvcAaAqCigqgRVffFaBcU7LeUd6FybR36trRgWbdeBg2GmfuQ6OPjlSyjcWgfOL4BL5sPBlWXYHV+Ut75zF/tnXJQ2h4RK8PvgxWlEUrabkkitzQ6Yl0FQycNbbaL37a+CbXXBegNE1y/Dbmzj4PIcpm49hNXsKQGmJAOjReRNWqkiJUtaNGdBD/xOM+YpAIBQJiVa9x4h1HgWSCY80s9NaGAQjTe9C+o8zfNFeSqAZtTR+xPpAQ8DgxcDYygYTA6OA551wIvTOPX2p2KXt1TH9I/uKIGn3P2nYodaKsJubAq1PlmmNn17W8XfKSmNXOSW3KHZbenODWSyGrmji9Ng5BZ+5QIGrgMrGIjdo0yiowx7OyE2FRU8kIbf3hlXldXZmx20XqsIlj6IMrqpTw/Ugj0ApCHTAaSKZVjMIbp+GazjwydaYknJbJeKirXSDjjcagn7Z6dgnxHqmlO3HmIKVZXx7231sHshh81v1lWdv93xUXyYgX9qSP0bZRimNvqIshb8Uza2r+Qw+1FXlakSL0S/YAv661PTmPnubQSvnxeliGcKgOyDP2MjvwYcXJ6T9Mg28h2RtR9UcnC3upj6dIDdXzqD/OMA/tkp8Sxb4n7e445Qtuxx7FwXZYNTG33Fn+GtNuG/XBd6HdsDOICaf+5mYfUixTjZWcyispnF1O2NWDKlmrviNPov1+G+dw9Pfv1lzH7UxfaVnBjfHlD+pAC/kkVnYQGnfhagl7UQusL4ojEh3gdraz9Wwsi9DPxKHv0bS9g/bSP/RJTpej9rCNbF3gCQlNUEKokkzo/Och6FtX30Khfh3Hoo3r/FeWE0eRlhQFom9GDw4mGqHgwmhqI1y2/gW+pvXS1SaSBQtYPMLdBduYDYsVGeA/0dc/cmXPJ61UTS/U9VDrHse+n+j+UoSOVJvd9JFkSC3pc0tj+Kleuf67tQQqQlytFneqIe7ZhDPcFT9jeptqmPdbKSRA+hkLubxj3Jwkhtqz7IigvqA/Wbxj6p/JhU4kz2WW9fD6fobIq8OC2kvLXnSSpV6vfRnz+p8GnPlEW4Qpas6u8du35VlGhKSW0q2UyGHPTn0Nkf9QRFHWNVZtD/ibnTeHvjn8erHkp1/vq/9p/hpPij7/4XpurBYGwYQ8FgYih58/yrX/1txfzXK1go/XQL3Mtgf7moSHnsIERmdV3V6j/9lkhWPPX2pzi4PIfc/afYuV7FzM1NoUew2cKuxr9P9fyUp9A9dwq9giV2uJWsItu5/zdslD9yEGWgiIqIxKezIHax3tMIvWmG4sMB/FO2kjKmhLrGX1tA/f95pDLwqd6eSv5UFj3pPmgLk74Lphg6iWHtXZ4dhl8kmY9uRPWl7oPV7iIq5pS4kdpVy4WPxJQoNJF5+0MR9vAyQrNBkgsRlDjTZkstkMSHQO566rcOmod+fRbWzdsiLNDxRTUG/Z51gA8+gbVUV1wCwDDZUedZoPbpd2IuJO8Cwbr3CKhVsHd5FlPf+6k4tlTHoFrAvvT++LOOInHyT4kdercKzP9pP0Zmld3j2H6FIddkKN0XHAu5+09VsmjsuaXyKJOJtEQYRnwT4d1V8DevKQ0RAAhePw/vZw1lmNKzAhBlq2v7ij+COBf+9N7/htZg0xgKBi8UxlAwmBiK1iz/+sW/c4iYSCcP0hfWQx4FWZtOu0hVE08JejI5Lyrl4Z8pYOrWQ+x+40vIPw6EeJRUAwxePx+jCKacAapOoHgxICSNrVdfUkQ71s3basdnl0uivzKxjrgAGCVZAodUGCmcQgsvXQcMKzQAKO8DkU5lGtuqbE8RM2kETbSIj+Ke0HfMOieCUoAEYtcSFwAAodaokStRMh99TrF+ug/thgEIMqqP1lR5JhkOmcZ2/OWQhpPV2sfgwSM4c6fVwqyqOsgLJMsKKSkwqeMBQJBiyWRRXd0xCfUeaR4Wne5beUBkbgm9H1Qqq3tLYm1qwmCxks4E5wZRPCc5M0h18t3w9+KES6U6f/3NZzAU/j9jKBiMD2MoGEwMpWyN37D/SuwLUy2ScoHSv/TpS1Yvd9MXCL3UMOm2VW5+LUNdJzbCKxfUTpZ2h4peWfYDSC9vSxNb0u87SpDoOAIfIJ4ImSZSlHTxp7my9euoHeBwWEYPjah7ygUs+XyEZJgjKZWdDDHQuBIfQfI59Geh47FQjeyP/lz6c+vhkjQyLf050sJHOikUjZFuSAE49FzHiVTpc3Hc8bQ508Nd7/I/iItCGUPB4AXAJDMaTA6MgV1aBgfQlTLKQb0sEgM7PqxmD91f+yUAInGRAzi4saTEkMJiDlF9FiB3eb2KztkpFG5lsfq3FhBeOEDYt8D7C6j+cQZbX+Y4/S7w5EYVp98F/FMWyvfmFKWvf3EahQc+QtmHlqR6fno5g27tHADA6jEU1zhOfdiBIxPTyNiI1b/7/rCkTe6uH/+bC6j+2QGc1XX0V+aVNkDkOrA3OypkEBY89OVnzuawZJEvzisuCfJQKNIlKpecKaskzOhBY8gNIcMLPOsARJ/c3IE9V1NJdfzKMlhjG9EV4T63ggGi3gCWlODuaomIlKjJewN0pST0xusF5J+E8LZ68CtZeFsiHBIB6FUuwnvcQetqWdBj12fV85PmAQlgEd0ylR7aQU/JjweFDNytKhwZXsp2ImQ6fdXW5tUCtr7MUfpkBbtXBih/5ODUzwJkZfIhAOENAQ7lmuiEXmQABG9cBCB0RYj6u714Dk+/HCL3qYNcU2y0OsvA7Accp97+dOiBoddcejzIMI0xh8p3gzQ1KMRDVTuUE2H5PpDzwPzDXhADg+cN41EwmBhK2Rr/2vS/pb5IgXhNOcXxKbmRvAd6MluS3jdWSkZ0v5IJMKxX0ZcKkpZGxsQkEyMARNcvw9EWbYrxE4Oft9pUfU2THD5KPjrtfEUXDQzd6NWSit3rJZJpu27SEEjeI+n5IKNFjZcMkRDnQdI9rq4tTsdCMrqXhRenh/kPFLIgIiZdR0KyO6rkVHkdLY60IOohI/pdZ6PUkxT1kBSFJMK7q7FxSHoXgMNJn0mPhLp2aQFhtaQqEfpFV2iSJPQxKIcgqs2oedDnl9oe16MA4JBXR/cwHKJwLtX5V75+co/Cj75nPAoG48N4FAwmB8cRX7iU+EeJa619UUsf9ITgTm0GoST04b0BbFnDH9VmEK3MAzdvI7qyDGezg361oNQMd89nsHtlgNynDpa+M0C/6MJt7CIq5gSZEiB2334fLOfhya+/jOp7HQxkG1O3NwAIISV/VvxXcRvZQ1LBAJQnhOSMyTCxG5tKKjnTDtAvuugXbHhbPdibnWGinhTEYs0dEUufqynKYgItmlEpD/7+x4LquLkDvPqSyoOgBZUW9HCjKRYj0iwIAoDCO+09cKn9YOuiUpJjABgmD0bFnDCopNiUFQzUjj+ivAna/bYALhdv3tyCtVTH7msV5B/Pwq9khefgg4bgrMg6Sl9BaSW4WXTfEB6IqODB2hQllJDJqNGDBkDESZJfIdPax+BbXwEAPH3Zhfc0gvc0FAmyP5CLOwlxkcBXSuhHUTPL+fW2B8q4XPutFVh94NTHA3QWHFT/7ABRtQBbJiBSpY4e8oodRzyUo+tDkBFMuQ966EnnXjDlkQaTgPEoGEwMVB45TowXGL0rP8m1eoncuBgVRx4Hz3K/zxNJL8O4/T6uraOOPWtbvyiYZN/TchS+8rX/9MTt/Oj7/6XxKBiMDeNRMJgcOIc9M8wo19UCAekm1tQGlQ6EFv8FBBWuXinAfcFa+PRqAfmNAaxeBG+1KRLoahVYslwRiCv40Q6PRJyU+zqlKkDpUsj+6WGSJFUvc13glQsif0FXaQTi12uVC8nwRtJ1TqA4+1FcA8cpXaYJTtH5eqgi3GiCXb8KfvPDYVa/VnkCYMgqKMMPOk8CPbOqUklWBiSqVqi9JC+GXuWiq43qyYida/NChlrT1UgmWR4VDqCx13+PJc9qIQzFvyDzR9ISS6ndUQZnklMiyT+hrmMMBgYvGsajYDAxFNkpfoP95c+93WSWO3D4S/vzyFjXP0tWFpykjT8v+KJ4F/TF/XljFG3384LxKBhMAsajYDAxsJwH2xt6FFSCHaCS26jenrgHYqVqblYoG5KwkxSDCutVbHyjiOlGiH7eQpgFZj/qKm0B73EH0Z01VXZml0tD6WMgVp8PaDoAAA6uLcLqCTrfzNsfgl1aht3cETvKh+uAlF5WIG6BoId+fRZ2x0dY8GB35I5REvIAkqRI8iqwh1LmOMXzoNfbA4jlJXA3C+5lVBxeJd+l8CHoz5R75+6wNFDOAfEVUDs690B0fkERL4m8hH3wVhvdb74qKiikTHdYkDoJ8rkzjW0g6OHg2iK8xx1BNoVhrgcgdCIyWmVIMomQvE/br8+g+lZDXcu9DNqX5I48w+A9DRUFeDIp8iShI0qYtFr7OLg8B/+UjdY5C6dv9lUeBQsGsHoDRf1N3hhgmIyol6Oq9mXOAvFCDKoFWDdvq89ovogdlNn2oT4aUSiD5w1jKBhMDNweulFpUaZs+MgtIAOA0ULSaiOUC9VAlu85mx1FPMSrJVjSSACA+R+3h8l2cgGGm8VUax/+Sg1eUybCrcwLoaHeAH0pQKRn93M3K4wWuVDl3rmrFhoOAHfWEALAzi6smTK4ppzYr8/C2ewoo8eRC1qmta/K5MKdXVhUafCggUEQwJYue4F4wp0FubjIhDcaN5X8dnc1RmkNSLe+NAIYoK6NZKjHe9yJVTpQpYW1VAc0Yihbq5QgMiwEPbCHQl2SL87Dfet9sJwHa6YMtPYRvf+xcqdnNHIo9633EQUBmGSejNFkY0UuqPNw37uHkMIoRIRUq4D5fVTfaggyJhnqYEEWpR8IJklgKAQGzxPqm/JaWyZPAkD33Ckxr/efCgNLGjw6NTjNEQeQe6eNHIBTcjxF2WNdVFy4LkIMDYMYX4ROHa5zPrjZoQGzswvbWwaTSY0cQiBrIOfULpdS1SMNDJ43jKFgMDFwxhCdX0BQyYmdH0T1ACBom4mF0NnsgC/Oo1/JKzVDYEhr3H3jInL3nyrWv+4bF7F7PgOgiN0rA2R2bSz8wIU/66D00y34sw6ia4twt7rYvZBDGUDo2nj6sovgmys4fbMPVyoSMr8fj9sDsPVSTMqhOL8AbLaUDHZUyosyS7krZ56HfrUgKjPqs0pSmWLQbHEets6a+OayKtMERH19WC0B7S4iLwNWmxEVDxgaJVYwgFXKgz9cx0BWgbD2npKPDqsl4QWQORwAlPciWpwX7JW3N4Z5ELKP9mZLsVDilQuwUAH3MhgUPCXcdHB5DlO3N9D59mtC+VNyIVilPLrSi8MB9Co19As2Mh3BiwDZRwCKrhoAgm++ikynL9Q0pUhWX3IvABDVK6U8nKUFyXaZRffcKVi9GjLtAOvfKOLMH4h3qr8yD7vjg7X2ZdnrkBKa3jvW3gNrI5ZjADeL4OU6oqyF3P2nCOplHMxlUP5wV/Ac3HskjKnmVkwLgngpumcKyElDte86sDu+mOMESyZVfFhkHJD3R34eM/wc85Vt8OJh3joDAwODX1Rw+c/A4DnCJDMaTAzPK5lRx+dRDvms53wWnLT9k5SJAi820e8vIp7Xsx9KZizW+fU3Tp7M+Ic/MMmMBuPDeBQMJgbmunDmhyQ1eOUCIle8kplVkcxHCV7kRg93dkWpoUS/6CrVQVI9tJo78F+uw23sCjKhWkXpO+isd0m9BTIqrJyHMEXYBxgusGn6DboOAbUHDElzdFbDsF5V7Iu6OiIARbXcq+TgPe6INgoe+oWMKvXsXJtHP2+h8MDH/hkXdo+jcGsdnWvzSuWwe+4U3K0u7M0WOtfmlfokkRb137wqQjyuDX/WUWqbOijZkhgY+yvzcDY7COplGUIQCp/Zrf2YSmdnOY/SDz4GZNJlVBL0yfvLRRRuratcBe5mRfJiYxv9+iwAkXuyd3kW0z+6I2L1cjxoru3NlkrM5IvzihCKQliUE6JXtRyntaGDklyBYTmqLn2efBeSWhb6dTp0pU8AIr9G5nyMKvs8pP+xE2+TAWBms2fwnGEMBYOJgWcs8UVZq4B5GbSX88g/DkQcemUem1+ewpnflclg7T0cXFuEu1UdijcB8DRq5kxbGgtuFnYQCgNDKhWyWgWsG69xJ2OAEtfCehVWbx47V8vwnobYPZ9RDH/7c+K/Sn5DLKTe446IwRPNs+QS0HeRtBDRIqULWFntLthcDaFc4NytrnqusODB2ezABVRVgNXahyUlpgGhfUELsLdtI7u1r6S1+0UX3MvAe9xBr5IH6+XVgn5wdgrT9x7BninDauwK4+vlOop3WvDPFBC6DN6WiKH3CxngTAHuVhf9opB1dj5aA/M8ZNo5ZLfimgxKDvneI5Q3i4jkIg5ALeaFW+uq+oMkojOr60Ibg6otijkU3n2AsOvDbu+BezNKEpsWUZXIKcc+qor8CjLCrFY7toDrCpMEpcUBKKOD31kDL06LPI6ur3IDnLnTykhQlR/Q+DuuX0Ukx9fb6oF1fJUYqStaouvD+UjmG3geWNDDYLcFuwyVaElGgj1XE/ks0mg2MJgUTOjBYGIoOVX+9dpvxChtgThZkJ5cliSfiS3yWtmZXjqoyxVzVyS80a6TKg90gabWxWnM3NxUu1La6RFowVGla8AhPoZxeBcUAZBG8KQTHunaF3QPXUWQnj9Z6pfc1dL5SgpZyhUniX/08dbVIAcbT8CuXxWU1Noum+aF2lbVIbL/eilnkhhJJ6NSGhPFaaXVkCQf0qGP9ShNBCJ90hUgY8mnchevL/pJOmd7rqZEp4jKm7wUSmgrSYaUGH+9T6NImPS2kuqoSWXNcLeFd/HDmNZDsVjn12/89qFxOg5v/f7fM6EHg7FhPAoGEwMPxS5X/zIlJURAsiACitcfACxAseJx31c6BgSbShRJWKhWgSXLEXkQIHt3FUzuJOkLObO6joxsr3izBWjZ91RuaUulSO4KrYewmIN1T3g7rFdfQigrACjcASBVxCqqzcBu7ccYGGlBGDx4JMahlIfV8mILDhBXO6QFX2cJpPJCMhBoF0s7Z+a6orRRhlaorJDaTaopqqz8mx8i1HMb3Cwgx9wul2JGTdT1YSGuxKgzXVJ/dMNusPEETPs76vqpImD0DKSjoC++NIasVIRdq4Br7vwhE+PwfGfutKpeoecgDg588Al4q43SD9oxI4PYJKPzC+A3PwSbKYNLw0HXZIgximrzZ+U8IPE8+nVc/q4bCOoZF+dhA2DtFK2H6PAhA4PPE8ZQMJgYdPIYvjgPSLevLRfQ8O4qrFdfQpJihmK81s3baneriyABAM4vwMaQMwAQi+ugWsDuGRf5xwEygOIIgJvFYGUe21dymPvOfXE86MFubIrdMxE/SVInu72HAYUWuj5YECDjuggT8fAIQ4NksPEE2HgCPiKhkLmu2NnKdtN2p4Tw7mpsgaHzxc5Y7nohFhudtpk8E0BL1fgDwxI83Z2OoKeMCUCSN+WEiJc9VwNbnAf8PmxZ3khGEG+1Y0qUdjlOHIWgpzgG7HIJYRAc8jLoNM56noBdLon51mihdcVL6huvVWJzr5cYhtIosmfKQyNOenOse4/A5Lvkr9SQeftD8a7VKuo9JAprkhLXfyoEvTjt+G5LvRtpXgya/1juRM5T51rNHcUnYWDwomEMBYPJwWLDL9mH68ClZTDJl0+7b/ZwHRxA8Pp5uO/dA2oVwe4HIHzlAiKdHbC5MyRKuvcI0eI8bAi2Qqu5BRb04Hy0hsJN6XIuFZVLnV1aRqaxjdMftcFrFVjtrlJ9tIMQfkXsrr2CBysYYPP1ArydLwEQLIC9aQZvJ0KUGZJIlT/cxf5yEZlOiM5iFoWHYsElPofuuVPYn3Ng90T4zz9lofpnB2JoggFay3l42yInwm3sovVaBd72QKhUSuVJnnVgt7sI6mUMIJIKw4IHbHbQea2C0k+3YNcq6J47pVzoUSkPVq/i4OwU8mtiQfYreXg/a8CSLIAA0LmxhPxaG/6ZOZVDERVzwAefqKRI1t5TzJLs4TrgDXkheNYZsl1KhkFBaiTc+Ha5BL44D0cSOZEnxtIULXlxGpyYFS+uKFIkpUNRqyjvRlSbgVWcFlwE7T2Vh8JcN+bB0Km92SVB3oXWvsolcKTx4f2shxDDUBZ5G5jrKq6DcGdXSJNL1dCgkkOm0xfMm/Uq0NgUOQ+1maGUueSwcBpx4wluVoWHKHFXl1AfBZPMaPC8YXIUDCaGIjvF3/B+NeY6Jrey/mUOpJfzjcoFcOZOgxenFdlRMu5LuQEUc062dVxpW5q4T1ofk+JCJy2X+yyqlce1S/0at91nVY58USWSuogXeRhG5XOM0mdI/q3nSoxbYtwTm2kAACAASURBVEuhEV0Q6/NQD6W+Jcsji8U6/+r1/+TE7f3wrf/K5CgYjA3jUTCYKPRyQ2AYZx9ncRl1Drn4meuq9vRrwiBQ7v2j2hp3kRt1jn78WRbL5DWfpY8nbfc4HLXI6r8nE0+POv+zcDzQNUpfITG/lAtwVPvJ4xSWOMlCz4NAvXMUGvq8YJdLh8ojDQxeBIyhYDA5MJa60FGGflIOGcChDPKk54GOq+sSC5WqLiBXN1VHACpDn7faYPInJZ/pcfJRapGf5+55nMUzmcNwlKdDHyfdy5JcsHXoYkZ6/kK424pVbqisfa0ShPLrdPlvu3xYTjpGg90dJhYCh8tL04yLo3bsycoKJQCmVzukGDf678nEy+M8Tbokt3486TUDNMEujUMhrUqCrk/NWTTMjAYvACb0YDAxJJkZR+0yR+08gXR3/1FhAf3zUYvMSaSDR5UjHtWnUX07DuO6zJ+FpfGk4ZZx+/pZrz0J0sILR7Wvl1+OKzl+HKik1L64oki+Ro3FSd4zwqHQQ+EZQw9/aEIPBuPDeBQMJgbmurBeeklJ80alvCgdBGLJbZQ4p67TvABKYlnuZvniPCy/j+65U/BPiTz1me/eVtUHyez6NCTd5mn9VlUNtAu8uKJU/gCo0sej2jmufd0gSu6AR+061S4f8bJTS/OM6OEdqjqgNtOkkOn+ERC7Pm08yPj6LPkYybZGMSnqFQRRd5gTQN6gMKUPatevSTgDwN6vvCTYLd99IE7U5m8U18LIeX3zGnaWPFj9CvKPA1gdH3ZzR3mj1HkjcloAjdlRJjoqPpFDrywHzGbP4DnDGAoGEwPv9cD8vmLzs+QXor4Lc+ZOK1U+f6UG54f/argTrFVE3bwm4cseroMvziN3/ymmbgsFvk///Stw9jna/3oXmewA/Z4D+5Mp5D8VX7BRliGzxxFmgfwTwe2QX2uDZx1EUvVv96r44p757m2RCOlmEdTLiLKWkGlu7sSIhw4uz2GK5KmX6qo6YFAtoLPkYebmplQyFFUNxFLIegO0L5VQ/sljIZEtJZ9ZqYjNb9aR3xjA3epi7+yUqsjYvpJD+V4P/YKNMMtQWNvH06sFVP6kiZasfNi7LOiRwyyDt11Xc9DLirr89qKD2js7CCp5uI1p9XlQLyt654OzUwCAwq0s/JUaslv7ipnRX6khylqwekMHuU6tTcYbAFi9SCkyRsUcWhenYfU5CmuShVIahVExh15FKIMSjfegWhDPIVUks1v72H59BuVPuugXMlj/WgZRloMvdTFoZcF6FrK7FnKbwO61Hk79JIPsHsfURh/eahORlwEAlH/yGGG1pIwHFvSEUma7Kyotmjtgrg9rqa7ooklhVKfX5rIiZUoSeFn3HqnQAhmRZIixS8vgd9YOhWKo0oN5nnifIKia+W4rVlJsYPCiYEIPBhNDkZ3iX5/5aypurVPk6slnOgNecpet2P9S3P7JGD4xBCZzDPSdtLVUV8yF+o6VoPfvULxb23ESYRBwOCcgRqRzRJjiODe1zkKYJDU6rm39b33nnkRaHsBRoQ7F5iiz/wHE2B71a5L3SQsTjfIkAPGdfnKu03Q8kjklz4KjwgVpoSz92FGhs+NCNarqIcnMWDjLv/qVZwg9/Oi/NqEHg7FhPAoGkwNjsS93ncqWWPQO0TZrYjvEuke/62EF+nJOLvSKCKhUVCyPwpUuzicaYbo2bZGiRVX/SZ8BMvOdyIR2W4c0IHSjR09wG2w8iRkVejKm7i4PpaeFCIh0dkdaoMOdXUVjrJcKJhPqKJFQZ8bUQwu0C6ZExOQiTvNHZYnhzu5woZPue/IM6QaDbpDRsxwKr9CYjFjkafzp+rQ50s/9rFCeLE3rQe9T8j1IGrw0TjHKcjI6NQ2L5DUUMhN/HN7YMbPXM3jOMIaCweSQc2G5wjCISnmw0rJI4Pb7QL06JPgBYJNgkuauZ34fwblTcN96X1DcSpdxWC2Bu8sIXBvue/fASkVEpTyCSl4REjmbQpURblYxNjofrcW6p2fqE2gRBrTFUh5PUjLT9cAw/g8gVkHAFwXjI1r7iu1PNwqcJUHOo+LU5xdg39Pc16WiorgmtzkxEoYbTTBJYmXlPERSddOWJECsvQd/pQZvVeSEkCAR3TMq5eFX8oLg6aM1QTzU3otpZ9iBCO/w5pZom9zoGgNjWC0BjU1BxHT9qnDHt/dU9QlvbgmSIQofnV8QpE71KhwIKm8LUKEaujcAFdKxSeESggo7KfiEJRlu0RIMk/TQilhJE2XSDT5g+C5YkjWRzcT1MZKGHxlIfHFehMX8wx4o3ftE7wp9bpdLSoGTu1mwtT+CgcGLhjEUDCYGNggBF4rZjxYAFvSADxpgM2VFD8yL00BzCyguDCWZm1uYau8BczXwh+uKLa9fdOE2dpGRynzEmeAA4K4LR/MUMNrd3wWQECPixWmgOA1bK6OkL/pYyR2VUvrDRYTOjSVMaqEOdU7WGRo+UmvA3mwpWWYmkzt3v/EllH66peL37NIyLL8vYtmXlgWzoJtFv1qAA7Gw2KUiIgjKa7vjg/UGQk2yNiM7NA23sQt/pQY7CJFZXUfwzVdVnkF2ax92EMIKBojOL4D1BuDeDPwzBeT8vsob2Ls8i7yXUSyUmXYA1hsgqJeVLHRUm0H/5TrsIARbnEf3TAGZjphHW147fVswblrtLgbXL8PuSA9FbUYZd91zpzDV2le5CrbG1EjeEVqsdeIuLimvhSdFJltqFMnAkBabDAQAmk6GWOyjgge/kkWYZcg/DtAvCJVOfmUZVjBAv+jiYC6DwgMf/o0lTH16gMh1YAUDcBpDydBIeh1RKS8YRKU2iRIsIyZKmQhpl0sAS9F6MOFjg+cMk6NgMDHo5ZFHlSoC41UIjFMyeFT8Xnf7HuJ2kAsGLT6j7jWq5HDcEsmjyjfTPjvqfmkVCrrrOy3nIa0SZFQcPekm19tLxuZHtTNqbNK4FHTWzrT5iRkG2lzrnoPj5lgJa2lG46h8Er2voxg+9b6kqU3qSLuWrqd7/MT6Q7QGm7EchV/68n+c2t5R+IMf/32To2AwNlLMUwODFwfmunEugnIpNdkrTXLYLpdSF3w6HnM/a+cpEiByE2vlkocWW9mfwcaTkYuUfm8r56WWV456Doo/U76CvsDRgqZ/Rvehvibb0n9PGgkADpVG6kgraxxVwqfnb6SNBykt0lyMMjaUuFPiWcLdVsxI4kGg8h8INDc0P6PGgZ6Lfk8+i7qnVhZK5yWfMZYLknhvCM7cafXuxTwWGlGVfn0SZBTp4/Z55FgYGDwrTOjBYHJgTHx5a1+eaYQ5dE4SacqK+u4xbaHUr6P7jFo8eBAcSlhLWxTTEtr09vRF5iiCJ/13+nlc5cJRGHUuHUvb3ZKxQ5+P+5xJ42jUnB1axE9QhZDsa9pO/7i5OuqzUdUMo+YjzYhIGmhJNkW9/eSz62M36t0lafbhAYAZmWmD5wzjUTCYHLSwF30JJxec5K4vzdsAxL0C+rVpu+6jFpPj/k7r01HnjrNwpZ0zzrnH9eu4c3XvhX4N7ebHNUieBUlvDh3T+6Pv3tOQZkgddf44GHfcj5vr5LHj5tXA4IsM41EwmBiYbcOpnVbZ4UkWOh4EKtOeShrDjaZy69J5lHymdsOau1dJBy8tKFlge64GBD0VSqBSPWupDhDRjXY/3X2s6xropXsxzQNPK8mUCXYARKKalA8m178uVwwMqyqSZZ30HMAwS56qBoiUSa/IoL91JUXqm94Ob7XBtOv08lMCjRmVOgKIlWfqO3sVStAYHnW+C/pbsSjKUtjYGMufNJcUxlCJprWKSjyEfq42R0nDUe+nHjaxXn1J9J0SDLXqleS5RMustzNKdyRtHpPvB2k96DkTei4DETIBwwqMVMKl55Rnxhj7NoD/GYAN4H/lnP/jxOcugP8DwFcAbAP4Dc75zxljXwJwG8Adeeo7nPP/8Ll00uCFwBgKBhNDNCWTvd68hoNCBrl37mJwZRnOZgfMywBZBwPXgVXMKfY/180ilCWTkesgdG0cFGzkS3kwvy9K/l6uw23sDksri9PCAClOI1qZh7XZQbBSQ6ZeReQ6iADsv3YN5R//HOH5BZGlX68iqOSAy3OYur2hqhAOlouY+vQArDeAAyCUbbCOL9jzAAwKHpyP1hCdX5AMfiVY9x6J0rzzC7DpOgD2ZgsH1xaRuz+tSg8Pbiyh8O4D1TYA7J9xUbwjyhL79Vlkgh769VmErg27WkC/kIG71YVVnAb3MmB+H3153HvcQbQyD9bxwQFYtRlsvz6Dyp80MbiyDLvjw3az6FybRz9vYWpDVCMoZsXaDDrLRUzfFiWJe5dnMfXpgShJbO/BqlUwqBaQaWwjrJZExUMlD6Au2BsBBJU8vFVhNPHFeQxeP48BgChrwd2qIii66n4AcHB2CoVb66Ka4fyC+jyQFS3s+lVRQZB1cHB2SvRns4WwWsLB2Sl4Wz3YHR9PJWsjNjtAMYeDs1OY/tEd8DevAQD8gmBmzBQui+qO3gDM7yO6fhmdJQ+lu3tgEO9EWMzBDopgi/OwWvvincg6CCo5WL0IdjAMC7COD1rSQ1nqawEYVAuwAlHlYm+2xFw2tlVbrDcABxBJtkc3ewH2ZgvczQrDrpn57P/xxgBjzAbwvwD4FQANAP+SMfYdzvnPtNP+NoAdzvl5xthvAvgnAH5DfrbKOb/2Qjpr8NxhQg8GE0OUZYhqM6LczGVAraJoeq3WPuzGJpyP1pSRAIi6edYbiIV6s4NMO4C31YPV3AH3MuDFaXirTbD2Hp5eLYD1BhhUCzi4PAcmSy0BwH3vnipby6yuo/yTx4hqM+gs5xFWS7A3W3C3upi6vYGDy3PgWQc86yDTCUW7knqa9cT1vUoeYcFDKMvnqJww0+mjX3TRfeOiIHlqd4XB4jqw2l2hY9GLwL0MwnoV+8tF5NfaoqRxs4XM6joyq+so3mmhfakE3mqjXxDnOpsdeKtNZFbXMXV7A/2iK2mP84iKOWRW14Xx0NpXi1P0/scICx6qbzUwqBZgd8Sutl+fhT9j49Tbn8JbbcJbbSKo5NBZFgaSHXC0XquAexl4W6IEFQA6N5ZUO/5KDUElJ8Zg1kF2ax/tSyVRvggIY21xHjzriPLVdgDvcQf9oosnX3WF0eYOF35AlIVa7S6irAXWG8AOQkUFHRY8YcxBlFQ+ffOsMARub6vnKjzsoV/IIKiXEVRymL69jb1fvgQrGIh/vUgs8h0fB2enEBbEbr9fyMB7GqKznEe/6Kpn424WVmsfG3+1jrDgwbr3CJlOX82DX8mKUsisA7hZdG4swW5sggU9ZSRY7W5Mu4S7WfQqeXUsLHjivez0YTc21bsflfJg/cHn+V/wKPwSgHuc8/uc8x6A/wvAryXO+TUA/7v8/f8G8JcZYwwGf+5gyiMNJoYiO8Xf8H415s5Okz8G0rPtR5XZHVVWOE7JYhqSce8krfSokri0/iXP0z/TS/TGqbAYNRbAYeGotPseNSZ6CWZaP46SeAZw6FnSmC71PhBGzelRZYrHjW0Sx83PSY/RcZ2DYdRzj5qDtOfX78dcF+/4342rR06f5Tde/Y8O9eU4/P6f/jcPAGxph/4p5/yfqnsy9tcBfJtz/lvy738HwA3O+W9r53woz2nIv1cB3AAwDeAjAHcBtAH8fc75j0/cSYMvDEzowWBiYNkM8MoF2FJ45+BMAe5WFdx1YHV8WH4fQb0MOwjR/PIUzvzuI7GjW5wHAPQqeeGOlgI9QSUH73EH8Ptg5xfQL7rwVpsIqyX0KjlkOn045ObVru8s51H+8c/RX5lXHg2/kkXh1rpwDa+uI1IkRZIRsl4WhETNHUS1GTBAEBFJoaNB0UV2a1+5k/0zBUzd3lBthBtN4JUL6MkdsbvVhdPYVEyRABA9aGDwra8AgCBEkn0nIaaolAeXoRruZUToQ97Pau6o0IUt1QvhZgWjYXMLg+uXRT9cW/UzqORU/wEgkM/QvlRCYW0fkevAr2RV6GXr9RkUHvYUKRMRXZHQ08zNzRhjYlTKo/vLl1SYgLtZRDKsFFaHSY22FAGjcBHBam5hIImNyG3P3r4Fdv2qmBdAeRS6505h6tZDwUCp3R8QxF7+Sg2dxSxOfdgZzmtvgM6lEko/letncwvR+QVYkqgq0w7UMwLCu7X7jS8pQanIddB3bWSk2imJR3mPO7AWBTMj0TUDQOfaPKY+PUBnOY/ST7eGHp6s8DZFDxqCWEvOXVgtgb3/7ImaCWw9Rx6FdQCLnPNtxthXAPy/jLErnPP2c7qfwXOG8SgYTAylbI1/vfLrqSJCAFRSITBMBAMkbTGgEh9ZqagEpYDDXgdqV7HbYVhap1gVASU5zNp7sT6R6JTeN+ofHdMT1ZLJmQAOkRxZOQ+sVFR0w7Sg8VZ7SO07Ykeu6zJQ4p2eMMiDQCUq6n3Vx4r6rveL+qwn8iWfS9/ho1ZRlMjkDdIT/PQESL0/lCSq34P6QM+d9g7QfShBkxenlV5EkiI77Vra8dO92aVlsIfraoz090dPSNUZNnXSJz1ZlMbSynlArSKSYykRU94zmWyapJAm6AmlekIk8zy8vfHP46JQz+5ROJJwiTH2NQD/kHP+V+Xffw8AOOf/g3bO9+U5f8oYcwBsAKjyxKLCGPtDAP855/zmiTtq8IWAyVEwmDicpYWYSFHUlV++8nf6sgXklzntNiXH/uDBIyE3rX3BkkFgz9Vii63+hc+DIMaxH95dRfSgIQwDuasncN8fShB78eoBtWhjaIxw38fgwSOE9aparOy5miAhminHQwa+r4wEVirGyHiIvIcWC2dpYahgubMLBD2x4MnxsnLekHY4sdiFuy1liPDitKCjlhoIdrmk2rPnarDnaur6qCueXTcSWKkYE9CiMQW0CoSgp/qjG3J0D4KV82DPlIcETXJh1seY+kjGzmDjCdDcgj1TVvwUScIk+puqIEj/wp4pw54pD3MnaIz0MlU534ONJ2q8eSBIn+xySSz+O7uqjypk5nmiX3M1MZeXlmPVIrFwgyf1Ii4tiwofSSmtnsPNxt4VuFkw53DVA+P8xP/GwL8EcIExtswYywL4TQDfSZzzHQB/U/7+1wH8kHPOGWNVmQwJxtg5ABcA3B/npgZfTBiPgsHEoFM4GxgYHI93+R8cylF445WTVx7+4J1/cCyFM2PsVwH8TxDlkf+Mc/6PGGO/A+Am5/w7jDEPwP8J4MsAngL4Tc75fcbYvw3gdwD0Iapd/1vO+e+euJMGXxiYHAUDAwODX2Q8p80e5/y7AL6bOPYPtN99AH8j5bp/AeBfPJdOGUwEJvRgYGBgYGBgMBLGUDAw+BzwWWiDDQwMDL7IMIaCwRcCaboMX4R7H3c8rSb+pPd+kRjnfmnjkXbd59X359n2Se6Z/OworYlxxuezYOz2OEQWwEn/GRicACZHweALgUmK5ZxUZVA//ln7/aKfe5z7nVTw6Hn06XmPyzhzftQcjyMS9VlgxKMMvkgwhoLBxMCLU7DtUoxEh7tCT4CIljKNbfTrs+gXMpi69TDGaaBIaCQ/Pwt6gubW74N7GVitfRxIrYZ+fVZoSEheA+IS0PUUMqvrgnb32jymb29jUC3A2RSEPNwTHPtUUkcc/UT3TO1HxVyMbCfT6SvCprDgIXRtuI1ddM+dEkQ8rX0g6AnSJr+PQbUg+iLJlXoVQRJExFF2YxPhzi6i65cVHTBpOwBQBEaAIBiymjuKo+Hg8hymbj1Ef2UeoWsrbQWr3UX33Cm4W11EriPGAVB92rlexakfrinNAp36mUuiJv1ZiNiJxqJ77hTct94HXrkAfPAJ+m8KgqTs1r565kxjW70Xej/pvdA5MzrX5uFt9ZBpbA85Idws+vVZqYnRUqRK3moT3M2q94HeFyKmUu9iVtBHO5sdRbTEegN1jb3ZUu8SkStlVteHhE5BD2G9in7RhR2E6BcyyN1/qtpnQQ/czapzdfRX5tV7nmlsq/4CQFsSQLH2Hvor88B7b8euZRi73NHA4JlhyiMNJoa08sjPQrF83LknoePVPwdezA7vJM9rIDAODfPn2f5xn33e72wSyfLIUv4Mf+Plv3uiNgDg927+w2PLIw0MCCZHweALg+QXp24wjMojGGchT+ov6Ej7ok/y7o9jgCRBhEmjPj/us3HzBOxy6UTtj9OuPt7Hta1/nhbTp9/tckkRQR3X3nHx+aN0EUbpOyTHaZxnPCpHIa3fyf4cl9ugv4/JvunvT+wZ0mSmDQyeM0zowWBykEJzxPTHW20wSalMNL9EU0wuZmIY1K8LqyXgg09ShX7UOZKBkWh0dfpcokZWi5pkDdTvT0hSDxMFdATEqITDnV3VF0V5DKjP6DpddEmn+NWpgvV+6wJBimq46x9agNT95LPTNXo7ihJaUhEDOEQpbOU8lfuWpBxO/Vsbd8WCmVj0aIx06mudohu1iqLRdpYWYuyZ+tjoolQ6hXS424q9C3pfiMZZH3u6nkAU3Ppc6NDHyr64gvDuqqLbdpYWFC13kn5bp3Om8aL+p40z9UlnmORhiEMwXmGD5wxjKBhMHOFuC4wWbfm3DfGFGfuylefH9Bq6PkDc/WmuYM+Lqfkp2mUMd3TJxW7w4JFqS1ezpM/p3kQJnPRU6AsWHR8qTfqKOlotjPKZdLpi+p3OSeos6H1O83goA4Q0DuQ19Dw0Bvq9kmNIY0PPl1SS1Mcw/ozx66g/QCs2TszzwHdbCJPqkHdX1S5dpz/Wx4b6Q/1Uz6WNqXoOaUzp83tovDT6Z+a6MUNEHx/6nBA9aKi5Y66r2ibKa30+nLnTseeJtLZ0dcmQxjvx7hkYTArGUDCYHDgHWGKBl1/0SflkHgTqC/Qkcd00yeZRIQ66B/2un0c/Q+26MNGebnRQ/9Nc48oI0dtKyC+nLSB0nI6J6+PjlNbn5L309pMYFfo5KvN/1DOm3Xv4d1x2eZT89Kj8A/1Z+RHjCCBmHCXnTH9G3UOSNCD1PiTvnxxbYGg06dclDQ69nWTbgPQ4jBH6Mh4Fg+cNk6NgMDkwdig2G2ludH3xI1g5LzU2rlztiS9d/dy0ODKJCunt0E/lrk/JN2CuC2fu9KE+0uKj90/vW9qie1wJpn5fvZ2kSz/pRh/1OcHKebHY/ag26XkodJH8PO3fqPuOulfyWnumrPrnzJ0einwl5kf/W78PiWlRn5N9smfK6vOkUUZenFGJiqN2+UclPSbHIe063XBRoQr5/NarL4k2TI6CwQRgPAoGEwPLOMArF2DdeyRyE2T5GG+1gaU60NwCmykjqs3Aeriu8hGsdnfYhlZ2xs4vqPJBa6mO6EED/TevwvtZAwBEKVt7T8TGzy+osjsAGHzrK6qUjnkZsOYO7DLAF+cBvw+HpK0xLDskdb+oNgOedWDdewR+aRlWcwf9lXlRjtneg/9yHe5790QehuwrPUd4dxXs+lXYjU3w4jTCu6vDRQFQZY80LnxxXkkjR+cXYLdFPJ8XpxEVc4hcB9ZmB44sF7SCgRiTehWsN4Dd3IH/ch3ealM8R2sfbHEeUcGDLUsD6f5UWjmoFsBkKWa/WoCllUlaskzSau0jKuVV2aF+rf3RGgbXLx8qJ4SbhV2riHaoDBIQJbJBD7w2g14lL8o4P/hE5I4EPeD8AthmC9biPKKsA7uxKZRGZZlt5DoYvH1LeAmW6vDrZWTe3gV/8xoyjW34KzXY790DMMxH0UspAcDWxpvLe6i+S/grNTWv/fos7I4P9nB9mH/xygXYmy1Vsovmlniv6T0q5uBQSXBzC8zzVEkqmlvAKxfA5PVhwUP/218F/1G8PNLA4EXAlEcaTAxFa5bfwLcAjC5zOy7UcNJQxDjXJMMUwGgXOIBYUt1RbY96pqOenZC87nmMy2dpS8+f0N3/J+nHOGP9rEgb+89zjMa9/1HHxvk/cKg8cuoMf+PS3zlxf37v1u+Y8kiDsWE8CgYTA3Ns2OdWYl4E1t4TH7pZteOlxD8md/VhVbqhiYhH36VKUEY9ucopwZCViohKediSOClGgiN3suHOLuyLK6ov4c6u2mWT5wBLdZHtvrQABD04c54iBIpKebHrl9n71IZeXcBmyuDFafG79IroZEnhRnO4g4YkP3q4Diaz5i3pcUGtorLuiegovLs6rMYgzwkEyRQANY7czarqgsG3vgK3sTscfwwJl2h8uO8DtQrQ3EL3jYuCfGijKXa+vQFwZw3R+QVYvXnlUUBzS3kTOjeWMH17WxFEsfbesKJEjjsA2BdXxP0fNMRCef2qILF6IDxDltyVs/YewnpVeZHYpeUYQVJYLQlvlaz8UJUNbnaYTKq1BQjyI+vm7djYq7alF0kfS3rH6FnJ60VeDnq/Yu+cNg+81RaJsdID5sydVt4hfPCJeg+j2gz4nTWwvgk9GLx4mBwFg8nB0ezUWgUAENarYkHSGBTtuRqi8wvqGOsNwHoDkUHu+7EvebhZsfBdWY6VG7JLy+IeQQ9hwRPsd622YsDjvo9+fRbcF9UM5M6Hm4W1VBcLm98XYY9aBSzoiYVHGirc90V2PTAMDTxowH+5Lr7kgwBRbSaWIBfeXVWLcPSgoZgCVVmmHI+wXhUL7+I8uJsd9m9xHoBYWHlxWixAza1YaSQ++ES505knyimjUh4IeuieOyWmYe403PfuYVAtqGeGm1XPocIzV5ZFf2sVTN16KO49VwM++ATs4TqspTqsdhfs4bpa7FipCOvmbcDNItMJxTFyrcu2/RXh/rdynno2FvRgLdVFfJ7YJy+JOWVBD+HdVWEg9gZizuQc8VZbjaMeyrDnasNnk/fii/OiH80t+C/XRR8b27CW6uLd8H1hiMzVwPy+eDdbbTGetQpYqajmicYlKuXV+xRWS+BeRvy8s6b6oua/Kkp37bkaWHtPjKU03lhvoI7DzSIseOJegXiAywAAIABJREFUzuG9HeP8xP8MDE4C41EwmBhC10JQL8Nt7IJ7GfA7awi++Spy7crQOyAX96CSg4sqgkpOUeNaMq8BQU/R3/orNWRLebDNDg6uLcJ7PINQ0vNmWvs4uLYI9633Eb1yAf36ebjv3UP/yjJQnxW0xpLW2Wp3geYWeK0C7mUOUSlHbgGZ1XVBv7u6jlDmR9Au3mp3gWIO3qoo3fS//VVM3XqI6NIy4PcReRkMXq7DWW1i9xtfQvFOSyygQQ/s0jL6BU/QVt/eEOPgZmE1d4TRIdvnWQdhwVMU0Zb0ZogbytyGS8tgrX1FMR3Uy8hu7Yt+d/rKc8P8PpyP1pS3ARCGgbPZQefGEqY+PUC/kEG4UhPU2u09dV3wzVfhPe6A+X3sXZ5FIeghLObEHFdLiOqz6Ls2vJ81BGV2MQcLFYSS4tlt7ApDpzYj+tzaV96Og2uLcLe66BdduI1d5fWxL65gUC0gdG1kMa/GxioVwTH0lkDOn6KJlu9V942LmLr1EAdvXAQAZDp9RKU89peLmP7RHfDFeUXXrcZUjolON84kdTMhch3YHV8Yqh1fGZhYqoMD2Ls8C0/SdAOATX2FoAUnWMFAzTtvtWFVS8LQ3DceBYMXD5OjYDAxpFE4Pw+8yFj0X1SMm1Ni8NmQlqPwtYu/deJ2vv/T/87kKBiMDeNRMPhzD7NwPX+M4lQweAEwmz2D5wyTo2AwcaRxHtDfdrmUSgGc5CYYB2n8+ck+nPSzX1QcNRZp540a56M4E447fty4Hje3n2VeftHm9BetvwZ/vmA8CgYTA7NtsIyratmpbt2iJDpAZdkrDn2N+5/4+KmagDLQo9qMylAn3n2K9eq/U/KhqkTQePiVxgTVuMukNapUINlif6WG7JaIZTO/j6iYw8HZKRTefSBzJDrYXy7C2+qpOvvg9fNwG7sqbh5WS+gXXXirTVWPDwx5DIAhjwLV6FP+APcyos5fJu7pMs/ETxC5jpIv1qWzbZmUCeBQ1QXNBysV4ci8DXuzpSouuJdRfBHWzduqooS32uCXlsHvrKl54YvziN7/WOluqEoVmain81IAh/U0AGmw1CqCMllWGagxoWoYbe4ouZR+UtULMKz6GDx4FKuw0OXLVbtaX4kXItPYVtfG5KMBVakTlfKI3v8YztKCyA/5aG2Y90D5N/I+AGJ91d9JvigrSHwfyHlg/pCi2sDgRcHkKBhMDJSjQLvWNC4CPfZNixHx6cc0HzBcWHQNBeLYT9LnJrkPgDhXQRrjIiGV4TFFf+GouH3afT5Pt/04dfvjIMmLcNL2Rj1nst20+QAO00Ef1R9dyOlZxnLU85yUC2LccU97j47D4RyFef6183977OsJ3//gH5kcBYOxYTwKBhMDs23YxZISG6LFlhYEIK5mSAJPuqqePVMGl8YAACX+E7vWzaovZRJr0hclK+cBkiGwW8kizDLs1W2EWaD60z7aiw6q74ld+NOrBeQ3Btifc3BwmqF0P8TBaRtTT0JEGYbMfoT90zbyT4TK39T3foro+mVYktkwktUA/aILf9ZBthNh6vZGjEWRdpqh9lyqvn+mrCotaFetl1PqO+gk5XJUm4Hd3FFjR+qTxP9A7fRXRNmldfM2AFF+SRwGNIZ0D/7mNVV1QdwIOqcBb7UFQ6FkNkRzCyB1xKWFmGfHWZIVFxofBiC8ONzLCJ4GSWsc7rZiKpQA4mqb8jMau8zquhoD/0wBuftPMagW4FeEF2P/tI3sHkdvmqF8r4eDuQysPke2E2F/zkFmX0hoFe+00L5UQmFtX5VhMr+P1msVlH/8c8GACQAffILo+mXlRRpcv6w8L/o7Td60GB8IpLcjoTjKgwCkuGpg8CJhPAoGEwN5FMbdsSXjtKPYEY+6ftTOjqSL09qLSSbLkAQRIpG7m9rVjZ2kpyLZ5+NYAk8yLie9Nvk57cbHuV+ah+akc3iUh+akXpbjGA6Tx8b9fBxPAM23lRAzo/PIMPi8vEWHPAq5ef6183/rxO18/8P/3ngUDMaG8SgYTAzMtoFoPNer7rKOeRnk8aQEcvLzo8CD4NDCp3/h61/0MSnoNLli7brjqIL1Y8d9TkhrK+0+xwkUJT+n5xon1JCmgjguxnnOpGriOAv2cc9+krE+bgz143Elz8PnpR03MPhFg6l6MJgYeBgeOnacwl642wLXFpGjFoDkAvOsu7qTxKf1/pPr+LhFO4k0VcVx+jJOP2nsRt2bDK60zz/rvQnHVTNQH05y33FyJcapsnheoNDaqL78Rau6MfjFgjEUDCYOvTxy1M7xuC/SZFll2u9AfBG2L66ov5OSwyRbfFxZ31F9pzh62rm6hySJpFcizQBKw6h+jULaYnXU86Z9npR3Hve6ZKggOU5HeRCOus9Rz5NmINE5ybGj51K5L0f0Re+//hz6tTwIlCcsbU6TYbRxDSUAQPQM/wwMTgBjKBhMDCwjIl/jxKNpUU1+sdN1adnxetvJ5Ejmugjvrqq/BxtPYl/gSc+Ffs+j3NTJBVDfHevn0O+UnEfn69cm/+n3TC6uaeOln5u2UCcXTjqWNp6j5ofGKTlGaX05qq/H5ZekjdGosR9nntL6oJ9Dz0VJoUd5dmKhr8V5ZSDoyZW6AZpE8rO0MVX3N8mMBhOAMRQMJgfGUl2y9I92+cmF31qqw1qqx7wB9OWsrvM8dZ2eaW7lvEPxbP36WPdSFtHkgkF9TLtWL9NM24HqxktyQUnbcVIfk9cx1xUqllr7o9zbZGzRT90A09u3yyUhwER9lb/rY6DOSyx+NCZKMEm7zpk7rdpS4/TqS4c8ONarL8W8PLR4WjkvdlzvOx2zcp7qE803ADVGafNKSD6LbjjR58m5inkO7qwNeTlkX2Jz73mxOaP3k7kuWKmYagSn9TM2r0YUyuA5wyQzGkwMvD8AtLVM38XqFQVE1BNuNMXnUnkw6vqx8+g6ku6l7Hx9QVThAC0bnWrvCWleimQf6bh+LbXvzJ0W6oHJEj55T+qzUkv0PEUSxX0fXEoaE9kSAETFHEKI/7C8OA1bkhXRsx5cnsMUMFTd1CSv+Z01MS6S0MiWREV66aRdKoK7WTgQJYQAEEqSJHUOkVBJkiAAw7JKSVxESp7Utk6yBECRQdla5UgEGabR2uAP18FpPkngSfaNQ4gp0XNaS3Xw5tZhoiXXFb/L3T6V1uqJm3o4gOZPfweVbLd8Dho3ml/9naFr6D50DhlN3PfBfV+VROr9ISNGJ31S0t6Q0YJXLoC9/8cwMHjRMB4FAwMDAwMDg5EwPAoGE0PJPc3fuPwfwGruCAKgpbqgS9YoeZncXQMQ/AXVkiK6IRlgon5mfl9RGgeVnCIyUnK/7b3Y7g0YUu4SZa/Oi6C7zHU8a/XE84Te11E5Bclj5BpP2xkDI3bZI3bT1A55UIiTgXbTRPCU3MET7bbumaG29PBNuNtS9N3JY4MHj2L9joV8NEpkvc3Pk9vgpBgVXjrqfDo3jUfh61/6907ch+99/I8Nj4LB2DChB4OJgfcH4HfWMKBF40FDLCCAyjHAnTVw+uL3fdhBb0jTq1E2R+9/rNplrgsXQAggA6iFhOLbxH/gzJ1G9P4jWHOnxcKhVylo7IPEMggIo0SFEMjVLd32qv+au17nfNBBRpHO/+DMnQYvTiN60IgtvMm2dG0L1V7OG/ZLLsBJwyCZoJis80/mg0Qp/ScDgAiaKHQi0BLna+yaUddX86WzYephoKQRoedsxJJBW23xPJpxo8JR2jNCMzRsbQ4dz1OhD+ZlEJwpIPfOXdEnaZzSfYLXzyPTDmDdeyQMyGpJMWvSMch30Z6rIayWELkOnI/W1DNQGCHGGClDY4DgXkhLGE2Gyr6IhqnBXywYj4LBxEDMjMDRbHn6rjYtUz/tGr292KIkFxiKIUddEeOOHjRgLdXBgl6MSGlUFn/yC552xfSTB4HaAaeVQeo7a72Pac+RPG/UbnhUG0mvQPI5dFbKpObCcRUpx7E0ps2duq+M5+ttAUPyJ70dfRySz3NUtUMyqVSnCE8bq1FI88Ykx+akbYzzefLYu/gh2tH20KPgzfOvL/3NkW2Owvfu/hPjUTAYG8ZQMJgYdEMhuQAetUjpi+5RLIJJt7r+2STdziddYI4757i20tgWxx2DUTtefWx1YyHp2j9q/pKLfdq9qE09PJFmACaNp88SLhp3rJ+lvc/67h0KPRhDweAFwIQeDL4QSC5kR9W9H1dzT9eNos9Nc++m4bgFY1T/jmon7bnGaeOoc467Pu350hbVtHbSvBrJsdU9CsnPjpu/UeOQ/D2NNlqFH8Z4vjSPxqj+pUGvkIjlSkjp67R29OqZtH4ZGPyiwBgKBn8hQYvFqBwCOudZPvss5x6H43akx7mux7nmpJ9/VpzEu/EsngFlEAbp1N9JpIUYdGOEwiVhEABHGK3PMm4n9zhwwHiFDZ4zTHmkwcShCHrKJRWn1klsmOvGCJWI5Id2ivoxQhqlrn5+2m7veSLpCtf/TsuDGHXNOCEK/Wcyfv95IK1fRz3DKEbNZ/XKJPsw6nf9/HG8UGl40R4A43Ew+CLCeBQMJgbmurCnSiorncnKAvviCiIvg961RXiPO6Lssbkl3L/nF4B2V5zX3lOkREG9jOzWvqiYkBnsTqmIp2+exZMbgF0VnoO/dO4efvhnL6P6rqDs2foyh3PAkGsyTDdCFO+00HxjBsWHA+TuP8WgWoDd8REWZEmea+NgLoMnN4DCzy3080D37ABsagDnsYt+tY/iR1n084C7CwRloPLBAK1zDk7/5AB+JYupTw9gNzZxcG0RvYKF/OMA/UIGmU4foWsjylrwHnfAsw66Z6cAAIV3HyCsV8EAdJbzKP/kMcKNJoJvvopMpw8AyDS2wd2s6PNmR5SK3llD/82rYryCUJSKPlwHX5wXZaFuFnuXZzF9ext7l2eRX2uDZ8XXQuQ6sIKB6qu71cXB2SlkOiG81Sb69Vk4mx3sXZ5FmGXo5y3MvreDsODBr2RhBxyZTh+tJQ/lD3cRFjzsn3GR7UTI3X+K9b9yGnN/9BT+mYIcWxF6z6+1VRtTnx6A9QbY+EunMP97TzCoFuBXsijcWleVCN1zpwAA3uMO9peLsAOOT3/ZgbPPcO7fWMOdx6fBH3so/NyC9zRCmBX3OfVhBwdyfMMsQ/6xZli4NjLtAKw3QK+SBwD0CzYynRBR1oLVi7D1movcrzTR/KSCmY8YghmGXpmjsAZk9zimNvrwVpvwVwTBktvYBWvvob8yr+ZLhy5dTom1SXIr/DzlP5LxKBg8Z5hkRoOJoTR1ht+4+ndhtbuCeU+WrhEXgnXvkeJHYJLZLyrlsb8sDIGpTw9gb7YQlfKKJwEA+ivzyDS24a/UYAchNr8sFoPT77TBegPFgEi7TD3+TBnyquzy/AJaF6dxcFo435x9jup7HQAA6w0UdwPz+2i9VkH5xz9X7IWKcbG1H2PZA6BKL5P8A3opXTKWHmN5BFR8XPFPeJ4wJnqi7JRdWga/sxbjpyC+CACqT/rxfn1WLWDczQLNLUTnF2BvthS74u43voTyj38u+lGrgAU9hNUS7M2WKD0MeohKefhnCvAed2C19hFWpYensYmoNqMMr8zqOnhxGizo4eDyHAAgd/8pWHsPUW0mNr4AMKgWkFldF3NUmwHPOopXg2cd8S5p7wrd295sqWfUeReIJZHGYnBlWRkJkevA2eyoMWC9AXjWUYZT7v7TQ4u5mkuNCwQQ5bDcy4A9XI/TiVPJZqut5jM593py6E+yf4yWv64lM87xry/8uyn/u47G9+79jyaZ0WBsGEPBYGLQqx4+D4zK7gfSXbqjXPnJ487SQmwxoIWTvtxZe+8QYRCA2IKg90unltbJhcYtnUtSU4+qTNAxKutep51OJgzq1QnJ85Jlj3o/9fsdV8qYNJSAeHJkcoz08tOjxoR4HsYpadT7lXz+o+ZmnHLGJEaVk1IfRlVIUF8OVz0YQ8Hg+cOEHgwmBua6cOYXFJe//3Id3mpT7Up1jn/yNkTFHPDBJ+LYKxdgNzbV5wh6YNcX1DHauVrBADtXC9iri+/XzD7QueZj6cw2fv6gisxmBlaPwd0F9s9GWPj9EPtzDrydEP6MCFHkN8Sutb3owO4Be3WxY7T6wNSTGg5OM7g7Q6M7mGEo3Q/V3xRecLe62LxaQH5DuPKDoovs1j52r5ZReODDCsR9Ds5OIcwyFO/IzP6CB7vjq3CBAwx1IeSxqJiD3diM7fTJswE3q3QfrFdfgtXcQVSbQZR1YPXmEQFK54F27wDAgh6sxXlEWQfcXUbU8TF4uQ5rax92rYKomAN3HdgdKYTk9xEVc9i5WoC3E2LrFQdL33kKANi9Wob3NIR/ykaYZcjsR/C2B4iyFnqFYbpUlFmG9zTE7vkMpp6EyHYiWD2hjRwFIaygikffLqL+1gHsjo/t12eQ3xhg6rZg7hwUXfSyFoBFWL0I61930StHsPoMhTU5H09CdBYcBFJaIdfkKD4cYPd8Bt7TCL1phvK9HvxZ8RXpz1jwdiJkOxFCl6Gz4CCzx9GfZpj7o6doXyphr27D6gPVPzuAFQxU6AaA8ppFtRlYUksDANjD9eHvMuxAbJP2XE14caQuhjN3Gmwr5SvbbPYMnjOMoWAwOUQhEPQQyVIz9717QKmomAkBAJqbHK02rKYUyAFg3XskPpcLYrjbgu37GBBVr++D7bYA10XlnodKraIEpVCrAHBwufnJIfGmwZVlVG9vwF+pqZi0uyXyIrxCHoW1fZQ/cbB9JYfaOzvgWQf96aJaSPbnyJiwUbo/wNOXHPgzOQQzDFNPHFT+pInWaxW4W0CUtbB7tYxTb38Kf6UGKxggqORUrkD7ktjVk8HQr8/CCgZgMv8AWUc8fykP6/9n79zj7Lyquv9d5z6ZzJmZZGaSNJOkadK0adM21EJLg7SgSLmDCoKAgldEBfX11VfxgiIoKKCAqCiIXFQQuQnYAkWwtLS0lJbeSJo0TTJtmplJ5paZOff9/rEvZ59nnnPmnEkmk9L9+3zmM3OeZz/r2Xs/z5y99lq/tdb+I8xcc4HmM+S7kFLasZVVNoMUyiT6+6hhiimNTlDetoHU/iOa+wE6XbYpHlXYNkT2zv2owTohNDE1S25qVvMTCo3cCDGckeTYFAOfPULl4q1s/adD7tq+e7X8LuNqoFiiOjxIcmSsfsw+62yG7HivU3xc9kujDPXv7XYukr4HtTJoXSPp6aJzccjho2y9P6e5LKPj5rmDyqVZdf1Blz3RJstadRcuEVdy/RCZ8W7k8FHymze4+UqUkqy7dY5aNsXk+V1Ue3JkZmqcc+OUU5TmNq5y/ArrFrNuIZuSXOVXU9u+yblLVDaj3UTTJ5ErdlG950G45Hy458H6/0MoMx2wAgiuh4AVQ292nbp67UtR+dWc3LmWVY/MAVDOZx3xzu60kzMFSgPd2uJg3QBmRyulCtMX9JLfO+V2aMXLt5MdmaQyqIlyqbEZavkuDl+Xp39vldzxCicuypIoKSrP1W6D6aM99N2nd5m9D9Xo3XeSh1+Qp/sRRc0Q4HqO6B1iuTvBqsfK1DIJ0jNlEsWKI/plxmcpnNNDolQjMz5LaaCbzPgs1Z4c5Z40XbfuQ23eQOGcngbCZOGcHko9CXrvHkeKJacUQJ1YaH9LqcLs1rxbjBwfwC70xRIqvxqVS7u+AGTv3E/l4q0kZwrOv1/tyWlfPHoBtRyQZFFRzQrVjFBLC333Tjr5Y88YZuCWUebPW0PXQydQuTSTu/pIlBXJkqLcnaD/jjFO7lzriIfJsSkK24bIHRjl0RdsoudIxREXyz1pJrenAVh1rEqypKhmhNzxilv4TzxzK+lZPY7ceMm9R9Vs0pErq9kkhbUpTg4nSc0qchPGEpEWxp9fQD2ao9pdY/C2JHPrhJq+Jf17teWi1JOgltbWjnJ3gt59J5nbuMo97/R0kXI+S/bO/U55sRyGcj7r+pEoVvQC7/FH9APIOHJj7v4RV3vEv8amhE6OjNUtaSZXw21dNzM9+2jd9ZBdr67e+KqO//euP/jO4HoIaBtBUQhYMfSmBtVTt/881X0HgMZENq58sTHH+hkB1WbNGq997/subNKWabZfvJVDR5yJHbTfO3HphZrcZuRBPJHRmuoBR8Kz8Bdqa76Xw0f1jvyeBxtKMVcu3kp65Lhj59sdsyXV2QXA3tuv7WDJlH5RI7+fcfwHOz+WKGlTM9sx2uvifP52Z+0TLv2shw2FmExNCr+AF8WSu5fts30mltBpF1X3bM1cWQuCzU/grDvePWq93a54mM/B8N8PPwV0csc2VC6trzFWC7+mhF+O3MqxJEd/LvyiVcn+Pve84+pwRGtw+PNtYQmjoImcds7sOVs/Ii6rpWSz3Fa+ganKWFAUAs4ogushYMWgqlWkWKqTuaam3ZdxbW/dLOxCxkwmPN+H7iIMDh9FDQ1oP3tvt/7yPXwUhV74U+vXUd17ENYPNVUSXP0Fv3gRNCgWKfulbhay2a15utEKRGrLsF70iiVq8wVnkueeBxHDrrecgcqhIzr3g1nMa5jcEWY89cW8XhPCkir9gkPVicnGnBBduQVkOZfB0Cw+9nOiq17l0S5wC8h5vXnU5JTLtijZrCZu2nTKkRoSNnIDQCYmqRSLpGis32CLRqlCAbzFOOnNbXVikoSNTDH9rdlnRp186CuTVhFIrV8H0ydhtIAaGoB7HqRqrpH+PtTkVINSAvUkSnFzYUmS1YlJlDeO6HwtmHfbR5+cODmFmHtVPDnR986ROCPEVFWtEhBwphEUhYAVg2Szzi9by3chI2NUhwdJ7D9Cac8uEiN6MZLpky5UMTE9T3FYL5JZtlEY7iN757TzPZe3bdBmdWN1sKGJ5W0bSB/QPv7C7g2kZ6okxmep9eRIHzhKbagf9mqmW7SAU7K/j8JFwwCcXJui9+5xZkzugLl1SSBPbrxEZbCH1NgMUizpHavx2yf7+5y7xPIg/HLMDQuBVSSMZcS5WbpydR5GX2/DztVnydvqkS7k0YsucDBWGRmdQHkWgsTouFNoHIqlBoXKjcsoRKpQaCBLMjWrF7oLtjp/fa1UIWGsCrXeblQmRSWfRYxLITE0QC2XdhU6q4O9JPKrKQ73kb75XqcgqlwaCmU4NNJgLar1dpMs9jlrSM2QBdXegyTN/NeG+kmasFgbEQGN1TGtNUEVTOGoHdscp8VZeLzqj74FIGo1cNYJM19+pVBfyWuw7uzYRnXfAae0xpXFlmQy8l+kQNUICFhOBEUhYOVQqbhqjZLNwvoh7ZfNGWKjzRNgFrbkyBiVx46RPmSy+/X3kR2pi6vuO0CKbQ2kOJVfrf3CAxme9Q/7uX2ywofO/SKTtQrDqdVs/dIv8KInHedLXz6P3T88xh3fOR/VXWH91/S/xtjlMHgn9O7T0Re1TIKTO9eSnqkyuz1DoqQ4cWGKVceSVDMws7WLtfcMMrcuQXZCUc0M0X2sSnqmSmFtimRJOYJk10MnqJnkO6mxGZ1kaqDbkCcHqQIzTzkHqJMZxSScUrk0SZMjIGHyCNgID1WqIFOzSG+epDHbUygzf94aVj3wmI4OMYusVUYEUEMDKI/wB6B6NZkv6SkQNufBqrsOa4Xs8FGUyWlQ6+1GenUkxszuDZpLkE2RPnDUuQDIZkiaYBW7qBfO6aHLWIqkVKEy2KOJlCYRVy2X1lyKQlkrlpmUJmLed5DE1CxzuzeTuf52Q2ItUxnsYf87nkRqTnjPSz/Eb931Ul574X7ef9OPkOotkc4MUnp4NefcpBfZ7oPTlAa6KaPJkKNXXUzuRA0YJHeiSnZ8nokdq+m7d5LZ3Rso9Cc5sUtRS+vIl1oacmMJ+vdWOTmcZMNNvZTzWWR8VueC2LyBlFUshgcBSJrxp4zyWDs04qxKCfMMqvsOUDU5NOjKQT1KNyDgjCFwFAJWDIuVmV4KToecdnMa+DH+AaeGU6nYGC2NDc1TIdsdfYMrxCB6jZ9Hwj9mrULWItROv+NyOCwFC/IoZNepq895Zcdyrn/43YGjENA2gkUhYMUgySRy+S6XWS9hwshsuuCkcUXYDHm1fBflfJb0tPnyNZnyatmUIw0CpEwWwcJFw5oxb7I3Wpa/TWtsczYAzpQel+zH90WntugwwsqhI3Vym8naZ03rLpOksWz4JD+bEdIRN02qXstZiJqbLXxiot/Gwk+K1Cyzo29yb1ZJ0U8IZK0NfjlpP5Ojw9AA1X0HnIvCmtajUIWCcx8B9UyFJoFVrVenSpZCmdqhkQY5lceOuftjw1xNsiuyGVKWgGrmvDox6fIQOCLr6IS2MHnuFD85VlRp8DN32nnV82xcEd574hMgLeGzOjFJ4tILkcNHG5JJxSkn/vOMZuhsIEVOxoRHhs1ewDIjWBQCVgz5xFp1VfY5sbvy6A4sLuNg9EvWz4fg+42jpDPrC24Xze7pM+3tztJGXETHEL0+KrtZ5j8/2iAuu2Fc5sHo9X70gk0F7TgHnr/cyl7A5o9GBBjCpfObR/zu1s/veBJe2unafKFBOZJsVrsSvFLNflZFP7V1w5yZZFsNz9nLmOn3LZrdsF10ktVzMdlxspplYWyFWIvChp9e9Loorj/018GiENA2gqIQsGKIuh6gvlC1m9bYXuMfizP3WsSds7v1qCshmgYZcKFyljdhCXVAYwphY3kATVCsbd9Uz5pInQhnYRdYP6wxmu63U7P1Us3dzRbIU7m/j3arRdq20XH4i7JvGfAX6uh74Lsbmt3HD031+9lMaQUWKIYWcam5m81DVMlopRAuUBQy69TV61+x6HxGcf2RvwmKQkDbCK6HgBWFv7t1IW/eF2x0IffbuZh4z5ec6Mrhc8CjX9S+PPsFbaMQavOFBnN/3ILmQuVM2F6Ub26v8U32ks26ED0wbgSzuERl+/c4FSV5oBbNAAAgAElEQVTB9qXZrjVOnpuPSBv/ePQZxPED7PlWFqE45S26UNt2NkzQXh/HR3Chk571yD/vh5H6cv17+e+hvdbK9K/1580WfYrOp30v/LE3e37+ePx5i85PQMBKISgKASuKZuZa/0vZLpjRL0w/PwDEF9yJk2nbRP36Db51v5KlCZv0ZbgKgSZE0E9oZOP67Rd/dEFShcKCBTeOL9BgNveUpbiFJGqF8e8djcWP3td+jj4Lf2H2lTFfluRy2FwPPuKIgNHFdsHi2qSIVrW4sMiT7YP/DKvFeCUoTimyyoV/PO7vxVwVze7TTG4rha/ZNQEBK42gKASsKJp9qUcXwsWUgFY78GZfzv7u1Cok7ezcVbGoF6XIImIXqqi1IMqRqMbIj1skGq6J7IibKU3R81FrjY+4uY6zCkTH4CtLzebc7qibuU8c/yKSkdLeK/pZFQrOWuRcNIY74XJHRKIQmrmmomNr1rYTNLPOxLU71XstFBrcxwHLi6AoBKwo4nZ69re/8Cy2iLfatS12TbPFox20q1icKtqV0e7Ym/W7nfm117fabUetN3HP2VeYomTNauT5+9YC56Lxsinq9oWGsZ3K+KJjjbOAxLXxx9PsfDvPcilEx4CA5UJi8SYBASuDuB1fHMGw1XU+ml27FAVhsXt1iqXsMtuZCwuXHjnmPlGrQrP7LHa/ZhyEpaIT5ci2b/dZRvvXqr/tLPCJrlzTsbez0LdyDUUV2oUdVJ3/BAR0gKAoBKw42l3821kEFvvCPx0L2KmglbLSKTrZMUddE53cvx2/u4UNVYyTF02NHb221bFW923Wl1ZoZsnq9P3wuRJx8xTnWusEgbcQcDYguB4CVhRRdnmciRta+3YdM76NGHnfvw6NERa+vGafLenRZuZzFQ5tfYb166gN9TsCpB8mB/UCV34NAD+/ATSy/v38BHHjPl2ukmaLbrNFrllfomRH21ay2QXRDL6caMhj1PUQbRPX17h+tRqjZLMuNbXN6eDzJyznwcI/ZstHQ51sGReZE3VZxL3HwbUQcLYjWBQCVhQ+Wc4339pFM2pFsAtqsq8XyWZ1tr42v3D9Baw6OdUQ9ibZrPtZsABdcr47B7gS1KpQ0NUvTanlZF+vXtD3HiTRlSOxZbhBEVHFoqtEqaamdR5/E9Jpff52Z+p88xOTDWWH/R+/j3a+/LlpNvZmpnFfWYG6dSC5Y1ssuVSyupBRVK4qFrUiZH4n+3ob5PuybH99JcIebyi0lM3q2hXe+OLcKTYBFuD6mNqyidT6dSTXD9XHZPpUOXSEyqEjpNavI9GVcxU9LYFSFYsN0TCuJLdRDiWXa5gzN+6+3oa+2D5Hn0Nqy6ZYl037locluB2C6yGgQwRFISAgICAgIKApQmbGgBWDzczo7+IXy8rYyi3QLCStWfa+pWA5zcSnIrsda0o789nqXHQebaVDm3TIT2QVzYnQLLV2swJNPvxaB3FZE5Ne6ee483FZEv0x+u3jzvlox2IVrQ+yWARDXNKxqBvKztktE59uzMyYHlJXD7y0aZ+a4frH3h8yMwa0jcBRCFhxRMPKmikDi3EJohn0fJnAgiyKp9LXZgmAouOx5/zFI27xirpcWlVDjJuPdpWExXzoze7p98nli/AWeFUsOn9+NFkSmFwI3nPwXSvWv99MWbR8hTglL9GVa+AXRGGvbzZHrd6nZkpFK/j3i5MT14e4cUWPxeXeCAg4Uwiuh4CzDs0Y6c2O+5/bYe8Djt+QuPRC5l/0lAbfsO9LbrY4RMmFcWQ1e70qFht2mP7OONnf5xQHMIqS4TxEESe3FeIW/Lg56nQeo2hHWWm2WKpicUEirbgIjWayF4vmiEN0Hn2+Qys0I3bGkROjbQICHs8IFoWAsxrR3XM7EQrQaMKtzRfgkvMpDnTR9dAJACqDPXDHAySzGboPQiJSGtlP8NRAtrvkfF2hMJth4opBqhlh7Z26MJTKpEiZ6oVEWPE2m6Drl4mcaCgSZSwidofsw+6y4woINVskl+KKaLdtq+dwKueifW/X2hGFK+udX01xuI/cgdGGst9xsOmu7fVxO33fOuSTFVV+NbVDIwvSdbeDxdwfDfMTJzq4jwOWGYGjELBi8KtHLhWLKQ6trml30QlYGk4nnyOEEGosqB6ZHlJXr/3JjuVcf+zvAkchoG0Ei0LAWYt2FofFzOg+fF+4I55tGWb+vDWUehJkZuoshvRMmeRMgWpPjvTIcWq93br91Cy13m5KA92Ue5L03HaIsevOo+ew3q2mp4skpud1MalMiuTIGGQz1Hq7UZkUif1HUJs36BBKz+oguZwrLmXhky997oKfcyLKd4jmbYh+9ueoGf+h1VzGKVlx1p5mpZN9cmO0n5IzyZoi8+A/v2heg2jFx7i+2ecs0ycXkCkt/PLh9nlAPRxS5Vfr48XSgvLgVj6j40hv3pE7/X5CPP+m2fxG57rl/0HY7AUsM4JFIWDF0K5FYSm7yVZfsqfDknA6ogjauaZZYqilRjksJzrpX7tyTvXapViclgvt3rsVmffWwpcWWhTW/ETHfbl+9O+DRSGgbQSLQsDKYVWO5KZtVAZ7SB84Wk9klM1QGewhOVOg9r3vu90gmCRHhuynpqaZv2oHq+46THV4EHXHvSR3bEPl0s4SUB3sJVGqIIWyvsaUjU505ZD+PmpD/UihTO3QiE6kY3b/ialZVDbj7mv7BrjzbmeZzVAeXktqbEbvOCNQU9PaipBJkdx/xO1Wa0P9VHtypA4crbfNr0bl0iSmZqkO9sL0PACp3rybFwApVrCrRS2bcveuDvZSzmfJjuidbi3fhZQqAMxuzbPqkTmSI2NUhwcp57NkxmeRQtnNd2mgW/vzgepgr25rdtq17ZtITM9TGewhNTaDyqWRw0dhaEB3ZHScyhU7SR84qvkXF2wlMTpRn7tiqb4znz5ZH+voBLWhfkoD2mqTOzCqs1aadtWJSWZeuJu+mx52GTHtcyoNdJMdmXTzPvmUc+i9e9zNU2KmQKJQRool1NQ0kstRuGjYcRYsR4ShAZ0lc/smatmUG4O1ECS2DGuuw/0jLvOmCwfdsY3qvgOoPbtJHzjqQkTFPDOZPll/b705ABrf/WKJ6vAgyZExVH41UixR6+1GCmX3TnPn15r9NwUELBuCRSFgxdDKonCqO7+l7t46kX06dqeLmfrbQTPinX+PTiIk4lj8p7orX+pcLZcFoBUpdKWtDtDc7bPQojCoru5bgkVh/B+CRSGgbQSLQsCKodbfTXJom9tVNviB8XbuoHfv2Qwzuzew+oHj+vyhEbjkfLcztrC78ZNbu8nM1Mg9OqMtCsaHDFDYNuR2zlZ+baif2a15Vj9wXFsSshkdwWB3zAYnd64lN14ideAo5W0bSI/o/sztXE9hTZL+O8b0Ttjs2u2O1/EcRie073v9kB6jGbtMn9TyDhxlbvdmuh46wcmdawFY/cBxx96ffMo5dD9apDCQYdUjc8wPdJEd15aH4kAX6ZkyiWKFuY2rSM9U3Q7d8SbGpqgO9jK1YzWrHtOWluzIJJXBHqrZpBtnZnyWak8OKVaY3rGavnsnnYVgbud6co/OkJiapbBtiHJP0vUxMz7ruBzWkgPammNRGugmd/8IhYuGHa/DWQGKFcRYgebPWwNQf4ZQ5wIM9iKlihsTaGuUtawkjDXGyq1mk2Tv3K+tBkCitMG9X9XBXlLG0gKQnJ6nlu/Scosl5nZvZtUDj+l7TE1TuXirbjdT0BYp07bW240cPsr8VTtIlGqkp4uU81k3RimWKA/rZzqzJUffvZOoTP1ruJzXikLu/hHK2zaQGpuhlu+ilk2hAPlOsCgEnHkEi0LAisFaFKJEPQCGBrQiQH2XGyWcWdTmC4g1c1MPbbQEOWv2tWGH/nF7PTQS7VztCZNN0Ob7tws6eHn/TXbCZCTE0jeT2/M2jM4Wh3IkvmyGyqEj9foFHpkO6lkPE5deSGJ0wpm8rUJj5Vuzt79btmZwq2ypqWmXWdEqLBRLTumJZjm0cqNkSTfebMa5Cqr7DixMImVCQf0MjXa8gDPdu7oRo+OozRuofe/79T4aGfbdcM/+0EhDCKtfRCvRldPm/6lp9zv63tiiUNYNIb15ysNrtdvKuBxk+mRDoS/AzZl9nj6xNJpx0o7BzzDpv+/RZ2HfAyvHn7tbJj/DdO143aKQGlRP7XsJneKG4/8YLAoBbSMoCgErBt/14JvgfbZ/MxY4LDSNR89bRFn+0Vj3uOiB6LU+/PS6UQa9/9kqAc0WjGZRC9Fz0BjtYJUTf+GLRktEF5lW44+bA9s+Lh2xXYztuPzFzo9YaCcvQLMcCXFREv5cRp/5guqTk1OktmxqUA79hTku6iIuG2bcOxX32b8uOnZf8YyLavHnLzo+f05Vsci3E19nqjIWFIWAM4rgeghYMUg2i0i2vvCZXWkt30WitMERxvzdnP3iBMALqQNcyWdLTAMaiI+OTFaoL6K17ZvqBMNshsTmDcjho3VLQmSHD2jC2dgUSU92ec8ucvePuFLTSc8icPKlV9JzcBbGpuq78O2bSBlzeXl4LYmiJhwyPU/SEiI9YmRyx4AmEd530FkQEluGnUsjcfioWxwB1OSUm6fUlk3OJA5QuXgrqfsOojZvcK6E6mOj1K7YicwUSGzeoMdcKGt3yOXbyd0/gioUqFy8lcR9B7Ui4hH2Eps3wOiElj02Q+3QSMNC7SwiXTkwu3TrarLkTTveBmtANkNyaKAe2njphQ3EVEv0U0DSe06SLeh+2faj4642Rco867qTRb8nyaEBavkuuOdBfX9j9VF7dpMcm3FtGxI4eSRXlc1oF8TIWEMZcimWYPsmVKlCwrxbdpxWAUqtN2XKt2xy7hM1NQ3ZDJLNoGxtjcbIy4CAM4JgUQhYMawa3KQuesFvMnZlle6HU9TSkJ2E3IkaY5fDOTfVmDovxcDdRQ49N033IwlWHasxdV4983h6FuaHFKlZYfWIopqB2Y1C1xisOlal3J0gPVtjbl2S2Y2Kvr1QzUAtI5S7ofehKseuFHr3CbMbhY3fKHLioiwz59boeTjBmvuLJItVHn3aKgDWfL/CiQu1ft37UJVaWqhmhLl14vrfc6TCY1clyUwKc+fUWPVogtnzS3Q/mGH23Apdj6SYP7dE310ZcidqHHt2icRYht59QqVbmNldQM2lSE8mKfdV3Vgv3nmE7T1jfOnLT6bcV6VrcA7uylNLQ6mvngMiN5Zg/twS2Ucy1DKKyipFbixBYbBGak6czK5HUnSNKmY3Ct2PKGa2QmpWSBgqQLIE0zsq5PelKHdD/94qU+clyU4oahlh8LtzHPxVWH3LKga/O8fIM1Y5eWvvrTK3LknPkQpT56VIzSoq3cKqY7qfc+sSzG6ssf3fT3Lsqjzzg5A/qMwzrTF2eYLUrND7UI2JCxKk5nSf7BwDJEqK7mNVZjalmHpygczDegG2/a90Kzee7IQic1JRWi3MDwmFwRr0lUg9qq0Aa+9RTJ2n523Nt9OceFKVTdfDzKYU6ZOKk8NCehaKfVq+fU9nNiVY8/0K1Yy4uclN1Ch363e053CJo1dnSc/qPpzYpdjyJd3BY0/W9y4M1uh+JEF2Qr+/lW5xf89u1P1fPaIYu7LKsbe8h8LIkUaLQv7FHf/v3TDxT8GiENA2gqIQsGLozW1QV134C3rnanbGau9B57+XC7a63b01tUsux+QPn6uvv1tbDWqHRijv2eVC/Sw50vq2q8ODmtg2Oo7kcjok8vDRBmsDQwOaBGeS5Vhztt3VWguF724Az9JgLCI2FM4mVUquH9Jhjvc8qJPymP4m+/scWc32y+4+y8NrKfekWXXXYbfrruW7NBnOcBJqvd3Mbs2TG9e78ORMwe3Kq8ODSKniiHrl4bUu3I+hARdql5wp1MMXDZnTJ5Xa3bEbm93loq0S6QNHG65xBFBvvlwiqe2bdJ8Mj6Q6MUliy7DmNFyxqz42A/vs5nZv1kTNex7UPBQTtuoIsIZXYImTjshorES1oX6d6MoQCR1fwYynsE1zFDLjs/V3wlg27HxB3XpRHO4jffO9rmKlDXsF3D1BW50S+zUHI8oPicr0Q0VteKr7XzAWNUsavfOmdzNVPBYUhYAziqAoBKwY8rJG7dnw0w1EOd8/79wDkex7FlahsIjWZfB913Ehbz5noN3S1qeS6Cguo2Jc+eu4Pvvj8smF/pijWRGjnASfPxHHA4hyOxabl2Z9jc5D9JlEeRm+Lz7av7jS0r58/3czDkB0/i2a1a+I4yhEEZ376Lz5z6OZ/GZj8vkW/jOCmDLTQVEIOAMIHIWAlYPo7zu7YFsWut3tAQiQtLtts/Oy51ykgecnplgiAa5ojyoU6osIOPm1fBeMjNWjDzxftt2J2h25aw8N/merZCjDa3AEQttXy4EYm9IWkt68HotVfoYGdF/zXSSnBxqSO1l/u+NjAHLBVlQmhZqeJ2mOqwu2QqFMYnTcFaKS3jzi7eBrQ/3aN24sKAljPbGcEOu/r05MuqJXdi5T6/VcJKdm9Xyb+bP3UVPTLvoi6pe3u2eVS5M0lgTbxoYbqqlpxOzOXdVMjzfiUiQbzoAfctnwHpjohYSZN/tOJDzLjpqadnNYzmdd8iTA8TfoyumIm3yX7kOkkqeLVPEsD34JXsnl6iGzxkpjLRrg8TG899XOC0Oah1IrVhxHJ5rmO6rM6YvDZi9geREsCgErhtNRFKoVzmQSnaWkZ15pLEfflpqcqVmq7bN17lYKC4pCpQbVU3te1LGcGyY/GCwKAW0jsXiTgIBlgrjvu3p0QTYbu2tqcDn09dbzLbS4xl9k4sImo/de7Fi0H/a+UYUk2gd/bNF7ROU1u5f/uZm8aFt7XrLZBfdqNaZm9/f7Hdd/aL9IV7NnFr1vs+fgt/N/R8ccdy/7/tg29u9W899qrlv1PdrHxa5t9WybWhNqtc5/AgI6QHA9BKwclMIWLPB9yXF+3ERXjqpZdKLpitvddTZr5/vK7e9mKZGjfutmMfb+vays6P3jxhGVHdf/qM8+ygeoTk45WW48MWOPjiGq7DSzDNh+t0ob3QxWTiuFwu9XXL+j7fx3o+EZNplHv99R+f7Y4/oU1zbaF38Z7sRKYvvczBIWrCsBK4VgUQg4q+B/Kfpf1tG8/O3u8OIQt8vr5Mu43QV9KWj3/hC/oEcVrqUoUfY6f56aWUw6RVTOqcqDhYpYKytG3N/R/kUVpMXaRuffHvMJonF9W2wO4iwlvhUuIOBMIVgUAlYOS/zSO9Wdlb/Qp7Zs0pETl5wP6EqMAJPnd5Esaf5OotzI4yn0J+jbX2Jye4bMSUVhTYKeIxXK3QlyJ6pMb04xeOcMY5f3MHTrBJO7+qhmhGoGhm6dYPqCXnoOzlLOZxm/LMvqkSp9336Umd0b6D447SpfAg3plF0aY5Pe2k8jLNMndd0EE7rnV7YE6nUmLEHThJr6KZwdcdKEcVryqE6AVXGpoy051Cd0ikfS9FMnWzhSYLHkQh9tmKpNnOXCMk3q7sSW4YZkTC7c1RAcueR8F4LoZ8K0CaRcNIQhBNbmC6S2bKKwbYjsyGRDZc3JXX2kZ7UtoOe2Qy4sszjQRe7RGcoD3dQyCbLj865apyW42noTlrBok0NZgmV1sLdei2JquiF6xc55NUYR8yMgkn29za0rgWcWsMwIZMaAFYMlM8aFwUV3YrYNNKZLbmaG99Ms+4hzDUTDC5sR63wZ7WIphLyVIl6227YdkmgrUuNiYYJL6WsnIYdLQat+nCpptl0ip2RjqkcmB9RTu1/Q0f0Abpj5cCAzBrSNYFEIWFEs5kP3FYZom1Z+92itCKsM2DS+5eG1PPz8Lsp9VQZvS1JerTMrrnmgzOz6FN2PVVzFQpsIB6Dck6T7oN4py+GjLuFOOZ/VlQlNiKct7GN33c0UD79v7rNXUKjZNXFuh7h5jUOcshR3n8WO+3MbtSjYufbHbmsZxHEKJNtYQ8JXHqM1Mvzr/EJhfuEvN7ZLzkdlU+x/fhdr71H0HCqQnCk4C4BvFQA4fnk/A7eMMnXZAD0HZ11Vy+TYTENV02pPjtR9BxtCMa3VIzpfvuIaV9q6XR5D0+cZyIkBy4xgUQhYMeRljboq99wFx33zclwSHQtrjreLkW8ZaKg6mF9NZbCHmS051tz8CDO7N9Bz2yGqw4Ps+/UMPXdpmTPn1sht1LkM5sdWkR1NsefZ3+P+9+xi7mXmC/4b/cwP6bTImckExaEK2dEUpT6dHnnwzhq1tHDsSuh5OMGGm6Y5dlWe2Y2KzKTQc6RG7kSV2fUpyquFREmx7pP3M/WsC8nM1KhmxSkitlQz6NLUhYuGXTltVxshUmuA0XGXu6E8vJbkTMEtasXLt7sS0NXBXleGupZJ0HXrPpc/wLpfbOZFoF7K2dyz1tuNyqSY27jK9dcvl1wc6CJRqpEdmXTlrRP7j7gMmDaHg83mWNg2RO5+7XKoTky6LIxaWKMbJc6tYnMr2HLPtvR1sqiY3J4mUVKceEqZroczJMoweHeZR65JkZrVm/P+vVVODieZOVen3AaorKqng+7fq9OBJ0uKRFmR3zvFkees4ZxvzjGzJUfPoUJDGevkyJgbi68AuXwVMe+yU7psxUvftWNcN7c88jGmSqMNFoWrup5Hp/jy7EeCRSGgbQRFIWDFkE+sVVfyTKC5qdVXBPzjUUR32X7GwLgdejOC3lJN/tGoiWbnm32OWhXirofmlTV9Gf64omOP62c0u2KzKA5/V9zKouHL8bNCxrl3/H6k1q8D6haF6Hjjroubg7goluV25yyGxaJK/Hb2XDRDoyoWuY2vNZaZDopCwBlAcD0ErBy88Mi4RVQViwvK7jZc3uKzv7g0K00cNf22Mq37iC5ccWWbW7H548aymP/cuVQi0Qm+zLhwSz/Vsz0WVQj8qIE4JcG6CtpJfxy9f9XrdzMFxP72FRony6+rETMO2zfnwmoSAdEuz6EdroE/Dt/65f/dSkmJe9fj3BDRCBb9R3RjpwKZMWDZERSFgLMOi325toO4L952rBJx17ZaxKPciXYWpuXY2XYiM66Pzfzl/vjaHVMrbsRi/YgiqoAtpW8Wi1kV2n3f/HO+chO1WnXyLrT9/EJ4ZMAKICgKAQEBAY9XKKAWLAoBy4ugKASclTjVHXmzNg1x6TG+bP88NPrjLRKmcBCj46jNG1zpZKgT8YB6QSZbutkU9wFahmOeTn+6ZLMuT4LvggFcQS1LnLNkOxvbHy3KFK0S2U4/49q04hHAQsuOczF418TJiFYfjfr57b3jKjuerVgwf8HNELACCIpCwMpBxCU88klvfqgd1MtJ28UitWUTUK/kZ5n01cdGG6rtRRcEP0TSLpq+6ddfVKIkMl9ZqM0XUPsOaIb64aNUIguRjE5QnZikUiwi5nfSjMfKakawjH6O5o6AhYTGZkRBC5vkJ+pesPdPbdnkwjktyx5oqFzZqky0P49xxEc7L1aOVcT8fBjVYrEeBWBk2+PWxeDPj/TmwUtVHRcdUzP399NaL5CzSMjpYlyF6HsTp4g047HY99q/d1zJ7walNZmM7UtAwHIiKAoBKwa1uktnyTNlnJMjY8zt3kxhTZKeQwUSxQrlfBYZn6U2vBOKFVJj9fK+My/cTe/dWimY27mehMm4V7lY7+ht9rxyPqvDCg8fpbxnF8n7R6g884dI33yvKztswwnTB466BbK2XSskpYEu0jM6Ts6GDNZ6csz3pCn1JOg5OIuUKkzu6mPNzY+gshkSJssgwMmda1n1yBwAyel5FxJoyzPbTIJ2MbEhnbVDI9pygc61rnJpFwaoLt5KamxGHxudgPkCiUsvpDTQTXbEEOpMVkObidDmAVBT05y85gK6D07rPBFA4tILoVAmacpFA6jNGyCTojjQxaq7DrsS0eVtG0iMzaAu3kryvoMAFPfscmWbk1OzzO1cT+7RGZJWzuGjrqz2yZ1r6bnrKLJ5AwlbMnr7JsSGFA4PorJbXbllO4b0zfe6UMNabzdqz24SxYrLnmi994nDR5FcjmRvnvLwWqo336XLiB8+qhUHI6Nw0TDZO/frsV6wdUFZ59r2TSSm5/U8jk5o60s248I9k2NTzO1cT+b6211YI8USyd481cFeEuZZV4cHkbEpZLMuR25DHauDvSRtqCe4LJipkZy7F4AUSxS2Del3+P5vxPwjhTwKAcuLEB4ZsGLozQypqwde5sIfbXic+2ysDdG/fdO5b3lwFgcjB9Cx9l4iHLuT910M0Z2o5OpMe5syWaZPus92MXfyqecwkN481cdGXd+kN48yipCYNMj2urmd6+l66IROx2wTB20ZdsoDkUXELjrJkTGXIlhNTbsFzeYnsEmEatkU6ZHjbnGr9uQo96RZ9cBjdaUov1pbY+zCViwxt3M9gEs45ac6rvbkSBQrbgEFXJvE9DyMjlO5eCvpkeN6IRwZc6maa9s3UTRKV8pLYFTYNkR6ukg5r59rZnwWlUm5/tu++m6S6vDggvGVTJplf04hEm65ZZjaoZEFkS5+Smo7r0Cs9cM+Y/vO+lYYv53/GeJJuvazLyca1utbY24t/ndjeGRirboqcx2d4svFfw3hkQFtI1gUAlYMqlLVmfouvZCk2bFRLOkvavN3oiuHmC/8RFfO1QUA3A43gTZFVwd7SY3k9MJkF6/9R/SO1kt8k7j0QmR0guQOXTOhvGcXuQOjOrlRoQxmoVbZDLWJSTC1B0AvNHbXLbkc1cFepFTR99u+iVo2xcyejay5+REEvQgCzK1Pk56tUTZWh1pvN6WeBNWda+nOpWF0gtoVO0mOHKc21M/krj767p10SYdq+S5mTLZAnXipn2omRXHnelY98JizGhy7doj1N4zoBEYHRjmxZyN9904yuzVPsqj0Itrbzew5WfIz/ZQGuklPF5FSxSRb6qHrobZCUN0AACAASURBVBMATjGpZVOkTBbD5EyBxOgEkz98rqtPseqROZfkKAuk7jtIbfMG5jauomcESgPdJHu0lWfVA49BsaStEsUKybEpapmES/IEuD4BlIfXkihW6kmeBntRd9xL5SJdjyJhFJzE1Cxzu/roOVTQCswl54NJECVX7HI1IcCY/Af14muPawXTvFfGVWMXdp8LUS0WSZn3T7JZVKHQEH0RDTl1Sq1V6uYLJHds0232HWioNpnYMqzneFpbkSiWtJvNJtbavgn53o2N/0OACmTGgGVGsCgErBh6cxvUlfIjC3ZzlUNHSG3ZhMpm9C45UhjJhyoUdBrlvQfr/n/zpewXCLI7dkvgA70gVC7eSnKmgBTKSLGks/wZ07U1TUtvviFD4tzuzSRKNXIHRrUycWikgeBo29e+932XMtovkOQnILJ+at864rsg3Djzq50J3FoXLEHStc1m3C6+AWa8rvjVPQ862T5x0b8XoMdi+CLRvttryts2uAJWdk5tgSfxLSLmWTqYxU9NTTcUjAIadugW1qzfMGZv7ixptOEZGwKnz/Ww2ScT+484mf48ucXce4eiha+iz9C3Mvjw00s3fa52bm2hL6/v1YlJ5q67jFXX3+0IqbeMfoKpypizKOQTa9VVqWfTKb5S/rdgUQhoG8GiELByqFVJbhyi1ttNpSdH4o5J1NS020VJsURtqB9l/PdywVYw/mpAVwCcmETQuzHAkRqd6R9tiShv20Byph9VKHNy51py4yXSxZLeIdtUwejUyHNX7aDroRNkxmeZv2oHs+tT9BzWC0p5a57ug9OMXtVPbu05FPoTVLrXseaBMoU1SfruTVPLpJBShdJ1T0bG55nZ2k3u+JDjDiSta2H7JmqlCsmiiT4w/n2AxNAAVc+SkQSkrmvoecmkSDBAYnTcLXJJs1u3pn3fxXDiFZczeP1D1C7YiiqUKQ73OV7B/Dk9ztVQHNYLWRaoGreDrXkhgIxOMHPlFlZ/Y692MTw2SnnPLmqZBOmZtVSzSdI33wuXnO/4IdWenOOMJMemqA4P6joKF28lfeAoJ565lZ5DppJidphksUqiWNFWibuOOjeNTJ+kbPgZ1XwX5W1DzPUkWf2NvZDLUXzGpeQenXEpoyvP/CGSxSpiUllbTgMDO0iUas5yAbj+JO54QFu0hgZg+qTmsaB37/YdsVYsNTmF9Pfpd86r8VGbLzS4PKDuhvDrQYAh0lJPkOUn+Fr9wHHEWNhqg73QqIsEBJwRBItCwIrBrx4JjQWSmoXU2b8t/NoOqlBoaOMz3u15u7OLY+y3EzoXl+65WaXKKJpFJURD/WybuPTFwAI/tr/LtW4ba4mxc2DrBzQUn9qxjeq+A64PcdYD29avUeBfa+csugOP7qYt/L5bvkBcREADsdM8V2udqRw60jAffiRJtI5CnFwbCupzD+wi7891lFOwWDhoqzBP/3M09LZVWu4oB+KWyc80cBTyskZdlfqxpn1qhq9UPhEsCgFtI1gUAlYMkk4hyXromFvUrV+WxhA9i7hUws6E7i3kNgxSsllHqFPFInTlGpQC+7eV64dPwkLFxF/YJJutKytbNjlTesOiaczG1hxf6+2uczLsXMwX6kRGTOii6ae9b3K9tqRQLJHsY8GuNbFlmKpZeKt2LFs2aX/8PQ/qsVhLS3+f5oCYaIDa9k31NuY+SdN/yWYdwVSyutJjg5LQ36fdRbYQl1EaHCcEz2e/foiUVUhGx11/fFeDXcih7oZIXHoh6vBRKBgfv8lhofYedHNk58IpLb15EjQqPDVAeQRF9/4Y15AfQmrbLKZQ+ot7tD6Dvc7+bd8X/72y735c+Kx7f+39wsYuYAUQLAoBKwZbPbKdXZr/2WKx+Ha/fTSxT3Tn12znGM1tELV6WOXA/5L3d7PR+/m5IGxIpOUH+Iuxbylw47I7YRNWaaMqoE7A87kHlitQMy6MqE/dXme5FTa6ww8PVXfc25C0yXJC5PDRhh2/VY4sqpNTyBW7tNvi8FE3H/beNkrE31XbUFCrhNhkVtaikOzr1REe+48guVw9mZVVEn0FbXiQ5NjUAm6InR9/rpu9S1FLUdTCE32//GP2s690+oqr/y7Z+fIVUt8a5reJFoUKFoWAM4FgUQg4K9DMrNvqWLOsiv6xuPz90d/tmJnd4n/J+S4mvjzQTer+EeYNp6E43KdD+8CVXFbZFFKskDALpvTmSQ4NoEbHHa/CchGiRE0/LNMufE5JyK+GQkG7GaZP1nfNRkGwRE6VS9fJdh7R0SoI0pvXUR65nLPiWMUlMT0PZpEqD68lNTYD+dV6cUZbMBRAfjXKEh9NSW+5+S4S0/PUDo1QvWKnHkM2Se7+kXpeBzMXtXwXMjal+4FZoIcGtIKRy1ExnARGx0mOjOn5tUpUNgMmhFWZEttSquhoht58A8E0Ydq45+lZcKzFySoCvivLvlfVGNeYe+8i75xVBnwlwVpn7LtULRYbrA9RJSSa/KsZQtRDwHIjsdIdCHgCQ4Rkfx/JHdvcF25q/bp6SFlfr/uRbNZlZHTHjYncN1tbGfZYav26Bjl2d5bcsc2dSxgTf2LLsF6IL9hKoitHassm3b/+Prf4JkfG9OJcKJO7Xy/wXbfuQ+XSevE7fFST3fYfITk2ReKOB0iOTemoCrNYu4XdLFrJ9UMuyRKYSI5oyudsSkdk2GiBXBrpzesQRpN/ofiMS5HePOVtG6gN9WtCqLmvmprWoaL51doFksvpxEHZTEMUiMqvpjo8qJMe5dJaaTA7fTEEUwzRrzjc5xZahgb0PUfHSc7UQwDLe3a5qIjcgVHK2zboSJLpk263nxwZo3LoCNWJSZ3R8uKtdbmgyYW5NGrzBm2Ov3irXvhHJ3Q+g80bXPvk2JQmpw4N6PFPn6xHVXgZO22Ugb2nJbSmtmxyYY/OvZRrjMCw74tksw05O6yiZ98p+/5BI4HRd3NJNlt/J73338pObdnk7iXZ7Bl1PYjIdSKyV0T2i8j/izmfFZFPmPO3ici53rnfM8f3ikjnYRkBZxWC6yFgxWDJjO0izurQzM0QJQhaUzbgkvkcv7jLyVl737yO1we450Hkgq0uTLKBB2DM93LBVpfgJ1GqUe5JUs0ImZmaY9MnR8YoXDRM7v6R+u50xzZH4LMEvSg7Ptp//3inc7QYAS/u+nbu10xuK1N+J33ptN/NkNyxzSWiKg736UiZQyPOlTK3ezOgk0slpmad5aQy2EO5J012fN69D4nRCZf3A3T0g8pmqAz2kDRRFeWeNLlHZygNdJMZn3XZOv0wTGtliCb9WmzOUuvXcfPRf2VanWhwPXTyP2TxVfWplq4HEUkC+4BnASPA7cArlFL3e21eD1yqlHqdiLwceIlS6qdE5CLg34CnAOcAXwV2KKWqHXc04KxAUBQCVgz5xFp1Jc+MPddqIWrFP2inbat7LGVhXYzj0O7fp7I4tnKbxJHqOmH0NxujldOsH9FjzYpBQSMJcCljbnUuLoLk8Yrb1I1nSlF4KvBmpdSzzeffA1BK/bnX5gbT5lsikgIeAwaB/+e39dt13NGAswKBoxCwYphRJ05+lU/tjT3ZLNKwsOjfA8B4y7adHavLa9WfxfvV2MeCJzNORqcoNBl3532r9zEqb7H5bHbcHpswMuPkTdA5CpF+NutHoUm/4tH6eS8Np1PmFv/DDBM3fFV9amAJcnIicof3+QNKqQ94nzcCR7zPI8CVERmujVKqIiJTwFpz/NbItRuX0MeAswRBUQhYSew93cxrEbnjdMo83fIeLzIfD31cDpmPhz76UEp1XughIKBDBDJjQEBAQEAUjwCbvM/D5lhsG+N66AWOt3ltwOMIQVEICAgICIjiduB8EdkqIhng5cDnI20+D/ys+fsnga8pTXr7PPByExWxFTgf+PYZ6nfAMiC4HgJWEh9YvMmKy3w89HE5ZD4e+rgcMh8PfVx2GM7BrwE3oEuNfEgpdZ+I/Clwh1Lq88AHgY+KyH7gBFqZwLT7JHA/UAF+NUQ8PL4Roh4CAgICAgICmiK4HgICAgICAgKaIigKAQE/wBARWbzVyssMCAg4exEUhYCAU8DpWjRNJrzTBhFZA6BOo2/Rpug9nTIj8k+rAhIUmoCA04OgKASctTjVL3oRWS8ipzXRi4hcJCKXWLmnY9EUkeuA154uZUFEnge8VUS2LNq4fZk/CnxRRJ57GmVeJSLPFpGr4dTnUkQuE5En+QqNiJyW7zgT/ndaICLnich2EcmfLpkBAcuJEPUQcNZARJ6Dzg+fAt6nlDp2CrJeAPwOOgPdf6Ezzz12iv17LvBnwMPAqIi8XSl18BRlXgf8FfBrUWa4iEini6eI7AH+DniNUupQ5FxCKVVbQh9/DHgXcBS4APhSpzJiZL4APZe3A1kRmVJK3WfOLWXcLwTebOQVRWRaKfUHSqnaKYz7JcAbgOuUUkURSSmlKp3Kich8AfAH6FyRd4jIvyqlvnMqMgMClhvBohBwVkBErgHeDnwHqAJfFZFnLmWXLSLPBP4C+DXglcAVwPNPsX8/Avw58IvomPEhYE2kTUcWEBG5HPhb4C1Kqa+LSJ+IbBaRzeB2xJ1aVa4A/kkp9TUR2SAi1xoLA3bR7LCP1wHvBF4BvBb4AxF5eod9isq09QB+Rin1C+hFs19EBkw/Oxq3iPQAbwR+SSn1y8AngJeJyDuNvNoSns1laEWmD7hdRLImZHDJmyszb+8Afh54GZABnrFUeQEBZwpBUQg4W/B04JNKqS8opd6MjsF+O3A5dLwInwu8Syl1t1JqH/B+4IfFYIn9SwP/1+z+1gBPAt4sIm8TkdfCkkznq4B7gWkRuQr4JPBe4K9E5I+WKPMwUBGR1cAX0QvS74nIF4y8TnfWOXQc/D1KqSPAXwLXiEjyFMz6WbTVaMyY368Ffg94r4j8selnW+M2imTVyLRVn74D3AjsFlMeeYlujT9RSj0JuBP4zmlQFtYCf6+UutdYy/4VeIaIrDpdLpKAgOVAeDkDzhY8CnSLyDnm873oYjIfEJHedr7ovS/bfwY+Z44l0TvWYSBhdqs97XZKRK4WkV1KqeuVUl828v4EeB96h/094Fqv321DKfVNtEXhNabPnwJeDfw1cKmIXNxmH/1242iLxxuB9yulXq+UehqQF5FXtds3EUmbPn5WKfW/nmXnfuDHgJ5Od+oikjMyR4CvA19Guwo+DLwI+Btgl4jsblPe1cBzlVJzwNeAzxg3ydsAQT+ngaUoh0qpu9HKBkqp15h+3ukpC+e1K0tErhCRtFLqM+ixWs7DNFpZLJu5HOy0nwEBZwJBUQhYMRjy2QWGGPg54ELg7SLyaeDJSqmXALegd5yLyXoO8A4R+QCAUmrc/K6iOQXTSqmqiLwaeL3otLSLyXwW8E3gQ/aYkffbSql3mnt8EV0dMNfmmK80bhYr78toTsHblFIfUEpNK6VuQS90i7pdROTZwMdFZIeRdxNa6fhDwFdebgLaqmFtXBV/KSLvFZELRaTP8idMRr6Hgb82vv92d/7PA94vIh8TkY1Kqd8Fng38F9qSVFFK3QoooKvNcf8P8G7Trz8C/gV4AZBSSr0OXcFwFxEXUQuZPyYifywi7zUyj9v3RCn1WnQa4m+KyOuBP5M2yIjmvfw88FTDvZgy8irossxzSqmyeS9/R0RWtdPXgIAzCqVU+Ak/Z/wHeC7wIHpRuwG9q06iS9m+BMiZdu8BfmIRWc8D7gKeA/w38O+R8wPAR4HfAO4BLm6jf88DbjMyPwi8yBxPRNq9GK3MrGtzzBPoRfsFkXOpiMxvAxsXkfdCc+89MTJej979/xSa1Pk9YEcbfXwKsA/YA7wJ+BjaOrHOa3MJ8G/AeW0+a/t8noHeUX/WO/er6IV0E9qq8G1gyyLynm+ezZONvN9o0u6VaGUi3+azuQedhvi/gG82eTbfQxc+uqwNmZtM+2dE5ZjPPcB/AH8M3N3Oexl+ws9K/Kx4B8LPE+sHvVPuRpt1X2iO7ULXtf+DSNtfNl+021rIW2u+2J9lPl+Ozq3/GvROMoV2O0yZL+ML2ujjVuCrwLXm8zuAv4q0SZoF9C5gV5vj/ivg983C+UVfWaCeTv3XTD9byjTy7gJuMp/XAb+N5hDsNseuA34OzXvY2ebzeR3wHu/z35i5eB3QbY7lgY8D69uQt9oshteZzxeYz/8H2AFsQxNPb0Nbby5dRN56M3c/6r0j743MSwJ4KVrp2N1GHweBLwDP9o79J0YB845dg1a+Fn3eXl8/Zv4+xzyH96NdQ5vQvIpDwH20ocSFn/CzUj+h1kPAGYMf9iYib0NXm/uq+bwJ+F/0IvVu0VXn3ga8XSl1VwuZaWBIKfWIYc3fjg7fS6IjE35TKXVIRN6NLmxzTxv9XAusUpq8h/FH32hkfdYcSwE/jS6Qc3+b40+iF9kKevf8cuAflVKf89r8KDCilPp+G/K60eb1vegSvzeilZxVaNLcze30KyJzD9oa8c9Kqa+KLgK0Hs3Q/21lXDoiklRtFvoxrotJ0Umg7gA+A5TRlp6PKM2BOAc4qZSaXkRWF7BaKTVmPg+jrQZ/oZT6oNfuMmBCKXW4jf6tQluy/hetZFTQysx/KaX+xWu328g8FCtoodwUmjvxYbSV7EtoxWkDcLdS6l9E5E3AF5TmRAQEnJUIikLAGYOIrFZKnTR/vwHtUrjGO78bHQv/q8AxIK2Umm8iazfa515TSu01xzYB5yulvmY+fxiYUkq9UdqIgY/KNOTIpNI+5NcBW4A/AqqqzegBEelRSs3EHO9Fuw5ejibd9Rm5N3YizygL3wX+TSn1x+bYnwNrlVK/1GkfzcL7KuBZwAyQVUo9R0T+HnhIKfUO065lrgMR2YVecLFKj4hkgcuVUt/y+jmodIjkYn1skGcIikmliYUvQu/Sf0cpdbSdMRuZl6MtEAVlcjh45/4QeEAp9SnDh7hDKXW8DZlPQisbSaXUt0XkFcDTgDVKqVeYNr8APF0p9TPt9jUgYCURyIwBZwSikxV9RETeLSIvUUq9B3hARG63bYzloIBWECotlITnoN0Nvwr8p4j8nLn+iNL5A+x7fRvan0wbSoIv81Mi8lqlVE0pVTZNHkAvnud2oCS8GPgX0ZETYo6J6c8U2jf/HnTc/3+gozw6kqeUmgUuAv7EY/fvB2akjRwUnsw9hpw4Avw92mXxDrTlA+AhzFya+7ZSEp6L5jD8FvDPonMxoJQqKqW+5fVzr+lny3DDOHlKwz7TfWh//7mLjdeTeR2at/JS4JMicqU5bvuWAjIi8jL0fCwaKWNkfszI/GejeN6MJi1eLvWokxkjOxAXAx4fWGnfR/j5wf9Bk98eQ4fV/Qaaqf635tzfoU3HLwZ+He2vHW4iR9Cm2y9R5zdchV4YfyXS9mfRZu6LFulbK5mvi7T9e7RvXjDWuBZyz0eTNb8OvNXItBY88dq9EZ37YLF+NpUXafcL6DwC7RA2ozKfSoSsadr9Jpo3sSjPAZ3w6ftoU74AP4PmOSR82eikQ4v2s4U8a1Gw7d6O5ji082yuMO/Z083nt6KJkWu9Nr+LVkBuWuzZNJH5NjQxNGf69Fo01+NfjNxLVvr/MvyEn3Z/VrwD4ecH/wdNVnyf+TsNbEcrC+81x34ZHc73edojBv4p2jyeNp+vAA6i0xaD3vnf2MmX8WIyzbHzgA1tytuMNjn3oUmM7zaLe9Kcz5jF8+9oj0G/mLwssBNNymtr3G3ITKP5Dp9op4/mmuuAV3ufn4ZWBP1+PgVNSFy0n23Is79THTyba4Arzd8bgEngI2iOwmvN8ReirUjtkkDjZH4UrWi83BzvBn6o3X6Gn/BztvwEjkLAskN0kZ4b0ZkNP22OnY9m+P+3Uup6cyyjlCq1Ie/16B3gG5Uhv4nI09CJil5EnWdwooM+tpL5MqXUQ+3K8mSuVkqdFJ0l8c1oguUnlTa/Dytt5j9d8tYppY75PJDTIHOj0iTRjmoliMgGZbgCRu4nlVLPNZ/XKp2fIK8WIS62KW+9WmIND0OEfQMwo5T6gCFyfhodxjkDVFQHnIcmMp+GjqC4Tin13aX0MyBgpRE4CgHLCkN6exjtcvh10ZnzQPu8j6F3YgAspiR4fvn3o3e6fycivaKz3n0THUqZUUqNt6sktCmz44JCRuZJM/6TwFvQqYafLSLvQteyyEsHqXtbyHs38A1DSmxbSWijjzdKBxUOvbn0F9cUMCw65fNr0TyVVe0oCW3Iew3wQRHp9rgFbUNp/smHzIKeUDpK5HNoJfNIp0pCE5nfNDLnOpUVEHC2IFSPDFg2RHaiN6BN3G8SnZL5P0RkDLhQdFrc2KyBInIBOh/CHegF22YI/CkR+Tf0jv9WQ4i7Bh2VsFi/OpW5aMXAqEyls0CKUrrUsdLkxd8WkW+hY+pf2GqxXKK8BdEVy9nHOJlANfLc59FK4e+izfk/r3TK5dMpb3YJ404qpapKqQlwhaNehs7D0XIelyizIwUuIOBsQnA9BJxWiA5RLCqlRmPOpdCExr9G+4OvQ5tk720i68fRpLBHzM8dwIf9xUt0xMM5wGXAm1UkzG2lZfqLnIhcAnwFnRyqaT6H0y3vLJD5LXSeh59QSj1wpuS1K1N0iOmr0Pkjfvp0PO9OZQYEnM0IikLAaYPoePZ3oZMAbUATAQ+bc36ypWE0Ua6olHq0iaw0OtTsPUqpm0XkJ9BEuxLwDrP79ds3tUqcLTJF507objbm5ZB3lsj8feDTqkUSqdMtbwkyX4HOlfDgmZYZEHC2I3AUAk4LRGQdOozulUqpV6LD6d4rIk+NtFujlBpRSh1cbDFCZzE83/z9GTSjPw3YxDVPEZ00B/QXdTtYCZlPFpHLlFJTbYx5OeStlMwrRWSHUuptiy3qyySvXZk7lVL/1sGCvhwyAwLOWgRFIeB04ThwAv0lilLqN4FvAb8vmj2vjFn7CyKSXYx8Zkhh7wJ+XER+2Jidv4mub/B00al896DLU2OtFWepzKehiZuL4nTLW2GZV9OGv3855HUoc3IlZQYEnO0IroeAU4ZZ9AWdOa8M/Kuq5+J/DzoW/Vnm81rVRipc0zaHTiB0Kbq4zv+a419Hk9gOLKGvZ73Mx0Mfl0Pm46GPyyUzIOBsRoh6CDhlmJ23EpFvoBMnzYnI55VSx5RSbxCRj4opDIS2OrQrtyAiHwcU8HsiciE6R8IgS2SRPx5kPh76uBwyHw99XC6ZAQFnM4JFIeC0wJIVRRfv+TPgy2hG+GrgD4CrlQkbW4LsDNol8MvoWhB/o04xec3jQebjoY/LIfPx0MflkhkQcDYiKAoBpwVSDwvbBbwPXeToGnQxnf+nTkMZXdFFjpTqIEvgD4LMx0Mfl0Pm46GPyyUzIOBsQlAUAk4bRGQHOr/9nyqlvmiOxZZZDggICAh4fCAoCgGnDSIyCGxUSt0lIim1SGnngICAgICzH0FRCAgICAgICGiKkEchICAgICAgoCmCohAQEBAQEBDQFEFRCAgICAgICGiKoCgEBAQEBAQENEVQFAICAgICAgKaIigKAQEBAQEBAU0RFIUnKETkxSLyWzHHrxURJSLXrkC3TjtE5M0i0nEMsIica649L+bcwyLy4dPSwfb782YReeYZvudZ946sxNyfjRCR14jIz3V4zY+LyDERWdXBNZ8Vkfd33sOAHyQEReGJixejqz1GcSfwVPP7iYxzgT8GFigKwEuAt5zR3ui+nFFFgfCOnM14DdC2oiAiKeDPgb9USs11cJ8/AX7RZF0NeIIiKAoBDVBKTSulblVKTa90X+IgImlT1nrFoJT67hO5lPDZ/o4ExOJFaOX3Q51cZIpcfRf4jWXoU8DjBEFReALCmG5/FthoTMhKRB425xaYlUXk6yLyTRG5TkTuEpF5EfmuiFwpIikReZuIHBWREyLyYRHpjtxvlYi8XUQOikjJ/H6TiLR8/4z5X4nI60XkHSLyKLqcb585v1VEPi4iYyJSNH17SRvj/zUR+Zbp76SI3Coiz/POXwv8j/n4FW+OrjXnnflbRJ5szr0w5j7vN31Le8d+SUTuFpGCiIyLyAdFZM0i/bWukzd5fXmzd/5VEZkfFZENbczDs0XkFhGZEpGTIrJXRP7InPswZ+gdaebKMOZ1JSLnthhDrGvJ3ONh73NKRN4iIge8efqmiDxtkTkSEflNMzclM4b3iUg+0k6JyJ+JyBvM+z0jIt8QkYvbnXOvzWUi8nkRmTDzeLOI/LA/1+iCa3u8Z/P1VuMAfgG4XinVUOZdRN4oIg+Y+0yIyB0x/0P/DrxSRLoWuUfADyhSK92BgBXBW4BB4MmAXeCKi1yzHfhL4K3ASeAdwOfNTwptCt1p2owCvwPO5HkDcJG57z3AVcAfAmuA/9NGf98E3A78EpAECiKyCbjN3Os3gTHgp4D/FJEXK6U+30LeucA/AQ+bvr8A+IKIPEcpdT3apP6rwN8CbzD3Brg/KkgpdbuI7AVeZeYCM+6M6c+/KqXK5thfmPG+B/i/wEZ0Se5dInK1UqrapL9PBb4FfBj4B3NsxMj8JXPsE8DvAecAbwOuFJHLlVIn4wSK5l58HvgU8KdACTifuqvljL0jZwi/i35P3gTcBeSBK9DvYCu8FT2vfwv8F/X3+DIRuSZSMfJVwF7gjUAGPc7PiciFSqlKG3OOiFwO3ITexf8iMAe8DviqeUe+A7we+Bj6f+GXzaVNrTsikgWuRf/P+cdfCbzT9OUmoAu4NGZO/hc9X08FvtZ8qgJ+YKGUCj9PwB/0ojMSc/xaQAHXese+DpSB87xjLzTtvhq5/tPAQe/zq027p0favQn9RTnUoo/nmmvvxNQl8c59EK0crI0c/wpwl/f5zfo1b3qPBHoR+zLwuZh5+NGYax4GPhwZyzzQ6x17sbn+Kd5YqsAfRWTtMe1evMjzUsCfRY4lgWPAztEtBwAABu9JREFU/0SOP820f0MLeT9p2uTPgndkgTxz/DXm+Lkt5j72+Zq+P+x9/gLw6Q7/R9aglaMPR46/yvTrhZHn8yCQjpnjqzuY8xuBB4BM5Dk/AHw2Mt/fbHMcV5r7Pity/H3AnW1cnzbv7u93Mn/h5wfnJ7geAtrFPqXUQ97n75vfN0TafR8YFnE8guuAQ8AtxvybMlaGL6O/gK5q496fVUpFzcvXAV8CpiJyb0Dv9vILpBiIyA+JyBdE5BhQQS9wzwIuaKMvcfgYkAVe6h17NbBXKfVt8/lZaKXk45H+3gbMAE9fwn0vAIaAj/sHlVLfRM/5NS2uvQs97n8XkZ8UkaEl3D+Kpb4jZwK3A88VkbeKyNOMxWcxXIW2DHwscvzf0e9NdH6/ooz1yOAe83uz+d1yzo1p/xrgP4Ca944I8FWW9o6AtjKBVqx93A7sFpH3isiPSpNoCDOmKU9OwBMMQVEIaBcTkc+lFsdT6F0Q6IVsC/oL0v+xC+jaNu59NObYEPAzMXL/spVc47K4Eb1b/HXgarR5/Xog10ZfFkApdQhtnn21uUcf8Dzgo5H+AuyP6XNPs/4uAmsijpufx2hhVldK7Qeejf4O+CjwmGiuRivlYjEs9R05E3gbOnLkhWgz+3ER+WcRGWhxTez8Kl0+/TgL5/dE5LN11eTMdYvN+Rr0nPwhC9+RXwP6ZRFeTxPY9zrqOvoI8Ctoi8MNwAkR+XQTTsg82jUR8ARE4CgELDeOAweBlzU5/3AbMuLyIBxHf+G/vck1jzY5fh3QC7xMKTViDzbbTXWAjwL/KCJb0ItBdCd63Pz+MRYunP75TmAXpvUx59YD32l1sVLqf4D/MT7sPWhf9RdF5Fyl1PgS+rNUFMzv6C6/HeWpAJoTopQqeccbrjW74rcDbxeR9cDzgXcBq9Bckjj483ufPWh2+WtZqBgsilZzDkwCNTQf4iNNrq/FHV8E9t3qj8hSaH7LP4hIP/rdfCea73JlRMYa4Ey+EwFnEYKi8MRFkTOzQ7ge+AngpFLq+4s17lDuU4H7lFLzHVxnFQJnIhYdI74HQxA0sLuvdufoP9A+31cCzwFuMpYGi6+gF4HNSqmvdNBfi1JMX/aiOQovR3M2ABCRq9FWnHe2I1gpVQS+JiKrgc8BW9GLwpl6R+w87UK7pCyeF9O21bV3grPoXI126SyAUuox4J9E5Lnmuma4FT3vL0dboSx+Cv3d+fU2+heLuDlXmhh7E3AZmjvQSikooi1R7cD+350H3NKkPxPAJ0TkSuoESQCMYpVDv28BT0AEReGJi/uBNSLyK8AdQEEpdc8i1ywFHwdeC9woIu8E7kbvHLehzcAvVp0lgLH4I7T74v+3czYhVURRHP8daiG0ClwkGURB4rIWQdSide6rxYsiAqNlROgieqvAVRtbmEn0Aa1b9EmLFKGgNkFYFhppPSHiFYmlEJwW5yrj8ManoIiv/w9mc+fM3I+5zJx77vnPkJn1EpGJrcSLf5e7F/2M5hmxv3w7taeF+KnMBIu34j4ku9NmViVezKPuXvTx+WVm9wm1RAuRsZ49P2ZmPUCvmbUBg8RqeAeRv3AjrTaLGAE6zOwxEZGouHslSev6zOwuEcHYTmTqf2QJzbyZnSX2vB8Ck0Azkd1fAd5m6lzzOeLuU2Y2CHSb2XdCEVGi9s+u8jwi9s/7zewykStykVBdLJCezRvCmfgB7CWiS30U4O7VNEe6zWyGGKt2QqkyDDxYST+XOebniW2sJ2Y2QGx7NAP7gE3u3pXsRoBzZnYMGAOm3b3mh9zdJ8zsM7CfTJTLzK4TztQLYsz3ENtnT3O3mI8uDK2kv6KBWO9sSh3rcwBbgHvES9NJGeIUZ7QP567fmezO5MrLqXxzpqwplb8nPrhVIpGqnLWr0caadWTOtxIyx6/Eym+KWLmX8u3JXXc0tWWWCCkfJ5cln+w6gXHCYVgYE3KZ9xn7jmS3SAGRszlBrFRniI/ZOyIS0VrneR0kthJmUx3lzLkS8RGcI8LMd4CWOvc7QKxkJ9N1U0RUpG2d5kgrIT/8SeRXXCG0/0uqHlLZoTSffhMOXin/PAlZ6ss0Pn+I1XGZjEqhYJyMkFWOZubYNXLKBWqrUub7f2q5Y57s2omEyW/J7gshqzySsdlGOBzTqY7ndfrRA4znyk6m5zZfzyfgao2+9QOvV/P9o2NjHZYmghBCiAbFzHYTzs5hD1XMcq9rIhyaC+4+UM9eNCZSPQghRIPj8cvxm0BXPdscnUTE4daqN0psGOQoCCHE/8El4NUKFT5zxNbJ3zVqk9gAaOtBCCGEEIUooiCEEEKIQuQoCCGEEKIQOQpCCCGEKESOghBCCCEKkaMghBBCiEL+AaUkcjHF2nL1AAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "plot_spike_counts(\n", " mean_spike_counts, \n", " mean_spike_counts['time_relative_to_stimulus_onset'],\n", " 'mean spike count', \n", " 'mean spike counts on flash_250_ms presentations'\n", ")\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Waveforms\n", "\n", "We store precomputed mean waveforms for each unit in the `mean_waveforms` attribute on the `EcephysSession` object. This is a dictionary which maps unit ids to xarray dataarrays. These have `channel` and `time` (seconds, aligned to the detected event times) dimensions. The data values are millivolts, as measured at the recording site.\n", "We store precomputed mean waveforms for each unit in the `mean_waveforms` attribute on the `EcephysSession` object. This is a dictionary which maps unit ids to xarray dataarrays. These have channel and time (seconds, aligned to the detected event times) dimensions. The data values are millivolts, as measured at the recording site.\n" ] }, { "cell_type": "code", "execution_count": 28, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnEAAAJnCAYAAAD4AgW+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOzde1xUdfrA8c+ZYbirICJyUxRRgQFHpdRSXLoIXtJKf+Zlq23JTTdZM0t3tV3dbtqWmxaEZrWm6+KlUMsoNS+pW4oXRkQwr4gEKowiCnIZ5vz+QCdZEFFBUJ/36+Vr9Zzv+Z5nzr529pnnfC+KqqoIIYQQQog7i6axAxBCCCGEEDdOkjghhBBCiDuQJHFCCCGEEHcgSeKEEEIIIe5AksQJIYQQQtyBJIkTQgghhLgD2TR2ALdbq1atVD8/v8YOQwghhBDiuvbs2ZOvqqp7TefuuSTOz8+P3bt3N3YYQgghhBDXpSjKiWudk9epQgghhBB3IEnihBBCCCHuQJLECSGEEELcge65MXFCCCGEuL7y8nKys7MpKSlp7FDuCfb29vj4+KDT6ep8jSRxQgghhKgmOzubZs2a4efnh6IojR3OXU1VVUwmE9nZ2bRv377O18nrVCGEEEJUU1JSgpubmyRwt4GiKLi5ud1w1VOSOCGEEELUSBK42+dmnrUkcUIIIYRosubNm4deryc4OJi5c+cCMHPmTLy9vTEYDBgMBpKSkgAwmUxERETg7OzMhAkTqvSTkJBASEgIoaGhREVFkZ+fD8DKlSsJDg5Go9FUW0c2NTWV3r17ExwcTEhIiLVStnz5ckJDQwkODmbq1KnW9osWLcLd3d0a1yeffGI9FxUVhYuLC4MHD663ZyNJnBBCCCGapLS0NBYuXEhycjL79u1j7dq1HDlyBIBJkyZhNBoxGo0MHDgQqJwc8MYbb/Dee+9V6cdsNjNx4kQ2b95MamoqoaGhxMbGAqDX60lMTCQ8PLzaNb/97W+ZP38+Bw4cYMuWLeh0OkwmE6+++iobN27kwIEDnDp1io0bN1qve+qpp6xxPf/889bjr776KkuWLKnX5yNJnBBCCCGapIyMDHr27ImjoyM2Njb069ePxMTEa7Z3cnKiT58+2NvbVzmuqiqqqlJUVISqqhQWFuLl5QVAYGAgnTt3rtbX+vXrCQ0NpWvXrgC4ubmh1Wo5duwYAQEBuLtX7oT1yCOP8OWXX173szz88MM0a9aszp+9LmR2qhBCCCFq9fevD5CeU1ivfQZ5NWfGY8G1ttHr9UyfPh2TyYSDgwNJSUmEhYXh5uZGbGwsixcvJiwsjDlz5uDq6nrNfnQ6HfHx8YSEhODk5ERAQABxcXG13vvQoUMoikJkZCR5eXmMHDmSKVOm0LFjR37++WcyMzPx8fFh9erVlJWVWa/78ssv2bp1K506deL999/H19f3xh7MDZBKnBBCCCGapMDAQKZOnUr//v2JiorCYDCg1WoZP348R48exWg04unpyeTJk2vtp7y8nPj4eFJSUsjJySE0NJRZs2bVeo3ZbGb79u0sXbqU7du3s2rVKjZu3Iirqyvx8fE89dRT9O3bFz8/P7RaLQCPPfYYmZmZpKam8uijj/Lss8/W27OoiVTihBBCCFGr61XMGlJ0dDTR0dEATJs2DR8fHzw8PKznx44de93JAkajEQB/f38ARowYwezZs2u9xsfHh/DwcFq1agXAwIED2bt3Lw8//DCPPfYYjz32GAAff/yxNYlzc3OzXv/8888zZcqUG/moN0wqcUIIIYRoss6cOQNAVlYWiYmJjB49mtzcXOv5VatWodfra+3D29ub9PR08vLyANiwYQOBgYG1XhMZGcn+/fspLi7GbDbzww8/EBQUVCWmc+fO8dFHH1knMFwd11dffXXde9wqqcQJIYQQoskaNmwYJpMJnU5HXFwcLi4uxMTEYDQaURQFPz8/FixYYG3v5+dHYWEhZWVlrF69mvXr1xMUFMSMGTMIDw9Hp9PRrl07Fi1aBFQmgTExMeTl5TFo0CAMBgPr1q3D1dWVl19+mfvuuw9FURg4cCCDBg0CYOLEiezbtw+Av/3tb3Tq1AmADz74gK+++gobGxtatmxpvQdA3759OXjwIBcvXsTHx4dPP/2UyMjIW3o2iqqqt9TBnSYsLEz933VghBBCCFFVRkZGg1eSRFU1PXNFUfaoqhpWU3t5nSqEEEIIcQeSJE4IIYQQ4g4kSZwQQgghxB1IkjghhBBCiDuQJHFCCCGEEHcgWWJECNHkbcw4zQlTMRZVvfwHKiwqFotK93auPNixVWOHKIQQt51U4oQQTVrc5iNEf76b19em8+Y3GbyddJDZ3x7k3XU/M2fDIcZ8spPXv06nzGxp7FCFEA1g3rx56PV6goODmTt3LgAzZ87E29sbg8GAwWAgKSkJAJPJREREBM7OzkyYMKFKPwkJCYSEhBAaGkpUVBT5+fkArFy5kuDgYDQaDVcvQbZ06VJr/waDAY1GY935Yfr06fj6+uLs7FzlHpMmTbK279SpEy4uLgBs3ry5Sl/29vasXr36lp+NrBMnhGiyPt56lLeTDvK4wYu/PRaMVqOg1ShoFNAoChUWlXfX/cyiHzMJ9WlB7KjutHVzbOywhbgrNIV14tLS0hg5ciTJycnY2toSFRXF/Pnz+fe//42zszOvvPJKlfZFRUWkpKSQlpZGWloasbGxQOU+qF5eXqSnp9OqVSumTJmCo6MjM2fOJCMjA41GwwsvvMB7771HWFj1Jdn279/P448/ztGjRwHYsWMH7dq1IyAggIsXL9YY+4cffkhKSgqfffZZleNnz56lY8eOZGdn4+hY9ftK1okTQtwVPtt+nLeTDjIo1JP3/q8rLZ1saeGgw9nOBkdbG+x1WpzsbJg5JJgFT/cgM7+IQR9s45vU3Ot3LoS4I2RkZNCzZ08cHR2xsbGhX79+JCYmXrO9k5MTffr0wd7evspxVVVRVZWioiJUVaWwsBAvLy8AAgMD6dy5c61xJCQkMHLkSOu/e/Xqhaen53WvGTVqVLXjX3zxBQMGDKiWwN0MGRMnhGhylvyUyetr04kKbsPcpwzYaGv/vRkZ3IYgz+bEJKTw4n/28tOxtrw2KAh7nfb2BCzE3e7bP8Op/fXbZ5sQGFD7JvR6vZ7p06djMplwcHAgKSmJsLAw3NzciI2NZfHixYSFhTFnzhxcXV2v2Y9OpyM+Pp6QkBCcnJwICAggLi6uzqEuX76cNWvW1Ln9iRMnOH78OA899FC1c8uWLePll1+uc1+1kUqcEKJJWZacxV/XHOCRwNZ8MKobuuskcFf4tnRk5bjevBDegX/vyGL4/B8pLjM3cLRCiIYUGBjI1KlT6d+/P1FRURgMBrRaLePHj+fo0aMYjUY8PT2ZPHlyrf2Ul5cTHx9PSkoKOTk5hIaGMmvWrDrFsHPnThwdHdHr9XWOe9myZQwfPhyttuoPydzcXPbv33/Le6ZeIZU4IUST8cWebP6yaj/9OrkTN6Y7tjY39jtTp9Xwl4GBdG/nyrh/7+GtbzJ464mQBopWiHvIdSpmDSk6Opro6GgApk2bho+PDx4eHtbzY8eOZfDgwbX2cWVCgr+/PwAjRoxg9uy6faZly5bV+Fr0etfUVOlbsWIFTzzxBDqd7ob6uxapxAkhmoTdmWeZ8sU+HvRvxYKne2Bnc/OvQiOD2zC2bweW7sxi08HT9RilEOJ2O3PmDABZWVkkJiYyevRocnN/Hfu6atWq61bJvL29SU9PJy8vD4ANGzbUadKGxWJhxYoVVcbDXc/Bgwc5d+4cvXv3rnbuWuPkbpZU4oQQTcI/NxzCzdmOj5/pUS9j2Sb378TWQ3lM+WI/615ywc3Zrh6iFELcbsOGDcNkMqHT6YiLi8PFxYWYmBiMRiOKouDn58eCBQus7f38/CgsLKSsrIzVq1ezfv16goKCmDFjBuHh4eh0Otq1a8eiRYuAyiQwJiaGvLw8Bg0ahMFgYN26dQBs3boVX19fOnToUCWmKVOm8J///Ifi4mJ8fHx4/vnnmTlzJlBZhRs5ciSKolS5JjMzk5MnT9KvX796ezayxIgQotHtyjzL/83/idcGBfJ83w7Xv6CODp4qZMiH/+U3nd1Z8HSPal+qQohrawpLjNxrZIkRIcQdZ973h2nlbMeYnu3qtd8ubZrzamRn1qefZuXu7HrtWwghGpskcUKIRrXnxFm2H8nnhfAOONjW/5Ig0X3a07uDG3//+gBZpuJ6718IIRqLJHFCiEY19/vDuDnZMqZX2wbpX6NReG9EVzQahUkrjJgrZHsuIcTdQZI4IUSj2XPiHNsO5/OH8A442jbcPCtvFwfeGKpnz4lzLNh6rMHuI4QQt5MkcUKIRjNv42FaOtnydO/6HQtXk6EGLwaHevL+hkNk5BY2+P2EEKKhSRInhGgUKVnn2Hoor8GrcFcoisKbj+txsrPhne8ONvj9hBCioUkSJ4RoFNYqXK+Gr8Jd4eJoyx9/48+Wn/PYccx02+4rhLh58+bNQ6/XExwczNy5cwGYOXMm3t7eGAwGDAYDSUlJAJhMJiIiInB2dmbChAlV+klISCAkJITQ0FCioqLIz88HYOXKlQQHB6PRaLh6CbKlS5da+zcYDGg0GoxGI8XFxQwaNIguXboQHBzMn//8Z+s18+fPJyQkBIPBQJ8+fUhPTwcgOTnZ2k/Xrl1ZtWpV/TwcVVXvqT89evRQhRCNKyXrnNpu6lo1bvPh237vS2Vmtdfb36tDY7erFovltt9fiDtFenp6Y4eg7t+/Xw0ODlaLiorU8vJy9eGHH1YPHz6szpgxQ3333Xertb948aK6bds2NT4+Xn3xxRetx8vLy1V3d3c1Ly9PVVVVffXVV9UZM2aoqlr5OQ8ePKj269dP3bVrV41xpKamqh06dFBVVVWLiorUTZs2qaqqqqWlpWqfPn3UpKQkVVVV9fz589Zr1qxZo0ZGRlqvKS8vV1VVVXNyclR3d3frv69W0zMHdqvXyGmkEieEuO0+2HgYF0cdz/T2u+33ttdpeemRAIwnC1h3QLbkEqIpy8jIoGfPnjg6OmJjY0O/fv1ITEy8ZnsnJyf69OmDvb19leNXkp6ioiJUVaWwsBAvLy8AAgMD6dy5c61xJCQkWLfecnR0JCIiAgBbW1u6d+9OdnblOpTNmze3XlNUVGRdYPxK/AAlJSX1tvC4bLslhLitUrML2HTwDK9GdsbZrnG+goZ19+Hjrcd4d91BHglsjY1Wfs8KUZt3kt/h4Nn6HUvapWUXpt4/tdY2er2e6dOnYzKZcHBwICkpibCwMNzc3IiNjWXx4sWEhYUxZ84cXF1dr9mPTqcjPj6ekJAQnJycCAgIqHGD+mtZvnw5a9asqXa8oKCAr7/+mokTJ1qPxcXF8c9//pOysjI2bdpkPb5z505+//vfc+LECZYsWWJN6m6FfHMJIW6rxT+doJmdDc/chhmp12Kj1fBqZBeO5hXxxR7ZyUGIpiowMJCpU6fSv39/oqKiMBgMaLVaxo8fz9GjRzEajXh6ejJ58uRa+ykvLyc+Pp6UlBRycnIIDQ1l1qxZdYph586dODo6otfrqxw3m82MGjWKP/3pT1X2Vn3xxRc5evQo77zzDm+++ab1eM+ePTlw4AC7du1i1qxZlJSU3MCTqJlU4oQQt015hYUN6ad5NMiDZva6Ro0lMtiDbm1dmPv9YR7v5o29rv53ixDibnG9illDio6OJjo6GoBp06bh4+ODh4eH9fzYsWMZPHhwrX0YjUYA/P39ARgxYgSzZ8+u0/2XLVvGqFGjqh3/wx/+QEBAAC+99FKN140cOZLx48dXOx4YGIizszNpaWmEhdW4JWqdSSVOCHHb7Dhm4vylcqL0bRo7FBRF4c9RXThVWMKiHzMbOxwhxDWcOXMGgKysLBITExk9ejS5ubnW86tWrapWJftf3t7epKenk5eXB8CGDRuqbTRfE4vFwooVK6zj4a547bXXOH/+vHW27BWHDx+2/v2bb74hICAAgOPHj2M2mwE4ceIEBw8exM/P77r3v54mVYlTFMUXWAx4ACrwsaqq8xRFaQksB/yATGCEqqrnlMqRgfOAgUAx8DtVVfc2RuxCiOv7Lu0UjrZawju5N3YoAPTs4EZEZ3c+2nyEUfe1pYVj41YHhRDVDRs2DJPJhE6nIy4uDhcXF2JiYjAajSiKgp+fHwsWLLC29/Pzo7CwkLKyMlavXs369esJCgpixowZhIeHo9PpaNeuHYsWLQIqk8CYmBjy8vIYNGgQBoOBdevWAbB161Z8fX2rvC7Nzs7mrbfeokuXLnTv3h2ACRMm8PzzzxMbG8v333+PTqfD1dWVzz//HIDt27cze/ZsdDodGo2Gjz76iFatWt3ys1EqZ682DYqieAKeqqruVRSlGbAHeBz4HXBWVdXZiqL8GXBVVXWqoigDgRgqk7iewDxVVXvWdo+wsDD16nVghBC3R4VFpefbG+nZviVxY7o3djhWGbmFDPxgGy+E+/PnAV0aOxwhmoyMjIw6VatE/anpmSuKskdV1Rrfuzap16mqquZeqaSpqnoByAC8gaHA55ebfU5lYsfl44svL6WyA3C5nAgKIZqYPSfOkX+xtEm8Sr1aoGdzHjd486//HufU+VsfaCyEELdLk0rirqYoih/QDdgJeKiqeuUF+CkqX7dCZYJ38qrLsi8f+9++/qAoym5FUXZfeR8uhLi9vks7ha2NhogurRs7lGpefrQTFlUldvPh6zcWQogmokkmcYqiOANfAi+pqlplp+rLqxff0DtgVVU/VlU1TFXVMHf3pjEWR4h7iaqqrDtwivCAVo22NlxtfFs6MryHLyt2Z3OmUKpxQog7Q5NL4hRF0VGZwC1VVfXKssynr7wmvfyfZy4f/wXwvepyn8vHhBBNSGr2eX4puESUvumOdhjfzx9zhYWF2441dihCCFEnTSqJuzzb9FMgQ1XVf1516ivg2ct/fxZYc9XxZ5RKvYDzV712FUI0Ed8dOIWNRuGRwKb3KvWKtm6ODOnqxdKdWZwrKmvscIQQ4rqaVBIHPAg8DTykKIrx8p+BwGzgUUVRDgOPXP43QBJwDDgCLAT+2AgxCyFqoaoq36Wdore/Gy6Oto0dTq3+GNGR4rIK/iXrxgkh7gBNKolTVXW7qqqKqqqhqqoaLv9JUlXVpKrqw6qqBqiq+oiqqmcvt1dVVX1RVVV/VVVDVFWVtUOEaGJ+Pn2B4/lFTW5Wak06eTSjf5AHi/57nIul5sYORwgBzJs3D71eT3BwsHVx3ZkzZ+Lt7Y3BYMBgMJCUlASAyWQiIiICZ2dnJkyYUKWfhIQEQkJCCA0NJSoqivz8fABWrlxJcHAwGo2Gq5cgW7p0qbV/g8GARqOx7vwQFRVF165dCQ4OZty4cVRUVFS515w5c1AUxXqPgwcP0rt3b+zs7Hjvvffq7dk0qSROCHH3+S7tFIoCjwZ5XL9xE/BiREcKS8z8e8eJxg5FiHteWloaCxcuJDk5mX379rF27VqOHDkCwKRJkzAajRiNRgYOHAiAvb09b7zxRrVEyWw2M3HiRDZv3kxqaiqhoaHExsYCoNfrSUxMJDw8vMo1Y8aMsfa/ZMkS2rdvj8FgAGDFihXs27ePtLQ08vLyWLlypfW6kydPsn79etq2bWs91rJlSz744ANeeeWVen0+ksQJIRrUd2mnuK9dS1o3s2/sUOqkq68LfQNa8cm245SUV1z/AiFEg8nIyKBnz544OjpiY2NDv379SExMvGZ7Jycn+vTpg7191e8bVVVRVZWioiJUVaWwsBAvLy+gci/Tzp071xpHQkJCla23mjdvDlQmh2VlZVQO6a80adIk/vGPf1Q51rp1a+677z50uvrdFabpzfUXQtw1jucXcfDUBf42OKixQ7khL0Z0ZOTHO1ix+yTP9PZr7HCEaHSn3n6b0oyD9dqnXWAX2kybVmsbvV7P9OnTMZlMODg4kJSURFhYGG5ubsTGxrJ48WLCwsKYM2cOrq6u1+xHp9MRHx9PSEgITk5OBAQEEBcXV+dYly9fzpo1a6oci4yMJDk5mQEDBjB8+HAA1qxZg7e3N127dq1z37dCKnFCiAbzXdopgDtiPNzVerZvSVg7Vxb8cIzyCktjhyPEPSswMJCpU6fSv39/oqKiMBgMaLVaxo8fz9GjRzEajXh6ejJ58uRa+ykvLyc+Pp6UlBRycnIIDQ1l1qxZdYph586dODo6otfrqxxft24dubm5lJaWsmnTJoqLi3n77bd5/fXXb/rz3iipxAkhGsx3abl09WmBl4tDY4dyQxRF4cWIjjy3aBerUn5hRJjv9S8S4i52vYpZQ4qOjiY6OhqAadOm4ePjg4fHr2Nsx44dy+DBg2vt48qEBH9/fwBGjBjB7Nmza7vEatmyZYwaNarGc/b29gwdOpQ1a9bQpk0bjh8/bq3CZWdn0717d5KTk2nTpmF+yEolTgjRIH4puMS+7PNNeoHf2vymsztBns2Zv+UoFZYb2iRGCFGPzpypXN8/KyuLxMRERo8eTW7ur0vCrlq1qlqV7H95e3uTnp7Ola03N2zYUG2j+ZpYLBZWrFhRZTzcxYsXrfc3m8188803dOnShZCQEM6cOUNmZiaZmZn4+Piwd+/eBkvgQCpxQogGsu4OfZV6xZVq3Iv/2cu3abkMDvVq7JCEuCcNGzYMk8mETqcjLi4OFxcXYmJiMBqNKIqCn58fCxYssLb38/OjsLCQsrIyVq9ezfr16wkKCmLGjBmEh4ej0+lo164dixYtAiqTwJiYGPLy8hg0aBAGg4F169YBsHXrVnx9fenQoYO1/6KiIoYMGUJpaSkWi4WIiAjGjRtX62c4deoUYWFhFBYWotFomDt3Lunp6dYJEjdLqdyK9N4RFhamXr0OjBCiYTy14CfOXyrnu5fCr9+4iaqwqDz6/g/Y2WhJ+lOfKrPNhLjbZWRk1KlaJepPTc9cUZQ9qqqG1dReXqcKIerdpbIKUrIK6NfZvbFDuSVajcK4fv5k5Bay5VBeY4cjhBBVSBInhKh3KVnnKKuw0KuDW2OHcsseN3jj2cKe+M1HGzsUIYSoQpI4IUS923HMhEaBsHbXXrfpTmFro2Fs3w4kZ55ld+bZxg5HCCGsJIkTQtS7HcfOEuLdgmb29bs6eWMZeb8vLZ1s+WiLVOOEEE2HJHFCiHpVUl6B8WTBXfEq9QpHWxuee8CPTQfPkJFb2NjhCCEEIEmcEKKe7b2LxsNd7ZnefjjZaomXapwQoomQJE4IUa92HDtbOR7O784fD3e1Fo46fturHWtTczhhKmrscIS4Z8ybNw+9Xk9wcDBz584FYObMmXh7e2MwGDAYDCQlJQFgMpmIiIjA2dmZCRMmVOknISGBkJAQQkNDiYqKIj8/H4CVK1cSHByMRqPh6iXIli5dau3fYDCg0WisOz9ERUXRtWtXgoODGTduHBUVFQC8+uqrdOnShdDQUJ544gkKCgqqxJCVlYWzszPvvfdevTwbSeKEEPVqxzET+rtoPNzVovu0x0arYcHWY40dihD3hLS0NBYuXEhycjL79u1j7dq1HDlyBIBJkyZhNBoxGo0MHDgQqNwG64033qiWJJnNZiZOnMjmzZtJTU0lNDSU2NhYAPR6PYmJiYSHV13TcsyYMdb+lyxZQvv27TEYDACsWLGCffv2kZaWRl5eHitXrgTg0UcfJS0tjdTUVDp16lRtf9aXX36ZAQMG1NvzkSROCFFv7sbxcFdr3dye4T18+GJ3NmcKSxo7HCHuehkZGfTs2RNHR0dsbGzo168fiYmJ12zv5OREnz59sLe3r3JcVVVUVaWoqAhVVSksLMTLq3IXlsDAQDp37lxrHAkJCVW23rqy04LZbKasrMy6EHj//v2xsancDKtXr15kZ2dbr1m9ejXt27cnODj4Bp5A7WTbLSFEvUnJKqDMbKFXh5aNHUqDeSG8A8uSs/h0+3H+MlBWsxf3hm0rDpF/8mK99tnK15m+IzrV2kav1zN9+nRMJhMODg4kJSURFhaGm5sbsbGxLF68mLCwMObMmYOr67WHcOh0OuLj4wkJCcHJyYmAgADi4uLqHOvy5ctZs2ZNlWORkZEkJyczYMAAhg8fXu2azz77jKeeegqo3G/1nXfeYcOGDfX2KhWkEieEqEfW9eH87t4krp2bE4NDvfj3jhOcLy5v7HCEuKsFBgYydepU+vfvT1RUFAaDAa1Wy/jx4zl69ChGoxFPT08mT55caz/l5eXEx8eTkpJCTk4OoaGh1V51XsvOnTtxdHREr9dXOb5u3Tpyc3MpLS1l06ZNVc699dZb2NjYMGbMGKByDN+kSZNwdna+gU9/fVKJE+IOcfGnHMrPFOM6tGNjh3JNO46ZCPZqQfO7cDzc1cb/xp+v9uWw+KdMYh4OaOxwhGhw16uYNaTo6Giio6MBmDZtGj4+Pnh4eFjPjx07lsGDB9fax5UJCf7+/gCMGDGC2bNn1+n+y5YtY9SoUTWes7e3Z+jQoaxZs4ZHH30UgEWLFrF27Vo2btxofc26c+dOvvjiC6ZMmUJBQQEajQZ7e/tqky9ulCRxQtwBzGdLKPjmOJgtOD/ghc7dsbFDqqakvIKUkwU827tdY4fS4AI9m/NQl9b868dMnu/bAQdbbWOHJMRd68yZM7Ru3ZqsrCwSExPZsWMHubm5eHp6ArBq1apqVbL/5e3tTXp6Onl5ebi7u7Nhw4ZqG83XxGKxsGLFCrZt22Y9dvHiRS5cuICnpydms5lvvvmGvn37AvDdd9/xj3/8gx9++AFHx1+/p6++fubMmTXOnr0ZksQJcQc4/+1xFAVUDRTtPo3LgPaNHVI1xpNXxsPdnZMa/tcL4R146uMdrEr5hdE92zZ2OELctYYNG4bJZEKn0xEXF4eLiwsxMTEYjUYURcHPz48FCxZY2/v5+VFYWEhZWRmrV69m/fr1BAUFMWPGDMLDw9HpdLRr145FixYBlUlgTEwMeXl5DBo0CIPBwLp16wDYunUrvr6+dOjQwdp/UVERQ4YMobS0FIvFQkREBOPGjQNgwoQJlJaWWqtyvXr1Yv78+Q32bBRVVRus86YoLFA1yTAAACAASURBVCxMvXodGCGautJj58n7OJXmj7Sl7JeLlJ28gOdf7kfRNq0hrXO/P8QHGw+T8rf+tHBooq9TLRY4cwBa+oPtrVUzVVXlsdjtlJRb2DAp3PraRIi7RUZGRp2qVaL+1PTMFUXZo6pqWE3tpRInRBOmWlQKvj6KtoUdzuE+lB4poCTjLCUHz+EQ3LQqXjuOmQjyat40EziLBTLWwJZ3IC8DbOyhfT/oHAUBkZTZeXB0bx6qqtK8lQPN3exxdrVDU0uirCgKv3+wPS+v2MfWw/n06+R+Gz+QEEJIEidEk1a8+zTluUW0HNUFja0W+84t0TSzpWj3qSaVxJWUV7A3q4BnejWx8XAWC6Svhh/+UZm8teoEA98D0xH4+Vvy0w+SVnyQQ6URlFvsqlyqaBScXe1o7maPV4AL3fq3Q2dXdezb4FAvZn17kM+2H5ckTghx20kSJ0QTZSkxc35dJrZ+zXEIbQWAolVw6tGaC1uzqSgsQ9vctpGjrNTkxsNVS946w7BPIfgJzBVwdG8eaWX/xylTIVqthYCWBwhWl+JgV8GF+/5KYfP7Kcy/xAVTCefzLrHrm0wyfsql74hOtO/ayvrq1NZGwzO92jFnwyGOnLlAx9bNGvmDCyHuJZLECdFEFW7MwlJcjstj+irjrRzD2nBhSzZFe0/T/De+jRjhr3YeO4uiwH3tm8D6cJYKWPUC7F9ZJXlDo+XUsfMkxady6UI5LVo78ODwjnTp7Ym90yNwdggkjqXFzmchdCQMfBfsK1dlzzlcwA8JP/Pt/P2007vR96lOtHB3AGB0z7Z8uPkIn/03k7efCGnMTy6EuMc0rZHRQggAyvOKufhjDo49PLD1rro4pK6VA7btm1O8+zRNZWLSjmMmgjybwHg4VYW1kyoTuIjp8MefIGQ4aLSczizk6w+M2NrbMGSigTEze2F4pC32TpdjbtkenvsO+k2F/Stgfh84mQyAV4ALI6bfx4PDO5JzuICEv+9k1zfHMZdX4OZsx5PdvEncm825orJG/PBCiHuNJHFCNEHnvzmOYqOhRaRfjeedwtpgzr9E2fHC2xtYDSrHw51r/FepqgrrX4O9n0PfydBvCmgqx7DlnbzA1x8YsXfW8fjL3fANbImiqWE2qdYGIqbBc99W9vdZVOVkiAozWq0GwyNtGT2zF+0NrUj++jjL39zF+bxinnuwPSXlFv6TnHWbP7QQ4l4mSZwQTUzJoXOUHDxL84faom1W85g3h5BWKHZainafus3RVbfvZAGlTWE83JbZ8FMs9BwHD/3Vetj0y0W+mmdEZ6dl6EvdcHa1r6WTy9r2gvHbQf8kbHkblg6H8soN751d7Yh8Xs+QPxm4dLGMxPf24m7R0DegFYt/yqS8wtJAH1CIe9O8efPQ6/UEBwczd+5coHLBXG9vbwwGAwaDgaSkJABMJhMRERE1LqabkJBASEgIoaGhREVFkZ+fD8DKlSsJDg5Go9Fw9RJkS5cutfZvMBjQaDTWnR+ioqLo2rUrwcHBjBs3joqKCgCeeuopa3s/Pz8MBoO1v9TUVHr37k1wcDAhISGUlJTc8rORJE6IJub8uky0bvY4P+h1zTYaWy2OBncu7c/HUmK+jdFVt+PyeLj7G3O/1B8/hB9mg+G3EDkLLo8hPHeqiDXzjGi0CkMndaN5K4e692nfAoZ9Ao/Ng2Ob4ctoqPj1WfsGteSJl7uDCqv+uZdRAW04XVhK0v7c+v50Qtyz0tLSWLhwIcnJyezbt4+1a9dy5MgRACZNmoTRaMRoNDJw4ECgchusN954o9om82azmYkTJ7J582ZSU1MJDQ0lNjYWAL1eT2JiIuHh4VWuGTNmjLX/JUuW0L59e2tStmLFCvbt20daWhp5eXmsXLkSgOXLl1uvGTZsGE8++aT1/r/97W+ZP38+Bw4cYMuWLeh0tz78RJI4IZoQVVUpP12EQ7Abik3t//N0CmuDWm6heF/ebYquZjuPmwhs05wWjo00Hm73vypfowY9DkM+AE3lczufV8ya91NAVXl8UjdcWt/k4r49fgcD/gEH18LXEytfs17m5u3ME690x8ZWwy+rThDm7Mhn2483mbGKQtzpMjIy6NmzJ46OjtjY2NCvXz8SExOv2d7JyYk+ffpgb1+14q6qKqqqUlRUhKqqFBYW4uVV+UM5MDCQzp071xpHQkICI0eOtP67efPKSU9ms5mysrJqi32rqsqKFSuse66uX7+e0NBQunbtCoCbmxta7a1v1yezU4VoQtTSCjCraJ2vv3SIzscZXRtHinadwrmn522IrrpScwV7TpxjTM9GWh9u/xeVExkCIuHJhdYxcBfOlrD6/RQqzCqPv9wN1zZOt3afni9A8dnKap+DC/R/01rtc2ntyJOv9GDN3BQiTlWw/NwF9mado0e7JjBTV4h6snnRx5w5caxe+2zdrgMRv/tDrW30ej3Tp0/HZDLh4OBAUlISYWFhuLm5ERsby+LFiwkLC2POnDm4urpesx+dTkd8fDwhISE4OTkREBBAXFxcnWNdvnw5a9asqXIsMjKS5ORkBgwYwPDhw6uc27ZtGx4eHgQEBABw6NAhFEUhMjKSvLw8Ro4cyZQpU+p8/2uRSpwQTUjFhcrZjRrn61e1FEXBMawN5dkXKT9V1NCh1Sg9p5BSs4X7/K795dlgLpyuTODa9oIRn4NNZeJrsais/+QAZcVmhkw04PY/s3tv2m/+DPf/oXLc3fZ/VjnVrKU9T0zujou7A8OKbFmx5nD93FOIe1xgYCBTp06lf//+REVFYTAY0Gq1jB8/nqNHj2I0GvH09GTy5Mm19lNeXk58fDwpKSnk5OQQGhrKrFmz6hTDzp07cXR0RK/XVzm+bt06cnNzKS0tZdOmTVXOJSQkWKtwUFmx2759O0uXLmX79u2sWrWKjRs31vEpXJtU4oRoQixF5QB1qsQBOHZrzflvj1O06xQuj/k3ZGg1SskqAKB7u0ZI4jb8DcwlMDQOdL+OdTNuyOLUsfM88lwQ7m3rcfFdRYGod+BSAWx8HRxcIez31tNOLewYNrkHH7+5A+/0i+z56Rd69Pauv/sL0YiuVzFrSNHR0URHRwMwbdo0fHx88PDwsJ4fO3YsgwcPrrWPKxMS/P0rvydHjBjB7Nmz63T/ZcuWVUnIrmZvb8/QoUNZs2aNddN7s9lMYmIie/bssbbz8fEhPDycVq0qF24fOHAge/fu5eGHH65TDNcilTghmpCKC5VJXF0qcQBaJx0OwW4Up5xBNd/+WZEpJwvwamGPR/M6zPisTyd+hNRl8EAMuP2avOZnX2TnV8fw7+5Op/s9aungJmk08PhHla9v174MaVXH5tg76xj6koF8rcqPSw9hyrlY/zEIcY85c+YMAFlZWSQmJjJ69Ghyc3+dQLRq1apqVbL/5e3tTXp6Onl5lWOIN2zYUG2j+ZpYLBZWrFhRZTzcxYsXrfc3m8188803dOnSxXr++++/p0uXLvj4+FiPRUZGsn//foqLizGbzfzwww8EBQXV4dPXTipxQjQhlouVr1PrWokDcOzuwaXUfEqPn8c+4PZWxFKyztGt7W2uwlWY4ZtXoIVv5XpwVw6XW/j+X+nYOenoN7pztYHG9Uarg/9bBP9+EhL/AM08oV1v6+l2bZpx6X5XLu0oYG1cKiP+EobDDfz3KYSoatiwYZhMJnQ6HXFxcbi4uBATE4PRaERRFPz8/FiwYIG1vZ+fH4WFhZSVlbF69WrWr19PUFAQM2bMIDw8HJ1OR7t27Vi0aBFQmQTGxMSQl5fHoEGDMBgMrFu3DoCtW7fi6+tLhw4drP0XFRUxZMgQSktLsVgsREREMG7cOOv5mip3rq6uvPzyy9x3330oisLAgQMZNGjQLT8b5V6bRRUWFqZevQ6MEE3J+Q0nuLApC+83+6Bo65aEWMoqyHn9J5x7eeEyuEOVc2VlZ9HpXFCU+i+6n7lQwv1vbeS1QYE837fD9S+oLzvmw3dTYcQSCBpiPfzT6qPs/e4EA/8YSvvLe802qEvnYOHDUFoIYzeDy69boP186gK/e28bY4rt8fZ3YchEA9rrzDYWoqnJyMioU7VK1J+anrmiKHtUVQ2rqb18qwjRhFgulqFxtKlzAgeVa8bZtW9ByaGzVY6XlOTw3x8fZGfyQM6cWVfvy14YL4+H69bWpV77rdXFM7D5LfB/CAIfsx7OPXqelHUnCHzQ8/YkcFA5Jm7UMjCXwrJRUPbr5JLObZoRqHfnhxYWcg4XsHXZIVl2RAhR7ySJE6IJqbhYjuYmXr3Zd2qJ+cwlzOd+XQE8L28DFksZlopS9qf9kV27hpKfv7nekomUkwXotArBXi3qpb862fA3KL8EA961LvFRVmLm+0XpOLe0p8/wgNsXC4B7Jxj+GZxKg9V/rLKG3Lh+/uxSS9HpXUjfnkPq5uzbG5sQ4q4nSZwQTYjlYjnaOk5quJp958pxaSWHzlmP5edvwtGxA716bSAo8F3M5gvsS32e3XuGYzq7/ZaTuZSscwR5Nsded+sLVtZJ1g7Yl1A5maFVR+vhnxKPUph/iYefDcTWoeowX4uljAsXDpCT8wU/H/o7u/c8xfb/Pkh6+qucK9hVPwltwKPw6OuQvhq2/rpK/H1+rnRv68LiiwX4hbrx35WHyUo33fr9hBDiMknihGhCKi6W3VQlzsbdAa2LHSU/VyZxZvMFzhXspJVbBBqNDZ6eT9Kr13q6dHmb0tLTGI3Pcvjwmzcdp7nCQmr2+ds3qeHKZIbmPhD+ivVw1gETaVt/oevDvnh3+jWWvLz17Ex+jC0/hJK8awgZB6eSm/sFYKFFi+6cyVvP3r0j+WnHw2RmxlNaevrW4nsgBkJHwuY3IeNroHIdv3H9/MkuuETZfS1p6eXMuoUHONdIa/oJIe4+ksQJ0YRYLtxcJU5RFOw7u1J6pADVbOHs2f+iquW0avXrGkQajQ5vr6d4oPdGvDxHcDL7cwoLU28qzkOnL1JcVnH7xsPt/gxO74fIt8C2cvcFc3kFW5b+jGsbR3oN/XViRW7ul6TufxFVNdO2bTT64Hn07vU9/cL3EdZjJSH6D+nb5yeCAt/Fzs6Do8feY/t/+2Dc9/wNPQ/VYsFSVjmbGEWp3GPVuwckvgCnDwDwSKAHHVs78/GPmQwcH4LWRuHb+fspa+T9boUQdwdZYkSIJsJSVoFaVnFTlTgA+06uFO08RemJQvJLN2Jj04IWLXpUa6fR2BEQMI180yYOHXqdHj1W3PDs1ZSTlRW/br63oRJ3qaCywtXhNxA01Ho4dVM2F86WMOQlAzaXX+mezF7CoUMzcXV9gK6hC9Bqa94vVat1xNPzSTw9n6S4+Di5uV+Sk7uS3Xueokvnv+PlNcLatiQjg6Iff8J85jTlp89gPn0a8+nTlOflgcWCvT4Yp/t74tirJ45DP0WzOAoSRsLYLWic3HghvAOvfpHKXtMF+kcH89U8Iz/852ceeS6o4ZZBEULcE6QSJ0QTYbl4ZbeGm9tI3q6jC2gUSg7lk2/agptbPzSamn+n2dg0w9//Vc4XpnDq1Joa29QmJasANydbfFs6XL/xrUr+GErOw6NvWCczFBeWsfvbTPxCW+HbpXKP0swTCzh0aCatWj1M19BPrpnA/S9Hx/b4+79Cr57f4epyPxkH/8LBg69RfvYMuTNncvzJYZx5913OrfyC0oMHUWxtcQjrgdvvnsUtOhpFa4PpX//iZPTz/PzwUHIyOqIW5GD5z2ioMDPU4I1nC3vm/3AUny4tuf+x9hxKPs2BbTkN9siEuJvMmzcPvV5PcHAwc+fOBWDmzJl4e3tjMBgwGAwkJSUBYDKZiIiIwNnZmQkTJlTpJyEhgZCQEEJDQ4mKiiI/Px+AlStXEhwcjEaj4eolyJYuXWrt32AwoNForDs//OY3v6Fz587Wc1cvSBwREUG3bt0IDQ21xlVWVsZzzz1HSEgIXbt2ZcuWLfXybKQSJ0QTUXF5oV9Ns5urxGnsbLDza865k7so73iWVq0eqrW9Z5sn+eWX/3Dk6Du4uz+KjU3d9xjdm3WObm1dGr6SVHoBdnwEnQaAZ6j1cPLXx6gos/DAk/6oqsqxY/8k88RHeLQeTFDQe2g0N54I63SuGAyfcfToHE5kLSBvxxe4rtPQ6unf0mrcOLSurtf8vJaiIor3plC8cwdFO5PJTW6G1/07KHozEtvxCUT3ac+b32RgPFlAjyg/co+eZ9uKQ7Ru14zW7Zrf9OMR4m6XlpbGwoULSU5OxtbWlqioKOsWW5MmTeKVV16p0t7e3p433niDtLQ00tLSrMfNZjMTJ04kPT2dVq1aMWXKFGJjY5k5cyZ6vZ7ExEReeOGFKn2NGTOGMWPGALB//34ef/xxDAaD9fzSpUsJC6u6fNubb77JiBEjGD9+POnp6QwcOJDMzEwWLlxo7efMmTMMGDCAXbt2odHcWi1NKnFCNBG3WokDsOvkSoHmJ0CLW8t+tbZVFA2dOs2grCyPzMy4Ot+joLiMY3lFt2dSw+7PKhfVvWoyg+mXi6RvzyG4nzcuHg4cOvwGmSc+wstzBMHB/7ypBO6K0oOHsPmrEdePbSj3rODsLAfs/vgoNi1b1pqwapyccO7bh9avvEL7lStwX/hfiixdcVJ3k/fcAzy07Qua22mZv+UoikbhkeeCcGxmy7qFaZRc3i9XCFFdRkYGPXv2xNHRERsbG/r160diYuI12zs5OdGnTx/s7atuBaiqKqqqUlRUhKqqFBYW4uXlBUBgYCCdO3euNY6EhIQqW29di6IoFBYWAnD+/HnrPdLT03noocof1q1bt8bFxYX62HhAKnFCNBHWStwtbNFk37klFwuNNNeGotNdrvBUmMF0BE6nVf45lQZnMkD/BC36v4mn53CyTv4LL68RODq2v+49jCcvL/Lr28CTGsovwY8fQocI8Pn11+6PXx7B1sGG+we159Dh18nOXoKv73MEdJx+05VBtbycM/98n7Off462RQs6vDIL7QPB7E/7Iykpv6VTpxn4eI+uc386b290MzZi+TiSNmH7yFz7CQO9h7K8tB+HjuTQqaMXkWP1rHpvL5sWZzBgXIiMjxNNWsHXRynLqd+Z1bZeTrg85l9rG71ez/Tp0zGZTDg4OJCUlERYWBhubm7ExsayePFiwsLCmDNnDq6u1/5hqdPpiI+PJyQkBCcnJwICAoiLq/uP1+XLl7NmTdWhJ8899xxarZZhw4bx2muvoSgKM2fOpH///nz44YcUFRXx/fffA9C1a1e++uorRo0axcmTJ9mzZw8nT57k/vvvr3MMNZFKnBBNhOXC5Uqc081XkswtTJQ5/4Lzue5QVgyLBsMsb/ioJ3wZXZkUFeaAc+vKv5/chb//q2g0dhyq45IjKVkFKAqENnQSt3cxFOVBvynWQycOmMhKP0vYQD/OFq4hO3sJbX2jbymBqzh/nqw//IGz//oXLsOH4/9tEi7DnqRZs87cF7aKli378PPPf+WXX5bdWMdaHZqnl6Fp4UH7J7Q8274CXYWZOW8u4uIPP9CmQwseGNaR4/vyMW44eVOxC3G3CwwMZOrUqfTv35+oqCgMBgNarZbx48dz9OhRjEYjnp6eTJ48udZ+ysvLiY+PJyUlhZycHEJDQ5k1a1adYti5cyeOjo7o9XrrsaVLl7J//362bdvGtm3bWLJkCVBZsfvd735HdnY2SUlJPP3001gsFn7/+9/j4+NDWFgYL730Eg888ABa7a2vsSmVOCGaiIqLZSj2WhTdzf+2Mpk2A2B/sDNbT/6DjB2lPNx7IB37RoJHMLTqDDa2lWPNYu+HtZOw+8MWOrT/E4ePvE1+/mZatYqo9R4pJwvo7NEMZ7sG/Powl8L2udDuQWj3AACWCgv//eIILdwd8OtxgZR9f8PV9QE6dpx60wlcWVYWJ18YR1l2Np6zZuHyxONVzut0zQkNiSc19QUO/vwaWq0jbdoMuUZvNXBuDU8tQflsAIHBRxhpGcLSg3p2v/QXOg/tj/7VV8k94s5Pq4/i0aE5Xh1v4xZmQtyA61XMGlJ0dDTR0dEATJs2DR8fHzw8PKznx44dax0ndy1XJiT4+1d+jhEjRjB79uw63b+mDe29vb0BaNasGaNHjyY5OZlnnnmGTz/9lO+++w6A3r17U1JSQn5+Pq1bt+b999+3Xv/AAw/QqVOnOt2/NlKJE6KJqNyt4eZfpQLkZH+DUuKGrqA1x3fnYla1bPlZQ0XwMGgTUpnAAdg1gwGzK9deS/4YH5+ncXT059DhN7BYSq8do0XFeHlSQ4My/gcu5FQZC5e+PYdzuUXcP9ST9IwJ6HSu6IPfR1Gu/2tWraigoqCAshMnKPn5ZyyXLlG8axeZI56i4uxZ2n32abUE7gqNxpaQkI9wcbmP9IxXyMv7/sY+i3cPGPw+HP+BKa2+RWtjw1dDxlOwfAXHn3yS3oZymrvZs35hGpculN1Y30LcA66e+ZmYmMjo0aPJzc21nl+1alWVKllNvL29SU9PJy8vD4ANGzZU22i+JhaLhRUrVlQZD2c2m60zW8vLy1m7dq31/m3btmXjxo1A5Xi+kpIS3N3dKS4upqioyHpvGxsbgoKC6voIrkkqcUI0EZX7pt7cq9SstFR2JSXQvNseCo54oqIS1cGTS865fJl8mn0bvqX7gP+pIAUOgY6Pwua30AQ/TqeAv2Lc9zuysv6Fn9+4Gu9zLL+IwhJzw64PV1EO2/9Zmfx0qKwKll4ys/Pr43gFtKDY5i1KLuTSo3sCtrbVN7svPX6c819+SdFPO6g4f56K8+exXLhQtZFGAxYLGmdn3KJ/j8bJCbW8HEVX8/PXah3oGvoxKSnPkHYghq6hn9Cy5YN1/0zdxkBOCs675vOGvwevHe3CH+M/RX19OjnPPc39v5vIxqwAvl+UweAXQ1E0Mj5OiCuGDRuGyWRCp9MRFxeHi4sLMTExGI1GFEXBz8+PBQsWWNv7+flRWFhIWVkZq1evZv369QQFBTFjxgzCw8PR6XS0a9eORYsWAZVJYExMDHl5eQwaNAiDwcC6desA2Lp1K76+vnTo8OuC4qWlpURGRlJeXk5FRQWPPPIIY8eOBWDOnDmMHTuW999/H0VRWLRoEYqicObMGSIjI9FoNHh7e1tfv94qpb42w75ThIWFqfUxI0SI+nZqzm50bZxwG3P9X4dXO7Z3F6ve+Tutgyvw6nOI4C6foEl0Rv0lldaDLvDF5jPkncgk+oNPsHP8n7XTzh6Hj3pBpygY8Tn7Ul/g3LmfeKD3FmxtW1a718rdJ3n1i1Q2TAonwKPZrXzcazMmwOpxMGoZdB4AwI+JR0jZkEWfZ4+TX/w2nTrNwNfnGesllpISLqxfT8GKlRTv3g1aLY733YdNa3e0zVugbd4crUsLNM2acWHjJi5+/z2aFi1AVbFcnkmm2NnhHB6O65jROPbsWeMr2vLyc+zZO5pLl07SrdvnuNSwmPI1VZTD549hyd1HZNEbPNCzF397qB2n33qb86tXc7rnaA44PMgDT3akW/+2t/YMhagHGRkZdapWifpT0zNXFGWPqqphNbWXSpwQTUTFxXLsbqISdzJ9P1qdDsMTAZw9d5rWbfpy0fU7CrM7sfuYli597MlK+xu7vvqSPiOfrnpxy/bQ95XKHRGOfI+//yvs3DmArKxP6NhxSrV7pZwsoJm9Df7udV9T7oZYKmDbHPAIqUwsgaKCUvZtOomfQUN+8Ww8PB7Dx7vyc5RlZnJ2yb85//XXWAoL0bVti/vLL+PyxOPYuLtX6z7vgw+5+P33uPzf/9Hmb38FGxvKs7Mp2b+f4hQjhV9/zYUNG7D198d11ChaPD4UrfOvn1Wnc6WbYTF79j7Fvn3RdO/2H5o1q+MrEa0Ohn2KZkFfFjeLo/8ud16M6IjX7Fk49e2D+ue/kB/Whh2rwTOgBW3at7j15ymEuKvJmDghmgDVbEG9ZL6pmal5J47j5uPLuYLt1l0a7Cu2A5Czq5Stywto0aYre9au4uK5s9U7ePBP4BYA37yCs60PHh6Pkf3LEsrK8qs1TckqwODrgqahXvelrwHT4cqxcJcrYfs2nkStULHznYWTkz+BXd5GURTOr/2GY088ScHKlTiHh9N20SL8v/uWVn8YW2MCV5iURP5HH9HiiSdo8/rfUXQ6FEXB1teX5gMH0mb6NDr+sAXP2bPQODlx+s03ORLej9y//53SY8et/djZudPNsASt1pkU47OUlNzAzgstvOGJj/EsPcZ0ZRELth6rPDxoEG1jP6Sz8RPsys6zbsF+WT9OCHFdksQJ0QRUXP4/7JvZrSHvxHFad3agvPzyLg2qipLzFWWqhbaudtw3yI+ysvswl5v5+v0FVJgtVTuwsYNBc+Dccdj+Pu39YqioKOFE1sIqzYpKzfx8qrDhFvm1WGDre5UzaAMrx++VFpeTtu0XXNsfxsYplxD9R2gsOk7Pmk3OK69gHxSE/4YNeL/3Lk69eqJcY/XzS/v3k/OXaTj06EGbv8/8f/bOOz6n8/3j7/OMrCd7T5mILAkh9q5N1ajSoqguuyhFVW0tLa1RVaP2qKCUorYaQZZIkCB775084/z+eDTka0XHt+3v+7xfr7ySnHOf677PyctxPdd9XdfnqdWsEn19zPv1w33Pbtz27sWkWzeK9oVyr29fsj7/HM2DxGRDQyeCAr9Ho6nmRsx4NJoXKEio3wXafMBr0lMUhW0np0RbSGLcvj3uX3+Bb9wmygoqOLUhiv+1dBcdOnS8GDonToeOfwCaB1WJL6rWUFZYQHlRIQrHfARBplVpyLpJbF4QWUqwEaBZL3den9cNC6cQ0m9fZNvsIyTH5tU25NEe/AfBhS9RVGiwt+9Lauo2qqpyaoZEpxahEfnrKlMTfoHsm9B2irbwAIg5l4ayUo2p5068Gy5Av8KU5JGjyP/+eyyGDcN18ybkZdX1oAAAIABJREFUdrbPNKvMyiL1/bHIrKxw/molEr26OcqG/n44Ll6E15nTmL/Sj/wNG7nbqzfFx48jiqI2KthoCcXFkcQnLHqxe+04iwqH5nwqrCf0+Omaw8ZtWuO3fCaeyUe4H1tM1OFbL2ZXhw4d/1PonDgdOv4B1ETiXrDFSG5yEgCiQTzmZsHI5aZU3z7L9bKBqCzlUKVGmVaKmY0hr80dh0xPn5LsUxz6KorLB+/WNtZ1IcgM4MhU3N3GIYpKkpIfVnxFpBQAEOj8FzlxV78DYzvw6w+AqlpN1MlkjB3icPBwwTSjHvf7D6AiJgbHz5ZiP2vmU6tJf0NTUUHq+2PRlJXhvHYtMiurF16WzNISh/nzcd25A6m5OWkTJpLyzjtUJydjZ9sDF5dRpKZuJTPrUN2NSmUYvrYZUWZAh+hp5BcW1pxStGhBm3lDsSqM4+LhFDIi7j/DkA4dOv6X0TlxOnT8A6hRa3jBSFxO0j30TKqpVqdgbd0ZgOhfC6nQmOHVvyEIUHFLmwdnZGpGSL+BVJXdwdGrgohjyRRmlT80ZmIHHT6Ce6cxykzG3v4V0tJ2UFWVBWjz4TysFVgo/lgvuydSmAzxx6HJcG0BAHDrUgYVJSosvY/iFBNC0vDhCHp6uO3cgVnf5zfcFTUa0j+aSWVsLI7Ll2HQ8I811jQKCsL9h73YzZxJxfVw7vXuQ86aNXi6TcHMrCm3bs2ktCy+7gbNnCjqvoqGQjIpOybUOqVo1oyuE1qgpyzj56+vU3Zfp+igQ4eOx9E5cTp0/AOo0U19wZy4nORErLy0+V1WVu2oKiolMiUAN/tsHHys0KtnSuUjW6dNe/VDYW5Bef5pBJnA5QP/EY0LHgWmTnBqAe6u7yOKahKTvkEURW1Rw1+1lXp9s7aQoembgFad4fqxBAws71E/05r8hatRhITg/sNeDOrY8iB39RpKfv4Z26lTMOn4bBWKuiLIZFgOH4bHkSOYdOlC7ldfkzZ2Aj6ui5BIDLlxYxwqVd31JZ2a9eWYxVAaZx+k7Or2WucsWzWl86v1qJCbceTjw1Snv0ABhQ4d/49YuXIlfn5++Pr6smLFCgDmzp2Lk5MTgYGBBAYGcuTIEQDy8vLo2LEjxsbGjBs3rpadnTt34u/vT0BAAN27d69p2Lt37158fX2RSCS1ROm3b99eYz8wMBCJRFKj/FBdXc3bb79NgwYN8Pb2Zt++fYC2h9zgwYPx8vIiJCSExMREABITEzE0NKyx9e67T+7F+aLonDgdOv4BaEqVCHIJEr0X09LLSU7EzNEQEDA0dCXiwFWqRAUhXbTFB4Y+VigzylAVVAIgNzCg5cChZN69hWujIu5G5JBxt+ihQbkBtJsGqWEYpt7CwWEAaWm7uJuZRG5p1V9T1KCq1uqkNugOZs4AJFzPojRfg7P+ecRvwjDu2BGXtWuQmtfNiSw+fpzc1asxebkvYreXuBd+lfCjhzi9+Vt++upzok/+TGVpac14tVJDeXE1arXmGVYfIrezxemL5djPnUvZxUtkvDkJb/NZlJff49atmS9UkFBv4EKuaLzRO/oBZN2sdc69e1OatTYl27ghZyeuRZmZWWe7OnT8fyAmJob169cTFhZGVFQUhw8fJiEhAYDJkycTGRlJZGQkPXv2BMDAwID58+ezbNmyWnZUKhUTJ07k9OnTREdHExAQwKpVqwDw8/MjNDSUdu3a1brm9ddfr7G/detW3N3dCQwMBGDhwoXY2tpy584dYmNjad++PQAbNmzAwsKChIQEJk+ezPTp02vseXp61tj75ptv/pTno+sTp0PHPwB1afULR+HUKhX5qck4txXQ07ejslQkKkyFl8EVrJtNBMDAx5Kio/epjMvHuJUjAP6dunL9yEEy7hzF0GQoF/cl0H9ak4cVm0FvwK8r4NQC3IbvICMjlBORBwEvgv4K0ftbh7VC98GjABBFkSs/RaOvl4vLnusYNW2K05dfPDf/7TfKk5NImT6dMhMFP9+/iWbK+zXn5Ib1kRn4cS8qm3O7jiDTM0FEH41ae14ml2DjaoK9h7ZPm52HKQoz/afOZfHaYPTc3EidOJHCMUtwm/Uqidm7MDNvWqsZ8bNo5GTJNPd5uCe+g9WOoUjfPQOGD53l4GHNyc78lTtie0zf/pgm385Hbm9fJ9s6dPzbiYuLIyQkBKMHjcrbt29PaGjoU8crFAratGlT4+j9hiiKiKJIWVkZVlZWFBcX4+XlBVCnhsY7d+6sJb21ceNGbt3SFh5JJBKsrbXqMQcPHmTu3LkADBw4kHHjxv2lVeY6J06Hjn8AWt3UF8uHK8hIQ61SIVeI6Os7EH48CbVaoLlPnFYbFZDbGCGzMaQiNq/GiZNIpbQZ/AaHvlyCX+csEsKtuBeZg2fQgypPqVybG7f/HQwTw3F0HMSOk+noy+rT0P4vUGm4thHM64GnNqfvfnQyxVlyvON/waBBA5zXrkFiYPBcM6JGQ+y5UxTMnI15ZRW5/XvRIqgJpjZ2lGTok3CtlKJSOXJVKab6laj0RMoqklBVFSORqrF1c8bCsRHFuSJRJ1OIUCcDYGypj0djG5r3cUff6PG/kaJFCO67d5Hy3vtUz/wR21E+xAuLMDXxx8wsqE6P4K0erXjvq4nsKV4A+8bA0N0g0UZlBUHgpQkt2DP3AtGq3ihGjaXhpjXIHxEA16Hjr+bo0aNk/smRYHt7e3r06PHMMX5+fsyaNYu8vDwMDQ05cuQIwcHBWFlZsWrVKrZs2UJwcDDLly/HwuLpOwVyuZy1a9fi7++PQqGgfv36rF69us5r3b17NwcPHgSg8EEh0scff8yZM2fw9PRk1apV2NnZkZaWhouLCwAymQwzMzPy8rQpLffv3ycoKAhTU1MWLFhA27Zt6zz/09Btp+rQ8Q9AU1r9wpWpOUkPqhZlJcgkdsScSaWh4Rks/BrXGmfQyIqqe0VoKlU1x+qHtMbOw4ukqCOY2+pxaf/d2luJ/oO0/dpOL8LN5R3uF9fD07IIufRPfmXk3IHE89B0ZE1bkUt7LqNfVYCzNJV6361HavJ8xzH9Thw7Zk8hZsE8rPKLUIweSeteAyG6mivbirh+porqrFzsiw5hbnYe09wfcL++mrbhG2mtfwdX2xyyE37k5sn52LnE8OZnLRjwYVPaDKqPnaspN86ksmPuFRKuZz/xU7Wemxtuu3ehaB6CbF0C5vsV3Ige+8SGyU+iob0J7kGdmKt6ExJOwOnaLUv0DGT0nNgMjZEJkZa9SBw+EmVWVp1s69Dxb6ZRo0ZMnz6drl270r17dwIDA5FKpbz33nvcvXuXyMhIHBwcmDJlyjPtKJVK1q5dS0REBOnp6QQEBLB48eI6reHKlSsYGRnViNyrVCpSU1Np1aoV4eHhtGzZkqlTpz7ThoODA8nJyURERPDFF18wdOhQih9I/v0RdJE4HTr+AahLlejVM32ha3KSE5FIpShVORSkKRA1GpopdoHnrlrjDH0sKT2XSuXtfIwaa6NtgiDQZsgI9i38GI8mKdy+akfs+XT8O2hz0pBIoeNM2DsCya1fSS6pR0fnc5SXt8TIyO3PuGUt1zaCRA5BWhmtOyePU5hng1f+j3hs/v65LUFK8/M4t30TcRfOYG2gICinGMOgIDJuFPJLbAZVes7o6yVjbJ9IlqyS5CozJBIJGhMf8NHKZRmXl2OenYddOaitbQg7+AO3L1+gy1tjadw5iMadXchOKubM9tscWx+Dm78V7YY0xMSydnRQamqKy7pvyFqyFLZtg/xyYvQnEBi8BYnk+a/ayS81oGNUZ3qbZxByfhk4BkKjPjXnLR0UdH7Tj2PrIbasBZLhI6i3dQty22f3ydOh48/geRGzv5LRo0czevRoAGbOnImzszN2j0Six4wZQ+/evZ9p47eCBE9PTwBeffVVlixZUqf5d+3axZAhQ2p+t7KywsjIiP79te2QBg0axIYNGwBwcnIiJSUFZ2dnVCoVRUVFWFlZIQgC+vra1IymTZvi6enJnTt3CA5+oiRqndFF4nTo+JsRNSKaMiWSF9xOzU26j42HHaJYTdYdPXyc72FqXA2Otbfw9OqZIlHIqYitLbnl6h+Ii28Ady4fxsHTkKs/3ae64mG0jkZ9wd6fWye3oFRL8LLIID5+4e++z8eoLoeoHeDzMhjboMzJJmJDLDJVGS0WjkLu6PjMy0sL8tnx8VTuXPmVkJcH0U4pRSKRcKfEgatGramwz6HSI5I0myRShDLcvbx47bXXmDlzJlOmTGHo0KF06tQJl6ZNKW3YkFhfX27bOqGwckGpVLNv4cf89NXnlBcVYutqysDpTWk90IvU2wXs+PQKUSdT0GhqR+UEmQz72bOwnTYVw2vAsuvcvbW0To/DydyQES3dGJ41iArbQNj/LuTcrjXGq6ktjbu4kGrXhhSNs7YHXkXFCz12HTr+bWRnZwOQnJxMaGgoQ4cOJSMjo+b8/v37a6JkT8PJyYnY2FhycrQNzE+cOFGnXDiNRsOePXtq5cMJgkCfPn04c+YMACdPnsTnwYfCvn378v333wPwww8/0KlTJwRBICcnB7Vam3x779494uPj8fDwqOMTeDq6SJwOHX8zmjIliCD9He1FXJtqE9yryyxpYrAFXNvV5FL9hiARMPC2pOJmLqJKgyDTfnYTBIG2Q0awY/YUTC1vk3G3HuHHk2jxsvaTKhIJdJxN5NbvAGjv35ncrAXk5p7G2vpPaNlxMxQqiyB4FKIocvPD6eSaDqOBbzZmfgHPvFRZWcmBz+ZTUVLMkHmfIz11luzwSOK9+pPg5U+5RQQaVHg4eNDFvzPe3t4YPJJXZ2JigomJCQ0aPOwdV1payoXDh7mm0aCSSLBUWBAXfo3EyOt0GvUujdp0ILBLPTwCbTi36w4X9sZzJyyTbmP8MLU2rLU+q9GjEQwNyZo3n9KZW8ha6Yed68vPfSTvd/BiV1gKc/Sn87l8Aux6HcacBAOzmjEtX/EkO7GYW9KhKK4sQj59Bk4rvnyq5JgOHf92BgwYQF5eHnK5nNWrV2Nubs748eOJjIxEEATc3NxYt+5hY3I3NzeKi4uprq7mwIEDHD9+HB8fHz755BPatWuHXC7H1dWVzZs3A1oncPz48eTk5NCrVy8CAwM5duwYAOfOncPFxeUxh2vp0qUMGzaMSZMmYWNjw6ZNmwBt1HDYsGF4eXlhaWnJrl27auzMmTMHuVyORCLhm2++wdLS8g8/G+F/TZsvODhYfLQPjA4dfzfVGWVkrwzHcqg3RgGPC7c/iYqSYta8NZSWI5pRYbCF7EufMEQ5Hnp9Ac1GPz7+Zh55W2OxHu2HQf3ayb8Hly0gOSYaz5CppMSW8/q8lhhbPKjIFEU+WLiMc+UuXPmkJ2ERAxFFJSHNf0YqfXrVZp34tiMoK+D9S+Rt38a5PffIcGzBm5+1x8j06YUMokbDj18sJuHaZV6eOht7pYbEt97lhs8wEj0MqTLMwdHRkVdeeQUbm7o9z0cpKynh9IYNRObmopLJUFSUIqYn0mHgazTrOwBBEBBFkYTr2ZzdcRsE6DbGDxfvx1/IBaF7yZg1B6WngMeG3ZjY+T93/tWnE/j82G2O9pPQ6PgbUL8rDN5ekzMIUFZUxd5FV6GynKBTM3EY+Tq2H0x+4XvVoeNZxMXF1SlapePP40nPXBCE66IoPnHfVffRTYeOvxlN6W+6qXWPxOUkJQJgZKX9J2yh/2Ar1vPJETL9+uYgk1AZl//YudaDh1FdWYFMGoFGFLly6N7Dk4JApNSXQG4jjdxJgwZzqKhIJiVlQ53X+kTSIyA9HIJHUXX3LmlfrCLTIQS3JtJnOnAA53ZsJuHqJToOfwu7skruvjuJiy3eIt67mmqjXDp27Mjo0aN/lwMHoDAxofekSYx/6y0Cy8upkulT7uHLL8ePcXrrBkSNBkEQqB9sx8AZwSjM9Dm0MpLIX5IfK3qw6D8I2yVzkN8XSXzzDary0p47/8jWbtia6DM7wgyx60K4fQROL6i9RjN9erwbQKVaj1sdZpKz/jsK9x/4XferQ4eOfy86J06Hjr8ZTekD3VSTuufE5SZrK1Ml8ko0Kj1sNPfB3BUsn5xjIdGTYlDfnIrYvMccDWsXV3zbdSL23M80aG7M7UsZ5GdoVQeKypXcKxIJtFTDuWVYGQdhY9ON+4lrqKz8AwoC1zaC3AhNo1dImzKVNMcQNIIezXuGPPOyqBNHuXYolMBuvfB2ciNu2lxOdBpCuksexmZGvPXWW7Rv3x6p9MWaJv+GsrKSouxMMuJvk5uXhWf3LrQwM8QqJ4tqGycuxN4h9Osv0DzIbTG3NWLAh01xD7Th1x8S+GVTLMpqdS2b1i8PwWLJBKQpVdwd0g/lg5ycp2GkJ2Nil/pcTyrgF5N+0GQEnF8OkTtrjbNzN6XjMG9ylebcbzOWjDlzKL969Xfdtw4dOv6d/OOcOEEQNgqCkC0IQswjxywFQTghCEL8g+8WD44LgiB8JQhCgiAI0YIgNPn7Vq5Dx+9D/XsiccmJGJmZU16RjbLcEvvSU0+Nwv2GoY8V6sIqlBmPy0K1HDgUUSNSXXIRmZ6UsAfRuKhUbT+kwJYvQVk2XFhBfa9ZgIb4hLqV5z9GZRHc+AH8B5LzzWYq7sST4tYOO0+wdn56O5HEyOuc3LgW98CmtOnSi5gPPuZE526UmhXi5x3E+IljcXJyeuHlVFdWcO1QKOvef5OvRgzku/FvsWP2FA58Np/j674i6vplqvNSMUhJQJTKuJFfzOpPZ1NWom0PoGcgo/sYP0L6enDnahahn1+nOK92sYFDn/cwmD8AMbOEu2+8gqqg4JlrejXYBXdrBZ8du426xzJwbweHJkDSpVrjGobYE/hSPZKk3mR59yR13Hiqk5Je+Bno0KHj38k/zokDNgPd/+PYDOCkKIr1gZMPfgfoAdR/8PU2sPa/tEYdOv401KVKkAoIBnWPHuUk3ce6nhsV5emoyi2x4QZ4dnrmNQbeliBQS0v1N8xs7WjctQdxF07SoLk+d8NzyEkuITKlEEGAgKYtwG8gXPwKw0oVrq7vkZ19hPz8iy98v0TtBmU5ZZLm5G/cSHr7ZihVljTt9vR8sdzkRA6tWIK1cz16vDWWuEkzONG8FUq9Krq36MLA115GXkdFh9+oKCnm1z3bWf/+SM5u24iFvSNth75Jt/cm8cqMT3h90ZeMWb2RCVv3MWrFOrr07otb2n1kxQXkSfRZvnABuz5fSHbiPQSJQHBPN3q9H0BxbiV7F18jPaGw1nzu/Rag+agJmrRc7o8civoR2a//RC6VMK1bQ+KzS9kXlQWDvgczF9j9OuTfrzW25Sue1PO1JNamKwXGbqS8+x7qoqKnWNahQ8f/J/5xTpwoiueA/0zceRn4/sHP3wP9Hjm+RdRyGTAXBMHhv7NSHTr+HDQl1UiN9R7KXj1vvFpNXkoyNq7uqMVMJCoz9CSVUK/VM6+Tmuih52JCxRPy4gBavDIYmVyPooxT6CtkXD54j8iUQjxtjDE1kMNL80CQwPHZuNYbg4GBM3fi56HRKF/shiO2oLbwJ/3zDQgulqRYtMbYSsDNz/qJwytLS9n/2TzkBob0mzqL+zPnc6RBAEq9KtoZ2dKie5sXmr4kL5czW9bz7diRXN63E6dGfgxdsJxX5yyi+csD8evQBY+gZth71sfU2ha5nj4WDk4Ev/Iqwzft4C2fAOrFRiHK5NwqqWLjok/58YtF5CYn4uZvzaAZwRgo5BxcEUH8tYcNeQVBoNGgbykfZ4syPpGkt0c9sz1IDz97GjubseLEHSrlZjB0D2jUsPM1bTTzARKJQNfRvpjZGBHj/w5FOWWkjNW1HtGh43+Bf5wT9xTsRFH8rSlMJvBblz8nIOWRcakPjunQ8a9BXfpiPeIKMtNRKauxdnFCkBViqNEDQ0swfn4iv4GPFcq0UlSFVY+dMzIzJ7jPKyRcvYh7QBVJN3MJT8wn8De9VDMnaPMBxP2INDmMBvVnU1YWT2ratjqvnYwoxIwbZFyzRJWXR0p/GyoKPAnq4oUgedyJFUWRX75bTWl+Hn0/mEn2mu84aOlItX4VTe7m0GHSqDpPrVGrubJ/DxsmvEX40UM0aN6KEctW02/abBzqN6yTDUEQsB8zhsEfzKBt2BWk5SVUOrpzMyWdzR+O5/CKpaiVeQz4sCl2bqYc/+4m4ceSavIQZTJjfIZ/T/FIGZURN0iZMB6xuvqpc83o0Yj0oko2XLgP1l7w6hbIS4C9I0H9sKefvpGcnu/5oxGk3Or8MaWRN0kdPwHNU2zr0KHj/wf/FieuBlH7NnyhviiCILwtCMI1QRCu5TwnqViHjv82mtLqF9JNzU1OBEDvQSGEibICbOrmhBj6aBUQKuMe31IFaPbyQMxs7UiK3EeViYTCShWBLg97lNFqnFbn9Oh0rC06YGnZlnv3VlBVR3kpIrZTlGxCydV45MNDyCwIQa4P3i2fHECPO3+a25fO02rQ64jnLvNDhZQqgyr8oxPp+GY/JPp1a3OSl5rMjtlTubBrC57NWjJ65Xp6jJuCtYtr3db9HyhahND2+620v38fvbxMqsyskQe1JiHyOpunvs+pjSvpNMyF+sG2XNp/l7M7bqN5IGtmZOSO15tfUTRERfn5X0mbNg1RpXriPC09rXjJx441pxPILqkEj/bQazncPQnHZtYaa2GvoOtoXwqKJSQOWEzphQukT5nyVNs6dPxbWLlyJX5+fvj6+rJixQoA5s6di5OTE4GBgQQGBnLkyBEA8vLy6NixI8bGxowbN66WnZ07d+Lv709AQADdu3cnN1f73tq7dy++vr5IJBIebUG2ffv2GvuBgYFIJJIa5Yfq6mrefvttGjRogLe3N/v27QMgKSmJzp07ExAQQIcOHUhNTa053qRJEwIDA/H19eWbb775U57Nv8WJy/ptm/TB9+wHx9MAl0fGOT84VgtRFL8VRTFYFMXg39t2QIeOvwpNqfKFdFNzkrRyWxVV5QBYlSeBdf06XSuzMURmbUjFE/LiAOR6+nR88x0K0lMpttBWn9orH3lNyA2h60LIjkUI30yD+nPQaKq4c2fe8ydXVaEK20NWpDkGTRqT5H+PktRm+LR1Qc/g8b7jhVmZnNy4FudGfrjpm7PtdhqVhtX4xOcSbA7GnTs/d0qNWk3YwR/YOn0CxTlZ9J40gz6TpmNm+8fF4+UODrTZsp12FZXop9+noLwCoXFLfLr3IT7sEts/moCrbyFNurty83w6P62JpvqBfq21dUfsh0+iaICKkmPHyfh4DqJG88R5PurhTZVKwxfH72gPNH0TWoyFsHVwuXYasKufFS37eZKUpUfBiEWUnPiF9I9mPtW2Dh3/dGJiYli/fj1hYWFERUVx+PBhEhISAJg8eTKRkZFERkbSs2dPAAwMDJg/fz7Lli2rZUelUjFx4kROnz5NdHQ0AQEBrFq1CgA/Pz9CQ0Np165drWtef/31Gvtbt27F3d2dwMBAABYuXIitrS137twhNjaW9u3bAzB16lSGDx9OdHQ0c+bM4aOPPgK02qmXLl0iMjKSK1eusGTJEtLT/0CF/wP+LU7cj8CIBz+PAA4+cnz4gyrVFkDRI9uuOnT84xFFEXWZEukLtBfJSbqHpaMzRXnaT3i2FfFasfo6IAgCBj6WVN0rQlP55AiNZ9PmeDVrQXR6KjIRcs5l1m5L0qiPtlry1AIUgjnubmPJzv6JnJzjz5789lGyLoqISgHNO43Iud0ERAkBv+m1PoJGrebIqmUIgoT2Lw9my6mrVBgp8a82wT/qDHYfffTcHMK8tBR2zfmQ8zs249G0OW8uX0PDli+WP/c8JAoFrb/dSBtzKwyTblOcl0tkei5tx07D3N6BwyuWUJR+iDaD6pESV8D+5eGUPdjKdnN9H6PXXqKkl4ai/fvJWrT4sfYvAB42xgxv6cbuaynEpj8QzO46H7x7w88fQcy+WuODutbDs4ktUclmqEfPpPjQITI/nfdE2zp0/NOJi4sjJCQEIyMjZDIZ7du3JzQ09KnjFQoFbdq0qaXQAtp3rSiKlJWVIYoixcXFOD6Q9mvUqBENGz77Hbpz585a0lsbN26scdAkEgnW1tqc3tjYWDp10haZdezYkYMHte6Knp5ejXZqVVUVmj/pg9U/TnZLEISdQAfAWhCEVOATYAmwRxCE0UAS8OqD4UeAnkACUA6M/K8vWIeOP4BYoQK1+GKRuOREnBr6UFqcir4CjKqrwbrBY+Oqq6uJiIjA09Oz5gUDYNjIitJzaVTeKXiqQkTHEW+zZPFhHIVi8lMMuReZg2fQA6F1QYDuS+Gb1nB6Ia49lpCdc4xbt+dgbt4cudz8iTZL966lONkIy/dGEKveTdH9ebgH2jwmWQVwOXQ3GXdu0XPCNA5sP0GZsRJ/8wb4fLsQiyFDMGjw+P3+hiiKRJ04ypkt65HrG9BrwjQatmpX58KRF0WQSGj72RdoFs4lLDYatbMnP/78My/1HIBr2n3C9u8lJfYGIb3f4vqxCkKXXaffB00wsTTAp9FnXBs0gPKqdNi2DUEqwXbGjMfWOrFzfUIjUlnwUyzb3wpBkEhhwHewtT+EvgNG1tqtVrSOeqfh3hRklnE505XOI8dRuGkVEkNDbKd/+Jc9Bx3/v7lzZz4lpXF/qk0T40Y0aPDxM8f4+fkxa9Ys8vLyMDQ05MiRIwQHB2NlZcWqVavYsmULwcHBLF++HAsLi6fakcvlrF27Fn9/fxQKBfXr12f16tV1Xuvu3btrHLLCQm3l+ccff8yZM2fw9PRk1apV2NnZ0bhxY0JDQ5k4cSL79++npKSEvLw8rKysSElJoVevXiQkJPD555/XOJF/hH9cJE4UxSGiKDqIoigXRdFZFMUNoijmiaLYWRTF+qIodhFFMf/BWFEUxbGiKHqKougviqJOT0s/o4A3AAAgAElEQVTHvwr1g0a/dc2JqywrpSQ3B+t6blRVpYPSGKmGx7ZTExMTWbt2LUePHmXNmjUcO3aMyspKAPRcTZEoZFTcfPKWKoCBhTW5+rZYFt3DUJHGlR/v1xZ7t/OB4NFwbSOS7Nv4NFqKUplPfPzCJ9rTZN4l48f76NmbUtJNQ/5dX1RV+jTu9HgULu12HJf37cKnbUcSwlLJNC7HXrQmOOI4UhMTbMaPe8IMWpTVVRxbu5KTG9Zg7lAf764TuXvfmL1rL7Jx6Qm+/vgQn0/7gTVf7+P7Q/vZHR7K9tjtrIlcw5KwJeyP30+Z8vE+enWh/ay5NG3SDFnSbczycjjxyy8UGJkz6JPFCAKc3bKYeo3uUFFSyYEvwinOq0AmMyYg4BtKB0mo7mpO/vdbyF6y9LGomZmRnEmd63Pxbh4n4x5kk8gNYcgO7d9+1+uQEVUzXs9ARo93/UGEMGUzTIYOJ3/zZnK/XvW77k2Hjr+LRo0aMX36dLp27Ur37t0JDAxEKpXy3nvvcffuXSIjI3FwcGDKlCnPtKNUKlm7di0RERGkp6cTEBDA4sV163V55coVjIyM8PPzA7Rbs6mpqbRq1Yrw8HBatmzJ1KlTAVi2bBlnz54lKCiIs2fP4uTkVNN83MXFhejoaBISEvj+++/Jysp66px15R8XidOh438JdYm2erCu1am/FTUYmjggKctDrlaAzEBbbIA2+nby5EmuXLmChYUFr732Gnfu3OHSpUtERUXRuXNngoKCMPSzpjw8G02VGon+4/3pbmUWoxQFvBRqqopPUl5qS3xYJg1bPFKA0HEmxPwAP8/AZMQhXOu9Q2LSGmztemFt1aGWvZwFM1CVS3FcMoHrGYspvr8AaxdjHLxqR+2qyss5umoZJtY22Hm358dzRzBU6jOotQfZu1dj9/FspOZPjvQVZmbyw6L5FGUlcddFwmbfo1B5VHtS8eDrUfKp1cxIX2JAlaaSxWGL6VyvM308+xBiH4JUUvf+fR0/mIFyxWfcuHwe+7IyrgP5+fkMmvc5l3Zt4ebpg1g6e1Be1IkDyyPo90EQptbu+Pp+SZRqDA7yhuR//z0IwmNRs9dbuLL1chKLjsTRroENejIJGFrA6z/Ahq6wbSCMPg6W7oBWTaLLSB9+WhNNbHAffPuXkrtmDSBiPX68LiKn44V4XsTsr2T06NGMHq3VhJ45cybOzs7Y2T3Max0zZgy9e/d+po3fChI8PT0BePXVV1myZEmd5t+1axdDhgyp+d3KygojIyP69+8PwKBBg9iwQStF6OjoWLPdW1payr59+zD/j3eWo6Mjfn5+nD9/noEDB9ZpDU9D58Tp0PE3oqmJxNVtOzUnSdvoVSNaITfKx0ilASsvkEhJSkriwIEDFBQU0Lx5c7p06YKenh7e3t4EBwdz9OhRDh06xLVr1+jcuC0GSg0VsXkoftsmfYTIFO12weBBvTn3xRxMbSMJO2yCV7AdUtmDAL6RJXScBUemws39uPuMIyf3BLduzaJFyM/IZFr1hYroaPJPxmAeaEKmazyl4Z6U55vSsq/LY47EqU3fUJyTQ7fxn7D/6AkkCAzt3p6CeXPQr18fi8GDH1trWVEV5/f8wo3T36GmmrNNcyhzMGK4+0iszCyQS2VIBSkyycPvpnqm6FUbUZooUhSvIu9WNeoqkSL7NLJ9YzibcpbD9w5jZ2RHb4/e9HDvQQOLBs91fARBoOvEaag0am6FXcQ9rpQkQWDr9h0MHTocjybNOLHua5TVW1FXtyd0mYZXpjTB2qYTbu7jSOy5Cld5a/I3b9Y6ch9Oq5lTLpUwq1cjRm2+xrbLSYxqo3XWMHOCYaGwsRts6w+jjte0m3HztyakjwdXfryH7YC3sRUgd81aRLUGm0kTdY6cjn8F2dnZ2NrakpycTGhoKJcvXyYjIwMHB+2Hyv3799dEyZ6Gk5MTsbGx5OTkYGNjw4kTJx4Tmn8SGo2GPXv2cP78+ZpjgiDQp08fzpw5Q6dOnTh58iQ+Pj4A5ObmYmlpiUQiYfHixYwapW2DlJqaipWVFYaGhhQUFHDhwgUmT578ex9JDTonToeOvxFN6YtF4nKSEzEwMaUwR0BulY9JgQaVZUtOHD1aE3178803cXNzq3Wdo6Mjo0aNIiYmhhMnTrDt5z0EKjxpHWHxZCcuuRBrY32CmweR27Yjcb+eo7LSk7iLGfi1e6QVY9ORELEVjn6IxKMDjbyXcO36IOITFtPIexGiUknGjKnI9NWYvzOQuPQNVCTPx9BETv2mtStE74VfJfbcKYL7DuHIsYuopFV0lZtgeCuG0rQ06m3aiCB7+MoqK6riXGgsF8LXY5GdRJGxktiWMsa0m0Efzz7IpXV4pl5AF1ArNaTcyifylB42V2QEWXhQ4pdMuOQmm2I2siFmA9b6JjS38aa1QzNaOLbBQuGCTGb2mCMkSCT0mDQd9ReLiL92hYZXL3M/pBXr16/ntddeY/iyVfy8ZgXJN46jrLxH6OcVvDK1NR7uEygujiK56xW85N3I37RJ68hNm1ozR8eGtrT2suKLX+5Q7WCIqZEcC5kUC7kT9q9sxXXPIMQdg5CMOAz6xto/UXdXspOKubj/Hn3Hf4C5REreunWgUWPzwQc6R07HP54BAwaQl5eHXC5n9erVmJubM378eCIjIxEEATc3N9atW1cz3s3NjeLiYqqrqzlw4ADHjx/Hx8eHTz75hHbt2iGXy3F1dWXz5s2A1gkcP348OTk59OrVi8DAQI4dOwbAuXPncHFxwcOjti710qVLGTZsGJMmTcLGxoZNmzYBcObMGT56UHjVrl27mry7uLg4pkyZgiAIiKLI1KlT8fd/ukpNXRH+1yqWgoODxUf7wOjQ8XdSdCyRkrMpOC1o88Rmt//JjllTkOnrIzHsikXT0dS/W0aq/liO31PXir49i+rqao4ePUpERASdlH60ntEXqUntazotP4OHtYLvRjSjrLCATZPfRZDaYWQ5iGELWiHTe2SLMTMGvm0Pvv1hwHriExaTnPwdQYFbEEPjyF62HKf2ZaS9/zLJKVEk/DSX4B5uhPR9+FLUqNVs+XA8apUKjVMn0spv4Z1SRP9PJnO/3ysYtWyJy+pVD8ZquHEmjQMnjlFQ9gMu2TLy6knpMOZdutTvhkSoW6qvRqOipPQmhYVhFBZepbDwGirV43JVJSqBm5Uy4ioFblVKqRIFpIh46GtorJDRz6MrLg79sbAIQRAePhe1SsWhZQu4G3ENr7xS7nd8iWK1mj59+hDYuDHhR3/k3PbNiKI+xtY9eXX2IBSWVYRdfRlRo8b9RAeKd4diPno06WPe5VJRGZeLyricko/yfBbqegpUjWpv03TJu8TmmFlcsWrG1g6rCTI3pampggZSOYeXhVNRomTAtCAq1i2ncOcuLEeOrBXt06HjUeLi4uoUrdLx5/GkZy4IwnVRFIOfNF4XidOh429EU6pEopDXyYETNRpyUhLx69iVpIQkLAD9KjXRZXKcnOxr+iQ9Dz09PXr37k1ORjbnM+Kod9Ebt24PtyKKypXcyymjf5A24qYwt6DNa8M5uXEtKnUkMedcCexS76FBez9oOxXOLgG//nh4TSYn5xdun/sQi69LMXZRYtilLel5R1Flz0MQBHzb1q7KijlzgrzUZBxbjuJ2QTTWOZX0GjmA3HXr0CiV2E3TJg2nxxdwamcsp8S9WBXG4FJgQL1eHZn8xmQkkuc7b5WV6WRmHqSg8ApFRddRq7W99gwN3bCx6YpC4Yme3Bo9PWtK8wy4eaactIhqHEz0GTbKGRPHcsIzw7iYcY0rObH8kJ/H2eJjDEw6SICpDXZ2vbG374excSOkMhm9p8zi4GfzSIiOwPfoYVJ79ObgwYNkZWXxUvc+1PNrzI9ffEZh5l62zbrHoNmT8PdbzfXwV8nom0R2SR/cN2xgT2Yh3/ceiJeRPv087UgtELkam8POPgGYmRtQqFRToFJRqHTmtKmSly5+TOrVxUx0Hw+AXBAIaWtC+8O5HFgdzeAPP0KQSMnftAlRrapTyxYdOnT889A5cTp0/I2oS6vrnA9XmJWBqqoKQxMHpHp3ASivMiGzpJIeLQNeaF6pVMqrQwez9stVHAw7xrsd6tf0MIpK1ebDBbo8LNdv/FIPbl08S0b8Wa795IlPG8faDXrbToG4Q3B4MtL3L+PTaCn3P38dERn2QXkkWpYgwZKMGCfcG1tibPGwh1N1ZQUX92zH3L0td/JjMagS6G0MMgsLikL3YzlyJEoLB85uvMmV6Gguu28jMFqJebkhnd8fT2D7rs+8V1HUkJ9/gdS07eTmngI0KBQNsLfvj4V5c8zNm6Gv//iWspUVuDaAnOQSjm+4yeGvkmjZz5NOL42kcwNtnsvF9IssvLyQtTnJhCj16FmxheSUDSgU9XFyHIKDwwD6TpvN/iVzieUGjQ8dwKJHHy5fvkx2djYDBw5kxOcrObF+PbHnjrJz9jR6TZyOxHkmRclzOdrzFdpXvsSbP+3jfW83XMe8BUCusy2dEs7w1U+32P12SySPfghwmgBkM/ji1/Ro2JRfGwzlenE514rK2NbKiKGnS/jqi6u0eW88nhIJBVu2gkqN3cezdY6cDh3/Mv5xLUZ06Phf4kV0U3MeVKaKWCNTaMsq71bW10a2fH1feG5TU1N6B3ahUFXCwR8O1LS1iEwpRBAg4BG5LUEiodu7ExEkGkpyjhJ1KqW2MZke9FsNpdlwfDbyOCUGsRJMgorAzoJkYpCXTaKqXI1HawsisyNJKU6hXFnO9cMHKC2qJEdqCKjpfO0CTjM+JGvxYqQWFlR1HsyOTy+xP/UHTnmuoEW4iJXKmFdnLXymA6dUFpCU/B2XLncmMmokRYXhuFmOp6n5ERobb8WNiZiVtoYsA6rTS1Fml6OpVj9mx6aeCYNmBOMRaM3F0AR+/jaGqgpto+RWjq3Y//J+xgWOI7KklKXZpsQa9AGJEXfi53Hh19bcT/qc7hNG4djQhyhXe6x+Okjb4hKSkpJYv349+YWF9Bg7li5vT0WjLuDH5TP46iBclXajn2Q/7eb0wqR7d8qXL6dg9x4ArI31+bi3D1cTC9hyKfHxm+/yKTTshekvs+hREMZsT0cONKlPaJ/GVPVyxDijim3f3eD1Lv3IfvU1CnbsIHPePJ2ygw4d/zJ0kTgdOv5GNCXVyK3Nnj8QrdyWIEgoLzHG0KwQQRSIUgXg5eWFsbHx75rfu0Njgq/e5mp8HGFhYYSEhBCZUoinjTGmBrWdSwsHJ9oOGcGZLeu5+uPPBHR4C32jR8Y4BkHrCYjnvyQ7PAGZrRWOLunctzJGT9+Z+Av2VJuVMDT8ZarFh8LscqVAD8/hyOX5lFfeI+e9LpRduULFteto3pjE4c3RnPXdRkXZXXpcscfY2JyBM+djU8/tifdUVZ1LYuJq0lP3IC+yx7KqC65lLRCyFGiKlZSSTWmNct9/IIDU0gC5nQK5vRFye4X2y8qQbmP8iDqZwsXQu+xdfJUe7/hj5WSMnlSPdxq/Q0+Pniy+sphv409y2qI+0xsvQ1F6jtTUraSkbKbhK+2RnrIgXBAJ+vUs3Rr4cM7fj++++45XXnmFeN8ADgwcR+8D22gVtht3OmPSNo3Y2x/S9JPtaMrLyJw7F4lCgVnvXgxs6sxPNzJY+vNtOnnbUc/K6OF9SKQwYD1s7A4/jIRRx8DeDycDPT7s5c1liT4cvI8kvJTBHfoysbiCfjt3IWpEHD6Zg1CHrWkdOnT8/eicOB06/iZEUURTVvdIXH56KmZ2duSmVGDpX4y0WkaxqOClgBfbSn0UqZk+zeoFkJNVyrFjx3BwcCAypZBO3o9vLwIE9ehN7LlzZCf9wpUfW9DutaDaA9rPoOSng1TGJ+EwJBiBGDLs5CSlmlOeAVFeZxjQcAAtHVpSXF3M5XOHKI83QE+vCpVGxWWPGH4pCuer5QJSO0uO5cs4E7QSy+xyukU7YOXgTP+PPsXU+nGlCZWqhKTk9WTcOYB5wkt4Za5CUGlfcRJzffTcTdF3M0XP2QQkAqJKU/OFUoOo1KDKq0CZVY4ys4zKuDx4UPclMZZj3MIB/xAHbF1NObY+hh+WXqPD6940DLEHwMXEhdWdV3Mq+RSLwhbxztlPGRMwhjdbnCIzYzdpaTuxDMrHxNOc+POmeIXF0zUnh0u9erJ7927C3Lwx8QvipaWfcXXRKu6HnaQ41xGPHllE3hxDk6XbECdUkj59OhIjQ0w6dWLRK/50/fIc0/dFs/2tkNrbqnoKGLob1neCHYNhzCkw0VYEh3R3oyK3En7NoKuXG5uGjaJcIzJ0927yqlX4LZync+R06PgXoHPidOj4mxCr1YhKTZ1z4soK8lBYWJGfUYZ9y3wqSwzQk4jP1fx7HoogO9rua8ghm0q+23WA/DJPAl2e3FBXIpHSa+IHbJ4ylvAjmwnu6YORqf7DexJk5MRYIDdNRhR+JsNERq5Mini/HYJcxdfvLsDEWNt1Ny8thbu/7EHp0pQKSRbdT51jxubdROz+BquCI3w6pJCbbitomGFGy0gLnBv58PLU2Rgoakcd1eoqUtO2knJ7G2bxbXFNnYeAFKMmdhjUt0DPzRSZmT4viqjUoMzWOnQV0TkU/5JM8ekUjBrb0H+0D6cOJ/LLplgKMssI6euBIAgIgkBn1840c2jGkitL+CbqG86mnGVRm0W0dh1LZtYB7t9fhWevZEqCjNCclHC5XKDSzoXmibcItDAkIKg3fl/MZs+CHWTeDqVqnx0N+iUSdettmqzcSMY700ibNBmXdd/g2LIlM3s2Yub+G+wIS+aNFq61b8LUEYbsgk09YNcQGHEY9Iy07Q+GNqSkoIq0/Ul8NS6Aqx99yAGZhH7797G/vIJ2SxdjbVB3OTgdOnT899F91NKh429CU6Jt9FvXSFxpQT4yuSmiCII0i4JKKxo5Gj+3pcjzMPS3Rl+mR0+nNqSUaV8JAU6mTx1v6ehEs75DUFfd5fj62kLURQcPUp2SwY2OplhoqslzNMDdeR4lKc0xd70AYmLN2HPbv0ewaE+FYRaeCUk0ePVVlGoDzHec4p6TM3FuMhrmWBISYUa6ZQXR7QWqZA9z1kRRJDPzIFfO9abwSAKuZ+ZgkdIVRRNH7Kc1w3JgA4wa2/wuBw5AkEvQczJG0dQO65F+2E1piqK5PRUxuZRsukkrIynN/S25fjSJExtjUSsf5pOZ6pmyqO0iVnRYQVZ5FoMPD2Zr3E7s7QfSquUveLrPwtBKw5ZhPTnavA1OuYmE2NkRGRHBrl27EFHz2pzXadBqAmXZ5tzab01FeRrRCeNxXLscPdd6pIwdR3l4OEOau9Day4rFR+JILSh//EYcA7U6q2nhsP8d0GifoVQqofsYPywcjDj2bQzt1XqMXTqf2EFDaHTsCNsmTGFTSjbq/7E2VDr+eaxcuRI/Pz98fX1ZsWIFAHPnzsXJyYnAwEACAwM5cuQIAHl5eXTs2BFjY2PGjast0bdz5078/f0JCAige/fu5ObmArB37158fX2RSCQ82oJMqVQyYsQI/P39adSoUY1MV0pKCh07dsTHxwdfX19WrlxZa56vv/4ab29vfH19+fDDD5+7rj+CzonToeNvQv2g0e9/9mh7EqIoUpafjygagaBGLeZTUWVCgI/3H16HxECGYSMrjBPUKFx8kaIh796NZ17TevBAFBau3L26j6zETAA0VVXkfL2KPHdLjC3TqZYJVBrqo4oPQtRIsfWOIubmZNTqclLjYkiMqaLUohD9ag3N8rOg91Aix30Kmiq+7J1BZ3UgrcPNsfdqgMvwnvyUfJT+B/tzLvUcVVU5REe/S/rRn3E+OR2rxF4o/B2xmxKM5cAGyB6pfv1PKlQVZJVlca/wHtE50fycdJ5FUft548JGBl38gaHXw3gtMoH+EQn0vn6Hrldv0z8igY8L8tnf1Iz7Y31R9XRDU1KNQ0oJPZ2NKIzI5sevIqksU9aaq7NrZ0L7htLGqQ3Lry9n1LFRpJVl4+Y+isvuhzgu9KK78hDdW+/AtPQL2loZkpCQwObNm6moLKfX+A74dJhEZUET7h61p7gkluj703D+bi1yGxtS3hpDRXg4S/oHIAIfhd54THcVAO9e0G0hxP0IRz+EB2P0DGX0GtsYPUMZP34VhVhYTf95H8OoUXQ79wu5n35Kz7BbRBQ/wTnUoeO/QExMDOvXrycsLIyoqCgOHz5MQkICAJMnTyYyMpLIyMiaFksGBgbMnz+fZcuW1bKjUqmYOHEip0+fJjo6moCAAFat0vae9PPzIzQ0lHbt2tW6Zu/evVRVVXHjxg2uX7/OunXrSExMRCaTsXz5cmJjY7l8+TKrV68mNjYWgNOnT3Pw4EGioqK4efNmjabq09b1R9Ftp+rQ8Tfxm+SWRPH8SFxVWRkqZTXVVfqY2ZeDIEKVFHf/Fn/KWowCbai4kUtSoYCrsci5M6ep7+mBs/PjAvWg3VbtOX4ye+dN5fCXXzJqxRIKduxAlZnJ5sGwrrKKNEd96iVXcCw+HqcGLjRp9SERkSO4E7+Qq5ulKG3cUMtSaHX2PKbT53Ns6WGCkn/lcIjASy690T9wG6t6brw6awH6Rgpeqt+d2RdmM/bkWFoZyXg/cxC2aW3Rb2iBeU935Hb/KY6qRSNquJl7k/Np57mQdoGY3BhEnh1dEqTG6OvXw8CwHgpDN0r0PdlXbE/JI8Wblq0M8BYVtLhXTluNHIOMEo4vvUaHCYGYWhvWjLMytGJFxxUcvneYxVcWM+DHATT1eI/9FYG8YW9ByMESsmTW2DfOR1B+S2vpS1zOlrJhwwbeeOMNur7VGFGUcueKE8ln9uPa8SqR92YSuGUTKSNGkTzmbeqt+4YZPbyZc/Ame6+l8mozl8dvquVYKM2CX1eCwgY6zADAxNKAPhMC2b8snB9XRtJ/WlO8p00lRy6n97p1mCurefn1txnias9HHg6Yy3X/bej47xEXF0dISAhGRtrCnf9j77yjo6rWxv1Mn8ykzqT3CqRBCKH3Ik2aoHRRQIoiXqRfsIAVpYgKUhQFpEiRooAUqaGEmhBSIKSRkN7LZJJp5/dHvNyrVH96r9/33XnWyhoWe+939jlnZs573tq1a9d7vUkfhFqtplOnTvcUvX8gCELjw7BOh1arpbq6muDgYICHFjQWiUTodDpMJhN6vR65XI69vT0ajeZeyy87OztCQ0PJy8sjLCyMNWvWMH/+/Hslm1xdXR+5rz+K9dtoxcpfxD8tcY9X4morygCoq5bh2bIGAC9TLWK7+wP8/39QNtXQoJCQWlrN+I6BqNIz2L17N1OnTkWpfLBVyzc8GO/wftxN/pFre/YjXf0ZKQEiRoc2Q3Izn4qApthVTKYmyY6O7gloNBPw851MdvZXVOrnU+eUi/fdAnyiu3D0NKhy11GvAM+hE6j4Pg57Nw+GLXgHhapROQux8+DNAE923symw82X0epCqWwN4UPD76tvVm+q50TOCWLzYjmXf46K+gpEiFCqmlBnPxiT1AmR2AZnhT3uNva4Ke1xUqixFSqRGu+i12dzpyqD25Wx5JUdbjzfSi2tPDrgrWmDRBVJjkHO1WodK3ylrPC1JUBnoUuRkar11+jRPwSvqH8mh4hEIgYGDaS1e2vGH5/L2bQVNHNsw7x2H+E46132L32PlF0XCe9ZhajZMaLzA7iR14MNGzYwevRoer8UgcUskBnvRvG1DRB9jkuJc2mzaSO5L44nZ/IUhq5dy4EADe8eTKFLExfcHR5w3XotBl0ZnPoQVFpoMwkAjYeaAdNbsO+TeH78LIEhM6NxmfE3xCoVnT75hE11NUx+cToHS6p4O9iTZ92crDXl/st48/Zdkmr1f6rMCFsb3g158IPivTkRESxcuJCysjJsbGw4dOgQMTExaLVaVq1axebNm4mJiWH58uU4OTk9VI5MJmPNmjVERkaiVqsJCQm51xLrYTz77LPs378fDw8P6urq+OSTT9BoNL+ak52dTXx8PG3btgUgLS2N2NhYFi5ciFKpZNmyZbRu3foJz8jvx+pOtWLlL+L3WOJqKxrrwtXrFFjU2QA0UUkeseL3IZKKyQxQYwLa+GsZNmwYVVVVHDx48MHuuV/oN+15xDJP8j5fjry2nuKxPelSdIsqOymu4a+TlB+OWqEjIG0u3DmPn+80Cq8Nosa2CqlgoXlGDhflT5Ei2k54Rjl5vVpRufcSaicnnnvzfVT2jeVXSkqPc/FSP2rvxjMt+2Na6kPZEniYUbWv8F7cezSYGxAEgdx6A0uTj9Fl90Dmxc7jQPZpiiShVGtfpsRrNTnOb1DrOIx62x7oVe3JlYRz2eDDgWoHviuVsabUmc+rovjKMIQUx/kEhW+lb4uv6O37CgGKEM7eOc7XV99kQ+xQki9OpumNlUxOj+Wp/HQEcxVb/OXMaa/mqcK7TN50im927Cc2Npa0tDSqqqo4XiUl3nYGPt4vUVOdwLM/DuNM4VmGzHkT7+COxO91RnyjNTbqLMLDdiIW6di4cSPXExPoPSkcv+ahlN2eSW1WKA2S85w48RqeX61H5unJ3alT+TDAgNFs4e97Eh983UQiGPgpNO0Ph+ZA0vf3htz87ek/NZKKojoOrk7EZLTgPGUynks/xv1mCvtXfUBzXRXTU3MYmpDObV39n/b5s2LlYYSGhjJv3jx69+5N3759iYqKQiKR8PLLL5ORkUFCQgIeHh7MmjXrkXKMRiNr1qwhPj6e/Px8mjdvfi/G7WFcunQJiURCfn4+WVlZLF++nMzMzHvjtbW1DBs2jJUrV2Jv3xhHbDKZKC8vJy4ujqVLlzJ8+PBH/ob+UayWOCtW/iLMtUbEKikiyeOfpXS/KHGI1OhMGagAL63/I4Qb4eK6RteZoy806QtN+oB7ZOON/AGk2DUqheF1Ap6RvnTr1qT7tCUAACAASURBVI2TJ08SFBREVFTUA9fYa1U4RrUk4NpZ8tycmNZxFNKNmykJ80FDD3JTr9K2fwjibF/YPYF477cpzG+B0TGDpk4XuRX9GjfkV/BPOUmVnZLcChMKtZrn3nwftaMTgmAmI/MT7txZg5OxG27XJoBRhHZ8KK8HtqHukgM7077l4N2r1Gtforb8J2x0Z7BI3bD3XkCVPIwqk4BKLKa/1o5hbk4EqZSoJWIUYhEKceOr/JdzUmwwkVyrJ6Giiov5xSQVVnNSqsAibo/Ivi0uQinu1TewMaVQK87inPQcUi4SSSTjTR3R1PuQbLHhWp2SAz4OHBQcaJFXRcDlY5gw80NUJ5o06Jilaom8VTSfpX/GjJMzeCb4GWa99jqSNWu4dv480TXD0Jr2Et52N2lpPfjhhx/Iysqiz/h+/PylhbtXXifEaRUytysc3P0q3Zd9TOWcuRjnzuC9aW8x+1YJu6/e5bmYB7hVJVJ49mv4dijsmQI2ThDUAwCfUA29J4Rz5MskDq9Lov8rkTgMHIjUxZW706ez6L2/M/S9JbxRK6H3lVu8F+LNaA+N1Sr3X8DjLGb/TiZOnMjEiRMBWLBgAd7e3ri5ud0bnzRpEgMGDHikjISEBACCgoIAGD58OEuWLHnkmm3bttG3b19kMhmurq507NiRK1euEBgYiNFoZNiwYYwZM4ahQ4feW+Pt7c3QoUMRiUS0adMGsVhMaWkpLi5/jtfkt1gtcVas/EVYagyIn7C8SG15ozvVIpdgNBeCUYzMJezBkzNPwZqOcHQhuDYDBDj5HqzrDJ+Ew48z4NZhMDX8atn16jr8xRLkKY0KY+fOnfHz8+PQoUOUlZU98K1uld+iMn41YgukO9lScWghJjHYxMwgObYIsUREWLdAGL4JQV/B3bPZ6G3zsDPU4hJxm6qm27nu8i3R6VKuhfghlct57s33sXd2xWSq4XriFO7cWYOP+VXczk1ALJFhNyWSH+0ERlzPYX19b6q0M9DpczHnLkClO0uM3yhcgpaTJQ7FTirjwybeJHWKYENEAP1dHGmqVuKtlOMil2EvlaAQixGJRNTX15OfkkTeof3UbP2a0BM/Mjn9GpslNazzsmeyuyOe3r4k+fbkUuB0coNWEhm2imif/qQIKayqXcUx2T56tpSyc2ArPrphZnCmgXSNA9+37MjZ8E7YWyw8fSeF2JMnOL7zOBGJEbQV2rIvfR/P/TiCpuOGEtqpG9dupKCXj8VzNUS5ncDPL4EbNxLZ8PU6ooe64B7gSMbxVxAbw3AMv8GPW2YhmjMTuY8PEasWM1JcwDs/plBQ9RD3l8wGRm0Hl6bw3VjIu3pvKCjala6jm5KTXMbxjakIFgF1u7b4bd2CSCol8vXpHDOWEeOgZtatXKak3KHadH+nCytW/iyKixuLc+fk5LBnzx5Gjx5NQUHBvfG9e/cSERHxsOUAeHl5kZKSQklJCQDHjh17aCzcP/D19eXEiRMA6HQ64uLiaNasGYIgMHHiREJDQ5k5c+av1gwZMoSTJ08Cja5Vg8GAs7Pz7zvg34Ho32nm+59ITEyM8K8pxFas/FUUr7mOSCLCZfLji/Ue/3otN44fRxw0GPfI9XgrcukQuh5CnvrnpMpcOPoGpOwDJ3/o+xE07ds4VlME6ccg7QhknABDLbiGNxaDdfTBYhFo+e4xejiqmVVowX12DFKtDVVVVaxZswaNRsOECROQSn9tvJ+zazzj3o5D2r0fx6tqmBqyixJ3O5yev8m3C6/iF6Gl98TGlmAXl73JudzmVDsl45avRRVzhQ2qK4w4bIOlzgWpVsOIxR+h8fRGp8sk8cYU9Pocmpg+ghNaTG4qNnfTsqWmmmqTBX8bOYOdLKTnfMGl/FhkUjvK7EfSYNsFfxs58wI8GOTqiOQRViKTyUR6ejrXr18nLS0Ns9mMo6MjkZGRhIWHo7LXUNNgQtdgRm80ozeYKak3kFChI7FSR1KtnmqpCFt1A+Hyi5SUHKKqoZQAhwCebzYOxclASlKrSI9Sc9pFQqatBG+xhDkBLkTWlpOTk8OdO3dIqkgiziUOs8TM9JBX8bxRQ9LJY7Ro1Q6v3fvQ9bKQ21rNzZvtMRrV9Ojei/yzcioKSmg2ZAUGUw639/sS024Mzrv20ZCby9wOU9C0asnG8a0fbimrKYSv+0B9NYzbDx7//CxePZxN3L5MmnXwoPvYZojFIoxFxeROnUpDWhpuixaxpU1nPsoqwFMhZ12YH9EOD04usfK/k9TU1McqOv8JOnfuTFlZGTKZjBUrVtCzZ0+ef/55EhISEIlE+Pv7s27dunvJBv7+/lRXV2MwGHB0dOTo0aOEhYWxdu1aPv30U2QyGX5+fmzcuBGtVsvevXuZPn06JSUlODo6EhUVxZEjR6itrWX8+PGkpKQgCALjx49nzpw5nD17ls6dOxMZGYn4l6LYH3zwAf3798dgMDBhwgQSEhKQy+UsW7aMHj16PHJf/8qDzrlIJLoqCELMg86NVYmzYuUvonDpZWTedmhHPb5MyA/LPyDz+m30weFExezAU1dAi15nG5U1swnOrYTY5Y2lIzrPgg7TQfaQMhumBrj1E/wwHWQqGP0dtyXBPPXJGT56OoyOh/NQt3HHaXBj5lZKSgo7d+6kQ4cO9O79z16llwsvc3LuCwy4AsFHj5G6+z1aVG7jjHMU2hZbObU1jaGzo/EIdqSqpIRvF5ygxiUHpawAn0oPdna6ii7nFv3OuYFCwailn6P19qW09CRJyTMQi+U0rf8U43EzKa4ypkQqEORiBrg4MspDg6M5h1eOv0KtUYfGbTQ3JF1RiQyIy7bTxb6epZ0/RGujve/wBUEgNzeXxMREkpOTKdJZKJa6UKH0QI+SejNU15uobTD9vgsqAotSQKVJRmV3BqMoB0e5Mw6W3lxx7crb+Ta4mix86gxp9hJaqm1Y3MSLNo621NfXc/rqaT5O/ZhiWTFRhij66KMoPHeKyDbtCfjhKEZFFZWz/bh605nycm8C/L1QFoVTWVRE04EfYzLUkrLTk0C/GJqevoi+qoZX2k5l+os9GdHa9+H7Ls+EjQOhoQbG7ALftvfO0+UDWVw+mE1QtCtPTQhDIhVjrtWRN2MGurNn0b48lTsvTOTl1DsUNhiZF+DBNF9XxFb36v8J/qcocf9N/F4lzhoTZ8XKX4S51ojyCZIaoDE71SS3p8FSi0Jeg7JCBA6/xDtdXAsn3oXQQY21wBwfccMGkCogfAg4N4Ftw+Gb/lyJ3ABAXr2BRHsJoRcLWFFXg1kpRS4RI3YJ5Pz588jtnenWLhpBEFgbu4xXE8C2Xz/k3l4EiY5SayPlapwNjjmpaL0ccA9qTEw4su4wJqUdDXIdbcyZnGpykNxSFaOv+WARGWne34yjhxvZ2WvJyFyGUhWOJX8xxks1nHSVsqGtPW/4uTDMzQlHmZQL+RcYf3IGFrGaQtfF6JS+vOnnxgQvZw5nFvL+xfcZfmA4K7utJNIlEmi0uiUkJHDm7DlulZnIx4kiSRjFBjEYIEitJsTVFjulDDulFPt/eVUrpKjkEpQyCTZyCTayxj8BgbwKPTnldWSU6bhcWMXt0hjKiiORym9h0p6kUr0N59x9bCjtQJjlKd6RepGSo2dNiMCg+HSednbgjSBP+nTsQ9fWXZl/bD7HS4+Tb8qnc4v2XLudTn3/HoSfu4LTzHT6fxBGnDaJjHQzKlUhHq4dSD8yjcDeS4kcVUPitwlUB3kRnZjG0ksbmKdS0SnEBS9Hmwd/HjSBMOEwbB4M3w6BkdsgqHtjTM/AQGRKKee/T8fYYKbvlAhktmp81nxBweLFlK1Zi1d+Pj+/vYjZmYW8n1lAbEUNK5r54m3t9mDFyr8dqyXOipW/AMFoJu/N89j38cO++2OULmDdyy9SpvBCcBbRrsN2gkvs8BuR0Fh9/7OoRoVu/KHfv5GaIizbRjAnpy0Hze2oR057exuWVsvYrjCxQ2bCYLJgNpvoIkrFWaSj2L0tzVroqNj0FqNOWwjYtxeLTS6qb54ly78z+0+0QqbqSkx/V9oOiiD/VgZ7lt9Ep0mjXl6LYF/CYdszDD/nhlQvoaOzHZXDr6BWN6FCl0W87XQcEtowOLOes74KbIYGM8DN6Z5b9IeMg7x57g1MUg90bnOZ7N+Eab6uOPxL/bLUslRmnJxBqb6UN9q+gXulL1uPXyWlRkEeGhosYmQSEe0CtfRo5kqPZq74af88V2BmXQNvp+RwPLscWe0tXDhCgygRwSLHWNEWt7JuzMaVa342fBMoxyQW0d/BjjdDvfFVKdidtpv3495HbVHTOq81jnoVrjIxXe/kITp/AccZE7gVmsuF8wqMRhUesgik+hJ8u32GjawJN7bZISuqoG1GPnkKR3aNe5P103o8OgGhthi+fQZK0+DZbyD0n4HiybF5nNp2C89gR55+pTlyGymCIFC2di0ln36Gqm1bvD77lO06I2+n5yMG3gry5HlPrTXp4X8xVkvcf57fa4mzJjZYsfIXYP6lvMiT9E0VLBbqqiowK2W4uTZaUxRKr8bBtCNQmQNtJv/+PVgEvk8z0rdyHrHmCDqJEznf4gjb5nVB2dSJMTIbLs/rSeKiPiS/+zTzp01EprLDuegyey5voN9lKA+Ppt43EP25d7CIwH3AMlSaLgiCgbTzG7GYzRzdcB6zVECvqEJklHLU7hxDLvsiNYhpk5FH6ITJKJU+6HRpbBa9iv3FVgzOrKespZbhU2IY7K65p8C9eXk9C8/Op14eTFToEk53aM+CIM9fKXAAodpQvuy5GSd9D+bsSmXM3lwOVHlRInVlQJQPa8e2Iv6t3nw7sS3jOwb8qQocgJ+NHINUjNRZSduojtz1m4PBewledu2Qa85SFbyEzeGHcNJVsPtMLf3uGjhQWU2buBSeOpWEq0MvNvbbiEKlINY3llKvMgoFMbt9fEge+gwFa7cRctSWYc80wcGhgLyGZKpkIvLixqE3JtNmki22LSK55K3Fs7aUvtuW8l3s7Udv2tYVXjwA7s1h5zi4vuPeUHhnL56aEEZhRhX7V8ZTX2tEJBLh/PLLeH60hLpr17gzZgwjhQZOtm5KlJ2KuWl3eS4hgzv6hke8qRUrVv4IViXOipW/AIu+Md5KbPP4iAZ9bQ1msxmLHFx+SXJS2jdp/MeldWDvBc0enV7/W07eLKb3J6eZtes6IrmKYjS08tfieWsTxu0jsGnngKXWSF188b01fm5OTJ88HhuliBev2uJYZ2GJYxsGLNuOXeYNar2DQRGI2ShGsOgozrrJjyvXU1vlQb0qHRBxKeAEfa64ozLJaZtfiZe2DuH0C6ypfppsSzALE8wMyTNi18OH5sNDEf9SfiWrTk+vn95iX8rnSG3b8lmPL9jasjl+Nvf3Rc0t0zH1q1N0/+gS6ZndENU1ReJwjagWZzk+rw3Lh0fRN8IdW8W/L5rk0ztFnK6o4cMm3uyMCuLnmCa0cw3lunYS+CzDrSGGNMNhNmsX8nPPM/xNV8eBMzp65Rm5YTQwPCWbsVcs9Aj6jBauLTmlOkdWaBomfTFJMhkHhwzmZPYdjEvOM3boWIKCMqk0F5JnlFCQOITyyp+JeA6Cnx9Hgo8zzcpzML81n5ziqkdv3MYJxu0D/46wdzJc+vLeUJPW7vSbGklZno69K66hq2pUzhwGD8b3y/WYiorJGjkS18x0dkUFsbSpNwk1dXS7dIuv7pZg+S/z+lix8p/AqsRZsfIXIBgaSzKIFI8v2FtbXoYglSOIQWNXDYBSEwHFNxvLibSe2Fj76wk5cbOIlzZfQSQS8fnoCAa3adzDSac8lrq4IUn/mYy90eQqU0k5dIERPwxn0tFJ/D3275wsOckl9zgiU7KodnPlvTdG8XbA98hNAl/UDOL04SwsZoGg6BAkijDupCixiPToVdVUKYoJiwc7nZQeEa2xL6nk3NDWiPQG3kjcSousBTgWRVMe/hPKrup7brgdBSX0OzSLouK9hHkO4tzgNfRxvb/mUm55HdM2nqXr0pMcTa8hwraOj/p4kvrOMyx9Nppc01HGHR7DrfJbT3yu/n84UlzJsqxChjrY8axJRn16JUG5etaYbNmpcEIr9SSx6Su42izBv7wl32XvZLzdbPZH/shLGemcSDTRs1ZEmcjC59VGjhqn4Of4N2403OJ0VBK1tfEo6mvJDAnhex9vjr7zLU+FTqRjxwrMkgoyKu0pvNWdgsLduEXn0P7Dj7keHEirwlTOjp+GyfiYhA2FHYzeBU36waHZcP7ze0P+zZ0ZML0F1WX17F5yhcLMRqVQ3a4d/tu2IpLJuPP8OHTnz/O8pzOn2jSjnaOaN27nMTQ+nWyrVc6KlT8Va0ycFSt/Afpb5ZR9k4zLKy1Q+No/cm5W/BV2rvoEvU8Ig7pkUSnE0j1sL6KrmyB+C8xMBfX9WZgP4npuJSPXn8PV+yq+PukklyVRU9ALY0VHotpuobV7FB1rq+l4YQMNEntqaz5ge4sMrtqncrfmLmX1ZbRLtTBzn4VznTog7hTJ4OoPUOskdDV+w+BCKfZaG16Y1YotC2OxmCXUyE9RrxFTWX0Fnzzo9/IMeONtbmkdeXnG+0yuv8is84nUGEciby8ixfFlbGz8CGuxlbczK/khZQU2tSd4PmIKc6Kn3RdjdbeijqUHEvkxuRQQiFBVM6N3GN3atLiX/g9wo+QGM07NoMZQw6L2i+gf2P/3XjYALHVGjKV6TGX1mMv0mKsNjX81BuItBqaEywmqtbDuch02DyifZhLBNj8Z64IVSAQYm55LreEAp+wvYxSbCKr3oU9VB7r792Wjs5odpnr0MhGSojK0DasRuE2zfA865rjhGtme20VFiM1mor298OkAx44lU1OjpYnvTdz8r+DvNx0X+9HsnTKTNilXuRnSgoG7NyJVPCR7+R+YjbBnEiTvhX4fQ9sp94ZKcmo4vP4GtRUNdHw2hMhuXohEv5QgmTyZhsxMPD/8EIcBTyMIAjsKy3krPQ+TAIuDPRnrYY2V+9+ANSbuP481Js6Klf8FCA2Nd3ex/AkscRXlmBWNsXBSoRBFgwWRrRtc/w4in31iBe5OmY7xWw6h8F1LuXIXDeZ6RjcbjZ+8Oy28ndg3ZBcL2y2kW6+PkI0/jFoqwlUxhxdK/NnSfwv7huxDLVXx3CUpJVoZ+5oXYC8cQFPeQE5QB9b3jcTBIuYHXTVjN1/EYjZgEUzUOZjRm8vwyYPOY8aTnHgDUWk53/YdwhJfM/PchlBjHIlKchKXkneIbLqcdF0NveMusu/mV9jUnuDF8AnMbfXqr2789UYzC3ddpevHJ/gxuYQwRQWf99GyZ8EIerRr+SsFDiDSJZIdA3bQTNOMebHz+PjyxxgtxgdfH0HAVFGP/mY5VSdzKNtxk+IvEsh/5wL578RR8sV1KnbcovrnHPTJZZirGshxlDIjQoG7WMI3bm54PdcU7QthuEyOxPXVKNxmtcJjQRu857Rm9sAIfvbyIkapZH0zX877TGZ6+TKmGcaBBL5w28Fo3SR0SUv55OI1XigRwFVLmdcb1IinkOpZxMYWeRxMT6Vn2w746fVcLijkwJ4iolpE4+NbQFpOM4rzm5F953PKavczZsfXnG7RnWa3r3N00DAqCwseeOz3kMhg6JeNrvqf5sLlDfeGXHzteO7vrfEJ0xC7I41jX6dgbDAjc3PF79vNqFq0IH/2bMo3b0YkEjHSQ8vJ1s1oZa9izq27jEnMpKjhwefeipXf8umnnxIREUF4eDgrV64EYNGiRXh5eREVFUVUVBSHDjUmdpWVldG9e3dsbW159dVXfyVn+/btREZG0rx5c/r27UtpaSkAu3btIjw8HLFYzL8aebZu3XpPflRUFGKx+F7nh4fJAvj8889p1qwZ4eHhzJ0797Gy/ghWS5wVK38BusuFVHx/G/d5rZE6PdoicmH3do6fO49E40PvNt8hGGqIcZ4BRxbA5NPg+eCWWP9KaU09AzZ9jE69H7VcwVvt36BfQD8MZguRbx/lxY7+LOj/myfu8kwsXw5GVFeIqddqVqvyiTvwJW9vt+C+eBFF3XyQ/PQsIdk6Zql7YlvVH3e9P55jmnDsm9OEGr2otrlJg0MxNjlpyMwNXB47jYmLF2O2lRCybRVelZ6UbEhC4WePc7tMRHsn8EOT8bzuMRpp1U/IK3cwJGgw73R891cKXNLdSqZuiuNujZlmsjImdfBmQI+OKBT3x8j9FqPFyPIry9maupVo11a8EraIghyBm+nlFJXXUVFroKreRJVgoQqBGgQMgASQikRIxCKkEhESiRhbpZQILwcCve35VlyPSQSHYprg/4BYvQchCAL7iytZkJpLhcVMyxwjb4R64eBXyY6TmzimP0WtRE/b+hYMKnuWb0K8ueAsxbGhDlHZaiSGFAxFfYlWdqVb+W0s+Tco9vZErZLi61/MrVR7mjS9gItrNkEB7+DqNYJVY2cxMPEod1xdCFr2ESFt2j96kyYD7Hwe0g7DoM8hetw/928RuHr4Dhd/zETjoabv5Aic3NVYGhrInz2bmmM/o508GZfXZyASibAIAt/klfJeRj5KsZglTb0Z7PrwpuVW/lr+J1jikpKSGDlyJJcuXUIul9O3b1/Wrl3Lli1bsLW1Zfbs2b+ar9PpiI+PJykpiaSkJFatWgU0lhjy9PQkJSUFZ2dn5s6di0qlYtGiRaSmpiIWi5kyZQrLli0jJuZ+o9eNGzcYMmQIGRkZj5R18uRJ3n//fQ4ePIhCoaC4uBhXV9eHyvot1jpxVqz8L8Dyj5i4J7DE1ZSVYVGo0dhqqBdqcRDZNwac+7R7IgXuTmU+z33/Onq7FCKcWrOy54e4qRv7DiblVWEwW2jl94AbqSYQJv+M4dPByI9PxujszEuJnkicBRyGDKEw4208i+optw/GobwNmtIALnkdoSjtE/obpmKyFFFrl4miXoxgVmMw1dPjixV4lRajnb8QJ5M/xZuvI9Uo0Y4NxaiMYHHdfjbo7WhW/iPlNTsJU5oY6fzPB02LRWDVzyl8eiILOUZe9Dcwa8wz2NnZPfY8CIJASkE1Z9JKyMvuiUOFiKuWHUzIG4M+bwwivR+OiHCQSXC0leFvK0fjoESjsUFpI8NiETBZBMwWCyaLgMksUFFnIKGgin12ZgSVFMWVUiZfKaeFtyPtArV0DHbG3eHhSrpIJGKImxPdNXZ8lJrHJqGckVXFDDon4f2B7zIzr5LNR9bxrd0PxHu9wzjRcIZkd2eFm5Iizzm4VyUiSNeQVHmTi+YR2LgOolVOMr52Omp1GpydK8jOjEEiMSAIb2ExyRny+XtsmwojUo+SOeNv5L88hU6jXkAifcjtQCqH4Zvhu9Hww2sglkHUqMb9i0XE9PfHzd+eo18ns+vDK/QYF0pwK1e8Vq6kcPE7lK1fj6msFI/FixFLpUz0dqGrxo7pKTlMSb7D4ZIq3gnxwkX+ZDUTrfx3kZqaStu2bVGpVAB07dqVPXv2PHS+Wq2mU6dOpKen/+r/BUFAEAR0Oh1arZbq6mqCgxsLmj+Jorp9+3ZGjhz5WFlr1qxh/vz59x4of6vA/VbWH8WqxFmx8hfwj8QG8RMkNlQUlWBRKHDWaGiQmtBUKaAiGXq++di1BzMOsfDsYkxiI0N9p7O426RfWbSuZFcAEO37YGuI2MkNfetvMMe9zvTbl8lKlqGZ8Tfqzfnobu9ArTej6vUaQac8qSiF9n7NyE/UIhKpyXc4hI3Yjbr6IiSaEcgacmie/Cl6OzUO7QZT+nUyIqkI5/ERVMtETLyeyTm9HUO4ysXqHbS0SJgbPozC/O3YKNxROE5k6jfnuVHcgL+0irf7N6Fb+5hHxlYZzRYuZpZzLKWQY0mF5Nc0Bta7IyKQKKJ1nsR7baTG/0tmhr7O2Jix97lhH4XBYmFsYiZZFbXM1mgQt7bj+t1Kfk4tYtfVuwAEuajpFOxMx2Bn2gVpsVfer6w4yKR80NyPibWuzIrLZLfGyPEzycz1dGXa5AX0PdKXlTmr+YqteCtP8bHPLGJLfNhoH4lM9SkK5RacbT7Br+pZEiSRxBoF/EsLaIkzjpJ8crNjkEjiyMz5O46qHCIWzmbbuxZG3/qZ3DXr2HkrlX7TZ+Po5v7gA5UqYMQW2D4S9r/S6GqNfPbesE+YhuELWnPkyySOfJlEXpoXHZ8Nxn3xIqTOzpR+8QXm8go8l36MxNaWYJWSH6ND+CyniBXZhRwurWKsp5aXfVzxtBYJ/h/J4h+TScmv/lNlhnna8/bA8EfOiYiIYOHChZSVlWFjY8OhQ4eIiYlBq9WyatUqNm/eTExMDMuXL8fJ6eFWXZlMxpo1a4iMjEStVhMSEsLq1aufeK87duxg//79j5WVlpZGbGwsCxcuRKlUsmzZMlq3bv1QWX8Ua0ycFSt/AUKDGSQiRNLHfwXLKytBJMLd2YggFqEpLgc7j8YODY/gWtE15p+dh0GvZVLgKt7pPvk+hefKnQr8tSpc7B7u/pO396bYNJvs20GIpRacpEfITF+KR5EBQarE3GQw9flKbD0FCtLz0JY3p858A5VYiWA2sKP3WPI6pOBbWoV9vYF0J3uyV57BUmPA+YVw8mxEDLx2m0tVOuZ71hGfvx5/tSefFZYQdvIQHtq+7Lxwil7LjpJaXMdAtyq+f70v3Ts8uCeowWThSHIhr22PJ/rdY4zdcJHv4u4QWGNmvsiGI019OT4sms1zuvDpwrEcGL2Hjt4dWJq6lAXnFqAz6h57TaDxaXzmzVzOVNSyvJkPr7fw5W+9Qvj6xdZcfeMpDr3WmYX9Q/F2UrHzyl0mf3uVqMVHeX7DRQ4k5tPwgKbxQbY27OsVzpfuHtiY4O8VpfSMTcHQLZyVQ1ezpG4OQo2R2ddmUmtaw45IDRH29lQ6T6DSYx7JHsfppznAHDc1FjtnNPbgKgAAIABJREFU9jYEsL+6JamWVqSndaCiwoMq/Reoct+hfswEtjfthU95DS5nzrN59jSuHzvEQ0NsZDYwcjv4dYQ9k+HG7l8N22mUPDMrmha9fEg6ncfuj65SWVSHy2vTcXvrTWpPnyZr0GB0ly4BIBWLmOnvzqk2zRjo6sjXeaW0jUtl1s0csuqsWaxWGgkNDWXevHn07t2bvn37EhUVhUQi4eWXXyYjI4OEhAQ8PDyYNWvWI+UYjUbWrFlDfHw8+fn5NG/enA8//PCJ9nDx4kVUKhURERGPlWUymSgvLycuLo6lS5cyfPjwX32nfivrj2K1xFmx8hdgaTA/kSsVQGdovKG52hZSUWNCWVYK3d9otIY8BEEQWHTuIyxGO0b5vs/furZ84Jxrdyro1vR+c/+/crziFDXiS7TM0uHYuw11lYcpKbYjtMSIKHQwGcl66nVGBr3Ukh83l2KxGGiwnEVQhZPq5cMk+QrCZNdxLvejXqHBJexVVEY7sl1vk2/bnBev3sYsCKwKVrL87HQcFY6s6/8tDiUZWLYMZ/8+Bev0Ewiwz2ZqVAnP9X3rPmuZIAhcy6lkb/xdDiQWUFlnxEkqoYsgoRM2tHOyRdvGA3UrNyR2v7b0OCgc+LzH53yZ+CVfXP+CGyU3+Ljrx4RrH24haLBYmHMrl91FFcwPcGekx6+TS8RiEWGe9oR52jOpSyAGk4X4nArO3C5hX3w+r26Lx0klY2i0NyNb+xDi9mt38MBQN54K0PLBTzfZojTQ+0oaL7lqmf/SGNpd7Mw3lzbwneUQFwov8Fr03xjh8xTvZYqptHmfXapDhBUvY4V0IpkmG74TGjhW4USsqBvtbjWhT8D3uLqfICqvnG86vYxSJuGZpCPYqmw5vn41aRfP02fqa9g7P+BzIVfBqO8a27V9PxGKkqHHGyBu/CxLpGI6PRuCd1Mnjm9MZeeHV+g6sgnNRo9GGRpK/vz55LzwIpoXXsDl9RmIFQqCVUo+C/Vjtr87X+SWsL2gjO0F5Qx2dWSGvztN1Y/JorXyH+FxFrN/JxMnTmTixIkALFiwAG9vb9zc3O6NT5o0iQEDHl0r8x9JBEFBQQAMHz6cJUuWPNH7f/fdd4waNeqJZHl7ezN06NDGtnVt2iAWiyktLcXFxeWBsv4oViXOipW/AKHB/ESuVIvZjAFAAAfSUefXI4hliFq9+Mh1x3OOk1WTgo1uBHN7N3/gnOyyOsp0BmL8Hx1Yvv3mdvrfzQdESFq8QmaoDtesi0iMDeDVihun83B0UyGSiDCX2VBX9x0WF1cswPDA73GRlxB/M4qmd5Mp7fEqIUoXjutuc7YsjZ+u3cZHrWRDmCdvnXoJk2Bi7VNrcVW5UuehYZLN55wrljFMEsvwrnnUNpwnK9uBwIDGQPm8Sj27ruSyLz6P7LI6FFIx3exU9NJLaW2RYRfhjLqNO4pAR0Tih7tdxSIxLwWNpbXOjU0nlrHxzEj6qVrT1KDBWFCIYDAg0TghdXSi0tWdmaGtSLCx4zWhjknlBRjEBiQaLWK16oHWQblUTNtALW0Dtcx8qiln00vZcTmHzRey2XA2i2hfR0a29mVACw9U8safZaVSyjvPRPDM1UIWJuWwXlzOwXNVfNLcnxmRb9Lnh54srf6CJVeXEKHez+bOi9hW7sB3ooEkqNoy0XYLK+RDWJ3hxc0KPd8JBo5Xe3H2+jTmN2whwO8aQ8zrWdV0HDaO9vQ9u4s+TZtwKjWZTbOn0W3cJCK6P3X/8Shs4fm9cGgOnF0BhYkw7KvGQsG/4B/pzIg32nDs62SOb0rl7s0KuoyKJHDvXoqXLaN840Zqz8bi+dFH2IQ3Kge+NgqWNPFmpp8ba3NL2JRfyv7iSl7wcmZugDtOMuvt6r+VfyQH5OTksGfPHuLi4igoKMDDwwOAvXv3Ptay5eXlRUpKCiUlJbi4uHDs2LEnioWzWCzs3LmT2NjYJ5I1ZMgQTp48Sffu3UlLS8NgMODs7PxQWX8U67fCipW/AMHwZJa4uqpKzEolMosUY/VtPIsaEMKHIrK9v9jtPzBZTHwYtwJzgwuvtxuDQvrL+1jMkJ8AmScgK5Yr9W2AlrTydXyorKTSJG7nJRJ1Q4oyqhOVRTcp9b9O+2oXEOkpPfQVRcVN6DAsiIOrTmPUHQX0mB2cEQOVWa70GbmSwK2fUNekKwH2zUmxVHEopAmnI6PxKshmkq6UzcZ00irSWN1zNQEOAeSV6xj1xSlyaqU8o8ljqbAT0XkRN3v0Ijt7FVV1NexKG8KuK3cxCwJtvR15QW1Lhxw96hoJth28sevqg8T+/vgqQ04ODRkZGLKyMWRlYcjOpiE7C3NJKTbA1H+cR/EFcp2UOPuHIndwwFxaRlK1jvltn6JKIuftL1fS7dpFcv5FtkguR6LVItVqUTRrik3z5ti0aIEiOBiR5BdrlVhE1yYudG3iQmltA3uv5fHd5Rzmfp/IuwdSGBTlyag2vkR4OQDQspU7OwIcWbUzmW89zQy/nsFQZ0feGdGZdXdasOfoVr4wbWPyT6MZFzSWHc1fZEaikQKPmUysjWVWp1KmBI0hbNtxpqbXctDelTW3XmCI3pkOzY4yzODAp+Yh2DzjSNcfvqZPSDAJod4cXfcZty+eo9ekafdb5aQKGPQZeLZsVObWd4eR28At7N4UWycFg19vyZVD2Vw5mEVhVhXdRjfF+623sO3eg4KFC8keMRLnV17GefJkRL8kVrgqZLwV7Mk0X1eWZReyKa+UfUUVzAlwZ5ynM9JHKONW/m8ybNgwysrKkMlkrF69GkdHR6ZPn05CQgIikQh/f3/WrVt3b76/vz/V1dUYDAb27dvH0aNHCQsL4+2336ZLly7IZDL8/PzYuHEj0KgETp8+nZKSEp5++mmioqI4cuQIAGfOnMHHx4fAwMB78j09PR8qa8KECUyYMIGIiAjkcjmbNm269yD0IFl/FGuJEStW/gJKvk5C0Jtwnfbo7NLCjNus+/pr7OQujPFag9vdYoSXTiDybvXQNTtv7eTduHdRV75E7PNDkGUeh4yTkHUG6isbJ7lF8Pf8zhw0RpPg9xniNpMaA9Xlv+4huvDsQoTdh3j+cD2+324j8e5bCNI7tL92F1GbyZy54ExKcQSdwuM5eqkUwXCLzHAfXCyuuLllU1QUQEutltDvjqLqPBtJgD0vBmdxXRxI+B09zS/vpUYdx8XwCqZFTWNqi6lcySxm/NcX0ZsEJoVLmD26L5KKTNg8BHN9FfsjuuBge5Ezdzthkv2NUUYZjqmViKRi1O08sOvifZ/L1FRSQtWBg1Tt20fDrX92bJA4OSH390ceEND46uONzMMDiYcHu0uOsSx+BU4KJ5Z0WUKxJIRXU3Jwkkn4uokn4QY9prJyzBXlmMrLMZeVYyova3wtLqI+OQVzVWNHA7FKhTIiApsWzbGJjkbVujUSW9t7+xAEgcvZFXx3KYeDNwpoMFmI9HJgVBtfBkV5YquQYjFbOHswi89yiznfTIm9VML8YE9GuzpRfCGNFYmfcMzuAl5id2Z1+DtHy53YUmMBSy2dDNfY2mcaQnYu+Qvep0Fnx6WIntxyj6NbxC523xzCkbvdmClJoPfB3Ujd3Kh5fhRnjvwAgkDMoKG0HjQMudLm/g9czsXGEiQNtTBkNYQ/c9+UvLQKjm9KpaasnqBoFzoMC0YtNVD47ntUHziAolkzPBYvwqZFi/vWptbqeeN2Hucqa2mqVvJesBedNY/PRrbyx/mfUGLkv43fW2LEqsRZ+T/P1X23MFQ00HZ0+BO5MP8TFK+5jkgmxuWlyEfOSz4fy66jx/Gx82e4MAexRUA9t/Sh8+uMdfTa1Y+KKjvWez9H5/iZYDGBvTcEdYPA7hDQFWxdeGr5SbwlFXyjWA5FSaBwgJZjoPVLoA2ivL6c3jt78cXXUlxcA3BY+xrxCeMIuxaKR20spimX+ObjQnzUaZQWxFJUW05qAATYtsTOIZ8RI54lI90B/YefExIyDqmbEwef8+fNO4X0UOoI33mXalkJP4Wux7tESWTDOCK69WTxoXQUGHmnlyfDerYDoLCqni1HzzE06VXcKeVI1FPYO1zEvqAjHmkvYdvOB7vOXkhs/6m8WRoaqD1xgsp9+9CdPQdmM8rmzXEYOBCbyAjk/v5IHB9uhQS4WX6T2afnkCqKQucwjFb2Kr6JCMBV8fhyGIIgYLxzB31iIvrriegTE6m/eROMRpBIsImIQNW+Hep27bBp2RLxLyUJquqM7I2/y/ZLudwqqkEtlzC6rS8TOwXi7qDk7q0KtuxMZW9TGXdcZATZKFgQ5EEfpYpTPx1gWdVq8uTFRNtH0bfpeBZl6alSeaGpv8nu9j0IVTtRumYNpevWI/MJJm9MT/Suq/k6eQyXiqMZU3+SsbGnkKpUaJZ+xIWLsdw6fwZbJw2dRr1AWOfuiH6bwVtdADvHwd1L0PFv0OPN+2I2TQYz8cdyuHb4DgIQ3duXln380J86TtF772MqKcFx5AhcX38dif2vu5gIgsBPpVUsSs8np97A0y4OLGvqY3Wx/puxKnH/eaxK3GOwKnH/XRgMZjq/dZR6BHa7uxI4IRKJ/ZMVYv13UrTyGhKNEudxYY+cd3jbNuLS0mgT1JY+WSMpc9PgOiXrofO/SFjDmutf0Kp0EN/UfYnILRyGrgdtMPxLbFNlnYGod44xp09TpnULgtyLjbXnUvYDArR7ha9cPDi9dzULdlrwWPoxtz2+oaG+iHandVgMctK7fc/JHbfJ0dzBNeN7qh3dCPQrIMvQht597OjQfhb16Xco+uQSgsqBL0Kr2BIQQh9nB76K8OfC7YvMPPM6UrOCnjf9uFPrwRltZ1wldawd05LosGBuFdbwVWwm+xPysQgCL0apmZ03H3nVLVK9elAYFI/WoRthkUuRyzUA1KemUrlrF1UHDmKprkbq5obDoEE4DBmM4pdA5CdBEAQuVOpYlpXH+So9Ct1Z+ihv8nGn93BUPlr5exiWhgb08Qno4i5QdyEOfVISmM2I5HJsoqNRd+iAukMHlGGhIBIRn1vJxnPZHEjMRyIW8UxLLyZ3CcJLJef45lSOlVZzprUdBUqIsVfxVpAn4VUGvj2wnq3KH6iU1tDNsxtZJe5cceuFCBEDnAQ+iIjGNjWF/LnzMOTkYPPK06SEnOLThLHcrgxkaP0lxsYeRGkW4fHhcmoD3Ti1aT2FGbdxDwqh2wuT8Wr6m5u7qQF+mgdXvwHv1o3dHjQB952DmvJ6zu9JJ/1KMbYaBR2HheDfxIbSzz+nYstWJBoNbvPmYT/g6fvi8erNFtbllrAsuxBPhYyvIwMIt32AddDKn4JVifvP829R4kQikQJoD7QDPAEboBS4BZwRBCHzD+77P4ZVifvvYvexdGYfb3SfPSeWM9POAefx4cjc1Y9Z+e+l4OPLKPzs0Yxo+sh5m1asJKu6krGtQgm+OpncsFB8hsc9cG6Zvozeu/shrXLjbOVVZI7eMOEwqDT3zT15s5jxGy+zfVI72gf9S2ZlTRGcfA/ztc308/Vhxl4FIZVqHHYs4MbNaTR3fhmXPe9SYZ7GsYZ+5BnqMRd8hljmT02zS2hNbRDLxEyd+xEisZz8Nw9gMdmR2F3NFJkE5/pa9kY3wdvdmZeOvERKWQr9UqZwq86Ni0oxgbpMnIQ6wnr1J6dcz+m0EpQyMc+18mF8lBf2sQU0JOfion4fmTmRu0+N4rbhFDKpPT6lAxC23aD+xg1Ecjl2ffrg+MwQVG3b3otHexIsgsDPZdV8dqeIK9V1OMukvO7nhrr2BB9f+QitjZZlXZfRwuV+19/vxVxbS93ly9TFxaG7EEdDWhoAEkfHRitdhw7YdupEocKBL2Mz2XE5F4PZQu8wN6Z0CUKWpePMnnSSgpTERqkotVjo5+zAm77uKE9n8G3aVr7X/kyD2EATSRMSbGKocXoKKRZe9HLmNXcNlk9XUrFtO6IobzJfEHj3yijK6zQMM1xjwLkjOFbVouoxHtdpL5JVksjZ7ZuorSgntHN3uo17CZW9w68PKmkP/DgDBAsMWAHNhz/w2PPSKojdcZuyvFrcA+1pOzgIrSmfwrcXUZ+UhLpDe9zfegu5v/99a69W6ZiYlE2VycTyZr4MdbN2ffh3YFXi/vP8qUqcSCQKBmYAYwAHwAJUAXpAAygBAbgKfAFsFgTB8scP49+HVYn770EQBPp9cIK6GgMdoj3ZFX+XjSpHAk0itGNDUYb8dT/8+e/GYROhxemZkEfO+3Txu1SYDMyJMqK+sYas7gMJ6LrlgXPfi3ufHTd3sDWvikiVLaIJR8HB64Fzlx65ybrTmdxY1AebByRYnLi2jo9Ofc7K9WacuzqT+YISs8hC+4qWiK5uJrfZEX44XoGh/iyCIZu7fl60axFLys1uPMNPNA/2o5wF6JNqyFffZkL3NigQGHz1FLK6WqpjqjmQf4AlnT7ipxN2HMioJsxgobluBy6VlVxybEW8ti0vdQnkpU4ByK6VUP3zHRDArqcvdm01iPZOpP7iMQpkrciJzsLkbsE+XkOA61ScBg57rKv0t5gsAvuKK1iVU8xNXT0+Sjmv+Loy0l2DjaTRfZhcmsys07Mo0hUxM2YmY0PH/qmN3I3FxdRd+H/snXd0VNXah58zLZOZSe+9h4QECDX0Ih3pgoAU8Vq4eC0IioqNe1XsBaXZUBBp0nvvLSEkgSSQhPTeJn2STD3fH1EwAmJBrp83z1pZWWtmn332PmfNnN+89Sy6M2eoP3MGc3mz61zVrRv2943H0Ksfq+NLWX02l5pGIwPauPDPLn5kb8uluKSe3KGu7LK3YBZFFgR6Mk0vI3vLBdbKt7Pb8RSCIKCutyXPayR6m3uwkgg84uPGjOJsDK+8gqGuhKvPBfBaylQwyxgpptD33Gl8iwqp8++Kzz2Po4x2JbngJHG7t2ClUjPgoVmE9ezb8jpU58HmRyH/HLSfDCPeA6XtDfu1mC1cOVPM+d056Kr1eIc5ED3SH0XMHso/+hjRZMJ17lwcpk29wYVbpjfyWEoO52p0POrtzKtBXshbkx7uKK0i7u7zW0XcLSuNCoKwFLgMdAX+88N/pSiKTqIoeouiqAI8gPFAIvAhkCIIQvQd2UkrrfxBzmRqSa1rYqqDLfPvDUdtJWO5swSpvYKKr1PQxZX819Zm0ZsRrG4fz6MzGpDqjSgr42hSSJA43/wLNbc2l+/TvufeOgNtJFKE6dtvKeCguVNDhKftTQUcwLqKOO5LVCLIpBjDcqlvyiJQ54uQtBnaDGdXhR5RtGAyZiDYjqBT5F5KSiPRaFREDH+UulR7GpPrKM89xNwBXTCKIus7hvD0zBmUOpayq2gXfVR92XRIxa7MWkKtmuivt8ZReJAsm0C6VV+gf9lhzp7Po+qLJGr2ZGMVaI/bM52x6edNw6UU8g6ryd7vin5vLkE7HfCQDqK2YyVXQzaikxb8uhsBZDQ08XZWMdHnLvPElTxEYEm4L2eiw3nIy/magAOIcI5gw8gN9PHuw7vn3+WZY89Q0XjrGMXfitzVFbsxY/B85x1CTpwgYMd2XJ5+CmNxMUXPv0Dl0EE8cGotR0Y48fzQNsTlVjFlbRxxbRQE9nQnZE8Zz55upJu1Na9kFDKltgL1Yz2Z6/0kX2S8Sj99V2rUlThr1+CR/RTUnWBpXikDzBrWL1sJY6YS+nomzzmupVGUcUwezIme/bkcHo5NznkSd77C6W0XCLwawpihz2Lr4MKeT95j27v/obai/PpG7H1h5m7o/yIkbYTP+kDBhRv2K5FKiOjjxbT/dKfXhGAqCurZ/H4CZ2vaYffVJlTdulK6aBF5Mx/CUFDY4lhXKznfRwXzmLcLXxRUMDExgzK98Y7di1Za+f/AL5WL9wS6iaIYLYriR6IoXhBF0fTTAaIoloqiuF0UxcdoFnTLgT/uY2illTvAZ0czcERgXHsPHNUK5g1pw5ncShL6e2AVZEfVpqvUHs67/UR3GNEsgsmCRPHL3RpEUcQoEZCZBQRtGjW2MhR2wTcduzj2PRQWE49X1yKfsQWcbz4OQG8yk5hfTRf/G92sAFnVWSRlnaXnRT02o0aRGx2IxqTG7dQWaKzkmDIS48VKzKYslKqR6F0zsNMIVFY5Ex3dA710JLWm6eiKzvLysDbkmSx8HRlAiFqJVtRyRnMGX6kflxK6cTRbh4u0kXS9ktPeUmw0CkKtRpDpLaNNXRrjMnfQUFzFuQhbbB8IpTHhNLmTp5D34IM0pabhMvcZQpbPxTsij7axR4hyfQazqY64uAlkZ3+KyVR30z1qDSZWFpQzPC6d3jGpfJJbShu1klXtAjjatQ0T3B1vadWxs7Jj8YDFzOs8jxMFJxi1dRRrr6zFbLmxA8MfQRAElKGhOM+eTdD+ffiuXoXN4MHU7NxJ2fRpDHl/DruVl3jetY698XnMv5JLUS8HxCoD/b4p5OlGJZfrGxlwKYPtPR1pO7kPz5U+xNKcBXRWdcQkq8Gx7Cuc8p9CrotlWUkVo/qOYv3S1YQehKdZTZHenjhrJ/KienGmR3e8K4txOP4+L2oTOJ2mp49kHJ18h5J36SKr5j1O4v7diJYfnDFSGfR/AR7a21ze5qvBcOwdMJtu2KtMISVqkC/T3+hB9OgAiq5Ws3l5Jmndn8b+lTdoSkkhe/RoqjZubFH9Xi4R+E+IF0vDfblY18CQuHS2lFZh+R+L9W7lf5dbPkVEURwnimLir51IFEW9KIqfiKL4+Z1ZWiut/H6uFNdyIlPLfSiwC2+O+Zoa7UsbNxsWHUzDZmoYyggnag/lXmtGf7cQjc3nu50lrqamBlEiwVliRNJUS42tHIXqRutaSvF5DhYeZ1pNPcW9P0fi9ctlSy7m16A3WYgOuLmIW5+2nkFJAlK9CctwTxqa8gns+AGCdzf0EisOHDEjRUm9lQGjwpqxhk7Uaacil8uJsAuiastVBGsdb4UpueDblo+vfkBPbQwNxgbmHZ+HlVRJQ/GDFFiciZIVMEKezNzwBtY/05PpL3XH1cWeSN2TBNkPo7wxl51Vq9i/93vO9h9Gwb+ewKTV4r7wNYIPH8L5sceQ9p0Fjx4BlSNOm14mWn8PLs4Dycr+mFOne5N+9U0aG/MpajKwtkjLzKQsos6ksOBqIQbRwsIgTxJ6RrC2QxBDne2Q/Ar3qCAIzIycyZbRW2jn3I63Yt9iyu4pJJUn3fbY34MgkaDu1g3Pt98i5OQJ3F//DzJHR3RrVtP3s3+zac+rLIlfiWHrGvbr08kNUqDaUcicUw10kCt4Mb2AB43VmB9vR9vQKF5N/Acf6V4iQOGLRKzGuvRTHAqexs6QwhcWBZPnv0l+6AP8Q7eV9DpvjqgsSCJdOTN4GErRyLNHVhCbd4xp1joK3ToxxH0mDoIrh1cu57tn51KYcvn64n27wz9PQeR4OLYIVg6Biqs33adCKaPLiACmv9GDTkP9yIgvY1ecC42vfINV+w6UvPoa+Y/Nwlha2uK4+9wd2dU5FEe5lMcv53LP+TT2ldfcuoVYK/+vWLx4MZGRkURERPDxxx8DsHDhQry8vIiKiiIqKoo9e/YAoNVqGTBgABqNhieeeKLFPOvWraNdu3a0b9+eYcOGUVHRbEX//vvviYiIQCKR8NNwq+++++7a/FFRUUgkkmvdGjZs2ED79u2JiIjg+eefv3bMhx9+SNu2bWnfvj0DBw4kNzcXgKNHj7aYS6lUsm3btj98bW4ZEycIwgxgkyiKDX/4LH8hWmPi/jeYuyGRvReL2CK3JezVXgjS5gfzmYwKHvgyhmeHhDJTpaF6WwYeC7rd1YxVU42ekrdisR8fjKabxy3HXblymQ0bNtLHXMBA6fecj7IjfNBBNJqWyRCLNo9nS20aw6qm8fozL9w2RuvTw1f58FA6Ca8Mxl7Vsp6azqhj8IZ7WLzchEtAOIWP56GQO9El/HPED8PYb+nA1fxpiHJXZKiQtNnOAO0QNsouEBXWjs4prsiclKzP2shb46Yw103B/GOPIJZf4eXI/uysz0Qsfpi66iDkgsiT/QPw0+eQEB+Hg4MDQ8P7ojzVQGyVgXKjSJVqJ6r8NJQmMx7lJg6GDmLcMzMY3O4mrmKDDvbOh4Q14NuDsiHz2Fsez4lqAxfFDhQIvgB4KOSMcbNnorvjHclsFEWRA7kHeDf2Xcoby5kQOoGnOz2NnZXd7Q/+g1h0OnTnz/8QR3cW/dVmcVRqbc/Z4B40evTExehA+TAPvrM3YUbkQU9nZtdLsezKxtxkIiYyjU+rP6NS1YQECSapPU4+z3HV4o01Ij1PxHCq0YdOronM8DyFNnEAoad34Fyu5YpfEO+3m4TE3oV/+rjhm3KepILDNJl1+Hu2p9e4abj1CEOQ/2AvSN4Cu+eCsQkG/6e5nM3Py5X8hKoSHSfWp1OQWoWLr4aOjjmYP3sbQSLB6bHHcJwxHYn19XtoEUV2lFXzbnYJWY16OtqoeCHQg74Omjsau/i/wl8hJi45OZnJkycTGxuLQqFg2LBhrFixgjVr1qDRaHj22WdbjNfpdCQkJJCcnExycjJLliwBmnuaenp6cvnyZZydnZk/fz4qlYqFCxdy5coVJBIJs2bN4v3336dLlxvDz5KSkhg7diyZmZlotVo6duzIhQsXcHFx4cEHH2TGjBkMHDiQo0ePEh0djUqlYvny5Rw7dowNGza0mKuyspLg4GAKCgpQqVQt3rtjMXHAN0CJIAjfCIIw4BfGtdLKX4qi6kZ2XCxilMwK12DHawIOoGewM8Mj3Vl6NJMysdkiZmm6y5Y4ffP5JLfp2JCXlQOAn0qLRYA6jQyFomWnBtHQyJHqNEIarBgw/B+/6kEVk11JGzebGwQcwM7MnYRdrkejbUC815+mpkICA+dSFr8eicVESbYdUrk/TXI9ekUVwX4HyNEcwYKFoGQMRLspAAAgAElEQVQ1Eo2cAtdcPho+jmiJhXnh4fDIQbYE92RHfQb3aDWYqr0IszFx9sWBPDU0kjGjRzJj6nTM9UbWn9nOBXUmgx/2xkdWiEPDKNzEDtQpJWT4WGN0M/DomgQW7khp0UC+xmjiXIPI113+zfwh2xnlNIPoVBuerx7KQWEUbko104QNvC3OYYV8AY+pzhBmfWesNIIgMNR/KNvHbmda22lsubqFUVtHsS51HUbznxujJVGrsenfH7cXXyRw5w6CTxzH4+23cAgLYXTSPqYceAWvy5/g/u12njqkZaDcmi8Ly+lRW8qqsV5I2zjS/WIbvjMs4f6iaFQNAhJzJVU5L+JV+iIBVjoO9e2OX4g18WVRrCvsgfeAr8kb3YucqK6E5WWy+OhiBhYd5p3ULF6w98fhgZfoEDmE/OIrrFv6AruefJ2ib+NpSq9CbDsOZp8F/96w9zlYMx5qCm+5Pwd3NaOfjmLIwxHoqg0cuOhM8ezPkXfrTflHH5E5bDjVmzcjmn/4TAkCY90cONEtjA/DfCgzGJl0MZPxiRnE1+j+1HvRyp/DlStXrokimUxGv3792LJlyy3Hq9VqevfujVLZsueuKIqIoohOp0MURWpra/H09AQgPDycNm1+uVLAunXrmDx5MgBZWVmEhIRc64c6aNAgNm/eDMCAAQOuCbPu3btTUHBjfO6mTZsYPnz4DQLu9/BL/pzBwAyaExemC4JQAHxLcwZq+h8+cyut/El8fTobURSZaJBhFXpjBuqCEeEcSS3jg6QCXgQsjTfG6PyZ/CjihNsUHi7MK0Qw6HG1LkCvkIIgQS5vmXF5+fynlMok2Bu6M+A2jewBjGYLF3KrmNTV56bvb766mYcSrZF52lLgdQh7dVeUdj0pPf0vSho1NNqORDSKaIwOOHRaRYihHxubFPia7bEzWSPraMszWgUKRJZ1i0ACrExM5CNjMe4Ndrxbk8xz6tdwe2w7MtvmLzBjWQOqXdWMq+/CRd8iEkvTyVlziW4p8Wh6PcYVBuPi35sLVavQNJTS2yuJ1YVWbNquI8DHjiKTicKfBLTbyhwJd3fkgaLj9MvfTS93D9Qj3sVs3ZPikq0UFKzmSuoLpF99A3f3MXh5TsbG5pfr9f0aNAoN87vOZ0zQGN6OfZtFMYv49vK3PNnxSYb6D0Ui/HIM5J1A7uqK/dix2I8di76gkNjP1uCydyfhpatpSNtIwJnODOven0NjuvFpRSWf+8K/3Vy5J7aKh3QPMsownK90XxAXrqVeX0Dp1dn42A0kK3AGaqkVMamdsYoxMb3XWvT+AVxxnULAuZ1MOrqLduGZ7GvbkzdO6fBzjeTfC0ai3beFKxeOk73nEuGnexDqGY1dF2/Ug75B3mYDHHgZlveAIW9A1LSbWuUEQSCkqxu+kU7E7sgi6VgB2Zr76Pjy/djt/ITil16m8ptVuMybi6ZfPwRBQCYReMDDifvcHPi2SMvi3FJGxF9lnKs9LwV54q288QdMK7dh7wtQcofDBdzbwfBfbkIfGRnJSy+9hFarxdramj179tClSxecnJxYsmQJq1evpkuXLnzwwQc4ONy64oBcLmf58uW0a9cOtVpNSEgIS5cu/dVL3bBhA9u3bwcgODiYtLQ0cnJy8Pb2Ztu2bRgMhhuO+eqrrxg+fPgNr69fv565c+f+6nP/ErcUcaIoHgYOC4IwG7gPmA68ALwoCEIssApYL4pi9R1ZSSut3AFqm4ysi81niIc9HkUWlDcRcT6OKmb1DeSTIxmMQMXAprsr4n6Mwbtd71RtdSVyfR02TVlo7SUoJBqEnwoBUeRQyjoEBYT4T0PyK8orXCqoodFopnvgjfFwqZWpNF65QkCWGeHRzhhMh4gM+pTPj+/kGX0uxy1dMJg9ESV6pNbVeJmzqAxeTEPqDiItfsjI5I00LemR/qww11JbrWfOzjNc5j8IUiUZhU+w2vUqDzd+ifBFP+j2GA22k6japUWQS3CIFglcsYZKOwdO9e3PkciuSH38KJeoyTObMEsXtFivUW8gvriGDg4aZgS4E2GjIlytxNNK3myRNLeFs2Y4+ibkHEd67wd4RzyAl+cUamouUFi0nuLiTRQWfoetTXs8vSbj7jYKqfSP/Tpu49iGlUNXcrLwJIvjFzP/xHy+Tv6aOZ3n0NOz5x+a+7dg5e1Fn9efR//KPHav3knl95vpXBCLcvNpgndomNahJyeG9WeBuy+2Pa35WGtD2yQJ86ULSDl/jn2+MZzzKURXcxi72pPonadhCoriRGY06hO2TOj4Gcox2eSGReN2QCTicgLuJSWE9ehObFUQU9fWMaxtL+a8PpaLm9dwKfEYqfUxBBd2JORoJ2z8OqGJ3oIqeyHCjichfjXc+wF43Dw3zspaRp9JoYT18ODkhnTOnKrBqd1cOo2sxrLmAwr+ORtVt264LXgRZVhY8zESCY94uzDZ3ZEleWWsyC9jb0UN//Rx5UlfV9Syv0YHl1ZuTXh4OM8//zxDhgxBrVYTFRWFVCpl9uzZvPLKKwiCwCuvvMK8efNYuXLlLecxGo0sX76chIQEAgMDefLJJ3nrrbd4+eWXb7uGmJgYVCoVkZGRADg4OLB8+XImTZqERCKhZ8+eZGZmtjhmzZo1xMXFcfz48RavFxcXk5SUxNChQ3/H1biR29Y4+CEm7lvgW0EQPGgWc9Norgv3kSAIu4BVoijuuiMraqWVP8DamDzq9SYekCmRuYjIHJQ3HffP/kFsjM1ncX0T/f9LlrhfagFmMpnQ6RsJNBchiCZqbaxRyH4mSLOOcUxowKHRnbF9f9kV8CPnsrQAdAtwQhRFqkxmchsN5DXpWZ1+kYHJIRitsskLi0Wn7Marhc6MO/QUZoVAgs0s5HXNsYPGkHgau39Cwr7jOFjUyEZ1Ybu8lA21MsadPk6GXMe8w7WovTcgUWtpyH2Uob5qOk6aQ2zVeDxPLsL71EdIhOXEeoxnpfdo0gQ1tc8vurZWQRSxbdThai5nrJ0LxkQd9jozSv9UdKc246mVUOYWwDar/uz0cCZsaBs829pcdylLZdB7DoQOhW2z4fuZcHkHwoj3sbfvgr19F0JDXqakZBuFRetJTV1AZub7+Po8jLf3NGQyzc8v369GEAT6evelt1dvdmftZknCEmYdnEW0RzRPd3yadi6/3G7tTmKlkDH+kXHUTRvJV4dTubRpN93yLtI94Rjj4w4wWmNHcveevNuhG5L+bXm3SEJESg9CKzsysDCGrOECm2v3U6VdiVxpT1PQSPZmhkHuB8yofAl6x1AfZEXtnm74nLjEsP378WjfgdDQEGLS/BmZVs7s3mOZNH4S8bu2cvn8WdLqYgnQRxGa3REb5UvYe8eiLl8Gn/dH6PIw3PMyWN+8zp+Lrw3jnu1ExoUyzm7J5OBpGQFj3iVCcQX9V5+QPf4+HKZMweXpp66179LIpLwQ6ME0TycWZRXzcW4pa4u1vBDowSR3R6St8XK35zYWsz+Thx9+mIcffhiABQsW4O3tjZub27X3H330UUaOHPmLc/yYkBD0Q9eW+++/n7ff/nV7Wr9+PVOmTGnx2qhRoxg1ahQAn3/+OdKfFBQ/dOgQb775JsePH8fKqmW89caNGxk3bhxy+e1b9/0aflPjOVEUi4F3gXcFQYgC/gk8Coz7rXO10sqdxmCy8PXpbHoGOhKQ14Sym/stx6oUMh7s6sM7RzOorNVzN/s3iIbbu1N/zJryFppr2VXbylEo3VqMyT37MRkKBVb1vW9ZLuTnxGRX4uei5l8Z+Zyv0VFvvl6bW9Xow0sXs8np4oHaOp0Pmu7D/fRmoqVXOauMJL/egD8WSu3gy9CpDE4sJ6ipGoVdW0Y0apHVQVBxDjVyKe93G4Gqej9ibSL6smE0+XVkm5+GbQk//Fr1eY42jhOYn7OaMaVrGVa6ieM2A8gZ8hI+7r4Eq5T4WyvIy8xk+/btNDQ00LljV+qS7NCeCMCl+3MczFlEaGoWj1gVclnoxezVNUT5OfH8sDCiA3/ShcI1HB4+BKc/hmNvQ85JGPoWtJuAXG6Pj89MvL0fpLr6PDm5y8jMeo/cvM/x8XkIH+8HkctvLFL7a5EIEkYFjWKo/1A2pm3k80uf88CeB+jj1YfZHWbfVTFno5Qz5952lPcNZcmRq0w9nUHnklRG5l2i3dEjfHpoL+Wu7nwX3QdJ98E8UmJPx/x+hB2pp7ONO4UjFHye8w1lljVY2thzqLwXZxzf5Pkzp/B03oV5zCkKOrniuNadTvEJ+BVnY9e5FyUaB7470cDaGGtm9hzJxPseIO3ALlJOHCbDdAE/73aE5EbhJC7BQbMe1fmvIHkrwtDXmwsF38rF2sWNgPbOJB7K58L+XHLNbrR76gt803dQtW4NtXv34jpvLnbjxl0rFOytVLCsrR8PeznzWkYhc1PzWZ5XxkNeztzv7oim1TL3l6SsrAxXV1fy8vLYsmUL586do7i4GA+P5sSwrVu3XrOS3QovLy8uX75MeXk5Li4uHDx48FclbVgsFjZu3MjJkydvuqaqqiqWLVvGxo0bAUhISGDWrFns27cPV9cbQ1zWrVvHW2+99Wu3flt+V+9UQRDuodkiNx6wAa6KovjrTAH/ZVqzU/++fB+Xz3ObLvHFkHDCDxTiNDMC67Bbi5td8YU8sTGRTb1C6DIq9K6tsz6mmOqtv5wVe+nSJbZs2cLUhvWEOOk52V7E2Xci4RHvNQ8oT2flmnv4yNGBQZrFfHTfPbc9b3mTgR5vHEbvYY2mvRPj3Bzwt1bgq7SioCqO5GXzmLVPj/YFGZpOvXg7cwwTd73OfT4pfC5/HEN+c+/NRv+99Bz5OOmb9lOElgGz/smCvDIyq+t4a/Fb7Bk9F0dpMcfkizDpgvFpGsX93e2xD+iFutGCuDcHW52ZoM7WNH66EEpT8BrrjqIpCUGhgcELofM/rj28GxoaOHDgAImJiajVarw1EWgvWuEWrOG081fIYrLwqFSCnT2nHXoTjzf3hLvx3NA2hHv8TICVJMOOJ6AoAfz7NLvvXFp+ddXUXiQnZxkVFYeQSjX4eM/Ax+eha71Z/wg6o451qetYlbKKan31f0XM/UiuVscHB9LZcbEIB5OBKTnJDK6/hDInGYCE0LbI+o2nvd4NTa0Veksjej8zhYMkvJu0mBJdPqJFjqGxC/Ye/ZkUf4zIDrHIHOoQdgXiergCQTRyqWM4aQFtKcKGM4ZAmlAwINSJ+yKdUGWcI+ngHpp09bh4+NPGKRofnREnxWdYSVIxO3ZCGPshEt+Ov7gXXbWec9szST1bgpVKRrsoa5z2LcEYH4uyQ3vcX3kV68iIFseIosiO8mqW5pVxqa4RjVTC/e6OzPRyJlR9cwv+/xp/hexUgD59+qDVapHL5Xz44YcMHDiQ6dOnk5iYiCAI+Pv789lnn10Tdf7+/tTW1mIwGLC3t+fAgQO0bduWFStWsHjxYuRyOX5+fnzzzTc4OTmxdetWnnzyScrLy7G3tycqKor9+/cDcOzYMV544QXOnWvZ7nDKlClcvHgRgFdfffVa0sOgQYNISkq6thZfX1927NgBQE5ODr169SI/Px/JLbKy/5TeqT9MEk5zosNUwAuoBTbQ7Eo9+6sm+QvQKuL+noiiyLCPTyIIsC7IC925Yjxf60GZaOGItpZAlRXd7Vu6x+JzKxm//CxL2vsy8oG79xCtO1FAzZ5sPBf2QKK8uQH74MGDnD51kvmWz7B29eJo2xr8Av5FUOAPwbC7nmFq0R6SLL4sG7iO3iHOtzyfWRRZW6zljQs56E+X0qu/H0sGhuEgv37u2YdmM3bRaXwVGoqeKyPBYSl1S1Yxze0i/up65hgfpG1pf+Q2WfR3LkNuN5DVxfvoFtWFPd5hfF9fx/zVK3BzC2HIS48wesN4ammib/UsljmuR8g7jcFuABU1c0GqwDqihrK3XwVBwOv999H06Q2ll2H/Asg6CgF9YfQScPC7tsbCwkL27t1LQUEBDrbOCPne2Cic0Qyv5vvEj2iTJMO+Xg5ufuy27ka2xJmJnb15dkgbXG1/8lC2mOHCN3D432BogJ5PQt/nQNEyFq6u7jI5OcsoK9+HRGKFu/tYfLwfRKP544L/52Kut1dvZneYTXuX9n947t9KcmEN7+1L5fjVClQWGGNsZJpjLroje7EpLqRWpaZo4P34WIXgbnLGJBqRt7ejpKeFF2M+oqjxCoLEhEEWhtS6D8NL8ukbchBNhQnNly7YFpZQ5+fAiQ7R1KttKJVYc0LXBh1WOKjkjIl0oUPTVapiD1NVXIjazpHwoB60bSrE0bIaCXU02Y7D3P15rNsHILW5dVJCeX4dMTuyyE3SYm2rIMKrBrtN7yFWlGF333hcnnoK+c+sI6IoklDbwMrCCnaUVWMQRfo4aPiHl/Ovrhv4d+WvIuL+l7jTvVNdgAdotrp1pLl36gGakxq2i6Kov0Prvmu0iri/J+dzKpm44ixvj2+Ha3w5J11knPZTcqmuEQBPKzlxPdq2+EIuqm6k59tHeCXAjYdn3fTz8adQeyiX2kN5eC3qjXCLZIQ1a9ZQlXKGJ62+w+gazImwakJDF+LjPR0aKin/OJJ7vJwQqodx4Yl3kEtv/qsutrqel64WklTfSGCJnqKLFcS+NBBXm+uiplRXymNLB/H2ShN1k2XUjurBpo22RBZe5l+hsRwmnMSy57A2aXDSf8mIqW9w5NgJEmU5lLQbwTZ7OV2upPDOmmWEHzvChC1PkW44R2T+LD6wdMTloUjIOU35XgHBokNavpzKs0VYhYXh/eknKLy9ry9YFJsF1oEfgo2HvA6dH4If7psoiiQlJXHo0CFqa2tRW9xQVvrTdWQQR203ceHILjqm26PUSzD5tuN72tFg7cisvkE82jcAleInorm+HA6+ChfXgp0vDH8HwkbccA3rdVfJz/+akpJtWCx6HB164+MzEyenfi0TTX4HfyUxdz6nkje3ppBYWoutRWBykCsT2jSRvXo1XmdPgSCQGT0UJ6dO+Ep9EARQRjhxIcDAvPPfgU0MEnkNZqkDZqv2RIow3jEG7wNynPboEATI6hVEvGskCusmamUCMTUR5FmcMFnAxkrKUPtqAkriacq5jFSuIDyyPV2lKTjoDmERbagxzcTkNQ7rdq6oOrkiVd88rqg4o5pz27MoulqNxkFBmCQVzY4lSOVSnB7+B04PPYTkJuUdyg1G1hVXsqqwgkK9kWCVFY/7unKfmwNWv1DP7u9Kq4i7+9wxEfdDwsIQmmPdkmkWbt+Jovjfazh5B2gVcX9P5m5MZGujDptAW8pMZgSgi62awc62mESRd7NL2NMphE5216PfjGYLoS/t5VE3BxY8c/eyBqt3Z6E7V4zX671uOeb99z8gpOwIY1Sn0Ll4cS5cT7vIpbi6DoOTH7Ix9gNed3akl/JtVky696Zz7Cuv4aHkbDys5Lwa5MmOPVfJqWzgyLz+LcZ9mfQlukUfMjhFQsmiRr4vnU7wgTjGDw0gIG81/9T0p13G00hkJYxqJ8GU68F65RnypbZsad8NjZXA2udnEfDPWSzxNbO5bBnW1f04NPFNdGvSMdc2p94LCj2mi+/TkJKNnX8D7tP6IBm8ANxuUt6jOg+2PwHZxyFwAIz+FOyvl0UxGAycOXOGU6dOYTaZsWpwJ8w3isCxGt678CbE5tEuxx6pRUKNTyc2Wdpi6+jEc0PbMK6jV8tM3pzTsHselF8B3x7Q/XEIuxckLeOjDIZKiorWU1CwBr2hFGtrf3y8Z+DhMR6ZzOY2d/2X0Rl1rE9dzzcp3/xXxZwoihxNKeX1TUlkNxlwFqQ82MOPMW2suPLtapx370TV2EBeSCek/r0Jsg5BLrGiwsWKZ5oqKSARhfshBJkWAROioMTGyoMhjWUMWyvBPq+KJh9fYqODKZa5YG9fiqDQkVweRY06mMwGK7QNJpyMlQwwpeFRmQqGJnxdpAz2yMbemItB2paqhscwSkJQtXNG3d0DhZ/tDTUSRVEk/0ol57ZlUZ5Xh72TnJCa02gOrULu6orLnDnYjR1zLV7up5gsIrt+cLUm1TfirpAzy8eF6Z5O/1Nxc60i7u5zJ0VcGbCWZndpwp1e6H+LVhH396O2yUj71WdpCrFlkMyK3gnVjBnXFg+f5or5NUYTkadTeMTbmdeCW1b677xgL71tVCx+sd9dW2/V1qs0pmjxfLn7Td9vbGzknXfeYXTDdtqpi6h1EEiMVNO50wbsbTrAx+35h4OaGLOGT3qvZ2D4jQkcF+saGBufQRu1ks1RQSglEqL+fYBRUZ4sGnfddSyKIuM33stri3IRO0m5PNWPwq8keLaLYpLdcQoqr/J1zb9xqw/EuWY7fTtO5VJDLmdJYUtgP8p8HPjk7EE6bNlI2seLWJD+AhKDB/smfounkwO6hFKqNqQDIoarm9CnH8P92aex9y5CiPkMDHXQdgz0ex7cWsYsIYoQtxIOvAKCBAa82FzhX3Y9jrCmpoYTJ04QH5+AaBGxE30YO2UYCbJzLD39EYFXpITl2SCRyslx78xeIZwQHxf+NSCYIW3dkP1owTQbm891dkmzgLT3hW6zoNN0ULbsvGCxGCkr20t+wSpqaxORSlW4u43By2sqNjZ/7IH3V7HMiaLImt1XWXoykxLBghwYEOjMjGh3jKf3I92wHpfSYhpUNlRHDsHHPRqLxI6XJY3EWUx08C7mqu3XoPBAMJUiMVeDCKPSlNy/txG5ASr79eGEuxMmBNzds1FYNVFc7IfZph2NDkGkVAkk52kJaMyluyUHh8oM2toU0989D6VET739WOqqpmLRK5G5qdB0c0fVyQ2JteyGvWQllhOzPYuqkgacXaQEZm5HE78Xq/BwXJ5+Ck2fPgjSG8WZKIocr6rj09wyTlfXYyeT8pCXM//wcsbV6s5kF/6VaRVxd587KeJkP294/3egVcT9/XjvbCYfNNTS00bN5xkmDNm1eCyIbvHLfOrFLNIbmojtHt7i9eGvHsBeKmHda4Pu2nor16eiz6/D47muN30/JyeHb775hscNX2Ll6EuDOoPLbWzo0f0IqoxYarc9Sh9fPyw1fYn718dY/cwyUNBkYMSFdBQSgT2dQnG1kpNUUMOoJadYPDmKMVHXhWx8aTzfvDOd2XssVMw1cqaoPfJCFbMXzMF61UDet3NDmbYMQWxkRLAKiVbOEkUMVY527OnQjfttFMyaMRHzxAlM8TyLKK9mWe+V9A2NpDG5Au26VCyV8YhmGyQOgWi6qHCY+MO+Gyrh3PLmP0MdhI9uFnPuP8syq8qBXc9A5hGw94NBr0HE+GsuVoCqqir27TpEWsZlQCDUL5I+o7uy9MpSjifvp0+2F265IFGqueTUmbPSIJycHJjZ059J3XywVf7wQLaYIW1P85pyT4NCA1FTofs/wTHwhntVW3uJgsLvKC3dicWix86uE15eU3F1GY5U+vtbuf1czHVw6cCUsCkM8RuCXHr3xIOhycSOPZmsj8kjCQN6AbxsrJgc7UPbpnzKdm0n9OwpVPom6n2iULW/l5VyVzZjpKuVnN5+KaySbMVo3w2zKIAuBofaSh46JNDrsolae0eKRg/jktGEKIq4uubg4FBDcbEXFksA/hFdyBXc2JVcRnGplrCmLHqb0xgoO0WUQzFNgpoy94eR60dhKdYjyCUowx1RdXBBGep4vd0XYDFbSIspIXZXNvWVetydzPglrEadFYfMzQ27sWOxHz8OhZ/fTa9FfK2OpXll7CmvQSYIjHa15xFvFzra/vGq+39VWkXc3efPTGyQAT0AH+CG1B1RFG9dZe8vRKuI+3vRZLYQfiABo1QgoW8kxncvoAxzxPH+lhmH64q1PJOaz/4uoXSwuf6l++CbRylsNHDojTtTePHXULEqBXO1HrenO930/djYWA7v2coL4jKqfUdRIx4iM1BNvz4XkX09kl3mal5Umeksf4VvHri/xbF1JjOj469S0GRgZ+cQwtTNfSW/PJnFG7uvELNgIG4/CfJ/9fSrdH11M/4WgZR5NhR+68iIZxbgkrEZ+4yv+Lf4JO6l9+BEHr3tg/haUo5emczevqNAoWD9wS2YNm/ioQej0DnH83DAAub0nUJDYhnadckYMzajTzmCqkcvVD2fQJ9Zh81AX2wH+V4X0z+KuZgVoK+F9pPgnldauE8RRcg8DAdfg9Jk8OzUHC/n37vF/ovyS9j07W4q9flIJFIi2kagDlXxccbHNBaWMTw/DHleLUikVNv7cUHiQ4ldMKO7hzKzpz/+zj8pNlOU2LympE0gmiFyAvR99oZsVgCjsZri4s0UFK6lsTEHudwBZ6d7cHLqh6Njb+Ty39dHVWfUseXqFtanrievLg8npRMT20xkYuhEXFW379BxpzAZzSScKGTdwUzOm5rIl1mQSwTGdPRkcKQjqYf24XT4IB3TUpDK1ezv+gCfuoTijoRFUiVa5wzWK/dQ5OGOjTqEnKqLdLmUwGP7jTjUQ0KED43delGiFzGbwckpD3ePUsrKnKitCaFLl+6ofSPYl1rJjotFWGoqmGQ5xSPWO3FT1JLb6EK+xwzcbftiXWCF2GBCsJJiHemMqoMLVkF2CD9YXc1GC8knCrmwL4fGOiPe7hb8i4+iOLkNLBasu3TGfvx92A4dgkR9Y/GhrAY9KwvLWV9cSb3ZQmdbFY94u3Cvix2Kv1ncXKuIu/v8KSJOEIROwFbAG7hZJLYoiuL/i0CBVhH39+JfiVlsrqplpkzFf/w9KFuaiOPkNqiiWj7gqowm2p1O5nEfVxYEeV57/bn3T7FfW8ult24MaP+zKP/iEqJJxHX2zSvT79y5k5oLW5nGZmrazaJUt4YiX0f6B34JK4cyq01fTjVoea/bJka0u74Xk0VkelIWJ6vqWNs+iL6O1+O0HlkVR0ZZHceeu94GucHYwPRP+/LG5z1MeyYAACAASURBVDpq7jORiA9W1r2Z/tzL1L3txyWlSHLu12CWM8BeTokMstsUslmqJN4zkLV+TniMuZc1PfzZ0SubKM0Qvr3vA3QXStF+F4c+fgWmkgycHnsMl6efAiRUbblKw4VS1N3csR8V1MJSQmMVnF4MZ5c1W9m6Pw69nwHlT8qEWMxwaQMceQNqCyF0OAx8tUVcnWgRObY1kdjYWJqUpYiCBXd3D6rdq9hYvREvvR0j9F2QZVRSW1qKKEgoVHpyVR2ES0Qn7o1uw7BIdzRWP7jl6krgzKfN7lZjI0SMbc5m/bn7FxBFC5VVZygu+h5t5QlMploEQYqtbUecnfrh5NQPjabtb27GbhEtnCk6w7rUdZwsOIlUkDLIbxD3hd5HN/dud6WlF4DZZCHtXAkH9mZyvEFHspUZI9A3xJkJPfyIy0ikMvYC7a+moiqt4/1OUzHKrHhVVNJLak2DtJFE63SyHUsxtvUlriyRPrviGBJXi0EGe6PtKQsKxVZ0R6a3xtauFA/3XBobraioCKNdu750je5ObGET62LzOJtezNPiJh6z3odUNHO2wodMWRd8grvgKQ/CpkQDegsStQxluBPW4Y5YBTsgsZJiaDJx8XA+F4/ko9eZcPNVESLLRH34W4y5uQgqFbaDB2E7ajTqHt1vcLfWmcxsKKlkZUEFWY163BQyJrk7MsbNgbZq5W++x39FWkXc3efPEnGxgJrmtlupwA1NwkRRzP09C77btIq4vw/HK+uYdDETRb6OSxO6YjldjO5wLp4vd0equbEMweTETHKb9JyJvu5SfX9ZDEvyKkh9fRhK+d35HVK6JAGJSo7LP25enPKrr74iNHcTvYQzGLrPJaPmC2p9Q+lZEkxT+j66e7hirOlI3D9XYP1D6y5RFHk+vYDVRVo+aOPDVM/rxW4tFpGOrx9kWIQ770y4Hlu1LWMbWa8tYNhFkcyXZaTuDmbWh59x+dB6uqe9wkplfxpznsbRCrqpZAjTA3lv/1a2dejNdC9nntm2loxNq3h8lgY7hROHp27DdKEK7benaTz/KWJTDZ7vvoPtkCHXzimKIrX7c6g7VoDMTYXjpDYoPH/WGaE6H4683izWVM7Q/wXoPBN+6kY0NjZb70591Gy9CxsJfeaCV+drQ2orGjm7PY2klCSa1EWYpI0olFZUOJZzTjiH3EbOdKexBJbakBFzjrqyEkSg1MqVfE0Anu27cG+/jvQNdW3O/tVVwNmlEPtFs/v3x3N6dmrh2r1+3U3U1iai1R5HW3mcuroUAFSqALy8puLhPv53WejyavPYkLaBrRlbqTPU4aH2YFTQKMYEjcHX1vc3z/d7MJstpMeUcmJPFifr6klUmakXRcLcbZjc3Yf0+iK2NFlwKiqjMcNIlaDhH8XJPGCwYPEMw1rR3Di8VlpPdXAZJ2WX8NwaR5fLZVTYwrp+EtL9XPExuOPU4IWDIMXdPRMrZT3aigD8/IbQoUMUaJzZEFfIsfOJzDF8zjDZBWrNKs6Ve5NS5YJM44BfcBR+1sE4VDkj0QMyAatAe6zDHVGGOSKq5Fw5U0TiwXzqKptwcFcR0UbEOWUv9fv3YamrQ+rijN29I7EbPQqr8JYhGRZR5GhlHV8VlHO8qg6zCMEqK0a52DPGzf6aNfz/I38VEbd48WK++OILRFHk0UcfZc6cOSxcuJAvvvjiWhP6RYsWMWLECLRaLRMmTOD8+fPMnDmTJUuWXJtn3bp1LFq0CEEQ8PT0ZM2aNTg7O/P999+zcOFCrly5QmxsLF26NOul7777jvfee+/a8ZcuXSI+Pp6oqCg2bNjAm2++idlsZuTIkbzzzjsA6PV6ZsyYwYULF3BycmLDhg34+/tjMBiYNWsWcXFxSCQSFi9eTP/+/W/Y658l4uqB+0VR3HPbwX9xWkXc34NKo4kBsalUVDUxpk7Km6MjGPjmYWbaaHjqxT43PWZNkZZn0/I50rUNbTXNX6zfrkrklSuFHJ3XjwCX399m6bdQ8mEccjc1TlNv/uX4zjvvcH/dGtSmSlx6TiBe3AXeXeh8KIYjAV15ujGVSMk81k2fee2YFXllLMws4glfV17+iaUR4HJRLSM+OcmH93dgfKfr5Twe2TGDf70WhyXCxKUgFwKj5tB14GhilofRSV/NqpJVSC0ahtjKsB8ZQJzpKnMaFajt7DgY5knePffw0hRrCjwMbBu7CdcrSrRfH6Tx/FIkShk+y5dhHRV10z02plZStTkdS4MJ28F+2PT1vrHcSmF8c1JD7ilwCmmOl4sY21LMNVQ2uzxjVkBTTXMma595zW7WHx602qJ6zm3LJD01A4NtCU2yCkREjCoj6Yp0ahxrmNBhAkNVvSi6eImkc2epy88CoFZmQ7FtIN4dOjNiSG86B7ggNFZBzGcQs7z5nA4BED6q+c+ry007DADo9eVotccoKtpATW0CEokSd7fReHtPw8bmRqve7WgyNXE0/yjbM7dztugsFtFCJ9dOjAkewyC/Qdgqfn+niV+LxWwh/Xwp53Zlc662nni1hTLRjEIq0CfUGZlCxym5mdoCCdKSRvxUBv7DVbyTkslRyKkJDCNIDMPJZE+9upgkm2PY7b6ET76WDA8F6/qZSPIXsNdrcGvywqPBnSBNIy6OhTQ2qWlsiCQ0tBdhbSO4VCkhPWY3w0q+IMKSRpHZgf3VEZSWy5GLJkwyJXKfdgS6d6CDwQN5ZbMtQu6uQhnuhCLUnryyJhIO5qEtqEdtpyCyjwd+YiZN+3dQf/wEGI0ogoNwmDgRu3HjrrX1+pEKg4k95dVsL6vmTHU9ItBGrWScqz0T3R3xUt66xt1fkb+CiEtOTmby5MnExsaiUCgYNmwYK1asYM2aNWg0Gp599tkW43U6HQkJCSQnJ5OcnHxNxJlMJjw9Pbl8+TLOzs7Mnz8flUp1TbxJJBJmzZrF+++/f03E/ZSkpCTGjh1LZmYmWq2Wjh07cuHCBVxcXHjwwQeZMWMGAwcOZNmyZVy6dIkVK1awfv16tm7dyoYNG1i6dClxcXF8/fXXlJWVMXz4cM6fP39D0d/fKuJ+bausdLirnYlaaeWWiKLIc2n5VBhMSC9WMnVSJ5btT6PSYuGEYOKpHweajVCSBAVx4BrOMK8ezE/LZ2dZ9TUR5/ZDx4QSbcNdE3Gi3oyguLnVz2Aw0NSow1NSTLrJG9eafAwuMjRmKTRWsUMiRzQrmdj+ulv0TFU9/84sYqSLHQsCPW6Y88d+qT9tRZVXm4fi5AWUjSLFnSXU5UfQe9Q4lq57n0ebqjgrDUdm0eAkA9s2Dtj3cOfTzfHUuPnxeZgvZ15+mfT2RvI9Lczv8iIuyVZUfLGZxgtfIvdww/eLz1H4+9/yGliHOaKY05nqrVep3ZdDU2oljve3Qeb4k3Bbr04wcxek7YVDC2HLI8113aIfa7bMWTuAyhEGLGgu2Bu3Es4sgVUjwbtbsys2dChOnhrufbwDnbP9Obctk/yrZZhsKsG6Cnm1HKohpSCFY3bH6NqhKw/8+yXUBjnp52O4cPIUmszLSI5e5OCxb1ln549X+84MHz6D8B6PQ/JmuLILzi2DM5+Axh3CRzZb6fx7txCcVlYueHpOxNNzInV1KRQUfkdJyQ6Kijdia9sRL8/JuLgM/tXWOaVMyfCA4QwPGE6prpRdWbvYnrmd1868xutnX6eTWyf6efejv0//P81CJ5FKCOvuQWhXN3qcL+X8nhyuaHVkqEXiM6qoMppQyiW0dRDId7SQU6Vghrwdykl9ud9XzbCsVArTdnLQVIO70JXupfchjR5BTse1uJ5M45X1BtK9ndjaU018wFXS7NM5Y1bgUeVBkFFNR+dY6nUH2b/PF5OxA53Ce+A2bjcm7QWcDr3OQ9JTVHn7s08yhLgccM5JJDP7PElSa6pc2mLn1Z62Fi8ijuVhezQfG42cwaEOVHZ04XJaFTG7crmgUBDe+yki57yMEHecmq1bKX3rbco+XozdyJE4TH0AZVgYAM4KGTO8nJnh5UyZ3sjO8mp2lFXzdnYJ72SX0NfBhskejgxztsP6FrUdW2nJlStXiI6ORvVDXb9+/fqxZcuWW45Xq9X07t2bjIyMFq+Loogoiuh0OpycnKitrSU4OBjgVwnVdevWXevKkJWVRUhIyDUr4KBBg9i8eTMDBw5k+/btLFy4EIAJEybwxBNPIIoily9f5p57mjvruLq6Ym9vT1xcHN26dfttF+Rn/FpL3DDgHWCUKIp5f+iM/2VaLXH//1lfrGVOaj5BFUYk2XVseLQHA9492vwhlYhc6nMe6+LY5tZKpuZiv6hdYe4V7ruUQ5nByMno5g/tpcPZjD54mQ9HRTC+l/9dWX/hwrOoO7liPzrohvcqKir4fslrzGYNJxr70de7iOPhtbgLIQSdOkv3gDY01AQT+9jX12K2HkzK4kJNA+d7tL3pg2HWt3FcLq7l5Pzrrbk+if+EoBeW49sokjDUnnsmfo3Czp2V33flBW05n2g/Rmr0o7OtlK4vd2dj+hWeqRUZr5HTL/MKsi/e5vWpRjp59uRj6wVU/B975x1eR3Wn/8+ZcvuVdHXVuyxLtmW5G4MNAdMxLSQQICGFULJLEgL7C4SQhCRb0jaN7G5CEpZdAim0kNCDwaEZsI17ky3ZlqwuXd3e752Z8/tjZBmCTVgCZAvv85xnRldTzpxp73zL+73tF+S334NrbieNP/spWjD4un4cCVJKMlsmiD20HySUnTcDz9Lq18cTWRbse8p2Z/Y9B7oHFn4Ejr0GKmYeXq6Yg62/tGPrYgO2iO/Sy2HRx8FXiZSSsf1xdjw3zP7NExRlFldjmqRjmGQyZp8D1yT+Jj8XHH8By5qWYRTy9GzZwto/Pk9kz1Yc+SQSSPrrqJ67iBNPWs6c9gbUvj9C98Owbw0UM7Y0ScdZtuZc26ngfP1HQrGYYHTstwwP/4pMpg8hdMrLj6eqahWVFW+e0L16PHdO7mTNwBqeG3qOfTH7RdZa2srKhpWc3HQyCyoXvGMxdJYlGdgVZvfaEfp2TDIkTAYqNXbJArG8LXagYGGhIIMO8p0B/H4Hp5R5WTXUTXLno4QzgtniGOZka0nG7qOwYyvucI7hqkruO2k+L3bmUAvbkORQpYuqfBOLdYMVVQcoFvyMjbaj6cuYN3cBC51DeNb9ACb3Qlkz6dkX8XykiZ1b98LgbhTLJK16GHbVYZW3UF82g7m5EhYYCh5VIVvjZX/WpO9gEsuStM6vYOFpTZTlh4jdcw+JRx9D5nK4Fy8m8OEP4z/9NBTX60t2HczmuXcswn1jEYZyRUo0hQuqAlxaU86iEs9/2/i5V1uFvrPhO+yJ7Hlbtz+7fDY3Lbvpz/bh/e9/Py+//DJut5tTTz2VpUuXEgwGufPOOykpKWHp0qV8//vfJxAITK935513snHjxte4Ux944AGuuOIKvF4v7e3tPPPMM68pXL9y5cqjWuLa2tp46KGH6OrqIhqNMm/ePNauXUtDQwOXXHIJhUKBRx55hK6uLv7whz/QMCVi3tbWxvr163nwwQd56qmn+M1vfsPg4CCLFi3ijjvu4MILL3zd8b7tljgp5R+EECuBXiFEDxB9/SLy3RPaeg//Z9GXyfPl3mEWe93senKYG8/o4F9W78WUks+Lg3zHauaVdc9xYoMKSz8JDcfYLq9Hr4d9T3Nu1VJu7hlibzrHLK+L2oBtkRuLZt+V/kspkQUT4TyyJS4ej9PICADpkg7M5HoMxYczNMSWpoXkZYhZJcunCdxIrsBTkwk+01R1RAJnWZINfRFOnVM9/ZthGaxb9wCnD0D0XAt3xQdpmDWHm+66notTCfplFWVmM1mg85LZCJ/O9yeS+DQnp4RG2fjIWnaelcej+/ma/1pC/3wrhZ4n8J60koYffv+ISvhHgxAC7+JqnK2lRO/vIfrbXjLbQwQumIkWfFUskaJAx5l2G9thx8NtvgteuQNmnmbruXWsAt1la8kt/gTseQxe+XdY8w/wzLeg83zE0iupbVtB7cwyMh9qp/ulEXa9MEIxHMRfaqA2RlDSvVg9Jo/1PMb9pfczb948Ljr+IuYetxwpJd279rBm9TMkdm0hu+4xnlz3GI+rOu6Gmcw75lxmX/gFqox+lH1/sK2I2+8F1QltJ9uErv0M8NvafrpeQlPjJ2lsuJxEcjsTE48zMfEE3d3Pskd8hfLyFVRWnIHfPxevdyaq+sbxVUII5lXOY17lPK5fcj1DySGeG3qOZwef5e7uu/nPXf9JnbeOVa2rOGfGObQH2t/0uXozUBRBy7wKWuZVkI7n2btujN1rRzguZBHy6KQaXAwoBlvGE5jhAq4XxkGXrKn18UhVJSz5G44t9eCY6KZvz2NIXxVzqv4f/uED1PY+zt/dv4arSt08cvJKHl7UQlrZyYiymVGZ55FoCbreSXOtxnGOP9Dd+xTPjbVRV3E1Jy6J0zT5LN5132cVglVzT6T4oQ/RHS9n6yvb8PbugsF9MAjdqps/uuqQZS20h9o4oVDKTK/KQVWhb3eEvm2T1LaVsuxjn6f9xhuJPfg7ovf8hpEbb0ToOq758/EsXYrnmGPwLFqI4vXS7HbyhdZabmip4aVYintGI9w/FuGukTDtHicfqinnouoAdf/D3K3vBubMmcNNN93EGWecgdfrZeHChaiqyjXXXMMtt9yCEIJbbrmFz3/+8/zHfxxdJKNYLHLbbbexZcsWZsyYwbXXXsu3vvUtvvKVr/zZPqxfvx6Px0NXlx3HHAgEuO2227jkkktQFIUVK1awf//+N9zGFVdcQXd3N0uXLqW5uZkVK1a8hkC+VbwpEieE+CLwBSCEXTPV/Iv3/B7ew38RWdPi6l396EKwJGqxR8AxzeX8YHUPH0BnZvIJhPdT3NH4TU686lUVGMyinc249VecfcGpfKlniEcnYsxqrcHvd+IBxmK5d+cgDAmWPKo79RCJSxlOHNV1FGJ23I4jMsoj5R3ITJQPzT19evnfjEawgI/WHdny1TuRIpopcmzr4eLtLw6/yIoNIaQiGQhWcsFHP03v/n525J7mO/k8L6ZOIW1Bc4WDkiXV3LmzhyG3n4tiI/xqwwBNFWs5WC343owvUvzmv1E88CxlF19MzVdvQWhvNkLjtdACLiqumkd63SjxJ/sZv3UzJac14TuhfloaYho18+CCn8CpX4ONd8Dmu+G+j4MnCPMvtQld1Rw7fm7uBRDqsV2tW39tuz8r58Ciy/DM+xBLzmph0RnNDOwKs+v5YQZ26ZRblbirDWJlBzDTQ/St7eM7a7+DM+hk4eyFzJs1j09f9zeoqsrOAyM8+fSLDO7Yhn/kIIUHfsmmB0A4XFQ0NlPd+DnKayyC+QOUH3yJ0r1/sEP1KmbBjJOg9SRoOQHhLqO0ZAGlJQuY2fZFkskdjE8RunD4y1MHLnC7m/B5O/D6OvB623E5a3E4guh6EE3zv86i0+Bv4LI5l3HZnMtIFVI8M/gMj/c9zp277uSOnXfQHmjnnNZzWNW6ijrfa2Mp/1J4S50sPrOZRWc0MdIbo/ulUQ5sCdGWN1lVVkZfvcL9oxEKBaA/gWMgja5K9tZ4WF9VjTX/Smo9DhZn+qjrTRJsX8nSfg/BvWv5yO+f4MOPSGILnOxc2MUfqloZlH3k8ps4kC9yALC0CjytgzSKYbaM+CkbXcTckmNYUT5GbeQF9Mc+y3xnKfPnvh/5oSuJeWZyYOdudmzchGffbsTwfmAND+kBEmVtNJR3cKyvFjWn0HsgzkM/3EJV0MmSk06m5YEPk9+xidSLL5LZuJHwv/874Z/9DFQV19y5eBYtwtU5B+ecORw/YwYnBJr5ltHAIxMx7huL8M0Do3zrwCjvC/i4uKacVZWleN+GF/zbiT9nMXsnceWVV3LllVcC8KUvfYmGhgaqqw9/mF599dWce+65b7iNrVu3ArZlDODiiy/m29/+9pva/z333MOHP/zh1/x23nnncd555wHw85//fJqQ1dfXMzg4SENDA4ZhEI/HCQaDCCH44Q9/OL3+ihUr6Oj4y+swv9kn7vXAz4DPSinfI3Dv4a+CW3qH2ZnK8ou5Ldxy+0ZOmFnB9b/ZggO4IL+PDSFJjT7B2l7JloEoi5qmTOuqDvMvhg23U20kOLbUy6OhGJ9vrUFxaVSiMJZ4d0icVbBvH8VxZHdWIpFgPqOMZH2UeBUKGXs5R8HiuXwEK9vKOV0twOHC9isDfprdRxaWXd9nx8Md96p4uAe67+Wq7ZDrkrQvvxGXz8enf/kZ3p9LYiHIm+diAYsu68SwJD8YjRIoFElt6UWk9vHMkjzni2Np+8ZjFPteIHD5J6m+6ca/2CUkFIFvRR2uuUFiD+8n/kQ/mS0hAhe242g8Qlkrf7UdD3fSTbYQ8Oa7YMPPYd2P7SzVRR+FOe+Hyg5Y9W1bimTnb2HTf9q1WZ/6KrSdirLgUlpmn0PLvAVkUwX2bw7R+8o4ub06tXSg1iYYc+8hEg+z4cUNvPLiK6i6yoyWGbS1tXH1pWfiv/oido8meHTdXjav34grfJDgcJTKgZdxFDNTHa5H05sJlLooj2cI9qyhXHuQoDNHWXM7WuvxULcIUbuQkvIuSkrmM7PtJjKZPtLpHlLpHtKpHlLpXibDf+RPH8VC6DgcQRyOIJrqR1U9KKoLVfWgKm5U1c08zc/SuaeT73o/GyZ7eXzgJW7dfCu3br6V9kA7J9SdwPH1x7OwcgGasDDNHJrmQ1HeuoVICEF9R4D6jgDFj5j0b5ukZ8MYhV0RrpRungkYdFsG5UqBkswkowNBHMNZVCEh6GB9MECk8kNYbRrawiGOG8ly0r4ZLNoTpnx3D+/bvJnlwU1kj1WJNyzhBbORzf4Mo55RsoUheq04vS6QbV5Wa7U8UCylLX8ay4sRjtH7qNp2H8rmuwh4giyZcx5LLrkA2fIFouPjbF77EjvXryMwvBkltJGXFAfhkhZKKzposdqIRfI88eB+Kh4+wNxaD3Uzzye49FJUv8QY30d+7zYymzYRveceZN4uNS4cDpwdHbjmzGFV5xw+0NnJ2MJWHohluH8syme7B/D2KCwv8001L/N9HrSj1Fn+v4CJiQmqqqoYGBjgwQcfZN26dYyOjlJba8cA/+53v5u2kh0N9fX17N69m1AoRGVlJU899dSbioWzLIv77ruPF1544Yh9ikaj/OQnP+G+++4D4Pzzz+cXv/gFy5cv54EHHuCUU05BCEEmk0FKidfr5amnnkLTNDo7j1By8L+IN0viPMD97xG49/DXwv1jEX45GuZzTVVo4TwTyTyGZRFJF/k4DnonN7HorPPYtHGUUUc11/xiPY9cfzKV/ilys/AyO/h85wOcW/9BvtI7zL5MjmaXSgWC8XT+XTkOmbdvIeE88q2Xik4QIE53rplyLU9hiuwlndVE5AQ1jvdR6rGD5deEEwzni/xDe/0RtwWw/kCEulIXDVNu4/H0OIUXXsCRgYH2Cs446f186f4nGHVu4YJQnkRxFmNFHyWlGjWzA/y0d4AJzcnJe7bzkllL1ez/oC6h8+HVJsW+lyi/8mqqbvi7tzWmRyt1UvGxTrI7J4k+vJ+Jn2zFt7yOkjOaUVxHGDdFhfbT7ZaetN2Xm++2qzw8doNt8Zr7ATvZYPHH7Bbqge33wLZ74bdXgrME5l6Au/MCulacQNeJ9SQjOfZtnKB34zjWgVKqAMOTYbhkBxkmyB7M0tvby5NPPklrayvz58/nurPn4/zAMewcTvDM3gme2TtBd/8YgUKURiXJXE8OzYiRjE+wNypB2tYv0ScJvLSOKudTVLtSVPktqlracDUtwFu3CG/9YqpazpzOuLWsPJlMP/lCiGIhTKEQplCYpFC0p4aRwiiMY5rZ6WZZWSzr8HUeBD7mgk+0+MjjIG/sheh2wrEfs/ZPvjFU1T9NEB16ObojiMtZi9vdhMfTgtvd/Kbi93SHSvsx1bQfU20T5k0TtK0f4/nBKGvccNBZx/v8MEsdY9NEir6RIKnJAA5AICkrcTFSdR7/Ok8lvSzCjPALXLxpJ0t6Jgg8nsAnNvDBWes5e6GLVNVCDkbPZLvmojs4Scg1TtzoISn3satW8HhTLVWiidZkJysHJjku3kfTpl+hbroT3EHKO8/jtIVnc9oHvkG+KNm+fgMbXliL2rsTfV8Pk0BMD+IsOx5ptfLcYJrAeJZ6Fep1BZeig3oMriXvw3e2G9UZR2ZHKA7vJ7d3D8nVq4ndf/+hAebCGTP4SGcnYzPaeLayjtW5IP84GQch8KoKy0q908Rugd/9v05Y+I1w4YUXEg6H0XWdH//4x5SVlXHttdeydetWhBC0tLTws5/9bHr5lpYWEokEhUKB3//+96xevZrOzk6+9rWvceKJJ6LrOs3Nzdx5552ATQKvvfZaQqEQ55xzDgsXLuTJJ58E4Pnnn6exsZEZM15bseW6665j27ZtAHz1q1+dtqpdeeWVfOxjH2PmzJmUl5dzzz33ADbpO/PMM1EUhfr6eu6+++63ZWzebGLDvcB2KeU33pa9/hXxXmLD/zzsSWdZtbGXhSVu7l8wkw/d9hJbB2O4FAvdVPjXXARzXoyTr/wsD69+ieueibEgsRPX/Pfxy6uPszW+AH5qS4+MXL6GxS/v5ubWWj5bEeAz//QsW92w7mtnvEEv3h4Ux9KM37qZ8stm45lX+br/P/rv3+Tcoe/w8NBsFp56Bkri5+xt95GILuCrqV7ODnyX75x/FgAf236AbckMm5bPRT/CV7qUkmO+8TTva6/kh5fYUh8/3fZTWv7hX2ncb6Lf+T3WZ7v4xqabOEbbzt1jI/Rlb+bx+DKWf7CNWac2sOjZLbiTcbybQqhlvyYZOMC3Hq6lZc8Q5VddQ/UNn3vdft9OWDmD+JP9pNeNIpwa/vfV4zu+7shk7rUHb8fO7f497HwQon2gaDBjJXReYMfWt0b+GgAAIABJREFU+arshIn+F2DbPbD7ISimQffay7Wfbi9XUkcqmmNgd4TB3REGusMUMiYSSci3n7RvBK8mEIZE0zRmzZrF/PnzaWtrQ9M0wqk8L/RO8szeCZ7rCRHLFAFwYjDXm2eWK0OtTOBLT1Ac6yMVi08fRpkjR5UzSZUrRXUJVM3owDNjqW1prF8CvtdfQ28E08ySz4+Tz4+Ry4+Rz42RL4xRKIRRFCdSOJjIRhlMTXAgMcRkPo5LgTJNpc7lI+hw4lMlmpXBNGKv2bamleHxNOPxzKDE34Xf34Xf34mq/vkYyXQ8z66N4/zbiwd4Pp3GJ+FsxcPJrYKCMsL2oWF2hnKMahWMu6rJK/bHmdOhIMpdJH0WSybW8MEdLzD/QBx3vIjUITfPJLtQJxOcz3h4JqOpCrZXJ9jvGyehHgTzIAKJREXqdXiUKhYkC5wbOchZ2R5cFLCEA6vqGJT5F6AsuADprWSk7wAvPv8y/du3wOgBVEuiOOeBawEOpRyJRJZpVFZ7mOXRqZrMIZP2eVc8Go6WUhwtfhR3BjPUT2HfXnK7dpPdvQszNDk9LsLnI1tXz2hVDXsCFWwvq2Bv8wzGGppYUurjuClL3eIS7zuS7frfQWLkrUJKiYWt42dPXz3/qt+Q01Mp7WoGQggU7G8mBfEaGchDlEliz6hCENDfWhjJkfBO6cQtB+4E7gL+wOsTG5BSHngL/X3X8R6J+5+FtGFy1qYeYobJ00tn8fjGIf7+kd2UuDUSWYNP4+QYz2ZWfuUGhKJQNC3m3fI47bFdSATLTj+NS+f6CAQCVB54EJ74AvztWs4ddpK3JKsXtfPVr6zhN6JAzzfORnmHXRb5gwlCt22j4oouXB2B1/1/9feu4ozU/dy5fzHnnzmHmPU4ffUKv4sdyzOxPr5/7IOc1VXHcK7AMS/v5nPN1XzxCLIiAPsmUpz2g+f49gfncemyJkzL5Ny7z+C7Pxwh1akzeuPj3PDw7/G0/Izb43mWhaM8Gf01fUWVT3z7eH40MsK/jMU5ZfMrbMiP466/l488Bxe8ZFB+1WepvuEz7+hYvRqF4RSJNQPkdocRLg3/CXX4jq9/XbHzI0JKGN0Gu35nt9iULnnNfDspYuZp0LjMjp3sfwF6V0PPaohPJeJXz4OZp0DTCmhchuUKMNGfYGBXmL07h4gPFcAUGHqSlHcQ0xVDYqJrOjNaZjJvQRcds9pxOBx29mYkw+7RBN2jCXaP2NORuO3OVxXBogqNRb40TVYEd2KEWH8P8fDhR65Py9vWOleKMr+Dkpp6Shra8TV3odR0QdVscB7B/fwWMJgYZNvkNnaEdrBjcgd7InsoWjYZqXCW0FlSRZvXT51To1w1ccskMj9MsXiIiCh4vTMp8c/DX9KF3z8Xv2/OGxK7DT2T3Pzb7eyPZ5lhqKzMaNS7nTTN9eMri5CK9rJ1Tx/dUZNRZzWjrlpiepm9sgDpVpiXfoUP9j7Hkr4JHFkDywP52SaFGQKrqp6sMp/JSB17dcHWsjATrghpdRyDYZC2tdJSfJSKKpZlMlwUPcDy7CSKhLRRAe4OROvx6EvPR7TMYve2nWx4aR3R3l2o0QyaPgvFMQdFLcGUJsNahlCNl0CljxmmQlO8SEvCIIBNvBSfjlbhRqtwI/QMVnwQKzGOER6lODRIcWCAwvAwGHaGb6Y8yLauhazumMum2fPI+fzM97vp8rmZ5/cw1+dmjteF6y8kdm+FxEkpKUhJ3pLkLQtTHplQCQGaEKjTU2FPATnVODQvbco0vY3XkC87tMSQElPa86aUduD+m6sqOo1DZO1NViMFwKkIZvvePkHnd4rEWa/684grvFd26z283ZBS8undB3loIsZ9C9tIDqW45lebEcBMT45I2skdMsfcfzof3eGgUCgwMjLCdQ/u5WAoyQeUTUjd/mKvrq7mmo9fDN+fBcuu5rbOv+Pv94+w/rg5PPSPa/mBlWPDl0+lyv96eYC3E7meKJP/sZPKv52Ps+W17icpJS/94yqWm+v40Z4VfGaVi/3ubYRKJTeG6ohHW1h7xR1U+Jz8c98oP+wfZ/1xc2g6SjzcPRsG+OKDO1jz+ZNoq/SxdngtW759Lac9lePgNafzmfEzKW25lVLXCE/3RcgWl/Gr8LXUzanguE91smTtduqiIfLbxlDafkLrSJa//6VJ8PLPUXPTNe/oOB0NryVzKv4T6t88mYMpC9122Pe0LQUysM6ui+rw227XjjPtLFdvBYT2QM+TNqkb3ABT5IWqTmg6DpqWQ9NxmL56JgYTrN+6g949Q5hjDhwSCq5J8q4wUikipIJfr6I20ERTYwu1zZWU13opqXCjKIJYpsDWwRgb+6Ns6I+wdTBGwbAfuy1BD3ODOjO1OJX5SRzRQdKDvUQmwq85NIHEp+Up0fN4XBounw9XaTnOQDWuigZcVTPw1c2gesZMNMdbi3ErmAX2RvayfXI7+2P7GUgMcDB5kLH02Kv6IZhX1sjSQCUzXCoBkYBcP8ViZHoJj2cGfn/nFKnrxOubhUMPTrvlDdPizpf6ufXpXrIFk5VlPhaMSdSsieZUaZ4bpLnLh+4IMbZvD717etgynGRELWfSGSTsrSVpOVEtk0XRTZw18jILJsbxJe1EIcslKbRKjCYnanAmWdc8hpNVDJHkoGucUV+KkDdKXB+lSMLutXBSa/lYkUmyIjVKU7FAnWGStIJERCPSP4vqthPxzDuWiUSUfVu3cWDbIPl4GaregVBcGFacMTnCHq3AgDuIWlLFvFIvC3QH80yFtoSBkjZeM+aKX0cLulFLdQRxjPG95PdsIrN5A1YigVQUwh2z2T67i/XVDeysb2I0WImiKsz0uOj0uqhy6AQdGkFdo1xXCeoaQYdGQNco1VTUo4RD/CmhkFJiyMOk6VArvoq05S35OhJkW7QOW7gUYd+KpgQD+V8mW9NjM2UpU4VtETs8nZpHTC+jCFBetX/lT/53yAJ36Dgt7D4estBNXbrTEzH9k3hb4xXfKbHfK3jLw/we3sNbwy9GwvxuIsYXW2vQowU+82ubwF3RqXHHbhc3ChczLl6A7nAwOjrKXXfdRTabxWFUE5NNGKaGIz7B/sAsGB8nJZ34Zq2C7fdyzglf5u/3w6OhOFUOHXI5xuK5d5zEyanEhiNlp+ZyOQJWiKhVhtDdOFIDFHwGCC8ZK06Z6KTC58SwJL8eibCy3H9UAgewoT9C0OtgxlRR9/u23cOHBwqYXsnNkydTV72dmHOMG80mVDlET3YVhlSYubSK/7d2I0XFzcy+fnY3voC0clzzmEngkmv+agQOwFHvo+LjndNkLvH0AMnnh/Asrsa3vBa9+s9okgsBtQvs9r7P2/Izfc/bpK73adjzKCCg8ViYfbZdheGE6+0yX8ObYeAlm/jteMDOeAVUXw21jcdwQcMyWLKMXNVsnjnwChv29LF/YAxPwkOZ4UMWJ0mExtgb2oDYqKEVfeiWj1JvOVUVVdQ2VvP+2jI+0VmHJ+hkTyjFK/1RNh+Msms8yeMRkLICqMBVtoRZbS7aPEXqtRzlMkVpehg1PkIuMkE4lSY/XiA3FMKUYWD39BAoQlJdplJXW0Z9SyN1s+firZ9lJ4p4q0A7OsFzqI5pCZNXI2tkGUwOMpAYoDfay67wLh4a3Uk4ZxNNTajMD8yly19Ck1NQTpJ8ZB3j449Mb0PTSvB42vB6ZuDxtvH+2TM4rb2en7yQ5oHNk2wq07n8ffXMzqoc3Bpi/+YJdJfKjAVLOPnCVVzWUUJ4oI/+7Zvp37aOwd5eIloJE4FmHjzpKn5kluAaH6Ur+QqL47tZEJqkYk8RIbtxqbvxNUFbfQARmEU8t4ChSRdDSoSoFmfSOUncE2PMG+IBb4EHvIcThbyWoLk4SmPxIHP6HqW+14+erUdRWjmxcyE1HZ1Majo9m0OM7IeG/BzqLRMrth8j9DhpJhnCRY/qpqB78JcFqA4EKFEduCyB2wD3sMS9T+LOSzyKF79vFe6TP4gixzAj3TgGt1Px8G85xbKfL5bHQ7S1jb7GZrbVNvJyXRPd1XUU9defWwGUaiplukqZphHQVQSQMS2uV4qIVBaTwxawo14bisCpKPh0gWtq3qnYhEp5g5hZ+SoLmjFlQRP8CVGaIll/SsbeKX09MWURtDvw3zuh5M3qxN35DvfjPbyH1+ClaIqv9g5zSrmfs5xuzv3XF7Ek3HKcl58+f5A6vZzzAk78ixqYmJjg7rvvxuFw8IEPfICUVsoHf76R1pUfIPGrf6LGUKCmgv7+froWXgbdD9M0+CwL/O08OhHjC04dcjAWzzG/4c/37S+BNZXYoBxBJy6RSFBJhHCxFE9JAKIvUGhwkVR9QJbFlccCsCaSYKxQ5Ft1R09oANjYH2VpSwAhBKFMCPPFzZT0mQzOq8LSnMiy+6nV4KT9eQxZzpZsM4oqOCDGWCNczB49SK81RNG1g4+tMWkJLqDu6+9sDNybxTSZG0mRenGE9MYx0utGcc4sw7e8Ftec4OvLeB0JrtLDJbMOxdHtfdzWmHvqq3armGXHxzUcAws+AifeCJYJE7ttQje4AYY2QLdNSFyKzqra+axqeR/W+Rey2+Pn2dGXeX7weUbHRqnMVFOZrSaol+MwY2SsIUYnYNsEIAXC0lCkiqroOBxOFrg9rCwJUtZYiXSUES7CSDrPwWSW7nHJkymVLKVYohToxO1TmTnDx9y6EubW+unyJmgq9CEn9hEd3Mfo0ATD4xm2dk+yaXcEHt+GX8vhVg2cqoFDFzidDhxuN06PB39lLWXNsyhtX0LJjMUouv66YXRrbjoCHXQEOjit+TTAfjmPZ8bZFd7Frsld7I7sZk24n5HUyHQ8kVdx0+UvpcPrp15TCeRiJNJrYOy309s+Mwidx9Vxz96LuHVDkQZ/hE+evJ0lpSHSUUhOSja+rCHWuSirClDeUMbyJR0st2YTHZ0gPDDMRP+viI+kSKY8bC9dwD0zr+FfZAmO+CgL0i9yQmoHc0cSVL4URVjrcYl1lNerzOysJdown0Sxg4lxjYiSoqAWyGlZNFViqVlSjjAT7ijrPQme9NlucY81yuJcP0vSfyC4uQIj10xUtuJsa6cjoJOL+jm4rx210IFHL1DnHCab7yabHEIM7EEMSNJA+o2uXUXH5S6n3FFOactSPK0n4cjn0PNxHMU45clRgs88zdL8VOa9qqK0tlJs7yA9o41waxvjbe1MutxEiyYxwyRaNIgVTSwkXtW20LlVZcp6ZRMobcrtebjZv71VQiUObQPB0T9JXw8pJZa0rXiGJTEsC8OUFE3L/ts87Mq1l3+ta5Y/+fvV1kMhDhFHMU0gVUVMN00RqIqCqgh0ReA5SqLau4G/3p7fw3s4AlKGybcOjPIfw5M0uRzc0lDNBbe+gGFZfKLkIE89MU4ocCxfx03w9HYi0Qh33XUXQghOOOEEKisrmVlaRtDrYEdc4VOfupbH/u37xKuC9OzbT9d559jWhq2/5vTjfsD3+sfwe3WIw/i7IDMybYk7AomLR8O0EWNfoQ5faQmYeQoOD8OmipmvZMUsuzLBXcNhahw6pwePng04nsgxEMnw8eXNAPx2+72cFcqhFAS/CZzC8o6nebFQ5BZxER7zRxzMnYd0eaisc/GtgRFEsJaWg7vYXv0kHUOSczZC49M/POr+/lpw1Pko/1AHpataSL8yTnrdKOG7u1HLnHiXVqM3+tFrvKgljj//khECaufbbeUX7YoPe5+wCd2G2+HlKeV3fx00LLVJXf0SmPchcJdBagKGXrFJ3eB6ePnfUF68lS7NTVfzCj7bdjKRBYvYIYr0xPbRG+1ld6SHyfAk/rwff8FPuVVJJTV4TQ+qoWEWTSLxCULJARgFJKimB63op63op6PoRTM8KFJH0RWkLiiaguSgwXD/BA9aI9yhSOKqg2DVEmZUraRsoU6pW8evCwKx/ThHdyNDA6jFLFY+SyKXJ58qUoiY5I00sns/sB94HIGkxC0pK/XgLyvF63Pj8Xrw+r14SkrwlPjxB6twlNcjfJXUeKuoaTqVU5tOnR7mnJFjIDlAf7yfvngf/Yl+tsT7eTDUR7po0xaXcNPo1Gn1BahyeggGnFxx/IvsHx/gd7uW8o/Pr2Re1QAf6XyexpkDFIt2Bi5KgUgaIq+K0BbVUF0Nh1TFlsh9mNknyEYEUb+TYb2BPn0R29CI5UPUTR5kwViCOXtNylYPU6IPkVtiUbNCIR2oIx1pIJWsIpb1kjDL8FFLvVSoskrxKjpRZ5g+zz52+npZ60kCBkLuo8Tqocx6ElHwkCmtILe4mtbwLNon2whGWxC04mg18Cz0UN7uRVd8pPIQyxZIZIskcwUSuSKRySix0AQiGaU0n6C0GKO0sB93LoMnm7btRgpQCqK0AV04UCUo0kKxTETfLpTebShS4i4U6XJ5CTa1UD1/IZXHHYtrfifKlLu9u7v7qPJFfw5SSswp052YIoB/eg9Ox7pZcjrxwLRsIlYwLYqGRWGKmBVNa5qIcYiIvQE0RaAo4jVEjEPEjFdZ96ayfA+RNjnlPn1NLJ4Eo2iTQ3OqfNchODWVWTVvTwzqW8FRSZwQ4l+Ab0opx462zBHW+SDgkFLe83Z07j3838LqyTg39wwxki/yyfoKPltXwVnfe45cweTsxFrGJzKsqzqTVQ7BGW4v+WadX/ziTgzDIBgM8thjj6FpGitXruS4GeWs3TfJDy4+lZefeppEJk3PvgOgarDgElh3G3XH2aRNlOioI7wrWnFvZIkrjHajYhHNOvBXOJEFyDtUDqbimOl5LG4KMJgr8MdIguubq98wDuOVfjv+6JiWcixpsfWxR1kaypAvUak5+XSeSf8tnaqLZXsTCGHycupk8qbJznwf+6pms+jgHnpLNyDJ8eknBKVnnY2j7sgJFP8doPoclJzciP/EBnLdYVIvjZB4+nCFQOHW0Gs86DVeu9V60au9RzwP0yhrgmP/xm5GAcZ32nV4hzbYZK374cPLltTbAsNVc+yYubkXgK8WRrfaGnYHnoHVX6EcOElzcVL5DCifAcEFFBubGXa42GWlWJfsZ+vkBvoT/QBoQqM90E67t53aQh2epJdirEh0MkIqPz69e4fmwuMowa36ceHDl3FQHtGYm9WnXllgJSWZgwlSimQMiz1YJBWNpDKPhNJFWJF4yzRmVfuZVWO3xZVeqmUMbWQ78b6dxIf7iYVCxONRwpNxMoaOxeuD531annJnhqAjQ7lXEixzEwiW4PK4cTk9dGhOOnQ3aC7Q3eBbgAy+j0lNp1/m6DNS9BdijOQm2ZqcZDw3zmQhgaQb2bAGZ+w4dkyews3PfgR/YBftTduoL9UJOgKU5/x4Jp2owwJvXENTLUqrFXwNOnqlgVaSwlLGyFUOUpIZoPEIr7i8BRvyCvEDCq3rFbo2K1SvE2RqRygcP0humYXlg3zRQSZZSTpWSypRycGMl2LBTUmhlTMis/EIlaQ7QVIPk9dGSOoTZNQ4itVPUR1ge3Az2yrAmy+lI7SM2RPHoj2hMbA6wUhJL8OlgwwHIoyXFDD0Miy1HKu6FKuuFEttRColWGopUrhACJSCgSORwZNI4o/HKItGCMbDVBl5Aph4LROPaeIq5BGFNGEzwbAwYHIQ/jiI8vRD+PIGTqEiVJ3Z19/ApNMJQkEqwp6qKigKUlGnMgFss5UpwbRs16htGbOTDiRiujFlsRMCsHXPeSM6pioCh6rgUBW8To1Dj7xDxAzsLqhCoKsKmirQFHv6Ri7cvwRyyq1sWham9efJ5DuNN7LEtQAHhBCPAL8C1kopI69eQAihAPOB84CPAmXAx96Zrr6H/60IFYp8pXeYhyZizPK6eGRuC7OcDk7756dJ5CxOnXyGZi3OHVXns0BX+Hzeg7GsjLtuv49CyoFi+chFJcvdQQoBk6effhrDM4NQMsi+iRQz585h7NlnyKV8JBIJShZeBi/9KxXDLwGdJDwaFYrCWPyd14qTedP+/NOOUCJrwq5LGM4oNDoLGJZAKhA3LbR8B7Nq/HyvfwwBXHaUCg2HsLE/iltX6awr4YWeNSxOpPH0wPbFc5DqHWQlfL5wA175PWJmC1rjHDiY4qm2cpzFIoHJZxiqPMDH1weom5wkeMUn34HRePshVIG7qwJ3VwVWpkhxPENxLD3VMmQ2T0xr9QGoQdc0sXPUelH8DoSuIBwqisOeCl1FaA6oX2y3Yz9lr5wK2SRtfBdMdMPELuh7AcxXXUe+Ggi22YkQs8+FQgryCXvdyR7oeRLdKtKC/cA9R6jgr8HwVxN1uBlCsm9yjP7RvfQaKRKKQlJRyFW7qPTOxCOr8RX8WDmLYiZPPB1CFqdeK6WglquU+MrwOP048FJacEHOgZHQyMZU+y17CIqggEpouMie/lGesAaJKLbmgkv30BhYSXODh8b5HprKPTSXOKl0WZTKDK5CHDMZIRONkAiNERkeIjw+wc5wgmLUhCF7F1KYKHoW1VlE1XMIXUNq6rRV5FBJVyGgVAjKhKRLCaAoARACQxEUFIWCMMm5H2d9YRY7op1sjc5hwrcBPfgcYXcCKSQ0gFIvqTMMmosGDaMGNYMmtUWTcsNJhVVCmV6NVlqFFqiGyirSuouRRJrhUAR9dBTHxBgHatz01LupSOSZvXuchgeymA/CYLsgvNREWzhCXevwNMHIFR1kU5XkEhUkMyUoWT96qgJNVmNHbEqqCTOLg7TIQUrFGHltmKSyh3DNAxwsHk84s4L6dDMt0XnQD0Ulz4T/IEMlPYz7dxDyDlLUDl9nqtRwSB9ScWAoTgpuNzGfk2iDkwOKCymcSFxI6UZKB9JyIiwHiuGAvII7bVARj9MaGqUpPEZpLosmTTsOzjJsomLaJ0YWj3zvKVPt9c72P71Jp4ifooCiIhTVdvUqKkJVUTUNp9OJ06mjTlnJfvSjH3H77bcjpeTqq6/m+uuv5+tf/zq33377dBH6b37zm5x99tmEw2EuuugiXnnlFS6//PLX1E79zW9+wze/+U2EENTV1fHLX/6SiooK7r//fr7+9a/T3d3Nhg0bpmunFotFrrrqKjZv3oxhGHz84x/n5ptvRhXw1OqnuO666zBNk6uuuoovfvGLAFx++eU899xzlJbanpI777yThQsXEo/H+ehHP8rAwACGYXDDDTfwyU/+5c/Vo5I4KeX5QogTgRuA3wKKEGIEu/RWHggAjYAL29B/O/BDKWXiL+7VfxFCiLOAHwEq8O9SyjdXS+N/OYyiSS5VJJsqkksWyWcNFFWgagqqJlA0BVVTUFSBkTfJZw0KOYNC1qSQNchlChiFItIqIs0ippnHKuYxjByWYd/Jcso4fci6bCkqmtuB5nHi9Lpx+Nw4/B4cPg9ZC8KpIqOxHJOJHLF0kWTWYNww0EzJB+IFnLECdxUHUKTgJDSqjTxlztOZQONv4gIPgielCY8Oo9PxmgfGvrhFU3o/l3zyDO55bA0Q5GcPPccnZtejpRMUgL6+PhYsWAB1i6noeRRaO4k5FSpQ3jV3qnCoR3TtqRG7WHkk72B2boT8lNBvwlSYV7EYC/j1aJhTgiU0/Jkaixv6IixuLkNXFZ68/xecQhRhClo+8jH+eeIrnCLraNxn4HD0sCH1CSLpNAlPkv3VLSzZv569Za/QEfJy3i4F9zHH4O6a+7aPxTsNxaPjbC3F2XrY7SylxIzmbVI3mp4meLnd4TdO3VIFilO1z51TPTyv14FVi5SngSah2kIWslDIoKoJNDGGGu1HG9mFll+NKkIIMUUidS8EWuxMWN1jMxjLBCOLVkhRGQlRmQ6xyDjaddlPUSgkNI2YqhFRBGGHJO50kJMuitKDIX3IbCkyEyBT9JHDTQovpkOFGtDdOg6nC4fqQc070TIq5UmLYw04zg4jRyoSK1/EGjeR4yZSGIwIiyEsTGG/203AVOyqG0JVULQm1LpG1DqJahlgFZGmiWkdQS9e2naaw4FKEnHIZTXVhGEdnkeiaBpoDhYrOdqdu9hSrGd/ajnO1DLa1RBdrkkC7hyGXiSjZomJBHtlhh2YKLqCoikoUkGVCloSjFQcORi3JUqmLgTpcGI1NmIKE0tYWHUaz8xpoSqcYcneGAt6k7TsVSjepzDeqhDukkQ6LCgx8bpHqSgdpnaKlFqWIJsuJxuvIxuvJZ2sZFOqnRcxKepJKo1JmhilgVFOYT1VrscRLkibAfYXljBQWEBZahb18cOlpYQWx3BNkvJMEPGOEvVOYGpFpBQYUpJSk6S0MBklT0HkMEQeC+P1468DZRAug3AzbAQkKggvcz2SyYBAoKAiUKVANxUcpsBpgG7Y50rYPtEpN6PdJNjXjmIhVQupCKQQhy160kJaBtIEWbAzVQEMbIIhhC3tuGdfDz+97ceseeq3uNwuLrzok5x8yrEUihk+c+2n+bsbPm/r/KGQNEzyqsYXvvY1du3cRfeuXYQKRSwJRcPg2uuu49nNWwlUVPCNL9/Mt2/9ETd99as0dMzmP++9j//3mU+TMkyShokC3HfvvWRyOV7Zuo1cNsPCri4uvfRSGhvr+cxnPs1jj91PQ0Mtxx+/ivPPP3+6AsN3v/tdLrrootcM849//GM6Ozt55JFHCIVCzJo1i8suuwzHW8wUP4Q3jImTUj4PPC+EqAXOAI4F6rCJ2wFsC93zwAtSSuuoG3oHIYRQgR8Dp2N/770ihHhYSrn7jdd89yClJBOPkQhNkM9mEEIhR56kzJCyMiTNNDmZx+X04HJ48KgedNOByKiQUXA4dRweJw6vA93pRAqVpIRoUjAWyhGezJIMZylEC8h4AUfaxJm30Ip/maHXPqUSe4hfDddUeyMUp9qROb13qgHMxr7lFSGnYickirCQwiTjytJjuHHlE9QWhvAlYjjzWSaqSpA1ktPcGygv7sHTvoStqXNYv6Od42MDfOlzn+ID04z8AAAgAElEQVTRbz3Nhv4YVbFdWKpG0RLs7tlnk7hFlxFc8z1ohahTUCkFg/HsWx+sNwkrbx7VhedKHSROKYZU8eYGKXjtN0AsW8XKpnqeCscZLxh8989Y4RK5InvGElx7SjuDo/up6JsgOFmkUOnn1/l7sZD8bfg63OIBLKkwWb0Kow+6l5Sj5wvki79DOg2+XHk1cvxfKP/a1972cfhrQQiBVu5CK3fh7jw8jlbBxJjIYGUMZMHEKlrIgjnV7HmrYCLzdjs0b6WLU3oFU+4dRSAcHqTuoZDwk41WgDUXOGeqA6A4LIRiIMw8SjSDiKQQRhzFjKCIBIpIoBJHER67kUS4XIiSCvAGEJ5ShMsDuhO9mCGYixPMxWjLxZHZKGSjiPwbR8HEhU4MF8mch3TWT8byk8NNHhcFt5ssLnI4yeEki4s8ThAaqlBRFRVVaEhLYJkSacHUowIMAQYoOQWBwBQCQ+gY6BQF5FDIoJFBpyidFKUbw3KSRyWDIAtkkGSnNlfjVZlfrjCrxKLRZVCh5NHySZKRSZKTIRKTIbyxKGcqWwi5qnjFN59deh0707XUJcPMFqM0aoJKzU+lmNK1wCYehwijPBQgZVPJV0lHMO0CfE2GooDh2TDSYVEZCtHcf5CGviEaeooUNZ1wsJzJYDk9QTcjrVmonKTUm6bGnaWyajcVDTumN5VLl1JI1mIk60imZrKu0MmEVcCQKRqZoEWJ0Kwe4CT3S/jJkLX8jBbbOVjsYqTYTjLbSGmqjVKgFSiqGbLOCAlXiJwjga4ZlCkqJYpK0PTiN104pQNVanCI+Kg5xpx5JpwFQo48ET1PTM+SECmEsJexMDGxEJjkVGxziQOk0EDogI5At4VxpbDp/9RUHPpNMk34hDX1vFemmmYhbCZ42L0qBZYU7Nk7wKIFi1GtAPkMLFl6HPfe+yiZrIFU84xMxhDSQpEWqjRRpMXCtkZ6Nq1HZhOYkweRioJhmkjLJBkewu9ViEcnqW/qIpmbpLalHEWCaRZIZsOE0xNYCOL5FOF4lAPxcbKJKIqmkBNRVv/xFZpa6qms8ZMzMlx66aU89NBDb1hGSwhBMplESkkqlaK8vBztLdaafjXebHbqKPCLqfbfDcuAfYfEhoUQ9wDv59U59e8ipJT8/KqbMRQned1JQdUpqg4MRccSOgIFRWIHmlpTLgQppr4KC6iWgipBlUf4YnoDeJCUChMdEw0TU7UoOi1yOmQcgqQTkk5BkTw5NUFRSWOqGSyyWBQxFIOCKimoFkUFCgoYioLh8JBz+ChoJUjVgyp1FMuJgoKkiGIVKM0m8eeS+HJJ3IUMLtOBbjnRpQuHdKNbDhzSief/s3fecXKV9cL/PqdMn9md7S27m55NdsOGBEIJJSCIhXZFpYoIor5X7NfGVRF9QbkgFrxYX1G5CIKgQKLAJXQCIZDe2ybby+zszOy00573j7O7yaYRYQOo8/18ns8pc8rznJ0983t+VQQpkWFKLT/FtkKR5eCz8kgrjjSH3Wz5RhppZJBGGnJpegZ28q6hTlQktqIwUFaGJm2m7YxRMitF0Yws/a9F2L2kjVzRo6izPsaaJetZfOK7OatlEo+sUfB4B0lWN5DLO+zcuct9YM0foPSJ7wAQ1wVlUrDyrdLEHUKIC+e6iDll7t8z30M26Iq58eRU5p0Q5b6+ISo8GmeURA57j1V7hnAkHD+5hN/9+ltMqYvjfVEgLjuVZxJP8EFjNuH+IF59Ge1GK7szw6jCw9MNYaZ2/IneQCefrrmG6C+ewmloIHT66RP6DN6JKB4VT93EOydLR2In8liDOex4Dmswh5O1DhQGDRsza2GnTbAOMvkyOMh8yEZhGEWkUEiOCIDuuiAH2AgMhLARqo1QHIRioqgmPpGnmgw1MoXixFCcXQgOXVVRSoGUARwZwiGEI4O4KhzHbcJBKKPpWBX3uLFjw+7SCSBwQNgILLd/wgLVxiGMI0uwZSm2LMUhQh6bTMZgKJcm3psipcTYofWS1/qwxDAej46v0ktNWQVeU6XZhLOsNfTld/CcMomXtBqWiWaCpsGcVA+t2T4qHfCg4RUCnyrxChtFOJiOjW3b2CjjHOfdVBM2HsVAVw10NY+mGOSlSkbqZIXKwJQZdExpomiwl6L4ANHBQeZs3Ewz4DwvGCouYrCkmkRRhPZIEelSD57yDKFwnGAwji/YR1HZDlTNpJqRSa2tYuUj2PkQW/O1rDcmo+YtirIpokaCKeZSTrAS+KVJ1onQa05ltzWLfmsyCauaoqEmpLN3ou0Ig07PIAlfJz2hDXRGuugNdWOreSJWiGI7TNSKUGSGmZYNo0sNBx/+GQpR04MEsnfcib19x14925jWcq8WdVQPd8QanemTcT579YigPGKQFQoSDYSGFBrl81t54bbb2CwdvF4/Tzz7HLPnzaOopIQ//va3/OnBB5k9bx5f/O7NRKJ7K5gkAsVkPEEGAlUoI9rdb/7X7Zy16F0EAgEapk7la//1Y9JSwxmx55tCJyUiJISrvV90wSX8bemTLJoxl2w2w5du+j5GySw29mwiWjuVDqUOj2NRV1fHyy+/PHbv66+/nhtvvJEzzzyT733ve3i9Xj796U9z3nnnUVNTQyqV4r777hsLqngz/DNEp9YC7ftsd+BqDMcQQlwLXAtQX19/VDsjHYnkJBQ8BPMmYcdEdUwU20BxTIS0R2aBI/O+sZmhg2YNoFlZdCuLZmXQrCyqnUMiSftUkgGFlF8h7VcZ9isk/RliwTgDkRjJ8BCaKtClCmjkFAVDKFhCYAmwkQjHIJQ1CGUhnIVQVhLKQSinE8hL/IaDL+/gNyT+PPgNiWaD6rhNcfZZH/mdEXKfOeo+CRElIMVIG9mtOqDboNmgW27bb447DkuBZJWPtVOqoLyGumA5s2hjhrKCxCqNwc1htsROZsPMy1Abs0SHOqnOvsqW2LGcsPZJTp42m3tfaadkWitD8UG0RBYzK4jH40SjUYLTz8Dn5BnU/JQjGM7bDOctQkcxXFzmDy7ESccmavez25oPQFBJ0xcqBbLEE00cOynK9WtjLIgEXzex5Cu7BlEVQZ3PQt+4i5r6JEIq/LZ8C5qQfGjwahT5Cn41zlb7UpR0iP46D9KOk+JvTBONXBo9iY51P6PqW99E/AvVaJxohCLQoj606JHnH3QMGydj4gybOBkLJ2MiLYm0HaTlgGEgU4PI4SGcnAcnX4aTK8fOK5h5gZ1XD/wVteSoamkf9v27ShQGUEUvmjqEqqdQ9SyqnkdoBopi4Ch5pMyCzICTRkgD1y1aRUEFoSJQEI6Nag8grJ0IM4ni/P2TI0dq5J0SQEMTw2gi7QqZFhzMIojOOGesywFbCp52Wvkf+yyeCsxlRaCeE8VGPqQ+xXvUFfjEgc5dUgokHiTekXGlEcJ43f5KKZBlASQ6oGAZCrmYSq5fEByIU7ZnaCxXNIDQVbRICDUcwVtUhR6tQa3IYUaS5AIpEj6FrO5g6CksbxInbCM9BugGcdySSdtlBF/eIZyyCA9vZs7wesJpC6/hRldmnSJ6lEn0igZidgND+XpCw7OpSsyntXPksXkH8Ab3oAf3oAbbsQNryWsGpgXkJRrvxcsQChJb5jBHHOIE7PNdGkmQu08b+w0YfT4jx+0/PZEIVJS9pnRskBaS3JhGbvqUCFd/+iP8n/Pfgz/gZ9acqWikueSKS/g/n7sYIQQ/ufkn/OBr1/HdH3+XUf2fZsVR7TSq1QMITMviD7/5OQ889Sh1kxu46Svf5Je33cinvvDvjGpnFSeP1+gjmOtGIHjt5dfwYbJy9QqSQ0k+cMG/8Z4TFxAxsvhsk4pseuz3fJSbb76ZqqoqDMPg2muv5fvf/z7f/OY3eeyxx2htbWXZsmXs2LGDs846i1NOOYVI5PCT8tfjn0GIe12klL8AfgFuxYajeS9FVbjkB4vYvuJVul55Hga7UTMpPLk0nlwWYbs2+7zQyCsaeaGTFxommuvy4TAax4OCg+JIvDmDQDpH5UCGKZkMkUwOdb8vjiMg4xcMBy1MPY/XcvCYoJsCzQLNBNU+1I+/6yArVInQJWgSqQscDUxNcfupaeQUlaziLk2hYgsNhEBTHDThuEvFQRE2Age30IeDwEEChhDkVEFWEeRUyCmQVSVZj0LWozPs9ZD2eEnrAZJaiC49QGl0PUmtH1v0AzDZMGnJVhM4YSbTgkO0rF3LwlQH26dcQH95M/7MHmy8rHngKU768iIAOq0QACEng42fnTt3Mn/+fMS0d1HaM0Rc8TJ15AetJ5FjWkVoor8We/9OeRvlIIl+M91bCWIRM0qAYQKayYBPw3SgMjAP1aOwK5vnoqoDS3Xtzyttg8ypifCr3/6E+to0xWvBbixliW8PV+WOIRAPYMm/Yjh+Vpu1BBwvz9d6qOq5E0Mx+d77biVxwx2oRUUUXXDBUXgKBQ6H4lHd70jx4QS/yW/+Ro6NTPVCsguSXYjhfkj2QKp7bB+pbkhn3vy99kX1guYFzQ+6141QzQ5BJoZ07JG3n41HGQAUbKmRkwFsR8dwgliyBIcwusjgEVk8IsfeokLuzFHqPtADLFI9nKy+QLe9mofyTTyYa+Lz1r/zTfsa3u3fxvmBDTTpvSPan31yhY3kIMvgJ4WfuBNg0PLRZ/npzXvwWBnKyFImTYqlSRiLIAbayPtOEaCUSEQpKEhCMo9mJBGpFHI4j53MYiYz5LsGybXtfR+oAYlSpBCKaBRFdLSIHz0UQFN9qMIDioqpaqSUCENKkJSi06UqZFULUziYuo5XyVFsDxK1ByiRfTTJFYTUv6EFbKQfhp0y+q0GeplMnzWV2PBUhgePHeuDJ9SDv2Q33uhuFFVD9apIKQh94RNIR9nbpIZ0VJAqbhpex9X64mo3FeSIXnPE59EZy9sB0rVASSFw0q7Z3VYE9sjE3zX1ChzhGlg/cvGVXH7xFYDg1pv+i6qaKhqiDWC7JtqPfPhyrv7oNQTzXiSuiUuzJYoj0U0TBGxcvRYhbRrry8BO855zz+RXP/4Vir13kuH6YlpY5JACHnzoTyw8cyFZXwa9SmPu8XNZvvYFqmqr2N3VxqDah+IIOjo6qK1183ZWV7tR/F6vl6uuuopbb70VgN/85jd89atfRQjBtGnTmDx5Mps3b+b4449/U/9O/wxCXCdugMUodSP73jaKikqYf9ZZzD/rrCM63rZMMokE2VSSTDLB4FCS3sEUA0MZBoaz5AybnC3JW5KsaZMzLbR0mnB2mEg+TVE+TSiTIpgbJphNoxkWw5qGExAITaJoElW1UTUHx6PgeBVsr0CONZCq4r54HBA4qDho2ITJUCqSlIkBisSBL/O4DNEpy8Zar4yi4uAVJh5MPFhjS1U4aDgUIYmOeFoIJBo2GhaasNFIotlDqLbNJLOfqnSCjCJYXhLgpSI/68Ielnry1BZvJjlNsnqGwmUPDdG06266h+azbcbllOc3sTHWyqyNTzGrKsza3jxzFAWEQ1ZqrNu8nfnz50PlbErbtxLXiygfmU32Jo+uECfzNkrxgXmXcu2rCQIxIwIM41dNBkUO0/KwoL6cTekcEmh+nRp9ectmdfsQ5x9TjbZiDcXHx/A8ovDU2Q5BITl34Ery1iB1gQ1sMxZQWjSZ4bRkT2QTvtQ6zi87j8nDPnb875OUfuJaFP/E1QQs8A5DURFFNVBUc/jjjDSkB9yWGYB0v9tscyS5ljK+jar89vE7c5cOWHm3+oWVc5uZAysL3ggEyxHBckSowg32CFaAoqLmEq6Ql0tAbmRpZvYRBr2gelxhUCgw3AOJTkh2ustEO5NzQ3yBx/mcJnhZaeJ+eQaPZhbwQKaZRqWfxeoaFvMKxyubD6qhG//cgL/DF92RClmniIwaZdhTRbqskrQsI+MUkbODDCWiiESO0HAnoeFOwkMd+Lv7EOSBJFIoGKEgVsiHHXYjT3O+PFlvFlML4EgNHAXF0QhKUNRKcmIq3UqQTuHHxoOJhS4GCKi9hLQewmovVepWpntfpCgwgCW99JtT6TOn0WtOp69jGsk9C2lsiWAk61CEiabkUUeaohkgXH9CRyo4qNio2FJDSgVbKlhSRUoFHAU5IujtTUkCAsVNbj2qtrPH64b3pX+gn/Kycjo623liyRMsfeh/SXXkqKyoAmDZkntpmt5CwKoYO8dnFeNxgkQMV7iaXqKwc0sbToePstIyVj15F7OnHENxbm+Gd83xEjEqKMlOQjg2M8qnse7J1XzyrMtIZ4bZuGI9X7jk48yYPJXrt+8ht66Xqqoq7r33Xu655x4Auru7qa6uRkrJn//8Z5qbmwHXCvjkk09yyimn0Nvby5YtW5gyZcqRf5EOwT+DEPcKMF0IMRlXeLsYuPTt7dLfh6rphEvLCJe6/lCNE3htKSWWNUQ220He6ENKC9u2yKcNcukcuXSefCaPkU9hGilMK4VtpzDtYRyZJOlATqr0ywBeK0/AzuE3DLxOHo9to1pZGs0OplhdeBwLbR87ji2V0XkpzmiCRdwZmhiZpY0q2B0psKXARsG2BbZUSJg+Hk9Op1cpYkdNMxsqphLQk1zQv5I/5XbgV2w+vjhPd6Og4mc2NQPL6as5lnQgSNaJsu3++1h44r/zh1WdnFJZSn82w6DppX13G1JKRPksSs1XGJQm5SOvj+7E0fWLG41O3R+rewMA8WwIn+rO5LOqSdoo5diGYtalXAF6zusIces7k+Qth51bVnCqalLXkQc0/jQlyUdz8/En/bTnH2BqKMt2XzNmn4et1Rr+5K8IWxG+esbXGLz1h6BpRC/9h/o3KnC08ATdFm14u3vyxjHSICWK5uVEReNEIbghZ/Lomm4e29DDPTsr+Y31Lvy6wkmNYU5v9HNqnUp9yEE4NtiG2xzLFV5VD+i+EW2izxUgNZ8bTgmwT/S5giCoqAT1AOWad9xno5iGzVBvhnhPmnh3ho6OQeyO3SjdbWj97XjjHQQHuwh29487z1I85Hyl5HylGN4ItqJii25s4WALG1uYWMLEUG3SikWfksdQwVRVpFIEFAFTCGomxXqWqHcTFf51NAYsHOnHFjfjEwlsdCzbh2HvneCqGOgijybyeIWBqzMzkcqIBk0IpCpGfGgspCJHfCsFUipIORJMMrJEukKd3MfBRgjXonPNxZcQj8fRNI1bf/BVyiZl+eQnvsy69ZsRQjBpUh233fp/UfyDIAXHLjiZ1PAwhmHy1yce4YH7fsfMWdP48n98mgsuPhtd15hUV8NP77gZT6iXRx79X77ytRuJxQa5/GMfpHnObO7/wz1cdc2VfObzn+fE95+FlHDxxZcya95CkIKbvnMbH7r6Wmzb5uPXXsOcOW4E/2WXXUZ/fz9SSlpbW/nZz34GwDe+8Q0++tGP0tLSgpSS73//+5SVlb3pr/Y/vBAnpbSEEJ8GHsONmfl/UsoNb3O33jEIIdD1KLr++ma4g2HbDkbGIj/WTPIZi2Q2R95qw7C2Yspt2GIbjtiOShpnRCWuKCH8gUZCoakEApOJhJuJRFrRtWIwUpBLYKb6ycZjDA/GScaHSMYHScUGGYrFcFIdKOYw8YyHyBPbubb4eWrKMqwML+Bj6qX8uuIeboi1cG5tgJlfXM/MWwxmDN/FitD3iFjd7Mgdz9T1z2FYjViljchYPx4TbCNLLBajrKyMUmGxDTFOE3c0cYyDR6eK2DaGCZA3bEpUVxOgaZBIlrK4Icqdg3FKdJUa7+GzMK0cSfJb0bEM/6wEgf9V6KrTsEod3rX7CvJ2knBgF3knQM30M+joUdgZXYEkwRUV/47fsOl48EGK3vc+9IqKw96rQIF/GDwH1tSN+HQuXVjPpQvryRo2L+2M8dSWPp7a0seT2xIjx2g0VUeYXVPM7OoIs2siTK8I4zlInsc3g+5RKZ8UpnzSaHDNFGBvvXMpJWbeJtM3RG73HqzOLqyuLqzuLry9XYT7epCJLWAYYOTBfH0/Pkf3YCsaUijYYmSyLQS2UEmgIxVB4H02Ip1Gwy2NJYWKo+huExp5JUBO7BcQdIj4GAULRZiowkRRLIRigWIhVAtUxxXyDpGg97HHfrOP0Ofe5Gc//95eAZBRU7g77lWrl7nCoJvnBKSGtFU+ctk1fOSST7hmYBSQCsYwvPv0y3j38svGD8OAgCfMr376P6N/BVf76LjrZ535Ls46810IxaKsdu+7ctmyZQcdQ01NDY8//vjBH86b4B9eiAOQUi4Flr7d/fhnRFUV/GEP/vDB7AcNwGljW1JKcrkuMpmdZLK73GWmjUTi1ZFC167Wze9vpLjoWCJF8yiKHkuo9hgiisbBjDq2ZRJr38Mrf/w161YJNiYdFpauoiKsYnMed1U8zD3GSfTX/JZ7Gz9BSSwJNXm00hCxRDWnxX+M4vs4fWo5GlChu4krt+/Y6QpxXg8x4cFLnoiu0nO0NXH5g2viPImdDFACZpqgz/VR9GmCjFnBlLIQ6/Z0MSfkf93SUSt2DeJVLKbGhyk5LoOnXeGJMx0+lj4R37CXFclneE/lRjqVY9n0xFbMcBPd/vuYmpzKB8/9IPE//hGZzVJy1UePxvALFHhH4veoLJ5VweJZFUgp2TmQZvmOGJu6k2zsTnLvinaypiud6Krg+MklLJ7pHj+lLHjUCrGPIoTA49Pw1JdBfRlw7GGPl7aNzOdxcjmcTBY7MYQ9NISTSGAN7V138nmkaY41J2dgZfLYeQM7b2KoKpqqIZ0Rk7hjg22BTI+laXEFO40DImdGa5YqGrbqCn5S0TCEF+nsLwRLVCwUYbl2m1G/amzXx3rEv9p19HGdfaRUXb881BFhjr21tUav6qjjtt0oamvEHDySF2d0OZofcEQrKOVItKwUe6/PvsF4kr2Jad4+Dld269S/50IjOeUK/AsjhMDvr8Xvr6WUU8Z9ZtsZksn1JBKvkUiuYiD2NN09D46cp+H1VuP31+H3TcLnq8XvnzTSGihvnML7vnITJ3V38uz/3MULryi8z/Mcl2RuZDCW5OHSpznhhRht0WoqN6UoDd9HLHUFPjLslidwjr2BV3ccx4nSwUuWfnys3riVExYeT1kgRBYPOSVPhU8/qqW3pCORhnNgdKqUBNId7FKaEDJNyOsQV1WCqiQUqMQGtqRzfKz28Kp3x5Es3xkjauxCK8pTuyMLaLTNho/3XkLeSWIUxfErw5idAQbCM9gT3YKGyrnRcymJRtlx730Ejj8e38yZR+05FCjwTkYIwdTyEFPL95oObUfSFkuzsSvJ2o4hntnaz3eXbOK7SzZRXxJg8cxyFs+qYH5DlLDvdWsWHHWEqiICAZRAAEqAuto3dJ1NmzbhnzHtkJ+PJWR2HKTjuEvbBtt2ty0bxzSQhoE0UsicMZKbT8ERGlLVkJoHR9GQioojNTfNi1TGmVUPhoKNIixUzL2ClBx/llAcVGGhCGckvQ04I756inQDMIS0UXADMgR7A2RGI2oRAilGAw6dA4Q2S+hA1d/5ZCeOw2ninoYjEjFHxe/DFCEs8K+OqgaIRo8nGnUjcaSUZLN7SCReI5PZQTbXQTbbwUBsGYYxsN+5IQKBBvz+RuacX0/b1gBLjHl8xr6Ja/t+Qrce45X6dbzc28pCYJLzKoPORxE1Qdq6FvARzy18JtlCOKQynDfpIUy4sx3HcSgNl0EK4h5BhUc7quZUaR6ibupwHx4nQ1yrRjopdK+kw+ceU15Uy/ZMjrwjXzeoYU3HEBnD5vjEHliQxfeIQnslXKCcijfr4fncSzQF2jGll/W9Ebw1GrtKXuTYgVYWXbCI9AsvYHZ2UvGlLx6V8Rco8I+KquwV7M49pobr3wftgxme3trPU5v7uG9lO79dvhuA2mI/0ytDzKwMM70yPLIM4dP/+X4ihRhJhqworyNyuUgpXa2fYSDzeaRhuNrAfBppHiTli1CRiopUdbc0l6ai6iqKV0fxehG6z60SMppxWtqutlDa4IxuS7cchCNdn0Yn6x6raKCoI0vP3m1wFXT7B+cI4X4u1HFLTXl7DZqHu/vit6wXBf7lEEIQCDQQCBzoLG3bWXK5TrLZPWSyu8lmdpPJtpFKraO//2+UTC6hb00pG5tNGtr/wjc7r+VrxT9mRetqnCfBkzcZLH4Jf998AkIhbx/DbNZQXlxCYiCGz1+MzMbo6+ujtKQWUnnifqjUVLYdRXOqzLuzvAPMqQNbAIhb5UACn5qjx6+jAA3lk1g/7FaSmBM+vBD3gye2AjAp0011WQ7PDoX1iwTn91xEVqTYFrY5T1nNwGAtK1reS3U8T95v0KQsYPr06XT++CeopaWEzzxzQsddoMA/I5NKAlxxQgNXnNBAzrR5edcg6zsTbO1NsaUnxYvbYxi2+z+vKYI5tUUsaIgyvyHKgoYoFZEjzx34z4IQAuHxgMcDofFZAKRtu8KdaY7X5u27zGdxhg2cfQtECYHQNISmgaq666oKmoZQdVfA9LgCl1AV9xhlJFJWiDdsCpcjGsj9tX9vNYernfrMW9mRAgVGUVU/weA0gsED1fiOY9JZ9xJ/XP19HsvO5ZLGv+LdcRo37ngfH5/2IzoqFSp3OUw6eSnpoRPoijooQ2fw4eKfQPgqtg/EmBySmFnYsm0HZc0tsHsnQz6bMjwMDOcxbQddnfgEt47hauL2N6c6fZtQgMFcKbCdiBxmwB8igs2MmkaeHMriUwTT/Id+6bcNpHl+ey8+J4e/Nkbd5gRCajTUzsOb87DMWc00I00gPMSWgUZK8bC7eAvz+qey4IwF2H19DD/9NKUf+5j7ki1QoMAR49NVTptRzmkz9lYMsGyHtliGrb0p1nUmeLUtzt0v7ebXz7tVYyaV+Jk3Kcr0ihBTykNMrQjSWBr8p9TYHQlCVRF+P7xOWiMpJdKyxjR50jDcbctyzbf5vCsEOkdYN2JUkBtNl6OMbI8KeoqCEMIV2jcOn/YAACAASURBVGx7vIApJYrXi3f69Al4Am+Mf4rAhgL/OiiKzqTpp1A8+U9s3TbMw19+hsuc/8bedTZnJ+tZX7eTutWCSR/s56nYDkqGa7GlD48xBXVIA9siYiXY5XhZs2kb5y1wI8CGdIMK04uU0J/KU1M88fnRZH7EnLqfJs7s2gB4SOXcmWmxmiOnVxBhkOJQFevbM8wK+g9bqeH/Lt2EKg3qsj2Ik/14H1KIh2GudQXD6jA7PSkuSm/HdjT+36kXMmtNkHwYSqwA8+bNY+g3d4FtU/yhD074uAsU+FdEUxWmVYSYVhHivS1uAljDctjQleDV3fGx9vCarrFzhIC6qJ+p5SGOayzhlOllNNcUobxOlZZ/JYQQCF0H/fC+h3If/7wxX719l3I0AbEzkoBYjtOuja3bjltHXLhaPMXjGdHmjWj2XqcfR5sjVjcIIeYIIW4XQiwVQizbrz15NDtZoMD+zF98FhWxHh5Zu4HINd8C3y7e3X0pW+oEiiXQbZtM/VK8pg/N00ssP5fc1ja0zDDp4QT9RBjs7SQ6onEb0gzKRqs2HCW/uFEhTnjH/9vJvs30U4JjuC/qoGaQkm5KBF0vYcNw9rD+cC/uGOCJjV1Y+Kkwu5le1I53kyA9pRy/FWS52Eb97iQNgdV056eSGHJ9DquMHC0tLQS8Xobuv5/gokV4Jk065H0KFCjw5vBoCvPqo1xzyhTuvHw+L3z1DDbe+G6WfGYRP75kHp89czqtk6J0D+X4r8e2cN4dLzD/u0/w7/e8xn2v7KFzKPt2D+Ft4Uc/+hHNzc3MmTOHH/7whwDccMMN1NbW0traSmtrK0uXugkqYrEYixcvJhyJ8JnPfx7F50MJBFDDYf64dCnzTjuNY884g3OvuIKEqqBXVfHn55+n9ayz8E2axNreXjz19XgbGlDq6rj2xm+z4MILaX3/+/jBH/6AZ9IkPDU16FWViJISjlu8mPe///0H9Pkzn/kMoX1Mxs8++yzHHnssmqbxwAMPTNizOSJNnBBiIfAM0AZMB9YCUaAet1bp9gnrUYECR8DMk07hyd/+gui6Fbx4ykJaP/Ye+O/1KKVRIIa+TXBKyzrW+3uosLOk7AoCvY8Snh4hblpESspgqJ9UXy8eHOK6TVnSLcrYe5T84kbNqcp+tVnV+Hb6qUQx80ggoBoYwo8jwnSbCkOWTfNh/OH++6kdFAfbGUo3Epw8TNXWJKqhUxV9NxklR1++g4VmnrA6wK3Hnc6kl+uJBzI4Msdxxx3H8LPPYvX2Uvmf1x+VcRcoUODQBDwac2qKmFNTNG5/fyrPizsGeHbrAM9v72fJ2m4AykJeJpcFaCgN0lgaoLHMNcPWlwaIvAMiYyea9evX88tf/pIVK1bg8Xg455xzxoSmz3/+83zpS18ad7zP5+M73/kO69evZ/369WP7Lcvis5/9LBs3bqSsrIwvf/nL3HHHHdxwww00Nzfz4IMP8olPfGLcte6//37y+Tzr1q0jk8kwe/ZsLrnkEhobGwFXuGxqaiKZTI47b+XKlcTj8XH76uvrueuuu8bKcE0UR2pOvQl4ELgCMIGrpZSvCSHOAH4PfHdCe1WgwOvgD0eYcuzxZNav5e72PhbNnUqXJ8YJ9on0Rx5FXasQPNFhZ80ySvcswpIRDM8Q5cUNxPM2U8pCpIZgw5btlOlh4jqU59zoqKNVtWFME+fZRxOXHULPxRigyS1DJMCvWii6xOspZ33KnXkfShO3vjPB89v7qVPTpB2D6uYhPH9SMDyCkvCJrBS7OfXltfgXlNCj6ixJbuHK1CXki/spqq2ltraWPd/+NlpFBeHTTz8q4y5QoMDfT3nYy/mttZzfWouUku19wzy3bYAtPSl2xdI8t62fB17Njzsn7NOoLfZTF/VTFw1QW+ynuthHxKcT9mmEfTqRkaVPV456fruJYNOmTSxcuJBAIADAaaedxoMPPnjI44PBIIsWLWL79vG6JTliIk2n05SWlpJMJpk2zfW7bmpqOui1hBCk02ksyyKbzeLxeMYK1nd0dLBkyRKuv/56fvCDH4ydY9s2//Ef/8E999zDQw89NLZ/VPBTlIn1tz5SIW4ucCV7U46oAFLKZUKI7wI3AwsntGcFCrwOLaedyc5XlrNx1UoGZjWQqi3ixN1n8XzdElraFNSARaN/mKQQhAGzKEhUBhB2nBIxzB7Hx/ot2yk99gTiHo2wYePRlKOWZmSvOXWff7sBN6J0kBKElUFqEiEg4DMJ+atZMZxFAE2hgwc1/PzZnYQju0jHKilTY8z3rERfp+DUTkaqKs6u58nLEmYHVnJT9TSqh6agoJBXulmwYDFGRyfp556n7FOfcv1MChQo8I5DCMH0kZQl+5IxLHbHMrQNpNkzmKFzKEtnPEtHPMvLOwdJ5a1DXlNTBB5NQVMEuqqgqwqa6q6rikAR8PWTIqi9KQSw+a97SPW45f/GiX5i77YQYp91EAg3NuAQwmLZpBCnfGjGYcfe3NzM9ddfTywWw+/3s3TpUhYsWEBpaSl33HEHv/vd71iwYAG33XYb0eihKxPpus6dd95JS0sLwWCQ6dOn89Of/vSw977ooov4y1/+QnV1NZlMhttvv52SkhIAPve5z3HLLbeQSqXGnXPHHXdw3nnnUV1dfdhrTxRHKsR5gLSU0hFCDAL79m4L0DzhPStQ4HWYPG8+nlCYmZtXcX/PYk6bXUFwVxJKfYQ3Zkl2QGX1Gja0n8wsA8xwMb7uBKqeYrC7nbhSTHF/NyU+H3GvB2mqVBZ7j5pP3Jg5dV9NXL+bXiQli8DJoHgMTBSKA1k83nI2DGeZGvASVA+MWGsfzLBkbSfHlr7ISu0yplS2E91j4kvp6DNPo93ppGn1y7SfdDGdgcf5q+7lxPSZ2IqDEjKYM2cOQz/9bxCC4g9edFTGXKBAgaNHwOOWBWuqjhz080TWpCeRI5UzSeUskjmTZM4ilTMZzlkYloPlSAzbwbIdLFtiOhLHkThSuoLeiN+wso+ANi6BrARntDoD8pDZZUeFOSFcAVEIN9AjmTVHBD73IMF4AXDK9Bl88Uv/wVlnn00wEGTuMcegKArXfuKTXH/9fyIUwTe+8Q0+/4Uv8Itf/hpnROOWN21M2yFn2qiKwLEs7rzzTlatWsWUKVO47rrruOmmm/ja16/HkRLbcdtw3iKRNZFSsvzFF7EkrN26i8H4IOe/+13MXbiILZs2ESgqoWJyE20vPjc2xq6uLu6//36efvrpN/FX/fs4UiFuOzCa8nkt8DEhxKMj21cBPRPdsQIFXg9V05mz6HRyT/yVP+5q50PNjQwseZXGSCuwnMHlGpM/YLDW486UVDWMZ083arVNaniYitI6RKyHCJIdXj9Ih8qIftRKb+3VxO0jkA1swUIjZweRsh+/lqNPFhHUhvB6ylk3kGF+5MC6jwC/em4nenAnstsHumBmzSq0FxSkEHgr5qJs/iOGJ0pJ8S5uKSlBihANA3VYnhgtc5vRhWDoT38idNpp6G/RrLFAgQJvHUV+nSL/G9ewb9q0icYy9/3TeOXsIzpnVCByHIktJYblkB9rNobpYMu9kl5bLP261zzxvR/kxPe6kfM//t6NhCpqGLB9DPQOA3DquRdz3Uc/zOaevb5pfak8iazJ1l73/b9+9WsM5y3y/nK29KQ47oz38qs7buf8q64bOydn2nQPZSkZ6dNvf3838046nf60BZ4Izccez/PLV7B5w1oe/+sSnnz8MYx8jvRwissvv5xLLrmE7du3j5lpM5kM06ZNO8C0O5EcqRD3CHA6cA+uf9wSIIlb6jYEfOZodK5Agddjzmlnsupvj+BZ/ypb5s7A8CSZIj9IQl9OrkelVLUorVqPOnAMmuXD27UTrbiUPFAdVEjFQDcMBnUfkKEy4GFDX+r1bvuGcAwbNOGGpY/Sv4VBEUV1vEiZJqRb9ClRFJEkp1bSkTO5suZAf7jBtMF9K/dQNe0Z6GpB6JKzoi+grVGgfAopxaB463I6F32GVNkdvOr34lGvoCgvSEUGmT//FFJPLsMeGKD4wx86KuMtUKDAvx6KECiqGKvhFNgv7aSUEmtE6yWldKuWyr2fjW5L5GjmD/r6eikrr6C9fQ/PPL6Evz75LNlsnMrKaiTw56f/RktLC3XRwIiWT1Ae9hLx6dSXBLAdCTMaadu+BSsdJ1pazqrlzzJnzmyqi/yoikBVBD5dZVLUz/SKEEIIWmZNZetrLzH709eSyWTYuu41brz+y3zpkx+Fn7h+cE8//TS33nord999NwA9PXt1WqFQ6KgKcHCEQpyU8oZ91v9XCHEC8AEgAPxNSvn40elegQKHp2LyVKK1k5i7dTX/0/1uzqtU0NtDpCoUSuMOqT5BTfVW1I0JpBUmmOqiPNBADvA4btCATGfIKDo5BSo1kyeTOaSUE+70K/P2ATniZP8W+mQUxQ4gnSxRzaZfD6GSZJdTAxw8qOF3y9sw9W34+vcwoJ1J0JuiJJ4j3OfB27KA7PanIFjOcE2EX5TZREUxJQMtgEm03kN1dTW7v/51tJpqQqeccsD1CxQoUOBoIIRAVwV/T07j8z5yKbFYDF3X+dmd/820SZVcccUVrF69GiEEjY2N/PznP6ck6EqMjY2NJJNJDMNg6aMP8/jjjzN39my+fcMNfPi8c9B1nYaGBu666y5Kw14eeughrrvuOvr7+/nAhefT2trKY489xmevu46rrrqKY+a2IKXkqquuYu7cuW9o3K+88goXXngh8XicRx55hG9961ts2LDhDV1rX95Qsl8p5Spg1Zu+e4ECbxIhBM2nnUn8nrv47bbtnDulCKfdobhqFtHXNvLIZp0FpwyxQ81iWsVYRQ5lhkKvkSWXiAFgJdMQKWbII6i0E+RMh0TWpHj/KeSbRObt8aZUMwtDe+jnBEwZQuAQFXn6fCVEgO2260C7f3qRrGFz14u7qGh4mpmbSnnCW0Fj8WbE6pFrV85GefpmUidexJrAvXToOkrRJZy0zsDSMiw8YS5GWxuZ5S9R/tnPuCVqChQoUOAdynPPPXfAvt///veHPL6tre2g+z/5yU/yyU9+8oD9F154IRdeeOEB+0OhEPfff/9h+3b66adz+iEi+4eHh8fWjzvuODo6Og57rTfCxNcWKlDgLabplNNBCKZvWcW2ogh9Ikk4ejqqhJ6kgiIkGcVg2K5goCVAODaMjA+QTiUxpIKTcv0oBj2CCsMV7I5GcINj2OPrpg5sQyDppwQz7wqMpUoapcj1QdmWD1Dp0Sj3jPdpuf/VdlJsIi23UzpQQVb10xrdhm+tiojUIge2I6P1xE89lb9WtHGcqTPoPYm6YbD8CVpaWoj/8X5QVYo+8IEJH2eBAgUKFHhrOKQQJ4TYKYQ4ZmR918j2odqOt67LBQqMJ1xSRkNLK63b1vCC4qVdHUD1zEAC0RS0d6gkNQsLL7umTyXY24eSTgDgCA0xIsTFPYLyTD/AUQlukHkbZV9N3Ehk6gAlkNtbrcFb5KYT2ZRVmLOfKdWyHX753E5K6p5iVqaKHrsYgJlaG+FdoFe3YrY9Q6KxjkcG7yWjSEr1k5iybRghBZOaoniEIPHQQ4TPOAO9omLCx1mgQIECBd4aDmdOfQY3eGF0/RCBwwUKvP3MOfUMdq+9jbadO4lHDIQVQK2sYGZHHy+nVKQuKQcsp5TA0Cb0jA+vrmM6Ai29V4hrzfQC049Krjhp2AdEpkoEMYqJWAYOENAM/BGdrPCzPWvy7vKScdf424YeuvJrCag7OTN3No/7S1GERd2uXoQUCH8pueIqfO87g5cz3+HsdIbljWdxyrYMUqgsPKOF4eeew47HKfrAv034GAsUKFCgwFvHIYU4KeVV+6x/9C3pTYECb5Bpx5+I0DQa2jYzXDeJ3JCJp7aVpvWPc4dHodFnMwPwDYeRHpvSbJ5hn4dcOk8w6wpxQ7qgPO3WFe1J5A9ztzeGk7fRwvv42fVvIS2CqAiw3SSaQc3EF4Q2pxnLYpwmTkrJz57ZQaR6GWX+KuS2fjqLmqkNdVH0mo7whTCH2mgP5FguNpFTbf4to/M/VjUfTsQQoSz1DZPouPUW1LIyQosWTfgYCxQoUKDAW8cR+cQJIb4phKg5xGfVQohvTmy3ChT4+9C9PqJVNVQkBuiKFLOHAfBMwmtAUULQG94DgD8XJt8IlZaCls8iHIuQnUMTMOgVqI6HUr9KT3LiC00faE7dTFyGUDUV6WRACLyKhe4xaFfdMjD7RqYu3xFj09BKLH0XHym5gOHBQQZEETODuwhukagVTQwGPVQdP4vHMw9zRjrPjsgCpu9Jophe6ueUYMfjDD/9DEXnnovQ3lBcU4ECBQoUeIdwpIEN3wLqDvFZzcjnBQq8rZTW1FGdHOQVNUiHGkMNTwZg7m6HTGgLXiWBaobonBuiOJnFiLtBDAKICMGQT8EhSJXfOjo+cfsGNtgmxHa4QQ2KhpRpV5gTAkum2MNkgqpCo3+v5u7XL+wkWPkkVYFq6rq9DHmjWNLLgsFNCMtGekJssdt4bn6AvJLlU0ODPBU9nrMTboTU8WfMJvnoErAsii64YMLHV6BAgQIF3lqOVIg7XMKsKDDxtqcCBf5OojW1eIdibPP66VQHIVCGEi7muJ2Q1ftQ1SEsJ8yWyTqhoTi53u6xc322zZBPQRKkSk3Skzw65tQxTdzgLpA2XVSSc0A6GVTVJqMWkTcG2OlUMyfkH6s52JvM8Wz7C0jvbj4+9xp2vPISuypc5fisnQOg6HQW+amsKOKP3X9mXqKYaYbDi7KZ4ICN6reprC8h8ec/45s9G9/Mw9crLFCgQIF3Cj/60Y9obm5mzpw5/PCHPwTghhtuoLa2ltbWVlpbW1m6dCkAsViMxYsXEwqF+PSnPz3uOn/4wx9oaWlh7ty5nHPOOQwMuO4z999/P3PmzEFRFFauXDl2vGmaXHnllbS0tNDU1MTNN9887nq2bTNv3jze//73j+27+uqrOeaYY5g7dy4XXXTRWJqRZ599lmOPPRZN03jggQcm7NkcLjr1dCHEjUKIG0d2fWJ0e5/2X8CPgTefsa5AgTdJSU0dODbBdBKzOEwqYKKWT6ehT8FS8mTVNFmniC67FCFsihJ7S7Tohknco+DoFVQ6fRMe2CAtB2y5VxMX2wZAN1XkDQcYxqu6JWFyRowdVnScKfVPr3WgRZ+jzFfJIr2VRG8PbUEPHsWgfJeFUlTHemMD299TR1oO8/FMhlcjs6lIGuj5CJNml5DbsoXcxo0UHSQfUoECBQq8E1m/fj2//OUvWbFiBWvWrOHRRx8dq4Lw+c9/ntWrV7N69Wre+973AuDz+fjOd77DrbfeOu46lmXx2c9+lqeeeoq1a9cyd+5c7rjjDgCam5t58MEHOfXUU8edc//995PP51m3bh2vvvoqP//5z8floPvRj35EU1PTuHNuv/121qxZw9q1a6mvrx+7R319PXfddReXXnrphD6fw2niTgP+c6RJ3Bqp/7lfuw7IUSi7VeAdQEmNa/Gfn0vSFy5mN30ogQaCKZuitKTPmybtlJCP12LWSsoSKVTF/RdQc3kGdYGjlVBl7GEwbZAz7QnrmzT2q5vatwmAAaKolh8ps4S1HE60nD4qyEptTIiTUnLvaxvQgtv5wIwL2LVyBQjIaJU0ebahxIbJFldSZhncl32eyfEZnJzbwdPR4zi9tw8hVWYvrCfx0J9B14m8/30TNq4CBQoUOJps2rSJhQsXEggE0DSN0047jQcffPCQxweDQRYtWoTP5xu3X0q3zFc6nUZKSTKZpKbGtWY0NTUxc+bMA64lhCCdTmNZFtlsFo/HQyQSAaCjo4MlS5ZwzTXXjDtn9HMpJdlsdqzyT2NjI3PnzkVRJjY97+GiU78NfHtkIA5wgpRyxYTevUCBCSRaUwvAMfkkf/MV02TvYk50KgAzO6DbN0R5QqU2UUZfc4iy53N4NZVhQ6JmM8TDEaSIUJXdAZxJXzJPfWlgQvrmjAhxY+bU9pexUMjjxWuEwM4Q1TKoJdXsphSAOSOVGlbsGqTbehGfkJw79VyW/f579JZJUtlaTk49BMBGzxCdZ1WTMF/jyr5jUTyS57VjOHUQhAK1U8K0Pfoo4dNPQ4tGJ2RMBQoU+Nfhqbt+Qd/unRN6zYqGKSz+6LWHPaa5uZnrr7+eWCyG3+9n6dKlLFiwgNLSUu644w5+97vfsWDBAm677Taih3m36brOnXfeSUtLC8FgkOnTp/PTn/70sPe+6KKL+Mtf/kJ1dTWZTIbbb7+dkhI37dPnPvc5brnlFlKpA2ttX3XVVSxdupTZs2dz2223HcGTeOMckUgopVQKAlyBdzq+YIhAUTG1yUF6w1H6RRIqG0DVmNuu0BXsA6AmG2HzTJXidA7VMhFCQc9myCiQlX6qxMRXbZD5EU2cZ68mLos7UwzlQ4CkTEvhhIPsZjIakpkB9/N7X9mDN/oaLWVzCaUUBjvb2VSmYjke5nbFQPUwLBM8Et3JtHwzJwe6GNQiJDNFeIwSqqZGyL+yHHtgoGBKLVCgwD8UTU1NfOUrX+Hss8/mnHPOobW1FVVV+dSnPsWOHTtYvXo11dXVfPGLXzzsdUzT5M4772TVqlV0dXUxd+7cA3zc9mfFihWoqkpXVxe7du3itttuY+fOnTz66KNUVFQwf/78g573m9/8hq6uLpqamrjvvvve8NiPhL8rx4AQogqoB3z7fyalfHaiOlWgwBulpKYOu78HWkuQqkqqGDzRBmZ07ubek9oACFs+1hTnOdOxURNDiEgJwbybpy2m6JSKkTJc6YkLbnDy+5lTUz0ktWqwwJPVsICwlsfw6bQZk5ka0PCpCsmcyV+3voZe38P5U69h+4rlAGSildANNR1x0pFSOltU4kY/p229krroTSwrXsDCwS40q4nJLRUk/nw3aklJodh9gQIF3hCvpzE7mlx99dVcffXVAHz961+nrq6OysrKsc8//vGPjwsuOBirV68GYOpU1zrzoQ99iO9973uHPeeee+7hnHPOQdd1KioqOPnkk1m5ciWrVq3i4YcfZunSpeRyOZLJJJdffjl333332LmqqnLxxRdzyy23cNVVVx3mLm+OI80TVyuEWAZ0AsuBp/ZpT48sCxR424nW1BLv7uT0siJi4SLaxQDCX0FpQpL29yOwUCT0DVdgl4J3IAbSIWKlARgEIqorcCVz1oT1a9QnTvGokOoFx6TLU0NeySMcV+MX1AzyuqCdeppDbv3UR9Z0IYMrUYXGOZPPYcOLT9FXnCeUraHG6ENPxGn35nh6Roo5vlbm5AQRM8az3laiQ+69q2pUhpcto+jc9yN0/aD9K1CgQIF3Kn19rhVlz549PPjgg1x66aV0d+/NLvDQQw/R3Nx82GvU1tayceNG+vvd0opPPPHEAUEJ+1NfX8+yZcsASKfTvPTSS8yaNYubb76Zjo4O2trauPfeeznjjDO4++67kVKOBV1IKXn44YeZNWvWGx73kXCkmrg7gRbgy8A6CilFCrxDKampI5dKstgnuCdUzPruXczwlxDM2AgJQo9ho2PGJzHY1Ed0IEEvEDbdr3TcIwhFJvP/2bvzMCvKM+H/36eqzr70vq80a9MLR+2ACwNiDGm3ZBhjjPq+cYgxwVHGMSZxopNXJ8ZJfvOGH5qBYYyZxGAiJkQEYzBocEMziCANNM3eLL3RfXo7e5+tnvePalqQxVYaQ2J9rutcDVV1qp6ui6bv89Rz3zftEIwlx2xc8viZuL1/AOCwyCOuJEE3AkinmqRLSTMgsil3GOvhfr35MPasbVxeNhsCMQaOtHFkSpRAvJA5gR0A7CtN0E+cv+25itLCzZCC1mQZJSkbmlXBsu11ZDJpPko1mUx/ka6//nr6+vqwWCwsXbqUzMxMFi5cSFNTE0IIKisrefzxx0eOr6ysJBgMkkgkWL16NS+99BJTp07lwQcfZNasWVgsFioqKnjyyScBIwhcuHAhfr+fa665Bp/Px7p167jzzjuZP38+NTU1SCmZP38+9fX1px2nlJJbb72VYDCIlJJp06axbNkyAN555x3mzZvHwMAAv/vd73jwwQfZufPsC3uMNoj7G+AfpZRPnfUVTaZz6FiGam0siN+TRaSjFaUgH2UvZAasRK39JIZcZEfK2FOznfGrA+wG7MeCOIvAmTMZ2iE0hjNxekIHhoO4A8Ynu7ZUJoqqIeWxllsJehBIFApsFvYcDbGzfzNOd4jrxl/Hro0bAPDYJZuCxTR0v0JK1XhjhsKkjMlYNxZQOLGJlnQV4wKDuJVaCqsyCK3+T2xTpmA/x58ITSaT6VzYsGHDSdueeur04cjxZUCOt2DBAhYsWHDS9nnz5jHvFB9y3W43K1euPOPYLr/8ci6//HIAFEXhrbfeOuVxn/rUp2hvbz/juT6K0ea6xoCeMb+6yTTGjmWoJno6KRxOH08UZAKQ3ZuH39FPTM8kJ1JCa0GSjJBRiNGRSADGTJySORk3UYLhk7OOPqpjM3GKVYWubUhgIOHFY81E6hEQAquS5mjaSEcvsGr8+p02bJnv4rVmMKtkFu9u/CMD7gT1Aw7SUqOiq4Nur8Jhb4xZlrlYGKIitI0NzgvIjEZIhTXystIM7dhB5jyzQ4PJZDL9tRltEPcE8L/P5UBMprGQkVeAqmkMdHZwWXkJcVWj222sA8vu89Lp6GdIeikIF3JQSWETUQQSazqJoksGrALdMx4vUULDbbnGwsjjVAsQaCNh86JIK5mWXKSMolkEwuahe/gJbramsqppPxZvC1eNa0ToEDnUQSAjQU/OOPKj/TgiA+wukzg1JyUH6igo3odFptilV+IQOSDBc3gLaBreD1j0azKZTKa/PKMN4jqAS4UQ64UQ3xRCfOX9r3M5SJNptBRVJbOwmP7ODj6Tm4Hfk0ULRjP7vEErQbvRZsUrhvAH8oiP3AMJKAAAIABJREFU07GljADLnkwZQZyrCo+IEgwOjtm4jtWJEwMtoKfoceQCkKHkousRXFaJ9OTjTxk/knsPBQhr76KT5HPjP8fmra+gpKG8N8QBewkz+vYA8HKD5LNljfh3D5GTs4OoYkMLWynyVCEEaOtX4p41Cy0nZ8y+F5PJZDKdH0YbxP0XUAnMAf4d+On7Xk+ci8GZTB9FVlEJ/Z3tVLvsRLNy6Bryg8VJQUgnaO8HwKaE8UTK2Fen4IhEEELBmkgwYFWQwoVXSxOKRMZsTDKeRlgVxEFjbcdhS4axY8hFWkbxWJOkvPn0Sy8CybqtnbhymqjwVlCXW8cbf1qDRFKjSQ6HSrjYv4+YRXAwX3KJ/Ay6LqkIvc1Gdz3u+BCWpJesLAHdHWR8/vNj9n2YTCaT6fwx2iBu3Ae8qs7J6EymjyC7uIRAdxd6Ok15aQkCiXBnUxCJENeMGnCaiJMbKWVPucAVDCEE2JMJBq0CPZbC47SNbXZqIj2c1LAegD3Da99iIQF6hAxtiLg3gwGyyFTS/OngXnTbAa6ruo6knqR/7wHi1gSdMyfSESpkYk8ru8sEU3Nq0VqzsOX1URZro1lMwOnyEOhKkBVrQ3E6cc+edaahmUwmk+kv1Gg7Nhz+oNe5HqjJNFrZJWXo6TSBnm4uHW98vkh4M8mNBdCli5QSQyNBYbiUVqfEEwogdR17Ika/VaAPpfG6PYTSGoTHJp9Hj6eNpIb2dwA4kDR+9BIBUGQMNyESTheDZGNPp9G8WwG4dvy1vHxgHdkDGlnROBEnFEX68QyF2TwRbph8A227BsgobQEgHMukuryeVELH2bIB95WfRrGfVJvbZDKZTH8FPlQnViFEvRDiLiHEg8PdGxBCTBBCeM7N8EymDy+ryMhQHehq59OlhUSsdvo8TnKiQUSyiEF7PwlUciMltCYV7CmjxIc7FWPQKpBDKTyZuQSlEzreHZMxyXgaoSYhYWTD9slsVIuKiMUQgFtEiDusDJBFLJTAk7eNiwouosRdwh9e+yWqLmBcNl0xN9N6DwDQOs7OdNssYsEERYl3aLfmk0jYyLQaWbnerh14r7pqTMZvMplMfy6PPfYYtbW11NTU8OijjwLw0EMPUVJSgs/nw+fzsXbtWgD6+vqYM2cObrebu+6664TzrFixgrq6Ourr62lsbKS311gjvXLlSmpqalAUhc2bN48cn0wmufXWW6mrq6O6uvqENl2VlZXU1dXh8/loaGgY2d7U1MTFF188sn3TJqNj6Zo1a6ivrx/Z/uabb47JvRltxwabEGIlsBX4MfB/gOLh3f8OPDAmozGZxsCxWnH9He24NBU9O5dum4IzMYQ1lE/I1keQDKwpL8lYJrpmrH1zJONENMHQUBJvTgEhnMj2LWMyJplII9JGyZKYxY4uM/G4PIj0cKFfLUHCqjBANtFomITo5nPjP0dbsI3Bwx1IJKEZEzgYKKfBv5MBF3xq+t/SuzdGyKEzbXALWy3VeDJzCffoOEUUh13ivuyyMRm/yWQy/Tk0NzfzxBNPsGnTJrZt28YLL7ww0hXhnnvuoampiaamJq6++moA7HY7Dz/8MD/60Y9OOE8qleLuu+/m1VdfZfv27dTX17NkyRIAamtrWbVqFbNmnbj0ZOXKlcTjcXbs2MGWLVt4/PHHT6hB9+qrr9LU1HRC4Pftb3+bBx98kKamJr73ve/x7W9/G4BPf/rTbNu2jaamJn72s5/x1a9+dUzuz2hn4h4BrsQoM1IAiOP2vQh8dkxGYzKNAbvbjTMjk/7ODgAKCwoIW41/st7+DIL2PhIpIzs0N1JKb4aRveoYLvjbm0jjdTlJoxJtaxqTMenxNErSaFbfbnOSJbKwWl3HFfpNElEkIbwI2rEqNj5T8Rl+u+2XFPXZsSlpJlmOcHiwktre/TRXCm6ovpH2Xf3Yqg7jSUfxJ/O4yFdP1/5BvP5deD5zJcJqHZPxm0wm05/Drl27mDFjBk6nE03TmD17NqtWrTrt8S6Xi5kzZ2J/3zISKSVSSiKRCFJKgsEgxcO1RKurq5k8efJJ5xJCEIlESKVSxGIxrFYrXq/3jOMVQhAMGmuvA4HAyDXcbjdCGL+HIpHIyJ/P1mg7NtwE/IuU8mkhhPq+fQcxMldNpvNGVlEJA11GdexpZSXscTkB8AZ0RHYfSBugkxspoS13DwrvFfztS6Xw2I3epaHO3bikhLP8gZOJNGKoC2lV2CVSuNIuUroFdGN2zqkl2CNUpFCwWfYyp/hyHJqDF3Y/R+NAHkMTHFjUI1h7knjjSQITC6lyj+eVfRsoqN+BjqAnkceVpZPZGWqhvG8v3qv//qzGbDKZTMcM/u4Aic6xy9gHsBa7yLxu/BmPqa2t5YEHHqCvrw+Hw8HatWtpaGggJyeHJUuWsHz5choaGli0aBFZWVmnPY/FYmHZsmXU1dXhcrmYOHEiS5cuPeO1v/CFL7BmzRqKioqIRqMsXryY7OxswAjW5s6dixCCr3/963zta18D4NFHH+Wzn/0s3/zmN9F1nT/96U8j53vuuef4zne+Q09PD7///e9He5vOaLQzcTnArjOcwzYmozGZxkh2cQn9He8FcVHHcBAXipFhMdZBZKmHKYqUcCRHxxaPY08Yjeh7U2m8DuPzTXAoDf2tZz0ePRZHpLsRqSEOaAoiIRhKqCe03DqSGD44fZQry6/ktb3rUAMSBYGonMKhoUwuCLwNwNRrvkzXgQDJlM648Fb22Sqw5lYS9Uvj+6cX14wZZz1uk8lk+nOqrq7mvvvuY+7cuTQ2NuLz+VBVlTvuuIMDBw7Q1NREUVER99577xnPk0wmWbZsGVu3bqWzs5P6+voT1ridyqZNm1BVlc7OTg4ePMiiRYtobTV+H7z55pu8++67vPjiiyxdupQ33ngDgGXLlrF48WLa2tpYvHgxt91228j55s2bx+7du1m9ejXf/e53z/LOGEY7E3cQuAR45RT7pgN7xmQ0JtMYyS4uJRYKEguHyMnJIeZ0oAtBbjRAlsWoFSdsneRFJrGlQnLBkQhujxHE+VMpptiNLg8hnNC+GXLO/Gnxg8ihJBbRDcARzUZGSicaU7HqETRNwWqx0BGXIEDTg1xacinf/OUtjDtqAyRFNivvBivw9W+j1yv49CU3sfV37fTmSHyhFl6zzeDiiy6gc3cfWipK4axpCG20P94mk8l0Zh80Y3Yu3XbbbSPB0P33309paSkFBQUj+2+//Xau/YCuNE1NxtKY8eON7+OLX/wiP/zhD8/4nqeffprGxkYsFgv5+flcdtllbN68maqqKkpKjAS6/Px85s2bx6ZNm5g1axa/+MUveOyxxwC44YYbTrn2bdasWbS2ttLb20tubu4o78KpjXYmbjnwz0KIWwDL8DYphJgD3AP87KxGYTKNsazh5IaBznY0TcORk0vI5iIvNki+zVj71mfVscfzGNCsOCMRnAlje7/U8dqHZ+LUbOg4u+QGKSUyJVC1AAApZyUA0YiCLqO4bALcBQzqxjUvyC4jEhnkbXGIKr8HS26aMqWd1kAetV0BwlNKsWt2jrT046pox6En6EnkMq2+lo6dR8kIHCDjmqvPaswmk8l0vujpMUo9HTlyhFWrVnHzzTfT1dU1sv+5556jtrb2jOcoKSmhpaUFv98PwMsvv0x1dfUZ31NeXs4rrxhzV5FIhI0bNzJlyhQikQihUGhk+0svvTRy/eLiYl5//XUAXnnlFSZOnAjA/v37kdJ4UvLuu+8Sj8fJGYNOOqP9qP7vwDTgKYwODQBvAnbgGSnlf5z1SEymMZRdbHxK6u/soHhSNeWFBYScLvKjA1icLjotQZK4yAAcyUykHkXTU0b/VAU8wzNxwczqsw/iEmlAQbUnSQ1BVtaFcBhSQwqIKE5Lmpgzm6DiQcg0V5Z8il+v/b8oukAbUnFNLEZx70PsiuEegozGG4iFEvS2hcktagbA76hBkRaCYYUJqW6cF110VmM2mUym88X1119PX18fFouFpUuXkpmZycKFC2lqakIIQWVlJY8//vjI8ZWVlQSDQRKJBKtXr+all15i6tSpPPjgg8yaNQuLxUJFRQVPPvkkYASBCxcuxO/3c8011+Dz+Vi3bh133nkn8+fPp6amBikl8+fPp76+ntbWVubNmwcYWa8333wzjY2NADzxxBPcfffdpFIp7HY7P/nJTwB49tlnWb58ORaLBYfDwa9//esxSW4YVRAnpUwDXxJCLMXIRM0H+oA/SClfP+tRmExjLCO/EEXV6O801sUVFxTQ73CRNzDIEWsuSWsv6bSRZeSOZxG0xpGKgjuZImABr3V4Js4zETqehlQCtI+W6Sn9Ri3stBrmqKZR5hxPBx3YUjYEMVxqnA7FySBZWPUAs4ou5WuvL+bio8b4PM56ws7XmNhrLCoed8V1HNo9QFKFmtBWDlpLKJ58AZ07jce1JXVFCPX9+Ucmk8n0l2nDhg0nbXvqqadOe/zxZUCOt2DBAhYsWHDS9nnz5o0EZcdzu92sXLnypO1VVVVs27btlNeYOXMmW7ac/MH/vvvu47777jvtmD+q0daJKxdCWKSUG6SU/yKl/JqU8jtSyteFEJoQonzMR2YynQVFVcksLGJgOIjLz88n7HaTGwsQFik0rR9LIhMdHXc8k27PcIJBIsGAVeAe/oAUdJZDOgHdOz7yWORBo4aQTPs5ZNEo1AoBcKatkI7gEmEOJjUGyMZBmINvvkiPO031UBUISYmqsD2cRU1nmGCWB0thIUd29eMvVvlUoJlWUcacGT6OvLYToScpv86sDWcymUyfBKNdE3cQuOA0+6YN7zeZzivZxSUjteIKCgqIuJxYZJp0UMGjDuKKZzFo76FoKIO2LCOIcyTiDFoULCmJVVUI2Y2A62w6N+hHtgE6tng3HXYXtpQNKRRcaQU9FcVJmINpnQGyybMo/LblGTxxgd6fIrfAidt+iE1hjYmdEpvvU0gpad/Vj7OsE5ceoz1VRlF+Ll2tQTLi3XgaTvejajKZTKa/JqMN4s704NYC6GMwFpNpTGUXlzJ4tAs9nSYzM5OExw2A0i8oVoIoqATchyiMeWnPHu6cEI8xYBWkYyk8do2gbgdX/lmti5Odu1CFH02m0HPGEw6HSWDBqhvZsC4tQb9riAGyqBhKsLEgyGcUH+lwkPzsWkIZ+wj2R8iMQNEllzLYHSU8ECdLGtP5/XmXEPf3MygzyS/SxqyIpMlkMpnOb6cN4oQQmUKIKiFE1fCmkmN/P+5VA9wKHP1YRmsyfQhZxaXo6RSBnqMoioKz1KicrQ0IylUjgIrY+slIZBKwx1FTKZxDUfqtgt6+KF6HhVA8DaUNHz2IC3Qgg4Nownis6y2+iGAoRDStIXVj9s+pJUl44oSFF/3QetKqYEKiBoBc6tjsaKWyK2m8/yIfR1r6iVkEEwJNtGsFTPBdwqHnXkcqGuWXnVx13GQymUx/nc40E3c3sB/YB0jgt8N/Pv61Hfg68JNzO0yT6cM7PkMVIGf8OABsg2nsTmPyOKGksSayQBFoiSiOeJSIRdDRGzFm4mJJKLkQevdCbPDDD+LQBnQcWIQxhtKKOfQNBEnqVqQ8rm+qQwUpaU9tZnIqj8HdbTgsLnJEms3xBJPaVZKqBfukSbTv6sc/3saMwA72iQpmT5tA+yajAGXZ5WdOszeZTCbTX48zBXGrgfnAbRiPUx8BvvK+1y2AT0r58Dkep8n0oR1fKw6goLKcqGbDPphGuuNIUoi0jUQ6AyQklCFsw/1TDw9E8dothIaSUDJcrqNz64cfxLYVSEcJmuggLFSmlM0kEgmj65aRmbhOO6Q1N1ryEAPuKNdM/DvioU7GFVTgz2yhOaYyoc1OoHwCulDp2DuIpaiDjHSYg0zEGQniD1jwWIdweszmKSaTyfRJcdogTkq5TUr5CynlkxjB3I+H/3786xkp5faPbbQm04fgcHtweDNGyozk5+fT68jANZgg7k5g0fpwx3Pot4VxJ+0E7BE03Xhs2RVJGDNxQykoHk4U+LCPVPsPQutryJK/QRPt9Di8WBUbejKOJuwwHMRt9KroIhN7+HUsUiWvowARTVDomMofs7YgUlDVG4WptXQfDJCMp8kYMgLKUPkVBF9eT8BbRdGksy8caTKZTOebxx57jNraWmpqanj00UcBeOihhygpKcHn8+Hz+Vi7di0AfX19zJkzB7fbzV133XXCeVasWEFdXR319fU0NjbS22u0YFy5ciU1NTUoisLmzZtHjk8mk9x6663U1dVRXV090qZrz549I9f1+Xx4vd6RcX33u9+lvr4en8/H3Llz6ezsBGBgYIB58+ZRX1/P9OnTaW5uHpN7M6rEhuGArVcIkS2EuEYI8b+Hv2aPyShMpnPk+AzV/Px8+h1e3KEhYs4QLtWPN57DoKOb6qiLXmcEi0wD0BtPvjcT58iCnAkfPkP13eUgFFJ5PjSlg1hmKeFwGIAMixMpIwgFXve6SJCBLfI/zMy5hINNTVgUGzmpcfyP2kZNlwWLnibzogto2zVAyCmYGtrOUTWHqRdcRtdrW0hZnJReWDam985kMpn+3Jqbm3niiSfYtGkT27Zt44UXXmD//v0A3HPPPTQ1NdHU1MTVVxtdaux2Ow8//DA/+tGPTjhPKpXi7rvv5tVXX2X79u3U19ezZMkSAGpra1m1ahWzZs064T0rV64kHo+zY8cOtmzZwuOPP86hQ4eYPHnyyHW3bNmC0+kcqTP3rW99i+3bt9PU1MS1117L9773PQD+7d/+DZ/Px/bt21m+fDl33333mNyf0WanIoT4PtABPA/8Avgd0CGEMB+lms5bWUWlDHQZQZzH42HAmYE3HCVl7yVHCeCJ5zDg6GZc1MugI4IjaXShD6TTw2viUsaJShqgYzMMt035QOkkNP0KJn6W3ugAmujFWlBD/2AQgEzNCSKGqqU5qAoOJWIoMsrnqv6OaKidEtd4uuwdHE6mmLbPA0D5zE/Rtqufvmo3Fw9uZydVNBS7ONpqnLNofOYY3jmTyWT689u1axczZszA6XSiaRqzZ89m1apVpz3e5XIxc+ZM7Hb7CdullEgpiUQiSCkJBoMUFxvJbtXV1UyefHJSmBCCSCRCKpUiFothtVrxer0nHLN+/XrGjx9PRUUFwAn7I5HISLWAlpYWrrjiCgCmTJnCoUOH6O7u/gh35ESj6tgghPgn4H7gv4FfYmSjFgL/C7hfCOGXUv74rEdjMo2x7JJSml99iaFwGLvbTdCbjfvQECElRYaSwJn0ELT5KQpnEMxuwx4w1sSFkYy3a8SSaZJpHUvJRbD9GQh2QEbpB1947x8g3A0X3UrkNaNQcH75pbzVZvQA9KgOIjKCsKaYdUjyJ2cnqDnYdgssQ4NU5FzK6oI/IpBUdLkYcCYZl1NAz6G9xMf3kdMRYJ+1junbthB0FGGxQEa+45zdR5PJ9Mn24osvcvTo2BaiKCws5KqrrjrjMbW1tTzwwAP09fXhcDhYu3YtDQ0N5OTksGTJEpYvX05DQwOLFi0iKyvrtOexWCwsW7aMuro6XC4XEydOZOnSpWe89he+8AXWrFlDUVER0WiUxYsXk5194gPIZ555hptuuumEbQ888ADLly8nIyODV199FYBp06axatUq/uZv/oZNmzZx+PBh2tvbKSgoOOMYPshoZ+IWAI9JKW+XUr4updwz/PV24MfAP5zVKEymc+S9DFVjXVwsy1g3pgR1rMP/+iPWIJ54LlEtii2VRNElSQsjn6BCQ6n3khtGuy5uyy/AUwwTPoMMGlP/GcUNtHb1AeBIW0mlIoQcSaZ3SKLxTtyZM9m/dw9KFHLV8bzu3MlEm05hX5Ce0gl07BlAl5ATM5ahxid8lvBrrxP2VpJXmWHWhzOZTH91qqurue+++5g7dy6NjY34fD5UVeWOO+7gwIEDNDU1UVRUxL333nvG8ySTSZYtW8bWrVvp7Oykvr5+ZI3b6WzatAlVVens7OTgwYMsWrSI1tbWkf2JRILnn3+eG2644YT3PfLII7S1tXHLLbeMPLL953/+ZwYHB/H5fPzHf/wHF1xwAeoYtEcc1UwcUAn8/jT7fg/ccdYjMZnOgayi4QzVrg6KJ00hnWt86lEHBOrwv/4hSwQllU9MjYHUcScSxG0KQ0ljfVxoKEl2YS2oViOIm/r5M1908Ajs/yPM/jZSUbEOHUEiENlVdPl3oAHxkEDoEaLpNC2FAIKy7Nl09q9jvKOKPY52BolyXUghL9JP96Rrads9wGCuxrRgM34lk8lT6gku/XfC1ZdRVZlxbm6gyWQywQfOmJ1Lt912G7fddhsA999/P6WlpSfMYN1+++1ce+21ZzxHU1MTAOPHjwfgi1/8Ij/84Q/P+J6nn36axsZGLBYL+fn5XHbZZWzevJmqKqN87osvvsiFF1542tm0W265hauvvpp//dd/xev18vOf/xwwHu2OGzdu5DxnY7QzcX3A6QpQ1QzvN5nOOxn5BSiqNjITpw7PzKn9AizGo1NNt+BX7WTraRJKDGciQcyiMBgzMlWDsRRoNiisg/ZRzMS9O9yY+YL/RXuoHa/eS1LkgcXBQCBIWrESD8VRZZzy7hQbKlTStslkxlxY0r2UOCeyLvNPWARMbTaCM6dvGp37BumapHJJoImtciIXJP0EIio6KvnlnjG+cyaTyXR+6OkxlqEcOXKEVatWcfPNN9PV1TWy/7nnnqO29sw1MktKSmhpacHv9wPw8ssvU11dfcb3lJeX88orrwDG+raNGzcyZcqUkf0rVqw46VHqvn37Rv68Zs2akeMHBwdJJIw11z/96U+ZNWvWSevrPorRzsQ9BzwshOgDVkgpU0IIDbgB+B5GooPJdN5RNY3MgkL6O4wgzlVWho5A7RfIXKN4rzXtpMuaYGIiScwSwZ4cImK14Q8ZXR1CQ0YwR8lFsPVXoKdBOc00eDoFW38JE66EzHLe3b+GObKPtLWMoWSaxFAEq8uJSBmFfnU1QZ9NEHFfgd49iC0ZItddzgbvz5jmSGH155EWg+RPq+fQm3sJT+2lINHPHtsNXPD2W4Q85QDkmUGcyWT6K3X99dfT19eHxWJh6dKlZGZmsnDhQpqamhBCUFlZyeOPPz5yfGVlJcFgkEQiwerVq3nppZeYOnUqDz74ILNmzcJisVBRUcGTTz4JGEHgwoUL8fv9XHPNNfh8PtatW8edd97J/PnzqampQUrJ/Pnzqa+vB4yg7uWXXz7humA8Nt2zZw+KolBRUcF//dd/AUaCxq233ooQgpqaGv77v/97TO7NaIO472A0uv8F8DMhRD+QDajAmxhJDybTeSmzqJjBbuNTW1aml367F2tvAFlufLqzpRz4LSEmxhPstcSwJeOEPAqdA0Ydt+DxQdymn4B/DxRMPfXF9r8MoU64+t8BeKv9Ta7FT8J+CbuPhrCTxG7PHCn0u2VSEoei4XdcRLJtN9nxHJoKDzCkxGlwpbD3pTjoLaIqrqELKBzaBYCsmk342eVEK2Zisatk5JlJDSaT6a/Thg0bTtr21FNPnfb4Q4cOnXL7ggULWLBgwUnb582bN1Ii5Hhut5uVK1ee8lwul4u+vpMfQj777LOnPP6SSy5h7969px3zRzXaOnEhYBbwOWAxRpmR/x+4FpgtpQyP+chMpjGSkVdA0N+DlBK3XcPvyETxK0iHMa3uSboZsPspjGQQtkSxpOIMWBUO9R0L4o6VGRlObmh/5/QX2/ILcBfApEaSepI9R15DJY7uqGRHRwCHSJKWVqQeIa6l2TZeZ4q3GBQr1kgfeWIc6zPexq5YGK8rZHR10FZYxeDhMB35KRpCO+gXXiYVVjC0fTvh7CryyjwIxUxqMJlMpk+a0c7EIaWUwAvDL5PpL4Y3L59ELEo8YvRDbXdmMm6gjYTLCOJyEh6as1twt5cR9UZxJBOELQoMJzYEh9fGkT0evKXw0r+AooHvZjg+IzTQAfvWwWX/BKqFpqPvkBc1HtnqrnHsaBvAIZIEowKnjHKwOEpKFZQMPxLNDXbhddew2f1rfE4L7gMZWBMhIhOm0LV/kLZxgru6trNJn0xN+06CQiEQd1BWYT5KNZlMpk+iURf7BRBCzBFC3C+EWDr89fJzNC6Tacxk5BmZQwF/N26bMRNnDerEHSmsIkpOws2gvRsRqSKmRrEP9091WYz3h47NxCkKzP+9keCw5h/gmZsh3PPehZp+BVKHC78MwBvtbzAhZQSCureKXe29KMBgIA16lP2lYSYm0qQVo7ZRZSLI3pwe0iLNTMcgGT3GuLXqWvxHQkQdfZTGu9lrvwCx8U3i5bWk05hJDSaTyfQJNaogbrjd1npgPUYiwxeHv64XQvzRbL9lOp958/IBCPb24LFb8DuyUHRIS4FViZKRdBCzhumjFC/Bka4N5XoYq6q8tyYOIKsSbn0B5j4C+9fDf14MLWuMZId3l0PVHMgeB8Dr7a8zS3hIy0zS9kKO9g4AUBwcoN/ZRW9mgr/VrfTpdjSZpDiVxZverdiEm0qbjuzNJGRx4MovJaknqUwdAECUziD81p+IT7scMJMaTCaT6ZNqtDNxPwY+hdGhwSGlzAMcwJeHtz92boZnMp29kSCupwePXaPHabSnUkMCTRnCnbQB0OXUKNUDIzNxE5QwqiLem4k7RlHg0rvg628Y3Rt+82V48loItMFFtwJwJHiEg4GD1AwNkdAn4k+ksEojOCwNRmnNa0VIuNKexyAZeJIRHOl8trhayHUZ45WtfnZnleOOSo7mxGgI7SQgXExJq8holEjBZCw2lcx85zm/hyaTyWQ6/4w2iLsO+I6U8mkpZRJASpmUUv4K+BeMhAeT6bxkd3uw2B0E/d147Bp+h/H4Uu0HoQ5hTRtBXJ8jSEksjZIOAZCXDKBL+d6auPfLnwJfXQ+z/xna3gZnLky+BjAepbp1HW+om4SkXP7CAAAgAElEQVQ+mbZoAocwzqOm7RwoOkrloBVPRjYDZFMQ6OVwdoyUkmaaM4kYzMbSfoTd2RVoR+N0lQk+FWxms5zE+NbtCLudwaSH3DK3mdRgMplMn1CjDeLSwL7T7NszvN9kOi8JIcjIyyfg78FtO24mbmC44G/ahqar9Dv8ZIcspGXA2J9Kk0qmTnyc+n6qBeZ8Bxa8CV9eA5oVMB6lXqnlIJAk5CQOBWLkqsZM3KH8OCFnnAt6BVHFygDZXHy0n02ZLTjTLi62tJPTWYSQEn/pBAYPhuhzx5kUPUyrVo3+pzdxXHwpfR0R8svPvlikyWQync8ee+wxamtrqamp4dFHHwXgoYceoqSkBJ/Ph8/nY+3atQD09fUxZ84c3G43d9111wnnWbFiBXV1ddTX19PY2Ehvby8AK1eupKamBkVR2Lx588jxyWSSW2+9lbq6Oqqrq0fadO3Zs2fkuj6fD6/XOzKuG2+8cWR7ZWUlPp8PMFp0zZ8/n7q6OqZNm8Zrr702JvdmtNmpa4AbgZdOse9LwOoxGY3JdI548/IJ+rtxWTXCVidJVUMdSENGjLgsoiiZS7+9F/tRJym3sXYt7HSRMRiiNzSKQOm4unHhRJjN3Zv5saUSgIQ+iX2DMSZHOrHYEmwv7kDRoWEgTW84yoA7i9qBgywub8Gl+PAqr+PqzSAFpKomM7Q/Qj4dAFhs5STbX0O9aQGpd3Tyyt1jfatMJpPpvNHc3MwTTzzBpk2bsFqtNDY2jrTYuueee/jmN795wvF2u52HH36Y5uZmmpubR7anUinuvvtuWlpayM3N5dvf/jZLlizhoYceora2llWrVvH1r3/9hHOtXLmSeDzOjh07iEajTJ06lZtuuonJkyePtPFKp9OUlJSM1Jn79a9/PfL+e++9l4wMo+vOE088AcCOHTvo6enhqquu4p133kFRPlR+6UlG++7fAVcKIX4vhPh7IcRVw1/XAp8GnhdCXHHsdVYjMpnOAe9wrThFEbhtFsJOL2qfQNWiJHQXFfF8Bh09pAdzSSlhtHSKPq+bokgvA9HEh7rW/3T9Dyk9Re3QELq3CombQwNh8kPdKMkhDmfvosTvIJck7ckkQ8JJUPWTUJJoOUZShNKRot2Tj9eRQcAdZHLiEDqCon5jVjBaarSYyTNn4kwm01+xXbt2MWPGDJxOJ5qmMXv2bFatWnXa410uFzNnzsRut5+wXUqJlJJIJIKUkmAwSHFxMQDV1dVMnjz5pHMJIYhEIqRSKWKxGFar9aRWWevXr2f8+PFUVFScdL3f/OY3I225WlpauOIKIzzKz88nMzPzhFm/j2q0M3G/Hf5aBpyqC+6xEsUCkBidHEym80ZGXj7xaIShSBiPXSPoycbV24s6NUIKG5VDebzpaaY3PQOHOIo9maAry0l5aA8H4hM/1LVeb3sdj8VNZucB0jmXQA9M6WpBd6u0ZvmJ2AJc1JWLSwvQYrXgSujs8B7Ek7RT5pAgIbHzELszx+ON6HQVSb4Q3MkeUUbRnp3YplbTMSjQbCqZhWZSg8lkOvf27n2YUHjXmJ7T465m0qTvnvGY2tpaHnjgAfr6+nA4HKxdu5aGhgZycnJYsmQJy5cvp6GhgUWLFpGVlXXa81gsFpYtW0ZdXR0ul4uJEyeydOnSM177C1/4AmvWrKGoqIhoNMrixYvJzj6xGMczzzxzUv9UMLpMFBQUMHGi8ftj2rRpPP/889x00020tbWxZcsW2tramD59+hnH8EFGOxM35wNeVwy/jv3ZZDqvjGSo+ntw2zUC3lzUAYFmNZqNlA1lgpBEPB4yZBRbMkG/24E3ESWeSmPUuv5gutTZ0LGBa3IvQIS70b11AHy69S1CLicHM4+ipjXKuh04tQR9dhczO/y849lJWaSEMtGO2uOAgUF2Z1dg6RmiLUvhwlALzYlKLLub8Vw+B/+REHmlbhQzqcFkMv0Vq66u5r777mPu3Lk0Njbi8/lQVZU77riDAwcO0NTURFFREffee+8Zz5NMJlm2bBlbt26ls7OT+vr6kTVup7Np0yZUVaWzs5ODBw+yaNEiWltbR/YnEgmef/55brjhhpPeu2LFihOCu6985SuUlpbS0NDAP/3TP3HppZeiqmc/3zWqmTgp5etnfaUPIIS4AXgIqAamSyk3H7fvO8BtGAkU/yilXDe8vRGjvIkK/FRK+cNzPU7TXybvcMHfoN+oFdfnzUONCDRLEICiuDGjFfEqeGNx7KkkYasdi4wjEUQTaVy2D/5xae5tpn+on0ZLHgAptxHE5YW6iDqm0u/oo7x3HJZ0ApeWJGB1UzrYxLs5CeLiAsr1t/AczgJ62Z1VQXksgNUaITMVRo94QNdxzp6N/7/7qb6s+BzcKZPJZDrZB82YnUu33XYbt912GwD3338/paWlFBQUjOy//fbbR9bJnc6xNWzjx48H4Itf/CI//OGZQ4ann36axsZGLBYL+fn5XHbZZWzevJmqqioAXnzxRS688MITxgLG+rtVq1axZcuWkW2aprF48eKRv1966aVMmjTpg771D3R2K+rGVjPwd8Abx28UQkzFSJ6oARqB/xRCqEIIFViK8Xh3KnDT8LEm00nem4kzujb0uHMA0IQRxGXJBEIKBtxRnIEUtlSCIYtKT04MgI7e0Kiu83r76yhCoTY+BIqFlHUCAK2ebPocfSSVJFU9Rpstp5ogrHnxW3biSTroKryCUtpwHvWQslgJ5ZchrQNU6kZSQ44/iZqTw1DuOFIJ3ezUYDKZPhF6eozOOEeOHGHVqlXcfPPNdHV1jex/7rnnqK2tPeM5SkpKaGlpwe832i2+/PLLVFdXn/E95eXlvPLKKwBEIhE2btzIlClTRva/f7btmD/+8Y9MmTKF0tLSkW3RaJRIJDJybU3TmDr17EOWUfdOPdeklLvAWEj4Pp8HnpFSxoGDQoj9wLGHyPullK3D73tm+NiWj2fEpr8kDo8Xi81OwN+Dx15Gl93IGFJTRpCmK4PkJ3Pocw5i2+/AmooT1bJoKxyCNOxa/ycmffmaD7zOG+1v4MvzYTu6EwrriLS0AnbWVE+ky30Aq7RS1psL7MeiSbShbJpcf6S2v4AtlVFsSgLlUIIjuRXkWWx05yW5ILKHQeEid38HrpmX0ttu/EdgdmowmUyfBNdffz19fX1YLBaWLl1KZmYmCxcupKmpCSEElZWVPP744yPHV1ZWEgwGSSQSrF69mpdeeompU6fy4IMPMmvWLCwWCxUVFTz55JOAEQQuXLgQv9/PNddcg8/nY926ddx5553Mnz+fmpoapJTMnz+f+vp6wAjqXn755ROue8yp1sn19PTw2c9+FkVRKCkp4amnnhqTe3PeBHFnUAJsPO7v7cPbANret33GxzUo018WIcRImRFPlcY2y3AQF40CkFBilCcKaHX0Eo85saSixDUbvYUqdEDvxk3wAUHc0chRdvfv5hsX3g1bH0SvuYHobzejFUxn9/g4YWcHtcqFqOk4igIxqw3ZFyOmxskPeChS2iENemsPOyovxTuUpiPfxu3BnexKVZAZGMA5YzoHD4fQLApZZlKDyWT6BNiwYcNJ284UBB06dOiU2xcsWMCCBQtO2j5v3ryREiHHc7vdrFy58pTncrlc9PX1nXLfseDweJWVlezZs+e0Y/6oPtbHqcN9VptP8fr8Ob7u14QQm4UQm49NpZo+eYwgzo/HbuGI4gLAGjJm4uI6lMULCdh70QF3OoauqBRZjEwkuX8fMpU63akBYxYO4EpHGSTChJp7EUlJSBFo3oMk1SQ+/RIUJYpdSxO22umPt+JOOUhQSyltaD1AIsk+dxGOWIiA286UyEH6+o16cK7p0+k5EiSn1I2ink+rIUwmk8n0cftYfwtIKa+UUtae4rXmDG/rwChtckzp8LbTbT/VdX8ipWyQUjbk5eWd7bdh+gtl1Ioz1sSFpQoOK9ZBI4hL6Bpl8UJSSpKII0VWwmhCki/Dw/sh+gE1fd5of4MSdwmlwW4Aep9/h4GcMkKqTkwLYE1bqYrVATFsaoKoPYtdthZq+kvpKK6nKnkAe7vxiLQ1oxivGqRQ6UVBYu8TaAUFaGXl9LaFzfVwJpPJZPpwQZwQQhFC1AohZgshXOdqUO/zPPAlIYRNCDEOmAhsAt4BJgohxgkhrBjJD89/TGMy/QXKyMtnKBLGoegASK8XS79EFUOkkw7yUkZgFPJYyBoy2mfFFCOhIWBzEFx3qoYlhlgqxsaujcwunQ0dW0inNZJKNoddhQxoA0QsEUpjpaRDCjIdwaUl2GYrJ6oOUXbUTmtxPuNSrTj8meiKSpsnH809yJS4kc6ec3AA5/TpBPwxkvE0eRVmEGcymUyfdKMO4oQQdwJHgW3AK8Dk4e2rhRD/eLYDEULME0K0A5cAvxdCrAOQUu4EfoORsPAH4E4pZVpKmQLuAtYBu4DfDB9rMp3SsTIjasJYB6dnG7XiVDWGnnaQiZFUE8104YkagV6XzQbAvnwXgZdfRur6Kc/9ztF3iKfjzC6dTXrnemJ+lQN/9xVsisY271akkExhCrFQknQqjEcb4i10XGkHYkil06ORY/Vj7VIZyCvGqVrozbbTENxJqyzCHgjjmjEd/xEjqDSTGkwmk8k0qiBOCHE7Rj221Rg9VI9PId0AXH+2A5FSPielLJVS2qSUBVLKzx637xEp5Xgp5WQp5YvHbV8rpZw0vO+Rsx2D6a9bxnCZEWXICIRSOYWo/aCqMdJpB6qrh4yUm0GPwDtktNoatOSQo3VwMN+K7O0l1rTtlOdee3AtDs3BBaIINdpG2lrOk+6puESad93NOHQHE+wTiASjSD2OU4vxjqWdaYNVhDzF5NKDqqbhUIhDGcVkpBN0e7K4KNhCV8CoQu6cPp2eIyFUTSGr6OOaCDeZTCbT+Wq0M3HfABZJKb8GPPe+fbsZnpUzmc5n3vzhgoyRQQASecUoCYGqREmmnaSyW4zkBlcYb2QIAJVMqr1v0eV1kFIVQi+d/Ej12b3P8vvW33Pj5BuJ/Me/IhRIXXU77xweBDXIPsdhqpJVeJwekjFjjV1blouIOkRVt5fBrAmU0YYSBtkXotmWj1eJYnekyE4FSPUIlMJCLGVl9B4JkVPqRjWTGkwmk+kTb7S/CcZhPLY8lQiQOTbDMZnOHYfHi2a1IUMDAAzlGkGdRpS4dKNkNVMWL6TP7scTMWbrLMKLxbmHtMyiZZyL0EsvndCC652j7/D9jd/nsuLL+Jp+GemW9QCsd1yEUCM0e5pJC52SYAl2qxOpGzXemrJc2HUbnq4oPUXlTI7uRuswJrj3eIpwqiEqdKOCTlZbGM+M6SDBfyRkJjWYTKZPlMcee4za2lpqamp49NFHAXjooYcoKSnB5/Ph8/lYu3YtAH19fcyZMwe3281dd911wnlWrFhBXV0d9fX1NDY20tvbC8C3vvUtpkyZQn19PfPmzWNwcHDkPT/4wQ+YMGECkydPZt2698KgP/zhD0yePJkJEyac0Plh/fr1XHjhhfh8PmbOnMn+/fsBo+xIXl7eyHh/+tOfjsm9GW0Q1wtUnmbfZE6TFWoynU+O1YpLDxplZqK5hQBoMkJcd2FVIuQOFRDVoiQIoaXT2PByxBFC07N5a2KUZGcnQzuNetJtwTa+8do3KPOW8f9d+gg93/s+zhIV6S3h2T1JHHkbeCVjE6WiCHfYjVVzIGUUieRtbxhfeDJ9IkFrbiaTh/biOGp8FjroLUI6Bb5QCxHsWHoTOKfPIOCPkRhKm+vhTCbTJ0ZzczNPPPEEmzZtYtu2bbzwwgsjgdE999xDU1MTTU1NXH311QDY7XYefvhhfvSjH51wnlQqxd13382rr77K9u3bqa+vZ8mSJQB85jOfobm5me3btzNp0qSRnqotLS0888wz7Ny5kz/84Q/8wz/8A+l0mnQ6zZ133smLL75IS0sLK1asoKXF+L1wxx138Ktf/YqmpiZuvvlmvv/974+M4cYbbxwZ71e/+tUxuT+jDeJeAP6PEKLquG1SCJEL3IOxVs5kOu9l5OWTHDBKgAQ9xlozTY8Ql26sCZ2MmNGOq9s+gCOZRKoZ9GgKVdp+3pkEUlE4dMMN7G5ooP0zV/Pg0gH+79MW+v/+DhL7D+AqtxIvuJBNRw5j8f6JfY7DXOOYi0CgSStSj9KbkaDfEmPSQCH+3EL8DhuFtm7sR12kMrIYtHuIZTi5MNjCoVgBSIHTTGowmUyfQLt27WLGjBk4nU40TWP27NmsWrXqtMe7XC5mzpyJ3W4/YbuUEiklkUgEKSXBYJDiYqP/9Ny5c9E0o/fBxRdfTHt7OwBr1qzhS1/6EjabjXHjxjFhwgQ2bdrEpk2bmDBhAlVVVVitVr70pS+xZo1RKU0IQTBotHMMBAIj1zhXRtux4V+AORj9Td8GJPBjYArQA3zvnIzOZBpj3rwC2va/BXnQb/cCRhCXknbUuIIrZgRI/a44zlSapGYcU2DdzGG7lXVfreNm9QLW73qBYP9RLs3wYU9Z0ENhcm+7CSWyiGYxEWvO6yhCx6rbuMR2Mb/jj6QHddAjdBeDKhUKO2BHZT6qTOJ0BFDb7fTkG31V9VwvU/e0sr2nAmt+DtbSUvxv70fRBNnFZlKDyWT6eH13XzvN4diYnrPW7eDhiaVnPqa2lgceeIC+vj4cDgdr166loaGBnJwclixZwvLly2loaGDRokVkZWWd9jwWi4Vly5ZRV1eHy+Vi4sSJLF269KTjfvazn3HjjTcC0NHRwcUXXzyyr7S0lI4O48FjWVnZCdvffvttAH76059y9dVX43A48Hq9bNz4XsOpZ599ljfeeINJkyaxePHiE87xUY1qJk5K2Qs0AD8ALMABjABwCXCJlDJw1iMxmT4G3rx8kuEAFkUwiBWpgpY0So4oMQcimcKmWxl0S9zJNDHVSl5SknIcBZFiRf4+fn7xED+4pJuc7z9I/RO/pOLnP2fcb1eS93mj69vqXg/WrP8hJXSuCExHDP+YBbqiSBnlcGGE+sgkQqFOArn5FMtOhNThyCCH3YU4SFBg8aPJNM72GK7pRqvgvo4w2UUuVM1MajCZTJ8M1dXV3HfffcydO5fGxkZ8Ph+qqnLHHXdw4MABmpqaKCoq4t577z3jeZLJJMuWLWPr1q10dnZSX18/8tj0mEceeQRN07jllls+8ngXL17M2rVraW9vZ/78+XzjG98A4LrrruPQoUNs3779/7F352FSVXfi/9/nLrX3TnfTVAsNNFt302mlg5gY0CiEMYaEIUHFzGRBM5jBOP6M4Rv7N9HEOBjURB0IOCaGr2ZG8nOCyCARkDgTM1mISoPY7Hsv9FK9VHXtde/5/XGbEmSxDUs0ntfz1NPUubfOPX0fCs4953zOh+nTp/OlL33pz77GiQadO1VKGQHuH3gpygdSbnEJAvC7NPpTGfAbGMkYeEAmvMSMdsqTpXT5Y+SlJd1+g5pYLvsDfbjTHuIiwr/v+ne+OOGLfGHsF06uvOV1pNB4MfMmCBuE5PqeqcQs5+m1vydBj7edTm+EOW0jiVtN9BUNoa63ESMuIG3R5C7Cr6ep7N8FgNYuKfj4FQB0t0UZNlbFECmKcvG924jZhTR//nzmz58PwD333EN5eTmlpaXZ47feeivXX3/9WetobGwEYPTo0QDMnTv3pICElStXsm7dOjZv3owQTpBZMBjk6NG3U7Q3NzcTDDqp209X3tnZybZt27j8cueB/oYbbmDmzJkAFBUVZc+/5ZZb+Na3vvUe78LpqUd65UMlb2DDX68uiSQyiIAHV3RgiiDpQ3N1MTQxlA5PiLy0JGmYeKJjCOsa9dE6AIq8Rdx+6e2nVt78GiF/BemCN5C2iwpjAiOTQaKZBEIIYknJkeJWAMb1eki4PYRycqmK7sJsdr6K230l6C7BpHATx+wirJSGf/JHScYz9PckKVT7wymK8iHT0dEBwJEjR1i9ejXz5s2jra0te/z555+npqbmrHUEg0Gampo4nj9906ZNTJgwAXAiTZcsWcLatWvx+XzZz8yaNYtVq1aRTCY5ePAge/fuZfLkyXz0ox9l7969HDx4kFQqxapVq5g1axYFBQX09fWxZ8+eU65xYnvXrl2bLT9Xgx6JE0J8CbgJGA543nFYSilHn5cWKcoFlDuw4a9XWPQnMmi5OZiRGBSBnfShe0MUJIYRKvgT41IpkmYOqeRY4A0K3S24ItcQYjO3brqVH077IaX+gadBKaHldX6vFyEEoCW5YehseBOiqRg+txfL1mkp7WVcvIJYpJv2ojJiuovh7na8HXlgJtkdGMqQHI368Ft0d/qIF5VgBoMcO+CsWFCdOEVRPmzmzJlDKBTCNE2WLVtGfn4+t99+O42NjQghqKio4IknnsieX1FRQTgcJpVKsWbNGjZu3EhVVRX33nsvU6dOxTRNRowYwcqVKwFYuHAhyWSS6dOnA05ww4oVK6iurmbu3LlUVVVhGAbLli1D13UAli5dyqc+9Sksy+KrX/0q1dXVADz55JPMmTMHTdMoKCjgqaeeAuDxxx9n7dq1GIZBYWFh9trnalCdOCHEPwPfxQlsaASS5+XqinKR+fLyMUwXpp0mksigFxTg3uU8mdlJP3peDzndlwJgZjqxtBL8Zi7Dkjpteguhw7fz+PyZfH/Ld7hh3Q08ctUjTCqdBN0HINHLa0U6mn0JUqT5TNE0IuynPxFDtwVxPUZbbh8z2qdypHc3nVWTSOEiP6cXV4uXzLBSLM2gKKef4nAP/S060UsnAc5UKqCCGhRF+dB59dVXTyl75plnznj+oUOHTlu+YMECFixYcEr58S1LTqehoYGGhoZTyq+77rrstiYnmj17NrNnzz6lfPHixaeswTsfBjudOh94TEpZK6WcJ6X8yjtf571linIBHN8rzszEiSQzmMVDcQ1EXFlpP0ZuH55omfNeOlFILp8bf2wob5qSYaKVoGsyz376WQKuALdsuIV/3/nvyObXAHjD7cHSuhnnm46Rdr5e0XgUK21xJM9Z5zapbyjJTJKOojJ0ywJ3GO1IgvYcZ5SwUnOS3ssOwdCpHwOguzWKYWrkFnkv0p1SFEVR3u8G24krAv7rQjZEUS6W3OIS9FSUSCKNe9gIjIwTnWqlfRi+DFq8iEDGTy/7nQ+4DTr6LyWlCar8/8u2o32Mzh/Ns59+liuDV7Lkj4t5/X8fJCYERxkBaMybMBc7aQEQifaTsFMcLniT8mQJ+dFuADqGlHFpaBtav4SeGPvdTtBCbXo3SVwk+wyKPzHQiWuLUlDmR2gCRVEURYHBd+L+B/jIhWyIolwsucUlaPEI/ckM7oqxaNJGI0km40N3ZQCL4bGRHDOcEbGMqdMcq0eXkkDObr63romZj/6Gn/6mjbvyr+flngz1HQdY6w8gXd3Y/dV8avw4ZNLCxiYWjxEXaVrzDnJFpI6exAGkBqH8YmqjTdl0W7t8hWhCUt/fREesgN78UswyZ1Swpy1KQZnvTL+SoiiK8iE02E7cPwFfEUL8vRBiiBBCe+frQjZSUc6n3OJStGSUSDyDe+RI4O38qT6RRJCkJFJBl3EMYUVIaBrYHsbYAY75evnOdWMZZXZT+T+3U/Ffc7HDaR4q+jLfEZ/BFjHGeKfjcxnYyQxxIwNAu7cdW7OZEqmhPd5CpsCNreuMNY/hajEB2JVbTK47Q3V0H9rRJLEqJxpWRaYqiqIopzPY6NQ9Az9/dobj8j3UpSh/UXnFJbjtbVhSYhUfz58aI2n7CcgEkhgF4ZEQBDO1n37pRCOVMorfmNt5ovNBvtqzDumGNytu47HEdfz3gX5yR/2YRLKEvxn7CQBk0iLhyoAN7YFj5KdzKewx2ZsyiA8PADAstwdPWwA7z6TNVchE71HMuIXdruG/0dnktycb1BC42LdKURRFeR8bbMfrezgdNUX5wMstLsVlpwGIeQNIAYYdI2kHKJZJLD1GYXg4utQwk3uIiWoMLNL2ZKT+Js8f3sCUMVfhv/IugkWV/NgMsLV9J7dsOkz62CyuGu8EKNhJi5iWwpIWrb5mpvdeTmfiCAnbpH9ILoZMYwT6MFs1wgXF9Es3VfpeAOIhk9HTpwJOUAOo7UUURVGUkw027dZ9Usrvnu11oRuqKOdLXkkpLjsFQH9GYvsEhhUlKf14rAyW2Y9puxgevwRXYi9JwyRfixPvryBX9/JIUQFfSDRx3cvzmfaLaUz6+SRu3fR3aLgpsKcwrtTJvyoTFhErRoeng7SW5mP9dXQkDwLQOySfXLuHlN2DaI7S5g+QQafO3kPIzqfFXUbxSCevXnfb8cjUd27PqCiK8tfvscceo6amhurqah599FEA7rvvPoLBIHV1ddTV1bF+/XoAQqEQV199NYFAgIULF55Uz7PPPsvEiROpra1l5syZdHV1AXD33Xczfvx4amtrmT17Nr29vdnPLF68mMrKSsaNG8eGDRtOqs+yLC699NKTskUsXbqUyspKhBDZ+gFeeOEFamtrqauro76+nt/+9rfn5d6oKVDlQ8eXm4dHG4gcTWTQ/DpGJkbMDmKmbaS/H+JQHh/JAd/viBs6+XqccNzguc+t4XD4MLF0jP50P9F0lGg6SiTVz8pXbKZWDs+mbLGTFj1WhFZ/K17by4T+kWzIvABohIqKGZU5hNEhIGNzJJALSC5L7aY/5KZzVFW2vSoyVVGUD6sdO3bw5JNPsmXLFlwuFzNnzsx2mu68806++c1vnnS+x+Ph/vvvZ8eOHezYsSNbnslkuOOOO2hqamLIkCF861vfYunSpdx3331Mnz6dxYsXYxgGixYtYvHixfzgBz+gqamJVatW8dZbb9Ha2sq1117Lnj17shv+PvbYY0yYMIFwOJy9zsc//nGuv/56rrrqqpPadc011zBr1iyEEGzfvp25c+eya9euc74/7yVjgwv4G2Acp8/YoHKqKh8IQlmhojoAACAASURBVNMoyHGmJvsTGfwBF2bKCWxwpSXC2w9AQWIUgv8mroco1k264wbDAsMYFhh2Sp1vHOnh8dDvmDajOFsmExm66KPN18bkaC29iRASm1xXkogrnwmJnZgDkamH8oZSLroozXTTciQfJlVn6+lujVI+ruBC3hJFUZT3pZ07d3L55Zdn02FNmzaN1atXn/F8v9/PlVdeecoGvlJKpJREo1GKiooIh8NUVlYCMGPGjOx5U6ZM4T//8z8BZ/TsxhtvxO12M3LkSCorK9myZQtXXHEFzc3NvPjiizQ0NPDDH/4w+/lLL730tO0KBN5e0xyNRrMP++dqsBkbhgG/BSpw1sYdv/qJ6+RUJ075wCgqyIUYRBJpfDl+zFicdL4XPSXQ3WEkkkBqFABJjpJnDKc5Jkmn05imeUp9/7O7EyHgysoh2bJUOMFBTzNJPckn+j5CR+IQti3Iz0sQxc8IWnC1GtiGwWF/KZcJZz1cstMk9yNOHsBkPEO0N6kyNSiK8hf13f96i6bW8Luf+B5UDcvl3s9Un/WcmpoaGhoaCIVCeL1e1q9fT319PUVFRSxdupSnn36a+vp6HnnkEQoKzvywa5omy5cvZ+LEifj9fsaMGcOyZctOOe+pp57ihhtuAKClpYUpU6Zkj5WXl9PS4mwC/0//9E8sWbKESCQy6N/3+eef59vf/jYdHR28+OKLg/7c2Qx2a5CHgE6cvKkCuBwYBTwA7Bv4s6J8YBQXOV/2SDKDnZ+HGXWyNoiEB8NIIA0LV6oAg0IseRS/yJCSOj09PafUFU6k+Y8tR/hoRSEFfle2PB1PsjdwAFOaTIpWcSy2H8vS8eVZxPAzVO/A3eajP7+QCDlc6tpHQrjpj7i55DKnE3c8MrVABTUoivIhNGHCBBYtWsSMGTOYOXMmdXV16LrObbfdxv79+2lsbKSsrIy77rrrrPWk02mWL1/O1q1baW1tpba29pQ0WA888ACGYXDzzTefta5169ZRUlLCpEmT3tPvMnv2bHbt2sWaNWv453/+5/f02TMZ7HTqJ4BvAq0D720p5SHgO0IIHXgc+Ox5aZGiXAQlJYVwFHojccSQYsxdTtYGO+nH5eonpSUh7SKPSroye/Fbl5LG6cSVlJScVNcjG3bT1Z/kp1+qz5bZtk2v7Odo4ChTrEvRM276UscA0PMlMfwU6u3oR21ChX7CWoDLxF7arFIO5JTxqTKnk6kiUxVFeT94txGzC2n+/PnMnz8fgHvuuYfy8nJKS0uzx2+99daTggtOp7GxEYDRo0cDMHfuXB588MHs8ZUrV7Ju3To2b96cneoMBoMcPXo0e05zczPBYJC1a9eydu1a1q9fTyKRIBwO88UvfpGf//zng/p9pk6dyoEDB+jq6mLIkCHv/oGzeC9pt1qllDYQBU4cs/w1cNU5tUJRLrLSUmftWqinD33oJRjp4504Hyb9WFoULSUptisRdg82IVLSoLu7+6R6tjf38vQfDvP3U0ZQW56fLW9uOsjvcraR1tN8qmsKnelU9pgsArDxRcKIvhS9+XkkhaRKHiLRLmgtrcDrchbOdrdGMVwqMlVRlA+vjo4OAI4cOcLq1auZN28ebW1t2ePPP/88NTU1Z60jGAzS1NREZ2cnAJs2bWLChAkAvPTSSyxZsoS1a9dm194BzJo1i1WrVpFMJjl48CB79+5l8uTJLF68mObmZg4dOsSqVav45Cc/+a4duH379iGlswLtjTfeIJlMUlRU9N5vxjsMdiSuGTjeXdwPzABeHng/GUicc0sU5SIqKB2KYe+muzeCe/hoEpk/AWCnfJgijqUn8cQk5elR7HJDp/cYqZhGKPR2Jy5j2dzz/JsUB9zc9alxJ9X/1h/e5Dd5r+HL+KjrGcv2VB8ApmbRn+djKO3ZoIZQXgFjrP2YhoXnQIxY9ZhsPd3HohQMVZGpiqJ8eM2ZM4dQKIRpmixbtoz8/Hxuv/12GhsbEUJQUVHBE088kT2/oqKCcDhMKpVizZo1bNy4kaqqKu69916mTp2KaZqMGDGClStXArBw4UKSySTTp08HnOCGFStWUF1dzdy5c6mqqsIwDJYtW5aNTD2Txx9/nCVLlnDs2DFqa2u57rrr+MlPfsIvf/lLnn76aUzTxOv18otf/OK8BDcMthP3CjANWAM8ASwTQtQBaeBTA2WK8oHhZG14k55IHP+UWqKZpwCwUj5MEcLSEmgSypLDkB4XHb5ufCGb9lBfto5n/nCYHS1hls67lFzP28EOUkqaju1kV/kBPtE7GR2N9pSzlq7AHSfiymEIHdmcqW3+EVymOUEN6Q4N4/MnbC+iIlMVRfmQe/XVV08pe+aZZ854/qFDh05bvmDBAhYsWHBK+TsjWU/U0NBAQ0PDGY9fddVVJ20n8o1vfINvfOMbp5y3aNEiFi1adMZ6/lyDnU79f4HlAFLK5cAdgA8oA5YAZ19RqCjvM/78AlwyTTiWIG/4GIyME9iQkgF8WhxbSwLgS2qkXaPpdncxUWRoG+jEHetL8MjGPUwbW8ynJ5adVHfL4RaavLuRQvK3vVcTdafoTzuduFJXhKTmopgOzGZBzOulVy/jMm0vbUYp8bSbIdXjAUjG0ioyVVEURTmjwY7EpYHDx99IKf8V+NcL0iJFuQiEpuHVJeF4moDfh244AQRJO4DXSCMsJy2XOyVJu8cQSexijBZnX4+FZVl8b91bpC2b+z9bc8qQ+Pbfvc6+nAOUxUsZlxjOTo6CHQKgzBdhJwbFdGK2GHTm59PvL+Qyey/N6eEcyvMzusxZW9fd5qzTU0ENiqIoyum860icEMIAQjjr4BTlr4bfFERTNroQSL+FZqdI2n58ehoxMDJnJG0y7jEgJKb3KAetAl584xDr3zzGN64Zw/Ai30l1Sin5bcsf6Hb3MLVvEpYu2dt5BNty1tIN80ZICJOSdBvGMUlvfj4uf5Ri0YfdnGZPfjmVJc6mkGp7EUVRFOVs3rUTJ6XMAO2AdeGboygXT47bIDbwtzrt1zAsJ2uDV7fQEjEkFlYySdrl7Ood8h4mZOeyeON+KksC3PqJU7dHbG1tpcm9E0MazO67iv7iDBk0kM40bIErRkJ3U97ejrAhnFNK0HJSr/h399FSPIIhAWevORWZqiiKopzNYNfE/Ry45UI2RFEutjy/m4TUScVjpP0mRibmTKcKCz0RxdKT2KkMUg/gkkM47G1mPG7aImke+FwNLuPUr0/jltc5GjhKfXIieXaAvpw+DI8HacfA0BAC+l0+io85a+QS3nLGJHcSxYMMQapyXHZ6trutX0WmKoqiKGc02DVxh4B5Qog/AS8AbZyccgsp5VPnt2mKcmEV5OWQapd0HT1CMuDGTMVI2H7cMo3I9CH1FFbKjSYlHkbQ7NnB54FMTpSJQ72n1CelZNOhl0kVpri243LaRS+doT1oRhHIFNJ0YekCS9PwtFtIDNK+UUzM/Ce7zVFoWpScsSdsL9IWo3y8ikxVFEVRTm+wI3HLgCAwCfge8CTwkxNeT16Q1inKBVQypIC05qL98EHiuQHMdIyEHcBlWUA/QrexbB2PBS5tNEk9SXVuhEut3fz0pz89ZeNfZyp1F3lWDlN6q9mvt9OysxEpna+ZdGukDYGOjXlMEM9xI4YNpUoc5qg1jP15wxg1NA84ITJVrYdTFOVD7rHHHqOmpobq6moeffRRAO677z6CwSB1dXXU1dWxfv16AEKhEFdffTWBQICFCxeeVM+zzz7LxIkTqa2tZebMmXR1dQFw9913M378eGpra5k9eza9vb3ZzyxevJjKykrGjRvHhg0bsuUVFRVMnDiRuro66uvfztbz3HPPUV1djaZpvPbaaydd/0x1nYvBduJGvstL5U5VPnAKCpwOU8uhw0TzC7PTqa6URNNjzlizbeLJ2EjTWRd3TOznyzd9kWg0yk9/+tNsMmSAP279A8d8x7g2+TFsAb0iSjwWIRN3EiS7fRA3XJikMdoF/bkFGHlHMIVFtFWwN/8SRhc7nTYVmaooigI7duzgySefZMuWLWzbto1169Zl93W78847aWxspLGxkeuuuw4Aj8fD/fffz8MPP3xSPZlMhjvuuINXXnmF7du3U1tby9KlSwGYPn06O3bsYPv27YwdOzabU7WpqYlVq1bx1ltv8dJLL/H1r38dy3o7POCVV16hsbHxpM5aTU0Nq1evZurUqSdd/93q+nMNqhMnpTz8bq9zbomiXGQ+t7OaoPVoC9EhJU4nTvox0za6K4PMaAgEvnSGfncZLsvFW759lFh53HLLLZimyc9+9jN27dqFlJL1B9cjheTa9o9ywGjHL9xoLrCSzohdrjdNSgq86RhGuyDiHkZeegcAhbu72JcfZPRAZGp3a79TrvaIUxTlQ2znzp1cfvnl+Hw+DMNg2rRprF69+ozn+/1+rrzySjyekwPCpJRIKYlGo0gpCYfDDBs2DIAZM2ZgGM7/B1OmTKG5uRmAF154gRtvvBG3283IkSOprKxky5YtZ23vhAkTGDdu3Cnlf05dgzHYNXEACCEqcdJsBYEW4I9Syv3n3ApF+QvwmU76lPbWNoZMGM2QdBcZfBgpMNwWMi1AgCeZpsvn5pJkIU3eA0ReOcqQL1dzyy238B//8R/84he/oL6+nt3uPVQkglQkhvFL1x8YYRVRMLyE7kNO3r+hrgQpKShrDyHSgrh7BOXRrRy0Synr7OJA7XCGFzpblvS0xTBcGjmFKjJVUZT3gV/9Hzj25vmtc+hE+JsHz3pKTU0NDQ0NhEIhvF4v69evp76+nqKiIpYuXcrTTz9NfX09jzzyCAUFZ15DbJomy5cvZ+LEifj9fsaMGcOyZctOOe+pp57ihhtuAKClpYUpU6Zkj5WXl2dnX4QQzJgxAyEE//AP/8DXvva1s/4eZ6vrXAxqJE4I4RFCPAXsxIlU/cHAz11CiJ8IIdzn3BJFuch8A0nmo8k00cIyjIwzhSmTPnS3hbCcrA3eZJqYaVCUKKLN3UlXaxudT2zHa5t8+ctfZuzYsbzc+DK97l5m9l8JZR56tCjeNJh5AaTlbPQ7lAgpTaPkmDMyZ+VWMCHexDYxBqHr6CNGYurOV1JFpiqKojgjW4sWLWLGjBnMnDmTuro6dF3ntttuY//+/TQ2NlJWVsZdd509cVQ6nWb58uVs3bqV1tZWamtrs9Omxz3wwAMYhsHNN9/8ru367W9/yxtvvMGvfvUrli1bxm9+85tz+j3/XIMdiXsYuBm4F1iFs29cKXAT8B0gBpyaLExR3se8A524jDCw0xqGdDbXtVM+dHcGaYeBEtypDGndoChZBMBbM7vJ/+9OOp/6X6JTXLSP7KQp04RuaVzVPYnoZA16wJPRkCID0ukcFstuenWN/GPOVKl3XD7FqV722CMwCgWjSnOybetujVI+ofAi3g1FUZSzeJcRswtp/vz5zJ8/H4B77rmH8vJySktLs8dvvfVWrr/++rPW0djYCMDo0aMBmDt3Lg8++PbvtHLlStatW8fmzZuz2zwFg0GOHj2aPae5uZlgMJg9BlBSUsLs2bPZsmXLKevgTnS2us7FYAMbbgS+K6X8FynlASlldODnAzjRqvPOuSWKcpH5XM4zTFqY6J0RNJfT2UrbfjyuDNKOoAkLd9JGaoJAsgghNb63bzH/T/kSFhf8G4/vXsr6/S/iFS5u7vw0+WYexwIRkOCxBXY6nr1eoeymR8vD25Ui7TXwlbUB0N6Xx47AMEYXO+vhkrE00b6UCmpQFEUBOjqcJSlHjhxh9erVzJs3j7a2tuzx559/npqamrPWEQwGaWpqorOzE4BNmzYxYcIEAF566SWWLFnC2rVr8fnezsIza9YsVq1aRTKZ5ODBg+zdu5fJkycTjUaJRJyAtWg0ysaNG9/1+meq61wNdiTODZxpBd4fAdc5t0RRLrLj06mugiFobV1o7uP5U/0E3FFCWhemLvElnaeypJbLmLZruXH2FMpyyhiSyEdf1Yk3MvA1EuC/opSu3kZ80oXuMklFnOijtG7g1ZIcM4dR2X6YRF4egcwOotKNuyXG7vxyrh/oxGUjU1VQg6IoCnPmzCEUCmGaJsuWLSM/P5/bb7+dxsZGhBBUVFTwxBNPZM+vqKggHA6TSqVYs2YNGzdupKqqinvvvZepU6dimiYjRoxg5cqVACxcuJBkMsn06dMBJ7hhxYoVVFdXM3fuXKqqqjAMg2XLlqHrOu3t7cyePRtwol7nzZvHzJkzAadDefvtt9PZ2cmnP/1p6urq2LBhwxnrOleD7cS9jJM79eXTHJsB/PqcW6IoF9nx6VT3kDLEsW0ITwKApB0g1x9HaGHcAnwJZ8A6bHoZGivjs/6ZpI72E/lNM1bEAEODjA0S/JOH0vHLY+TaHqTLItEBUhgQcDpovXoBRvsR+kpKKO/bzjZ7NJf0dvDq+I+cGpmqRuIURVF49dVXTyl75plnznj+oUOHTlu+YMECFixYcEr58S1LTqehoYGGhoaTykaNGsW2bdtOe/7s2bOzHbzB1HWuztiJE0KcuPfbD4FnhBB+4DneXhM3F7gO+OJ5bZWiXATHR+LchcVYO9qQ3oFOnAwQcLcjiGEg8Cec8/rcXgrjfbQub8Swwbwkh/xPj8I1Kpee5/YidIFR6iPU3c1oWYLljpHqj2JrLnx+LxYaxEDvF8RGDmN4/3/zK3k9ZekeWgLFjMruERdVkamKoijKuzrbSNw+Tk6tJYDbgAXvKAP4H+DcxwUV5SLymc5ffyO3CKQk402DhITlx6db2Jk4mtTxJZ2RuD6PHx8pksMDDL12JO7RedkFsEP+vgqA/v5+MpZFATkk9T1IK4lt+Mn3GDQzlNz+PgC00gAmFlvtSoYHmijO85LrMQHoaYtSWKYiUxVFUZSzO1sn7isXrRWK8hdwfDpVD+QDkPQJtHCKeCqHAlJkkjGEHzwp51km6vGiCcjMHIqnIv+0dXYNLJrNkz5C6eMLby2KSLGfEeSGwwC4gglIws7McC7P7coGNYDKmaooiqIMzhk7cVLK/3sxG6IoF5vL0DA0ge32Ypou4h4ToztGPJODaSWRto0ggzfljJClXM7PlpY2qivKTlvngV1NgNOJ298XA1yYmQT+tM5e93Am9G7BNgSFOUc5mirGiFq84Rma7cRlUhbR3iT5Jd4LfwMURVGUD7TBbjGiKH+VvC6dRFqSU34JCdPAzMRJWAFcGWejX2kncKclwpYwML3Z2nzmXbaP7N8HUhKQHnp6UwijBAAjE6WVoXhDKVKFboZFd7Kd0ZRHOnjTX5bNmdrX5WxJklusOnGKoijK2Q067ZYQYibwBeAS4J0rrqWUctr5bJiiXAw+l04slaHgkgqi7a9jZGIk7ABmJg2ALfsRBPBmbIRwplW7Q11nrK+rsxOXpZOxkqRiUXTXaCyaCWMgAVeHTbQwQHH8ANsy0yhLhvl9WU02MjXc6XTi8ob4zngNRVEURYHBp936FrAeuB7wA9Y7XvaFaqCiXEg+l0EsZVE8vIJMBoxMjJT0Y6YzgAS9D48AX0aiCUhInd7ODqR96l/5RLSfWCqNR3oIJVsBsDx5AHSbOeTq3ejdkMl1stQ1WqMp8BpIoWWnU/uOd+LUSJyiKAoAjz32GDU1NVRXV/Poo48CcN999xEMBqmrq6Ouro7169cDEAqFuPrqqwkEAixcuPCkep599lkmTpxIbW0tM2fOpKvLeSC/++67GT9+PLW1tcyePZve3t7sZxYvXkxlZSXjxo1jw4YNAOzevTt73bq6OnJzc7Pt2rZtG1dccQUTJ07kM5/5DOGBddCHDh3C6/VmP3O6rU7+HIOdTl0IPAEMk1J+XEp59Ttf56U1inKReU2deMpiaMVIMkkDgxgp/JhpG8MDthbGqwn8acgYBq12HnYmxov/+jBWJnNSXYd3bMM23bjSAbqSzUgE3rxcJHDMXcJI6yBCCqx8DQuNHXIkmt+Pz6VTlucMboc747h9Bm7/oAfJFUVR/mrt2LGDJ598ki1btrBt2zbWrVuX3dftzjvvpLGxkcbGRq677joAPB4P999/Pw8//PBJ9WQyGe644w5eeeUVtm/fTm1tLUuXLgVg+vTp7Nixg+3btzN27NhsTtWmpiZWrVrFW2+9xUsvvcTXv/51LMti3Lhx2eu+/vrr+Hy+7N5wt9xyCw8++CBvvvkms2fP5qGHHsq2YfTo0dnPrVix4rzcn8F24nKB56SU1nm5qqK8TzjTqRbBESPJJHQ0PUpa8+NK2+SU5GCLKF4NvEmblGly1MrH0AVNW19n7SMPkE4msnXt3fo6aBoB3U1XogXNKCbPZyFNN/1GDvkxJ01LTm6U3a7hxPDQ7clldHEgu1VJX2ec3CHe7HtFUZQPs507d3L55Zfj8/kwDINp06axevXqM57v9/u58sor8XhOXvUlpURKSTQaRUpJOBxm2LBhAMyYMQPDcB6cp0yZQnNzMwAvvPACN954I263m5EjR1JZWcmWLScnr9q8eTOjR49mxIgRAOzZsyebQ3X69On88pe/PD834gwG+7i/AZiCysyg/JXxunTCiQz+3DzCWj5BM0ZG9yEsjbwiD5GWGF5N4IpLkrku2mQuEkHw45/kwOZ1/PJf7mX2ou/g9vk5tGc35BYT8KZoTrZhuqoRsg+tYIhzrb4UUkhGeY6w3jUFgP1GbjaoAZxOXPHwnL/IvVAURTmTH2z5Abu6d53XOscXjmfR5EVnPaempoaGhgZCoRBer5f169dTX19PUVERS5cu5emnn6a+vp5HHnmEgoIzb81kmibLly9n4sSJ+P1+xowZw7Jly04576mnnuKGG24AoKWlhSlTpmSPlZeX09JycmDbqlWruOmmm7Lvq6ureeGFF/jc5z7Hc889d1LS+4MHD3LppZeSm5vL97//fT7xiU+c/QYNwnuZTr1OCPFtIcQkIcSod77OuSWK8hfgc+nEU860aFegHN3t5C1NSR8FeYJUKoxXA09SkjTdGMImYhbQnUjx6W/cTdveXfx/37uH1j27iMQGPmuksGQajCDpRA+WL4d82YcRSmPnC/JlmF2MwrTSvGnnZNfD2ZZNJJRQkamKoigDJkyYwKJFi5gxYwYzZ86krq4OXde57bbb2L9/P42NjZSVlXHXXXedtZ50Os3y5cvZunUrra2t1NbWZqdNj3vggQcwDIObb755UG1LpVKsXbuWL3zhC9myp556ih//+MdMmjSJSCSCy+Wkli8rK+PIkSNs3bqVH/7wh8ybNy+7Xu5cDHYkTgIR4AHg+2c4R2VsUD5wjgc2APQWXYIIbwcLEpkAuT6LWH8fHv/AdKqu4yNJs8wnN3SAojET+Nzd/8zaHy7mue/dg11YCrZGb9QJThDGMGKRP5IouYQJ4i2MrhSywHlu2psspygT45g7LxuZ2t+TxLalCmpQFOV9591GzC6k+fPnM3/+fADuueceysvLKS0tzR6/9dZbuf76689aR2NjI+CsSwOYO3cuDz74YPb4ypUrWbduHZs3b84uZwkGgyeNpDU3NxMMBrPvf/WrX3HZZZed1Jbx48ezceNGwJlaffHFFwFwu9243U5Q26RJkxg9ejR79uyhvr7+Pd6Nkw12JG4l8DHgRzhpt756mpeifOB4XU5gA0CiJAgepwMWT+Xgd6WxMilcQuAdyNrgMm12p5xO1+7duxl5aT1zGr6HZhgIXy6a7SXR24PXyAXhI5xMYGs6o6zDmF0ZRK5GXHNzKDqEfJxtTE6JTB2iOnGKoijHdXR0AHDkyBFWr17NvHnzaGtryx5//vnnqampOWsdwWCQpqYmOgey6mzatIkJEyYA8NJLL7FkyRLWrl2Lz/f29k6zZs1i1apVJJNJDh48yN69e5k8eXL2+LPPPnvSVOqJbbVtm+9///vZKNTOzk4sy/m/5sCBA+zdu5dRo859EnOwI3FXA/8opVx5zldUlPcRn6lnR+IypUGkOw5RiCVz8Ml+AEzsbOot0yWJ9LuI5uSy9U9vcuWVV1I+vpovPbSUpT9+ipTbgMPNFHouIZaToC9diLBt8qJJIhkw/Bm2BcaS6BOUGQJNwIgi5x+N4504NZ2qKIrytjlz5hAKhTBNk2XLlpGfn8/tt99OY2MjQggqKip44oknsudXVFQQDodJpVKsWbOGjRs3UlVVxb333svUqVMxTZMRI0awcuVKABYuXEgymWT69OmAE9ywYsUKqqurmTt3LlVVVRiGwbJly9B1Z9IxGo2yadOmk64LTsfu+Fq7v/3bv+UrX3EymP7mN7/hO9/5DqZpomkaK1asoLCw8JzvzWA7cZ1A+zlfTVHeZ3wunXjawrYlYshQLLeTqSGaymFosgfIQ9csfCnni1tcWsjBiCTi0ujqa2fDz7Zyzc21eHLzSdkJuv1eClL9FOSWk/KHScshDO84SNjORxCixNvD5pwriWoepGFzSaEPj+nUHe6MoxsagXz3X+p2KIqivO+8+uqrp5Q988wzZzz/0KFDpy1fsGDBafdnO75lyek0NDTQ0NBwSrnf7ycUCp1Sfscdd3DHHXecUj5nzhzmzJlzxuv8uQY7nfo48HUhhErTpfxV8bqc55hkxsbnNkn5nE18o+lcXLEeAKRmkZt2yifUjAUgEI4igFf37+CXD71O46v7QEBvwgmSCJhB+rR2EIK6tjeJRp1wd39Ogje9Y0npJmHhpvKExPd9XXFyh3gQmtpeRFEURXl3gx2JKwBqgCYhxCag5x3HpZTy3vPaMkW5CHwuZxQslsrg0zUieU4kUTydgyseRggNS2TITzvluscEoOrjn+Tw7zcgXAdp7i+i5b8OQQH4+7rRNRNdy6NHhjEjvZTZIY70F4DPxnBLWqxyAI7aLq4pOaET1xFXQQ2KoijKoA22E3fiWOLY0xyXgOrEKR843mwnzsKv63QFCgjYaRKZAK54P/78fCzSFKadvSjpAwAAIABJREFU0TFhOoPRQ4dVYI0bT/PuXfR5XiPHWwg2lIaaKfKVcdDVhg0Uhbsx/Dp6exw93yJk5mH1OHWk0Bg1xNkjTkpJX1ec4Lj8i38TFEVRlA+kQU2PSim1d3mp7UWUD6TjI3HxtIVP02j3DsWwYyTtAIZlUVCUQ8aOU2BJkJLMwN/0zkiSay6fjAB6PT6idhdxTSe/O0Shp5yDrmY8mRT58RjJouG4e/txByzeyKki/1hn9vojBzpx8UiaTNJSI3GKoijKoKk1bsqHmu+kkTiNFm8ZhnTypwKU5BmkM3ECmrPNSCSZQdcEnZEkI0aMwOPxkFNSSmN5Ja0ePwJI+PNIaSlcXW14IzF69Usw4hYBf5KtOeNxd3Rnr18x0InLRqaq7UUURVGUQRp0J044ZgkhHhZC/EwIMWKgfJoQYtiFa6KiXDhe01lREEtl8OsaIVcxuhYjoznbfhT5LRKpfnwaeFOSUDxGkd9FZySJruuMGTOG3I5WkrX1eLUIUkgOeSLk2DnYPZ14enqJ9DtptNy5GbbmToCkjQ8Lj6lRkuNEooY7nWwPaiROURRFGaxBdeKEEAXA74A1wK3A3wNFA4dvBf7PBWmdolxg2enUlIXf0IiQi647nTgpIc+VJJWOEdAEnpSkKx6nJNdNR8RJfD9+/Hji8ThLi91Mavs9rmApES3BCFmGAHzJFImws57OlZOhyT2KsOnHpQsqivwnJb5HQG6R6sQpiqKc6LHHHqOmpobq6moeffRRAO677z6CwSB1dXXU1dWxfv16AEKhEFdffTWBQICFCxeeVM+zzz7LxIkTqa2tZebMmXR1dQFw9913M378eGpra5k9eza9vb3ZzyxevJjKykrGjRvHhg0bsuU/+tGPqK6upqamhptuuolEwvk/4ctf/jIjR47Mtut4pohdu3ZxxRVX4Ha7efjhh8/bvRnsSNxDwCXAx3E6byfugfAycM15a5GiXES+dwQ2RMhBd8XIGD6StoZf9pGWKXy6wJuy6c1YFAfcdPY7+8lVVlai6zo7d7xG9JhGPC9Iru2l1HCiTj2pDDLWD4akrWgIZn+akDePtGZkN/kFZ3uRQIEb3VQrHBRFUY7bsWMHTz75JFu2bGHbtm2sW7cuu6/bnXfeSWNjI42NjVx33XUAeDwe7r///lM6SplMhjvuuINXXnmF7du3U1tby9KlSwGYPn06O3bsYPv27YwdOzabU7WpqYlVq1bx1ltv8dJLL/H1r38dy7JoaWnh8ccf57XXXmPHjh1YlsWqVauy13rooYey7aqrqwOgsLCQxx9/nG9+85vn9f4M9n+MzwINUsrf40SinugITgdPUT5wvCeMxPk0jX5y0NxOJ64/beKJtZGxU5jC6cSFbSjOcdMZcTpxbrebkSNHsnPnbtKuPOK2Tq01Aqk706OaloMn1oErJ8MbudWMbmsm5CsgnrEZUeTPtiPcqbYXURRFeaedO3dy+eWX4/P5MAyDadOmsXr16jOe7/f7ufLKK/F4PCeVSymRUhKNRpFSEg6HGTbMWQk2Y8YMDMNZWjNlyhSam5sBeOGFF7jxxhuz/85XVlayZcsWwOkUxuNxMpkMsVgsW9eZlJSU8NGPfhTTNP/se3E6g91iJAC0nOGYh5NH5hTlA8PnentNXJmukcSN5o2RMTyEe73k5reTsVOAsyauXzMoznHT1Z/CtiWaJhg3bhz79u1DDB2B1+VhTKKMfdYe3JpO6pIaclr+hKcwzRu5VYzfso8/+qeB5OSRuM44I2uH/EXugaIoyrs59i//QnLnrvNap3vCeIbec89Zz6mpqaGhoYFQKITX62X9+vXU19dTVFTE0qVLefrpp6mvr+eRRx6hoKDgjPWYpsny5cuZOHEifr+fMWPGZNNjneipp57ihhtuAKClpYUpU6Zkj5WXl9PS0sIVV1zBN7/5TYYPH47X62XGjBnMmDEje15DQwPf+973uOaaa3jwwQezie8vhMGOxO0GZpzh2DTgzfPTHEW5uLLTqWknOhUhEDkZEBrdXUUYyRAZ6XTi/ElJ3DAYEnBj2ZLuWArbTuF2/xoA6fYwvqQKHY1Eshe/ZRMZMg6zP4YrN8PWnAmM2ncwe+2KgZG4VCJDPJJWOVMVRVHeYcKECSxatIgZM2Ywc+ZM6urq0HWd2267jf3799PY2EhZWRl33XXXWetJp9MsX76crVu30traSm1tbXba9LgHHngAwzC4+eabz1pXT08PL7zwAgcPHqS1tZVoNMrPf/5zwFlDt2vXLv70pz/R3d3ND37wg3O7Ae9isCNxPwaWCiH6gP8YKMsXQnwFWAh87UI0TlEuNLehIcTAdKrhPNOIgYe5eCwHTWbw+SwA/GlnJYHH67w/0rGPA6F7OLrtMFr8WrRALkF9BBCmP9KBOxIj4vEiADPP5i3/aP4uEste+52J7/OK3x6ZUxRFeT95txGzC2n+/PnMnz8fgHvuuYfy8nJKS0uzx2+99Vauv/76s9ZxPMBg9OjRAMydO5cHH3wwe3zlypWsW7eOzZs3ZwPOgsEgR48ezZ7T3NxMMBjk5ZdfZuTIkRQXFwNOovvf/e53fPGLX6SsrAxwltp85StfOa9BDKcz2M1+/w34IfBd4Him2E3AvwGPSin//cI0T1EuLCEEPlMnNrAmDkD6B9YsZJw1FT5fBIBAyunE2dJJevy/bzTQ39dK+x/HEhQWf/d3f4/V53Tw+nracWV8iH7nsx2lBbhSGfpcTsCDoQnK8pyRt3C2E6dG4hRFUd6po6MDgCNHjrB69WrmzZtHW1tb9vjzzz9PTU3NWesIBoM0NTXR2elstr5p0yYmTJgAwEsvvcSSJUtYu3YtPt/bD9OzZs1i1apVJJNJDh48yN69e5k8eTLDhw/nD3/4A7FYDCklmzdvztZ1vF1SStasWfOu7TpXgx2JQ0r5f4QQy3GmVYuBELBJSnngQjVOUS4Gr8vIRqcC2P6BBbGpgZ+JI+CHnIGRuObm54CryegfIbXv4yQirzLn2/9IaUUFh/uOAZC2k9ie0QSiLSAkW4NVlHZ30elz0mqVF3jRtRO2F0F14hRFUU5nzpw5hEIhTNNk2bJl5Ofnc/vtt9PY2IgQgoqKCp544ons+RUVFYTDYVKpFGvWrGHjxo1UVVVx7733MnXqVEzTZMSIEaxcuRKAhQsXkkwmmT59OuAEN6xYsYLq6mrmzp1LVVUVhmGwbNkydF3n8ssv5/Of/zyXXXYZhmFw6aWX8rWvOROSN998M52dnUgpqaurY8WKFQAcO3aM+vp6wuEwmqbx6KOP0tTURG5u7jndm0F34gCklIeBJ8/pioryPuNz6cQHNvsFsDxOsnvL8iFtcFtdtMUOkOuqACA1kHvLjH+Mt175VyZdP5vSUZUApPtToAsydoqEfwwjwy/iysnw+8JJjDx0hGNDggjeTrcFzvYinoCJy/uevo6KoigfCq+++uopZc8888wZzz906NBpyxcsWMCCBQtOKT++ZcnpNDQ00NDQcEr5d7/7Xb773e+eUv7rX//6tPUMHTo0G/V6Pr2nTamEEJcIIT4mhPjkO1/nvWWKcpH4XM50qlsT6AKSbmcEzjJ8xPsNCr0W27r/myHYAASK5pFjQPyVX5BbXMLHv+Asgk1E05C2kUgyUhLNrSQQbcGTn2ZrzgQm7t1FR76zjqNiiNpeRFEURTk3g83YMEoI8XvgEPAqzga/L+Osizv+85wIIR4SQuwSQmwXQjwvhMg/4di3hRD7hBC7hRCfOqF85kDZPiGEyhqh/Fm8Lp142kIIgV/XiHucNRFpw0c04qI0V6Mv3YkRbQKgJ+nmiv5GtHAH197yj5gD+xH1dsQwBNjCRjfK0aw09KfQC232+oZT37SNkDcfyduRqeBMp6qcqYqiKMp7Ndj5m58Aw4F/AnYBqQvQlk3At6WUGSHED4BvA4uEEFXAjUA1MAx4WQgxduAzy4DpQDPwJyHEWill0wVom/JX7PhIHIBP0+k3A/iERcbwkug3KBH9FLrL6Gl/Ffg4h9s6qTn2R0Kl1Yysm5Stp68jjoHAIo1LH0FO1Ilqag8W4pVxSnp76Na9kHk7MtXK2PR3J8i7fOhF/70VRVGUD7bBduI+CnxZSvnLC9UQKeXGE97+Afj8wJ8/C6ySUiaBg0KIfcDkgWP7jgdWCCFWDZyrOnHKe+I1DbqjTnCBX9eIECDHjJE2faQiJi67h+r8K3i1fTX+WILmZCs1uos3hk09qZ6+jhiGBmk7AWYF5dH/BeD1imqC/a3OOZaznu74SFwklHBytKrpVEVRFOU9GuyauGYuzOjbmXwV+NXAn4PA0ROONQ+Unan8FEKIrwkhXhNCvHY8vFhRjjse2ABOJ66XPDRXjIzbS6ZPR2BT6BKU5oxm2LH9tJQOQQy9lpbEyc9AvR1xPKZGbzKJNIsoyexDd1m8GLyaSzpb6HUHsCQIAcECp9N2PDJVbfSrKIqivFeD7cT9C87Upv9dzzwLIcTLQogdp3l99oRzGoAMcN72npNS/puUsl5KWX98cz5FOe6k6VRdo0sWortipN0+7IgzcqZr7Ywp+ijBY0fpzSsiLceRimVIpK1sPX2dcVwGdGWcrUPMcAeuggx/yvsIFUdbaBo2CoBCnwtzIBJWbS+iKIqi/LkGu9nvM8D/AIeEEP8lhHj6Ha//O8h6rpVS1pzm9QKAEOLLwPXAzVJKOfCxFuCSE6opHyg7U7mivCdel078hE5cyPajmwnSbi8kBHZaYBqd+PUAFZFqAJoLDWpSOp2RZLaevo4YhrDpsUzMRCfpzgiZYp2U5mL8nkPsGVoBvD0KB05kquHS8OW6Lt4vrCiK8gHy2GOPUVNTQ3V1NY8++igA9913H8FgkLq6Ourq6li/fj0AoVCIq6++mkAgwMKFC0+q59lnn2XixInU1tYyc+ZMurq6ALj77rsZP348tbW1zJ49m97e3uxnFi9eTGVlJePGjWPDhg3Z8h/96EdUV1dTU1PDTTfdRCKRAODgwf+fvXuPj6q+E///OnPO3BOSEC7ChJBIuOQ2BjZLQpcFsZs0pS4uly+g+JNaij9goZSCZUu2RZblCyos4pINll1K0ZZ0twKhacrFiF1bl6VUhhiCBTEISVDI5D4zmcuZ8/3jTCZBLipEa+vn+XjwKD2XT07O4zH4nvfn83m/68jLyyMtLY05c+YQCOiTmO+99x5f/vKXcTqd3H///X1WbuTj7k79OvpGg3hgHPDXN/lzVyRJKgK+C0zTNM3b69RBYK4kSWZJklKBkcAJ4HfASEmSUiVJMqFvfjh4t88hfPHYTDLeoIqmadhlGW9Yw2gJEzLpmw/8HTIm+RqSCo52O6YwNA63khNQ+KBd/+B2dQbxe0MQDtOuWRna/iZaCBqGDUDRQmSceYe6xKEAjBgQE/3ZbU16eZHuNi+CIAhCj5qaGnbu3MmJEyc4ffo0FRUV0bpuK1aswOVy4XK5mDp1KgAWi4X169ff0O4qFAqxfPlyjh07RnV1NU6nk+3btwNQUFBATU0N1dXVjBo1KtpTtba2lrKyMs6cOcOhQ4dYsmQJqqrS0NDA888/z8mTJ6mpqUFVVcrKygBYvXo1K1as4J133iEhIYH/+I//AGDVqlU89thjVFdX84Mf/IDvfe97ffJ+Pu506jpgPzBQ0zSHpmmpH/pzbx88y3YgFjgqSZJLkqQdAJqmnQH+E33DwiHg7zVNUzVNC6H3bT0MnAX+M3KtIHwiNpOCGtYIqGHssgGvGsZkNRAy6Bkzn9uESbqGpErkFgxn6LUg78ZA/7CBS7XNALRe0793tAVAw0CqQd9f89+p40kPXcAW8PN+zAAAxgyJjf5sUV5EEATh1s6ePUteXh42mw1FUZg8eTL79u275fV2u52JEydiiZR+6qZpGpqm4fF40DSN9vZ2hg7Vv1gXFhaiKPoa5/z8/GiWrLy8nLlz52I2m0lNTSUtLY0TJ04AelDo8/kIhUJ4vV6GDh2Kpmm8+uqrzJql78ucP38+Bw4cAPSA8IEH9JK6U6ZMoby8vE/ez8fdnZoI/Jumaa0feeUd0jQt7TbnNgAbbnK8Eqj8tJ5J+GKwGvV1b76Ail024FHDmG0KathGGI2uZiNxadeQkfnLrw2joNrAv7e30mwEX1U9nr8aRttVfW3btQBIWpg4rYkOSWNv2t/xt216Be82Uz/oghED9UycFtZob/IxPLP/H+cXFwRB+Jhe/89zNF3u7NMxBwyL4a9nj7rtNVlZWRQXF+N2u7FarVRWVpKbm0tiYiLbt29nz5495ObmsmXLFhISEm45jtFopLS0lOzsbOx2OyNHjqSkpOSG63bt2sWcOXMAaGhoID8/P3ouKSmJhoYGJkyYwKpVq0hOTsZqtVJYWEhhYSFNTU3Ex8dHA8Lu6wHuu+8+9u3bx/Lly9m/fz8dHR243W4SExM/8Xvr7eNm4n4DpN/VTxKEzymbSQ/ivL2COIvdjKYZCRuM+DsVTFxDkUx0Nrv5m3sHoEkS/zNYwuJR+ckP/ocz/92ALMG1oIYt3Iba3okcD83WBMa960KVDfg0MwApA/RpWk9bADUYFpsaBEEQbiE9PZ3Vq1dTWFhIUVEROTk5yLLM4sWLuXDhAi6XiyFDhrBy5crbjhMMBiktLeXUqVM0NjbidDqj06bdNmzYgKIozJs377ZjtbS0UF5eTl1dHY2NjXg8Hl566aXb3rN582Z+/etfM3bsWH7961/jcDiQI/2678bHzcQtB/5TkqQW9CnNlg9foGla+K6fRhD+CKy9gjibbCCoaZjs+kbskNlGyBdAoRnFINHR3MRfjBqELMF7SWao78JsN3HlQhtxcSba2gLcE2wk4PbTnhxPP62VtNPv0jRoIOGg/hFJStCDuPYmfQpWlBcRBOHz7qMyZp+mBQsWsGDBAgDWrFlDUlISgwcPjp5fuHAhDz744G3HcLlcAIwYMQKA2bNns2nTpuj53bt3U1FRQVVVVXSNssPh4PLlnkpm9fX1OBwOXnnlFVJTU+mudjFjxgzeeOMN5s2bR2trK6FQCEVRotcDDB06NDoN3NnZycsvv0x8fLQx1R37uJm4s0A2sAe4CgQ/9OezrCEnCH3KZtK/y+jTqZHm9nZ9yjNgsxLyGQANk6GZzmtNxCgymTFW/Ikm2hIU1IDK3zyeTtJo/QOZFDxJyCvzVtJI7gu7MNWrNAx1EA6EsZlkLJHp29aroryIIAjCR7l69SoAly5dYt++fTzyyCNcuXIlen7//v1kZWXddgyHw0FtbS3dtWKPHj1Kero+wXjo0CGeeeYZDh48iM1mi94zbdo0ysrK8Pv91NXVcf78ecaPH09ycjLHjx/H6/WiaRpVVVWkp6cjSRJTpkzh5z//OQA//vGPeeghvYJaU1MT4bD+RX7jxo184xvf6JN383Ezcf8EaB95lSD8CeqZTg1ht+jfa2R7P8BPsJ8V3BDqMqDIH9B5Tf/I5MXZqWnzci4e4uuCgERbkwerBAOC5wgAx+7N4y9CLuRrUJc3DC2s0d/eU0qk/ZoPySAR09+CIAiCcHMzZ87E7XZjNBopKSkhPj6eZcuW4XK5kCSJlJQUXnjhhej1KSkptLe3EwgEOHDgAEeOHCEjI4O1a9cyadIkjEYjw4cPZ/fu3QAsXboUv99PQUEBoG9u2LFjB5mZmcyePZuMjAwURaGkpARZlsnLy2PWrFmMGzcORVEYO3YsTzzxBABPP/00c+fO5R//8R8ZO3ZsNIP42muv8b3vfQ9Jkpg0adJN1+PdiY8VxGma9lSf/DRB+ByKTqcGVWx2o37Qngg00jXACnUQ6FBQEj7A69a/pY2Pi2GnoYm3rBqFg21Uv3oZd4OHJKMBS7idAPD71Cwe8/wUSZM4OygV3DA0vidga2vyEdvfjCx/3IS4IAjCF8/rr79+w7EXX3zxltdfvHjxpscXLVrEokWLbjjeXbLkZoqLiykuLr7h+Lp161i3bt0Nx++9997oDtbeZs2aFd212pfEfz2EL7zuTJwvsiYOQLXpu5z8A/WgK9CmIEvv42tuB/RMHIDbDJmThnL1vQ7UEAxWAI+PsFUmpl8Lie36lOn5WL3BfXfPVNAzcXGDelL3giAIgvBJiCBO+MKzGfWEdPfuVICQRc/IBRL0oMvXYkGRPiDQpm+xH2Q2koiBYJyJIfcNQDEZkNAYYmog0Cbx/j0DyZaqkdwGNFnjfTkOgNGDr68RFydqxAmCIAh3SARxwheeNZqJC0U3NnSZIsGcUQ+y/O1GFOkD/O2e6H2jTSbCCSZaQyH+oiiFRGsrNsMZ/G0KNcPScOJCatDoGmog7NOXlGYn6cFcl0fv8CB2pgqCIAh3SgRxwhfeh+vEAfjQMChBQpI+3Rn0GJClq6i+IGooCMDYGCuYZFwtHnKnpjBIu4jB60JTDbyVksEo3kZ6J0hnkhnJGwIgY0g/ADrceruufgPEpgZBEAThzoggTvjC6+7Y0DuI86hhjJYwqqYHcapPwqC1YpGhs1lvtfXXifrU6Ik2PTun+lW0Nn2BrDklDiMh5Msq7clxSH4VgwQxkWnajmY9iIsVO1MFQRCEOySCOOELz2CQMCsGfMGejQ0eVcVkBTVoIyzrU6GBTpl+ShcdzU0AjEuMAb/Kma4u/F4PFoOXYJuXsCSR5GhHDmgYuiRak4cgBcPR+nDQK4hLFEGcIAiCcGdEECcI6FOq3kAoGsR51TAmq0w4aCPcLxLEdSjEGr10uvUgLtZixNgW5F01RNvVD+hvbsDfauSDQQPIkk9jbNfva0pNhZBGP5sx+vM6m7tQjAYsdiOCIAjCrW3bto2srCwyMzN57rnnAHjqqadwOBzk5OSQk5NDZaXeRt3tdjNlyhRiYmJYunTpdePs3buX7OxsnE4nRUVFNDXp/5Y/+eSTjBkzBqfTyfTp02lt7WkTv3HjRtLS0hg9ejSHDx+OHt+6dSuZmZlkZWXx8MMP09WlfzGvqqpi3Lhx5OTkMHHixBvKl7z88stIksTJkyf75N2IIE4Q0Ls2eAMqJoMBkyThUcOYbSbUgI3gsJ4gLsbYSesH7wMgSRLxXWHaDfDOlSskGC/jazVycfhIBgbPIrdIhAcptJiHIAGD+/Vk3Tqau4jpb4m2dxEEQRBuVFNTw86dOzlx4gSnT5+moqIiGhitWLECl8uFy+Vi6tSpAFgsFtavX8/mzZuvGycUCrF8+XKOHTtGdXU1TqeT7du3A1BQUEBNTQ3V1dWMGjUq2lO1traWsrIyzpw5w6FDh1iyZAmqqtLQ0MDzzz/PyZMnqampQVVVysrKAFi8eDE/+clPcLlcPPLII/zzP/9z9Bk6OjrYtm0beXl5ffZ+RBAnCOg7VH0BFQC7bMCjhrHarYSDNkLJYZBl/O1mYo0efvuzF9m9cgn//dPdDPDpHefeaLhKjHYR1SujjEmnS2vFcFUiOAwa2xIBSOnfUxOuo9lPbH/zZ/+LCoIg/Ak5e/YseXl52Gw2FEVh8uTJ0R6kN2O325k4cSIWy/VLVTRNQ9M0PB4PmqbR3t7O0KFDASgsLERR9FJT+fn51NfXA1BeXs7cuXMxm82kpqaSlpYWLeQbCoXw+XyEQiG8Xm90LEmSaG/X64m2tbVFjwN8//vfZ/Xq1Tc82934uG23BOHPmj6dqgdxtu4gLiYGNWAjlAxIEv52C4NtAe5/7Fu8++YJfl+xH2lAAdKIL/HmB/UYOpuBRIZkjEAliPSBTGBogPdb9Vpzo+/pqRHX2dxFYnbiH+E3FQRB+OSO7f4hV997t0/HHDT8XqZ8/YnbXpOVlUVxcTFutxur1UplZSW5ubkkJiayfft29uzZQ25uLlu2bCEhIeGW4xiNRkpLS8nOzsZutzNy5Mibtr7atWsXc+bMAaChoYH8/PzouaSkJBoaGpgwYQKrVq0iOTkZq9VKYWEhhYWFAPz7v/87U6dOxWq10q9fP44fPw7Am2++yeXLl/na177Gs88++4nf1a2ITJwgoO9Q9fUK4rxqGEuMlXDQQjBBglCIQIeEEr7KX3ztIf7P9zew5N9/SmbmaOS2AInWNvyt+nei0ZmDAJDdEoEkleZ2vV9q5hC9RpwaDONtD4idqYIgCB8hPT2d1atXU1hYSFFRETk5OciyzOLFi7lw4QIul4shQ4awcuXK244TDAYpLS3l1KlTNDY24nQ6o9Om3TZs2ICiKMybN++2Y7W0tFBeXk5dXR2NjY14PB5eeuklQF8rV1lZSX19PY8//jjf+c53CIfDfOc732HLli139zJuQmTiBAE9E3et0w+AXZbxqCpmqxEwELSbAZWwX0MKXIveY7bZGZWWgvbuFe7T3sXXZqLTHktivA8ug9wMwWEaHe/q695GDNIzcp2t+gLYmAQRxAmC8KfhozJmn6YFCxZEG8mvWbOGpKQkBg8eHD2/cOFCHnzwwduO4XK5ABgxYgQAs2fPZtOmTdHzu3fvpqKigqqqquhaZYfDweXLl6PX1NfX43A4eOWVV0hNTWXgwIEAzJgxgzfeeIOvfOUrnD59Orrmbc6cORQVFdHR0UFNTQ33338/AO+//z7Tpk3j4MGD5Obm3s2rEZk4QYCejQ2gr4nzqmHMkd2kIaWn32moMwS+luj/d5h9PP/+s3yz8WWudcTjHTocv78RAMWnEI6DLq9+7aBYPWjraNaDRbEmThAE4aNdvXoVgEuXLrFv3z4eeeQRrly5Ej2/f/9+srKybjuGw+GgtraWa9f0L+JHjx4lPT0dgEOHDvHMM89w8OBBbLaetcvTpk2jrKwMv99PXV0d58+fZ/z48SQnJ3P8+HG8Xi+aplFVVUV6ejoJCQm0tbVx7ty5635GXFwcTU1NXLx4kYsXL5Kfn98nARyITJwgADdubLjiD2K26R8PFSugL1QNdChYWi4iWRPgzAGmVi1FDnvZMuwxHmj5b+xXpgL/AAAgAElEQVTpI+jqakAKgineClIXQX8YySBhUvTvTJ2RGnExYjpVEAThI82cORO3243RaKSkpIT4+HiWLVuGy+VCkiRSUlJ44YUXotenpKTQ3t5OIBDgwIEDHDlyhIyMDNauXcukSZMwGo0MHz6c3bt3A7B06VL8fj8FBQWAvrlhx44dZGZmMnv2bDIyMlAUhZKSEmRZJi8vj1mzZjFu3DgURWHs2LE88cQTKIrCzp07mTlzJgaDgYSEBHbt2vWpvhsRxAkCN9/YYI6LBHEhO5oCUkgP4sJ/+DWG1/8F6exButpszLVswNLvXqYGX6Ff8giaPaeQm0FKjiEY7kBTNcyWno9atNCvmE4VBEH4SK+//voNx1588cVbXn/x4sWbHl+0aBGLFi264fiHa7n1VlxcTHFx8Q3H161bx7p16244Pn36dKZPn37L8QBee+21257/JMR0qiBwYyZOn07VA69w0Io2TEEymvC3K8i/Xgu1v+SqK5b3+i3hbS2Zr11uAMCSOhJv6zsYmiW0VDtuX399fFtPENfZ3IWtnwnZKD5+giAIwp0T/xURBMBmVAioYUJquGdjQ2RNnBqwozk0MCj4O6z42uy8W9kf6YHvkv79NQDc8+67IBkwp9xLV+AKSrNEKMXKta4UAOJje9a/dRf6FQRBEIS7IYI4QUCfTgXwBtVosV+TRT+mBq2og1S0sEqgw8TFX8WRsGwtA7/1LYwGiZlXTpL8m19hiBsGMTIh2YvcAqGhMmdbMwEY1N8a/Vmi0K8gCILQF0QQJwjo06kAvoCKTTYQBlSjAUmCcMBOaEAIgn5QAwz+x7X0f+z/w/9uHZcem883/7eMDwYMw5q7kKCs73yydIVpUcO89p6+Y8oR6dagaRqdIhMnCIIg9AGxsUEQ6JWJiwRxAD5Nw2RTUANWQv1Vuj8uyoCBXPu3f8NdugPJauWXX3mc14eNp6RJxi99oI+nhvjJhTT8IX1K9p44PWjr8gQJBcNiU4MgCIJw10QQJwj0DuJC2CNBnF7wVyEctBPqp0Wvbfzek2g+H7FfLeKeNWtofLWBa+euATK+9j8AYJbgl++MZWhCF40tFpLi9OnUzmiNOBHECYIgCHdHTKcKAmA16d9nfAEVu6wHdJ5Iwd9w0I7aXf9RsWCIiSXp3/6NpK1bUQYOZGCsmSZfEA0Nb8sfIAy/tYynM2gnWe/AxbB4PYjriNaIE2viBEEQPo5t27aRlZVFZmYmzz33HABPPfUUDoeDnJwccnJyqKysBMDtdjNlyhRiYmJYunTpdePs3buX7OxsnE4nRUVFNDU1AfDkk08yZswYnE4n06dPp7W1NXrPxo0bSUtLY/To0Rw+fDh6fOvWrWRmZpKVlcXDDz9MV5f+b/vXv/51UlNTo8/V3Sni2WefjR7LyspClmWam5vv+t2IIE4QuH46tTsT111mJBywo5okJJMJxTGepB0/I/aBKdF7B8aaCYQ1OoEuz0XkVvhX8zTGJJxDUsxoEjhi9KAtWiNOZOIEQRA+Uk1NDTt37uTEiROcPn2aioqKaF23FStW4HK5cLlcTJ06FQCLxcL69evZvHnzdeOEQiGWL1/OsWPHqK6uxul0sn37dgAKCgqoqamhurqaUaNGRXuq1tbWUlZWxpkzZzh06BBLlixBVVUaGhp4/vnnOXnyJDU1NaiqSllZWfRnPfvss9HnysnJAfRAsfvYxo0bmTx5Mv3797/r9yOCOEEArMYb18RFg7ignbAB5MR4CHQgScbr7h0YKR/STBi/+gFSu0KD1J+v3XuEti4jmGXijHqmr7O5C8VowBJz/RiCIAjCjc6ePUteXh42mw1FUZg8eTL79u275fV2u52JEydisVz/RVnTNDRNw+PxoGka7e3tDB06FIDCwkIURf83Oj8/n/r6egDKy8uZO3cuZrOZ1NRU0tLSOHHiBKAHhT6fj1AohNfrjY71cezdu5eHH374E72HWxFr4gSBnkycLxgiKRLEdagqVquCGrSBJCEPsRO80IQWKQrcrTuIc8vQz9hOe2c/smOukt7/HP/5vgHNpNEv0nKro9lPTH9LtMGyIAjCn4LWX1wg0Ojp0zFNQ+3E/+2I216TlZVFcXExbrcbq9VKZWUlubm5JCYmsn37dvbs2UNubi5btmwhISHhluMYjUZKS0vJzs7GbrczcuRISkpKbrhu165dzJkzB4CGhgby8/Oj55KSkmhoaGDChAmsWrWK5ORkrFYrhYWFFBYWRq8rLi7mn/7pn/jyl7/Mpk2bMJt7ls94vV4OHToUzQLeLZGJEwTAFlkT5w2oxCp6QNcZWROnBiLf6IYaCHvdhP3XB3GDIkFcW7gDNVblStdA5t9biySBxwcGs4zJ0B3EdYkacYIgCB9Teno6q1evprCwkKKiInJycpBlmcWLF3PhwgVcLhdDhgxh5cqVtx0nGAxSWlrKqVOnaGxsxOl0RqdNu23YsAFFUZg3b95tx2ppaaG8vJy6ujoaGxvxeDy89NJLgL6G7u233+Z3v/sdzc3NPP3009fd+4tf/IK/+qu/6pOpVBCZOEEArq8TFxPZ2NARUjHZFMKq/kcbGISgF7W1DRgCgBbWiPNEgrrA2yCDJxTDV4d8wHkNvF1hjIk9U6edzV0kZid+pr+bIAjC3fqojNmnacGCBSxYsACANWvWkJSUxODBg6PnFy5cyIMPPnjbMbo3GIwYof8es2fPZtOmTdHzu3fvpqKigqqqquhMicPh4PLly9Fr6uvrcTgcvPLKK6SmpjJw4EAAZsyYwRtvvMGjjz7KkCH6fxvMZjOPP/74DWvzysrK+mwqFUQmThCA6zc2xESmPjtDYSzd/VMDNsJxXgB8tXW0V13i2q4aGtf9D10vVGMC3CG9vEiG3EDQJAEy/q4QFmukfVcwjLc9IDY1CIIgfAJXr14F4NKlS+zbt49HHnmEK1euRM/v37+frKys247hcDiora3l2jW9IPvRo0dJT08H4NChQzzzzDMcPHgQm80WvWfatGmUlZXh9/upq6vj/PnzjB8/nuTkZI4fP47X60XTNKqqqqJjdT+XpmkcOHDguudqa2vj17/+NQ899FAfvBWdyMQJAmCUDRhlCW9AxWwwYJIkOlU9EwegBm0EY71IgO/UeUJXY1AG2bDlDMSUEsfAX71FQpf+je1L2ts0yCMIMAQtDHZrZFNDa6S8iCj0KwiC8LHNnDkTt9uN0WikpKSE+Ph4li1bhsvlQpIkUlJSeOGFF6LXp6Sk0N7eTiAQ4MCBAxw5coSMjAzWrl3LpEmTMBqNDB8+nN27dwOwdOlS/H4/BQUFgL65YceOHWRmZjJ79mwyMjJQFIWSkhJkWSYvL49Zs2Yxbtw4FEVh7NixPPHEEwDMmzePa9euoWkaOTk57NixI/pc+/fvp7CwELvd3mfvRgRxghBhNcr4AiEAYhQDHWoYs01fvxYO2AhaWjAB1gyZQd/Kx2DrmSYd+IaFe1r1b3j2gEpACuBVkwCItZkAfVMDINbECYIgfAKvv/76DcdefPHFW15/8eLFmx5ftGgRixYtuuF4d8mSmykuLqa4uPiG4+vWrWPdunU3HH/11VdvOdbXv/51vv71r9/y/J0Q06mCEGEzKXgjO09jZZnOkN6xAfRMXMDox+hw0Pqz/6D5pd1ogUD03rQ4I7Exnch+I3IYgpoXT/geAOLserDXGS30KzJxgiAIwt0TQZwgRNhMMt6gHsTpmTgVc/d0asBGQFFJ3v0j7H/1Ja79y7/w7kN/h+eNNwAozjQTTghjjrR2CIQ76QwNACDxQ4V+YxJEJk4QBEG4eyKIE4QIq0nG1ysT1xHSS4wAhIM2gooBU6KdYdu3M+yHL6CpKpe+sYD6b68g9NvfoCZqWCUrKFYCwWY6AvFATx25zuYurP1MKJHCwoIgCIJwN0QQJwgRNpOMN7omTqZT7TWdGrChKhJqR4N+ftIk7v3FQQYu/xadx45xbfu/ovYHm2RCjRmAqnbS4o9Dk2CgPbImrsVPrMjCCYIgCH1EBHGCEGE1Kb0ycQY6Q2FkowHFaCAc1KdJ/R09C2ANZjMDFi/m3l/+EvvffRnNBBa/SrCfXjW8qcsOJsN1LbdiE8V6OEEQBKFviCBOECJsRrlnY4Mi06HqfzfZFNSAviXc3/nuDfeZkhwkrPn/AbB6fATscQA0d5nQTDL9FBlN0+hwd4lNDYIgCEKfEUGcIETo06l64GaXDXSG9L+bbUa0UD8A/N76m97b1dUIgKWjg2CkWGSrT0YzGeinyHR5goSCYWJFjThBEIRPZNu2bWRlZZGZmclzzz0HwFNPPYXD4SAnJ4ecnBwqKysBcLvdTJkyhZiYGJYuXXrdOHv37iU7Oxun00lRURFNTU0APPnkk4wZMwan08n06dNpbW2N3rNx40bS0tIYPXo0hw8fjh7funUrmZmZZGVl8fDDD9PVpW9cW7BgAffddx9Op5NZs2bR2dkJwIoVK6LPOmrUKOLj4/vk3YggThAirCYZX7AnE+cLa4TCGmarQjgYC4Df//5N7+3q0tfKWVrdBKz6GrhWrwZmA/1kA53RGnEiiBMEQfi4ampq2LlzJydOnOD06dNUVFRE67qtWLECl8uFy+Vi6tSpAFgsFtavX39Du6tQKMTy5cs5duwY1dXVOJ3OaBP6goICampqqK6uZtSoUdGeqrW1tZSVlXHmzBkOHTrEkiVLUFWVhoYGnn/+eU6ePElNTQ2qqlJWVgbowd3p06eprq4mOTk5+jO2bt0afdZly5YxY8aMPnk/IogThIjeGxtiI/1TO1UVs10hHLQjaRpdwaab3uvrakA22FD8AQImBU2Ddq+qT6ca5Z7yIqLQryAIwsd29uxZ8vLysNlsKIrC5MmT2bdv3y2vt9vtTJw4EYvl+i/MmqahaRoejwdN02hvb2fo0KEAFBYWoij62uX8/Hzq6/UZl/LycubOnYvZbCY1NZW0tDROnDgB6EGhz+cjFArh9XqjY/Xr1y/683w+X7QPa2979+7ts/6pomODIERYTQpdwTDhsBbtn9qhhjFbFdSAFUmT8KttN9ynql00N/8Wq2kIEpcIKOD39yOkamhmA3GKzNVIECcycYIg/Cn61a9+xfvv33wm4k7dc889fPWrX73tNVlZWRQXF+N2u7FarVRWVpKbm0tiYiLbt29nz5495ObmsmXLFhISEm45jtFopLS0lOzsbOx2OyNHjqSkpOSG63bt2sWcOXMAaGhoID8/P3ouKSmJhoYGJkyYwKpVq0hOTsZqtVJYWEhhYWH0uscff5zKykoyMjLYsmXLdeO/99571NXV8cADD3ysd/RRRCZOECJsJj375guqPZm4kIrZZkQNmAEJP54b7vvDuafwet9hRIKeHg/KITzhYQB6Jk6W6WzuQjYasMQYb7hfEARBuLn09HRWr15NYWEhRUVF5OTkIMsyixcv5sKFC7hcLoYMGcLKlStvO04wGKS0tJRTp07R2NiI0+mMTpt227BhA4qiMG/evNuO1dLSQnl5OXV1dTQ2NuLxeHjppZei53/0ox/R2NhIeno6P/vZz667t6ysjFmzZiHLfVMvVGTiBCGiO4jzBtSeTFxI79oQChjRkPAbAtfd09j4c65c+S9Shi9hQMABQAA/XnUIAAazAZtsoKPZT2x/y01T64IgCJ93H5Ux+zQtWLCABQsWALBmzRqSkpIYPHhw9PzChQt58MEHbzuGy+UCYMSIEQDMnj2bTZs2Rc/v3r2biooKqqqqov9OOxwOLl++HL2mvr4eh8PBK6+8QmpqKgMHDgRgxowZvPHGGzz66KPRa2VZZu7cuTzzzDM8/vjj0eNlZWU3zQDeKZGJE4QIa6STgi/QKxOnhjFZFdAkQiEzAUVF0/TNDx2db/OHcz8gIWEC9977bfDo6+UCmhdPSP9w261GJEmis6VLtNsSBEG4A1evXgXg0qVL7Nu3j0ceeYQrV65Ez+/fv5+srKzbjuFwOKitreXatWsAHD16lPT0dAAOHTrEM888w8GDB7FFqgsATJs2jbKyMvx+P3V1dZw/f57x48eTnJzM8ePH8Xq9aJpGVVUV6enpaJoW3XShaRoHDx5kzJgx0fHefvttWlpamDBhQt+8GEQmThCibCb94+ANhoixRLosqCr3RPqnhoNWNJOPgO99ZFM/3nrr71GUODIzn0OS5GgQF1Tb6AglAhBri4zT3MXwrMTP+lcSBEH4kzdz5kzcbjdGo5GSkhLi4+NZtmwZLpcLSZJISUnhhRdeiF6fkpJCe3s7gUCAAwcOcOTIETIyMli7di2TJk3CaDQyfPhwdu/eDcDSpUvx+/0UFBQA+uaGHTt2kJmZyezZs8nIyEBRFEpKSpBlmby8PGbNmsW4ceNQFIWxY8fyxBNPoGka8+fPp729HU3TuO+++ygtLY0+V1lZGXPnzu3TGRkRxAlCRO/p1HtkPUndGQpjtnW33rJjtDfT1XaOS00v09V1mbE5L2E26Y3u8VxDs8QRCLbQEYgDCeLtRtRgGG9bQGxqEARBuAOvv/76DcdefPHFW15/8eLFmx5ftGgRixYtuuF4d/bsZoqLiykuLr7h+Lp161i3bt0Nx3/729/ecqynnnrqlufulAjiBCHCauqZTo1R9L93RDY2AKhBKwDvXtpOs8dF2ojvkpAwvmcAzzXU2AGEw220+WNQTDJxRoXO1kh5EVHoVxAEQehDYk2cIET0zsTZ5e4SIypma2Q6NdJ6q9njYsCAvyE5eeH1A3iuEYzVt7i3+i1IZpk4RaYjWuhXrIkTBEEQ+o4I4gQhoieICyFLkt56S+01nRq0IoU1LIb+ZKQ/gyR96OPjaSJg0wO9Vp8RTAZiFb28CCD6pgqCIAh9SgRxghBhjWxs8EX6p8bKcqROXE8mbli9j7HGv8NojLtxAM81ApGdTc1eiZDJEMnEdU+nikycIAiC0HdEECcIETZjz3QqQKxioEMNY7IoIOmZOJsfbC03ab0VVsHrJmgxo2nQ7AkTNBqIVQx0Nndh7WdCMfZNcUdBEARBABHECUKUtVfHBgC7LNMRUpEMEiaLjBqwE0q6D07+CM4dvv5mbzOgETAa6FLNdIV6Wm51tPiJFVk4QRAEoY+JIE4QIsyKAYOkr4kDPRPnUcMAWGxGwkEboVFT4J5sePmbcO1cz80evYBkQNHwhPRK4lqvNXGivIggCMKd2bZtG1lZWWRmZvLcc88BerkOh8NBTk4OOTk5VFZWAuB2u5kyZQoxMTEsXbr0unH27t1LdnY2TqeToqIimpr0WZUnn3ySMWPG4HQ6mT59Oq2trdF7Nm7cSFpaGqNHj+bw4Z4v71u3biUzM5OsrCwefvhhurr0ZTOvvvoq48aNIysri/nz5xMKhaL3vPbaa+Tk5JCZmcnkyZP75N2IIE4QIiRJwmZSeqZTI5k4AJNNQQv2I6T5YO5PQTFD2cPgi3zYvZFuDYYgXnWofswk00820NHcJTY1CIIg3IGamhp27tzJiRMnOH36NBUVFdG6bitWrMDlcuFyuZg6dSoAFouF9evXs3nz5uvGCYVCLF++nGPHjlFdXY3T6WT79u0AFBQUUFNTQ3V1NaNGjYr2VK2traWsrIwzZ85w6NAhlixZgqqqNDQ08Pzzz3Py5ElqampQVZWysjLC4TDz58+nrKyMmpoahg8fzo9//GMAWltbWbJkCQcPHuTMmTP813/9V5+8HxHECUIvVpMc3dgQoxjoUPW/m21GwsEYQsEOiB8Gs1+Elvfg5QX6erhIJi6IH0/4HgA0swF7QCMUCItMnCAIwh04e/YseXl52Gw2FEVh8uTJ7Nu375bX2+12Jk6ciMVy/b+5mqahaRoejwdN02hvb2foUP0Ld2FhIYqib2DLz8+nvr4egPLycubOnYvZbCY1NZW0tDROnDgB6EGhz+cjFArh9XoZOnQobrcbk8nEqFGjAD04fPnllwH46U9/yowZM0hOTgZg0KBBffJ+RLFfQejFZpKjmbgYWaYzpE+nmm0K6gc2QmqHfuHwCTD1Waj4NlStg34OAAJaJ50hvYODZpIxdUSyeiKIEwThT9i5c+vp6Dzbp2PGxqQzatT3b3tNVlYWxcXFuN1urFYrlZWV5ObmkpiYyPbt29mzZw+5ubls2bKFhISEW45jNBopLS0lOzsbu93OyJEjb9qIfteuXcyZMweAhoYG8vPzo+eSkpJoaGhgwoQJrFq1iuTkZKxWK4WFhRQWFqJpGqFQiJMnT5Kbm8vPf/5zLl++DMC5c+cIBoPcf//9dHR0sHz5ch577LE7eW3XEZk4QejFapR77U6V6VBVNE3DbFVQA1ZCwfaei3Mfh9wF8Ntt8OaLIBkIhNroCMTr500G5I4gADGi0K8gCMInlp6ezurVqyksLKSoqIicnBxkWWbx4sVcuHABl8vFkCFDWLly5W3HCQaDlJaWcurUKRobG3E6ndFp024bNmxAURTmzZt327FaWlooLy+nrq6OxsZGPB4PL730EpIkUVZWxooVKxg/fjyxsbHIsr5hLhQK8fvf/55f/vKXHD58mPXr13Pu3Lnb/pyPQ2TiBKEXm0nGF9QXosbIBlQNusKanokLmAmF2q+/oWgTXHsb3vstmn0gwWAzbYFYrBaFLoNEuE0P4kQmThCEP2UflTH7NC1YsIAFCxYAsGbNGpKSkhg8eHD0/MKFC3nwwQdvO4bL5QJgxIgRAMyePZtNmzZFz+/evZuKigqqqqqiDeodDkc0kwZQX1+Pw+HglVdeITU1lYEDBwIwY8YM3njjDR599FEmTJgQ7fV65MiRaKCWlJREYmIidrsdu93OpEmTOH36dHTq9U6JTJwg9HLdxoZI/9ROVS/4Gw4pBPze629QTPB/fgxxwwjFD0HTQrT5rVgjrbr8TV2YLDKWGONn+nsIgiD8ubh69SoAly5dYt++fTzyyCNcuXIlen7//v1kZWXddgyHw0FtbS3Xrunrl48ePUp6ejoAhw4d4plnnuHgwYPYIgXbAaZNm0ZZWRl+v5+6ujrOnz/P+PHjSU5O5vjx43i9XjRNo6qqKjpW97P6/X6efvppFi1aBMBDDz3Eb37zm+gauv/93/+N3nM3RCZOEHqxmmSaOiO9Trv7p4bCmG16EOb3BW+8KWYgfPMVAh3n4O3HafWZMVkUbLKBjiYfcYNs0W92giAIwiczc+ZM3G43RqORkpIS4uPjWbZsGS6XC0mSSElJ4YUXXohen5KSQnt7O4FAgAMHDnDkyBEyMjJYu3YtkyZNwmg0Mnz4cHbv3g3A0qVL8fv9FBQUAPrmhh07dpCZmcns2bPJyMhAURRKSkqQZZm8vDxmzZrFuHHjUBSFsWPH8sQTTwDw7LPPUlFRQTgcZvHixTzwwAOAPi1cVFSE0+nEYDDwzW9+8yMDz49D0jTtrgf5U5Kbm6udPHnyj/0YwufU8rJTnLrUyn9/dwqHm9qY/1Ydh3NHYalt55Uf1ZJa9H2++tDrN/ZNBVpaf8ebb85l7YntkBCLJzuB7/yqnUHJsXxl4d1/WAVBED5LZ8+e7ZNskfDx3eydS5L0e03Tcm92vZhOFYRert+d2p2J69U/NWglFOq86b3BgBuAZq+GZJaJMxjocHcRN8j6GTy5IAiC8EUjgjhB6MVqVPBFOzboa+I8as90qhqw3bi5ISIQcONXjXgDGmGTgcFeDS2sETfQdtPrBUEQBOFuiCBOEHqxmWS8Qb2sSGxka/j1mTgboVDHTe8NBJtp98cCEDIaGNCp15iLF5k4QRAE4VMggjhB6MVqktE08IfCxCiR6VQ1HA3ibpeJCwbceCItt/xGifhOfVo2bpDIxAmCIAh9TwRxgtCLzaRn37wBlZhIJq7zhkzcLaZTg268kZZbPgVi20MYzTLWWFFeRBAEQeh7n5sgTpKk9ZIkVUuS5JIk6YgkSUMjxyVJkp6XJOmdyPlxve6ZL0nS+cif+X+8pxf+XPQEcSEsBglF0qdTFaOMrEiRTNwtplMDbjpDej88jwyWthBxg6yivIggCILwqfjcBHHAs5qmOTVNywEqgB9Ejn8VGBn58wRQCiBJUn9gLZAHjAfWSpJ068ZpgvAxWE16xs0XUJEkiVhZplPV17aZbDLqbTJxwWAzHcH+AIRMMkprUGxqEARBuEvbtm0jKyuLzMxMnnvuOQCeeuopHA4HOTk55OTkUFlZCYDb7WbKlCnExMSwdOnS68bZu3cv2dnZOJ1OioqKaGpqAuDJJ59kzJgxOJ1Opk+fTmtra/SejRs3kpaWxujRozl8+HD0+NatW8nMzCQrK4uHH36Yrq4uAF599VXGjRtHVlYW8+fPJxTSN8ppmsa3vvUt0tLScDqdvPnmm33ybj43QZymab3/y2gHugvYPQTs0XTHgXhJkoYAXwGOaprWrGlaC3AUKPpMH1r4s2Mz9kynAsRE+qcCmK1Gwh+RiesI9KOfVcEASG0BsalBEAThLtTU1LBz505OnDjB6dOnqaio4J133gFgxYoVuFwuXC4XU6dOBcBisbB+/Xo2b9583TihUIjly5dz7NgxqqurcTqdbN++HYCCggJqamqorq5m1KhR0Z6qtbW1lJWVcebMGQ4dOsSSJUtQVZWGhgaef/55Tp48SU1NDaqqUlZWRjgcZv78+ZSVlVFTU8Pw4cP58Y9/DMCvfvUrzp8/z/nz5/nhD3/I4sWL++T9fG6COABJkjZIknQZmEdPJs4BXO51WX3k2K2O32zcJyRJOilJ0snulhuCcDPd06m+YE+tuM6Qnokz24yEQ/1obf0dmha+7r5wOEQw2EKbP4Y4m4k4bxjCiBpxgiAId+Hs2bPk5eVhs9lQFIXJkyezb9++W15vt9uZOHEiFsv1/ao1TUPTNDweD5qm0d7eztCh+ka0wsJCFEWfhcnPz6e+vh6A8vJy5s6di9lsJjU1lbS0NE6cOAHoQSCQ7jcAACAASURBVKHP54u20Ro6dChutxuTyRTth1pQUMDLL78cHeuxxx5DkiTy8/NpbW29rnXYnfpM225JkvQKcM9NThVrmlauaVoxUCxJ0veApejTpXdN07QfAj8EvWNDX4wp/HmydgdxvfqndoQimTibEX9XCs0tz1J3sYR7U5dF7wuGWgGNNr+ZWLuRcEdkZ6qYThUE4c/A98/XU9Pp69Mxs2KsrB+ZdPtrsrIoLi7G7XZjtVqprKwkNzeXxMREtm/fzp49e8jNzWXLli0kJNx6RZXRaKS0tJTs7GzsdjsjR46kpKTkhut27drFnDlzAGhoaCA/Pz96LikpiYaGBiZMmMCqVatITk7GarVSWFhIYWEhmqYRCoU4efIkubm5/PznP+fy5cvRsYYNG3bDWEOGDPlE7+zDPtNMnKZpf6NpWtZN/pR/6NKfADMjf28AhvU6lxQ5dqvjgnDHbJE1cb27NnSviTPbFMKhOO655++oq9tGk/u16H3d3RpafEbsViMJkRpxIhMnCIJw59LT01m9ejWFhYUUFRWRk5ODLMssXryYCxcu4HK5GDJkCCtXrrztOMFgkNLSUk6dOkVjYyNOpzM6bdptw4YNKIrCvHnzbjtWS0sL5eXl1NXV0djYiMfj4aWXXkKSJMrKylixYgXjx48nNjYWOVLl4NPymWbibkeSpJGapp2P/N+HgLcjfz8ILJUkqQx9E0ObpmlXJEk6DPzfXpsZCoHvfaYPLfzZ6b07FfRM3KWuAKAHcQFviDGj/5nOzj9w5sx3GP+XB7BakwlEW25JDLcqWJu7kE0GbP1Mf5xfRBAEoQ99VMbs07RgwQIWLFgAwJo1a0hKSmLw4MHR8wsXLuTBBx+87RgulwuAESNGADB79mw2bdoUPb97924qKiqoqqqKVhRwOBzRTBpAfX09DoeDV155hdTUVAYOHAjAjBkzeOONN3j00UeZMGECr7/+OgBHjhzh3Llztx3rbn2e1sRtkiSpRpKkavSAbHnkeCXwLvAOsBNYAqBpWjOwHvhd5M8/RY4Jwh2zfmhNXKzcazrVquD3hTAYLGRnlQAa1W/9ParqIxB0E1QVOv0aRotC/84wMQNFeRFBEIS7dfXqVQAuXbrEvn37eOSRR65bT7Z//36ysrJuO4bD4aC2tpbudfFHjx6NNpo/dOgQzzzzDAcPHsRm61kCM23aNMrKyvD7/dTV1XH+/HnGjx9PcnIyx48fx+v1omkaVVVV0bG6n9Xv9/P000+zaNGi6Fh79uxB0zSOHz9OXFzcXU+lwucoE6dp2sxbHNeAv7/FuV3Ark/zuYQvlt7FfgHsioEOtWdjgxbWCPpVbLbhZGb8C6erv8nbf/g+sbGZtAf0lluyWaZ/p0pCmlgPJwiCcLdmzpyJ2+3GaDRSUlJCfHw8y5Ytw+VyIUkSKSkpvPDCC9HrU1JSaG9vJxAIcODAAY4cOUJGRgZr165l0qRJGI1Ghg8fzu7duwFYunQpfr+fgoICQN/csGPHDjIzM5k9ezYZGRkoikJJSQmyLJOXl8esWbMYN24ciqIwduxYnnjiCQCeffZZKioqCIfDLF68mAceeACAqVOnUllZSVpaGjabjR/96Ed98m4kPUb64sjNzdVOnjz5x34M4XMqHNa4d00l3/rySL5TMIrNde+z+eL7NNx/H3/47RWOvfQ2j/3fLxHbX9/59O6726i7+DxWawq172v88/+upPBvUsl6+X1yC5P50vS0P/JvJAiCcGfOnj0bzTAJn42bvXNJkn6vaVruza7/PE2nCsIfncEgYTXK+KJr4vSPiKdX/1S/NxS9PjV1GYmJ9+PzXcQb1rery0ENWYN40TNVEARB+BSJIE4QPsRmkqPTqbGRnUUdIRVTNIgLRq+VJAOZGf+C1ZKMV9UXqRp9+r2i0K8gCILwaRJBnCB8iNUkR+vE2SOZuA5VxWLTG9n3zsQBGI1x5Ob+F5Z4vbaQ7NHPixpxgiAIwqdJBHGC8CE3y8R1hsKYrDdOp3YzmQbQ2mUm1qygtIVQFQlbnCgvIgiCIHx6RBAnCB9iNSl4gz0dG0CfTu1eExfw3RjEATR1+hkQa8bUGsQfZxTlRQRBEIRPlQjiBOFDbL02NsTI+kekU+3JxHX1WhPXW1OnnwExJmztIcIJxs/mYQVBEIQvLBHECcKHXDed2p2JU1UMBglbPxOtH3hvel9TZ4ABdhOxnSpSf/Nn9ryCIAh/zrZt20ZWVhaZmZk899xzADz11FM4HA5ycnLIycmhsrISALfbzZQpU4iJiWHp0qXXjbN3716ys7NxOp0UFRXR1NQEwJNPPsmYMWNwOp1Mnz6d1tbW6D0bN24kLS2N0aNHc/jw4ds+U7d//dd/ZcyYMWRmZvLd734XgEAgwOOPP052djb33Xcfr732Wp+8GxHECcKH9N7YEM3ERbo2pGQn8t5bbkKR6dbemjr9DDQoyGEwiSBOEAThrtXU1LBz505OnDjB6dOnqaio4J133gFgxYoVuFwuXC4XU6dOBcBisbB+/Xo2b9583TihUIjly5dz7NgxqqurcTqdbN++HYCCggJqamqorq5m1KhR0Z6qtbW1lJWVcebMGQ4dOsSSJUtQVfW2z3Ts2DHKy8s5ffo0Z86cYdWqVQDs3LkTgLfeeoujR4+ycuVKwuHwXb8fEcQJwof0zsTFREuM6B+2e8cNIuhXuXy25bp7gmqYVm+Q2Mhn0jbQ8tk9sCAIwp+ps2fPkpeXh81mQ1EUJk+ezL59+255vd1uZ+LEiVgs1/8brGkamqbh8XjQNI329naGDtVrexYWFqIo+nKZ/Px86uvrASgvL2fu3LmYzWZSU1NJS0vjxIkTt32m0tJS/uEf/gGzWf8iP2jQIEAPCLu7NwwaNIj4+Hj6ovHA56btliB8XthMCt7ImjjFIGE1GOhU9aAuaXQCZpvCu29eJdU5IHqPuzMAgEX/H2IGiBpxgiD8+Vj3izPUNrb36ZgZQ/ux9m8zb3tNVlYWxcXFuN1urFYrlZWV5ObmkpiYyPbt29mzZw+5ubls2bKFhISEW45jNBopLS0lOzsbu93OyJEjKSkpueG6Xbt2MWeOXi6qoaGB/Pz86LmkpCQaGhpu+UwA586d4/XXX6e4uBiLxcLmzZv5y7/8S+677z4OHjzIww8/zOXLl/n973/P5cuXGT9+/J28uiiRiROED7GaZHy9pktjFQOdkf6psmIgxTmAuuom1FBPKryp0w+A4lMJypCQIDJxgiAIdys9PZ3Vq1dTWFhIUVEROTk5yLLM4sWLuXDhAi6XiyFDhrBy5crbjhMMBiktLeXUqVM0NjbidDqj06bdNmzYgKIozJs3746eCfRp2+bmZo4fP86zzz7L7Nmz0TSNb3zjGyQlJZGbm8u3v/1tvvSlL0XvuRsiEycIH2IzygRVjaAaxigbiJFlOkI9Qd2IsQP5w/H3afhDC8mZiQBciwRxUmeI5hiZfsa7/3AKgiB8XnxUxuzTtGDBAhYsWADAmjVrSEpKYvDgwdHzCxcu5MEHH7ztGC6XC4ARI0YAMHv2bDZt2hQ9v3v3bioqKqiqqoqWh3I4HFy+fDl6TX19PQ6H45bPBHq2bsaMGUiSxPjx4zEYDDQ1NTFw4EC2bt0aHetLX/oSo0aNurMX0sv/a+/e46uq7ryPf37JOZAbd+R2AsQKlEuSRskorRRkOkRAqlKm2EJ1rGgLHdRah9KCPlgolqJMpU8iOLQMps6g7chNyqRQpa2dZyxVOSCCCiiFBGwgXAJJSEJYzx/75DSEJIAkOSTn+369eOHZe521F/vnyfllrb3WUk+cSC3xbbwELPxcnC8m/EwcQO/BnfG3jWXftiPhY0dPeUncueJKjifF0MGnJE5EpDEUFhYCcODAAVavXs3kyZM5fPhw+PyaNWtITU1tsI5AIMCuXbs4csT7ub158+bwRvN5eXksWrSI9evXk5Dwt512br/9dl588UXKy8v56KOP2LNnT3j4s642Adx5551s2bIF8IZWKyoq6Nq1K6WlpZSUlISv7fP5GDx48BXfG/XEidSS0Mb7WJRVVNEh3k+72NjwM3EAPn8sKWld+DB4hJFfHUBMbAxHTpdjDtzJSo51a0t7JXEiIo1i4sSJFBUV4ff7ycnJoWPHjjz44IMEg0HMjJSUFJ577rlw+ZSUFIqLi6moqGDt2rVs2rSJwYMHM3fuXEaMGIHf76dv376sXLkSgBkzZlBeXs7o0aMBb3LDsmXLGDJkCJMmTWLw4MH4fD5ycnLCQ6B1tQngvvvu47777iM1NZU2bdrw/PPPY2YUFhZy6623EhMTQyAQ4Be/+EWj3BslcSK1JIR74rzJDe18MRw8U3FemU9d3409bxZyaO9Jkj/diaOnKujmi4Uqx7GkGCVxIiKN5PXXX7/gWENJ0P79++s8Pm3aNKZNm3bB8erlQeoyZ84c5syZc0ltAmjTpg0vvPDCBcdTUlJ4//33673OJ6XhVJFaLhhOjY09bzgVoG9qF3z+GD582+tSP3q6nD5+b6/UY+1iw4sEi4iINBUlcSK1VPfEVc9QTfKdP5wK4G8bS5/ULuwLHsGdc3x88gy9fN5WW+UdfMRq31QREWliSuJEaqlO4krKQ8Opsd7EBufceeWuu/4aSk9W8PGHJ8k/Xko3i+VcrBHbTvumiohI01MSJ1JLt3beGm9/LT4DePunVjpH+bnzk7iUtK7E+IwP3irkcPEZ2p2FMx18tPPrUVMREWl6SuJEaunZIY7YGOPAMW+j+/D+qVXnPxfXJt5Hn0Gd2betEHcO2pSd43R7n5YXERGRZqEkTqQWX2wMgY7xHDxWBhCepFD7uTjwZqmWnaigZ5Vx7lQlJ9vFamaqiIg0CyVxInXo3Tn+gp64mrs2VLv2M13B4IZyH67KcUTLi4iINKolS5aQmprKkCFDeOaZZwB44oknCAQCZGRkkJGRwcaNGwEoKipi1KhRJCUlMWPGjPPqWbVqFWlpaaSnpzNmzBiOHj0KwMyZMxk4cCDp6elMmDCBEydOXLSut956i7S0NPr168dDDz0Ufma6vro2b97M0KFDSUtLY+jQobz22muNcm+UxInUoU/nBA6Gkrjqnrjay4wAxCX6qbqmLQMrvTJ/TTAlcSIijWTnzp0sX76crVu3sn37djZs2BBe1+2RRx4hGAwSDAYZN24cAHFxccyfP5+nn376vHrOnj3Lww8/zJYtW9ixYwfp6elkZ2cDMHr0aHbu3MmOHTsYMGBAeE/V+uoCmD59OsuXL2fPnj3s2bOHvLy8Buvq2rUrr7zyCu+88w7PP/88d999d6PcHyVxInVI7pRAUUkFJeVnSYqtfzgV4GjHWGLwlhQ5mICSOBGRRrJ7925uuukmEhIS8Pl8jBw5ktWrV9dbPjExkeHDhxMXF3fececczjlKSkpwzlFcXEyvXr0AyMrKwufzJqQNGzaM/Pz8Bus6fPgwxcXFDBs2DDPjnnvuYe3atQ3Wdf3114evN2TIEMrKyigvL7/S26MdG0Tq0qezt3/eweOltGvvLeJbe2JDtQ98VXQDYn3GyXgNp4pIK/Tf34OP32ncOnukwdiFDRZJTU1lzpw5FBUVER8fz8aNG8nMzKRLly5kZ2eTm5tLZmYmixcvplOnTvXW4/f7Wbp0KWlpaSQmJtK/f39ycnIuKLdixQruuuuuBttUUFAQ3vAevE3vCwoKLrmul19+mRtuuIG2bds2eJ1LoZ44kTqEk7hjZeGeuLqeiQP48FQZZzr7adcjAcxo79PHSkSkMQwaNIhZs2aRlZXFmDFjyMjIIDY2lunTp7Nv3z6CwSA9e/bk0UcfbbCeyspKli5dyrZt2zh06BDp6enhoc5qCxYswOfzMWXKlCtud311vfvuu8yaNeu8vV6vhHriROrQO5TEHThWyuc+3RWoO4k7U1lF4aly/J9PZshnesCe/eqJE5HW5yI9Zk1p6tSpTJ06FYDZs2eTnJxM9+7dw+cfeOABxo8f32AdwWAQgOuuuw6ASZMmsXDh3/5NK1euZMOGDbz66qvYRXbcCQQC4WFSgPz8fAKBwEXrys/PZ8KECeTm5obbcaXUZSBSh04JfpLa+jh4rJSEmBhiqHs49dAJbxmS3j2TqEzyfifSOnEiIo2nsNDbo/rAgQOsXr2ayZMnc/jw4fD5NWvWkJqa2mAdgUCAXbt2ceTIEcCbLTpo0CAA8vLyWLRoEevXrychIeGi7enZsyft27fnjTfewDlHbm4ud9xxR4N1nThxgttuu42FCxdy8803X94NaIB64kTqYGb0Ds1QNTPa1bF/KsDB414Sl9wpgZOhnrr2sUriREQay8SJEykqKsLv95OTk0PHjh158MEHCQaDmBkpKSnnDU+mpKRQXFxMRUUFa9euZdOmTQwePJi5c+cyYsQI/H4/ffv2ZeXKlQDMmDGD8vJyRo8eDXgTEpYtW9ZgXc8++yz33nsvZWVljB07lrFjxzZYV3Z2Nnv37mXevHnMmzcPgE2bNtGtW7crujdK4kTq0btTPB8dLQG8teLqWmIk/7i3DEnvzvHkn/G26WrvVxInItJYXn/99QuO/eIXv6i3/P79++s8Pm3aNKZNm3bB8eolSy6nrszMTHbu3HnJdT322GM89thj9V7nk9Jwqkg9+nRO4ODxUpxzJNXXE3esDH+s0a1dnHriRESkWSmJE6lHny4JnKk8x5HT5bSLjalzYkP+8VICHeOJjTGKK0NJnJ6JExGRZqAkTqQevTtVLzNSSjtfbJ3DqQePl5EcKldcVUUbM+Ji9bESEZGmp28bkXrUXGYkKbbu4dSC46Ukd4oHoPhslXrhRESk2SiJE6lHdXJ28FgZSb6YC5YYKauo4ujpinCyV3y2SsuLiIhIs1ESJ1KPOH8s3du35cCxUtrFxl7wTFz1zNSaPXHtlMSJiEgzURIn0oA+nRO84dRQT9w558Ln8musEQdwUj1xIiKNbsmSJaSmpjJkyBCeeeYZAJ544gkCgQAZGRlkZGSwceNGAIqKihg1ahRJSUnMmDHjvHpWrVpFWloa6enpjBkzhqNHjwIwc+ZMBg4cSHp6OhMmTODEiRPh9/zoRz+iX79+fPrTn+Y3v/lNg20C2L59O5/97GdJS0vji1/8IsXFxYC3uPDQoUNJS0tj6NChvPbaa41yb5TEiTSgd+cE8kM9cQAlNYZUD1avERfqiTt1top22jdVRKTR7Ny5k+XLl7N161a2b9/Ohg0bwmuxPfLIIwSDQYLBIOPGjQMgLi6O+fPn8/TTT59Xz9mzZ3n44YfZsmULO3bsID09nezsbABGjx7Nzp072bFjBwMGDAjvqbpr1y5efPFF3n33XfLy8vjWt75FVVVVg226//77WbhwIe+88w4TJkzgqaeeAqBr16688sorvPPOOzz//PPcfffdjXJ/9I0j0oDenRI4XHyGeLz972pObsg/XkZbXwzXtGsLqCdORKSx7d69m5tuuomEhAR8Ph8jR45k9erV9ZZPTExk+PDhxMXFnXfcOYdzjpKSEpxzFBcX06tXLwCysrLw+by9D4YNGxbeF3XdunV85StfoW3btlx77bX069ePrVu3NtimDz74gBEjRgBecvjyyy8DcP3114evN2TIEMrKyigvL7/i+6MdG0Qa0KdzAs5BRWklAKfOnqOnl7N5a8R1ig9vcHxKz8SJSCv1460/5r1j7zVqnQM7D2TWjbMaLJOamsqcOXMoKioiPj6ejRs3kpmZSZcuXcjOziY3N5fMzEwWL15Mp06d6q3H7/ezdOlS0tLSSExMpH///uTk5FxQbsWKFdx1110AFBQUMGzYsPC55ORkCgoK6m0TeAnaunXruPPOO/nVr37FwYMHL7jGyy+/zA033EDbtm0v6T41RD1xIg3o08V73q30tJfEna4xueHgsb+tEVdx7hxl55x64kREGtGgQYOYNWsWWVlZjBkzhoyMDGJjY5k+fTr79u0jGAzSs2dPHn300QbrqaysZOnSpWzbto1Dhw6Rnp4eHjattmDBAnw+H1OmTPlEbQIvCXz22WcZOnQop06dok2bNue9991332XWrFnn7fV6JdQTJ9KA6gV/TxWXg8GpGs/E5R8vJT25AwDFoYWAtU6ciLRGF+sxa0pTp05l6tSpAMyePZvk5GS6d+8ePv/AAw8wfvz4BusIBoMAXHfddQBMmjSJhQsXhs+vXLmSDRs28Oqrr4ZHVwKBwHk9afn5+QQCgXrbBDBw4EA2bdoEeEOrv/71r897/4QJE8jNzQ2340qpJ06kAd3ataWNL4YTxd6zC9XPxJ0uP8vx0sq/7dZwVltuiYg0hcLCQgAOHDjA6tWrmTx5MocPHw6fX7NmDampqQ3WEQgE2LVrF0eOHAG82aKDBg0CIC8vj0WLFrF+/XoSEhLC77n99tt58cUXKS8v56OPPmLPnj3ceOON9bap5vFz587xwx/+kGnTpgFw4sQJbrvtNhYuXMjNN998xfekmnriRBoQE2Mkd4rn6Mkz0MEfXiuueo243p29maknQ8c1nCoi0rgmTpxIUVERfr+fnJwcOnbsyIMPPkgwGMTMSElJOW94MiUlheLiYioqKli7di2bNm1i8ODBzJ07lxEjRuD3++nbty8rV64EYMaMGZSXlzN69GjAm9ywbNkyhgwZwqRJkxg8eDA+n4+cnJzwsGldbQJvGZPqZ+2+9KUv8fWvfx2A7Oxs9u7dy7x585g3bx4AmzZtolu3bld0b8zVWPcqGmRmZro333wz0s2QFuTef9/Kx8VnCKa354f9A9yffA2bd/2VB3LfZO0/30xG74784dgpJm3fx5rr+/HZjkmRbrKIyBXbvXt3uLdKmkdd99zM3nLOZdZVXsOpIhfRp3MCBaGFfWv3xFXv1qCeOBERaW5K4kQuonenBE6dOUtcleNUaAJD/vEy4v2xdEn0Zh5VJ3daYkRERJqLkjiRi6je4D7+zLnwxIaDx0pJrrFGnHriRESkuSmJE7mIPqEkrm35OU5X/a0nrjq5A292qgFJsfpIiYhI89A3jshFVM9AjS2rCg+bHjxeGn4eDrwkrp0vhphQz5yIiEhTUxInchHt4vx0SvBD2VlOna3iZFklp86cDS8EDN5wqtaIExGR5qQkTuQS9OmcwLmSs5yuOnfBzFTnHB+UnqGr3x/JJoqItEpLliwhNTWVIUOG8MwzzwDwxBNPEAgEyMjIICMjg40bNwJQVFTEqFGjSEpKYsaMGefVs2rVKtLS0khPT2fMmDEcPXoUgJkzZzJw4EDS09OZMGECJ06cuGhdb731FmlpafTr14+HHnqI2su1LV68GDMLX2PdunWkp6eTkZFBZmYmf/zjHxvl3iiJE7kEyZ0TKC+p5HRVFQePecuNVO/W8OeTJew4VcakHvVvviwiIpdv586dLF++nK1bt7J9+3Y2bNjA3r17AXjkkUcIBoMEg0HGjRsHQFxcHPPnz+fpp58+r56zZ8/y8MMPs2XLFnbs2EF6ejrZ2dkAjB49mp07d7Jjxw4GDBgQ3lO1vroApk+fzvLly9mzZw979uwhLy8vfO7gwYNs2rSJPn36hI994QtfYPv27QSDQVasWMH999/fKPdHSZzIJejTOYEzJZUUV1ZdsFvD0oNH6OiL5a6enSPZRBGRVmf37t3cdNNNJCQk4PP5GDlyJKtXr663fGJiIsOHDycuLu684845nHOUlJTgnKO4uJhevXoBkJWVhc/nbWA1bNgw8vPzG6zr8OHDFBcXM2zYMMyMe+65h7Vr14bPP/LIIyxatCi8egFAUlJS+HVJScl5566Ett0SuQR9Oidw7pyjpKSC/IoYktr66BDv58PScvKOnuShvt1JjNUzcSLSOn385JOU736vUetsO2ggPWbPbrBMamoqc+bMoaioiPj4eDZu3EhmZiZdunQhOzub3NxcMjMzWbx4MZ061T8a4vf7Wbp0KWlpaSQmJtK/f//w9lg1rVixgrvuuqvBNhUUFIQ3vAdITk6moKAA8IZNA4EAn/nMZy5435o1a/j+979PYWEhv/71rxu8xqVST5zIJaiexFBZcpYDNdaI+7f8I/jNuC/QNcItFBFpfQYNGsSsWbPIyspizJgxZGRkEBsby/Tp09m3bx/BYJCePXvy6KOPNlhPZWUlS5cuZdu2bRw6dIj09PTwsGm1BQsW4PP5mDJlyidqa2lpKU8++WR4b9TaJkyYwHvvvcfatWt5/PHHP9E1alNPnMglqF4rzkrPcuDYWVK6JHKs8iwvHS7iS9070b2tJjWISOt1sR6zpjR16lSmTp0KwOzZs0lOTqZ79+7h8w888ADjx49vsI5gMAjAddddB8CkSZNYuHBh+PzKlSvZsGEDr7766kWHOgOBQHjIFSA/P59AIMC+ffv46KOPwr1w+fn53HDDDWzdupUePXqEy48YMYIPP/yQo0eP0rXrlXUAqCdO5BL07BhHjIGVVVFwoozeneN5vuAoZecc3+x9TaSbJyLSahUWFgJw4MABVq9ezeTJkzl8+HD4/Jo1a0hNTW2wjkAgwK5duzhy5AgAmzdvDm80n5eXx6JFi1i/fj0JCQkNVQNAz549ad++PW+88QbOOXJzc7njjjtIS0ujsLCQ/fv3s3//fpKTk3n77bfp0aMHe/fuDc9gffvttykvL6dLly6f6H7UpJ44kUvgj42hU7u2FJ6soKyiih4d4sguOMqozu0YlBR/8QpEROQTmThxIkVFRfj9fnJycujYsSMPPvggwWAQMyMlJYXnnnsuXD4lJYXi4mIqKipYu3YtmzZtYvDgwcydO5cRI0bg9/vp27cvK1euBGDGjBmUl5czevRowJvcsGzZsgbrevbZZ7n33nspKytj7NixjB07tsF/w8svv0xubi5+v5/4+HheeumlRpncYLXXNmntMjMz3ZtvvhnpZkgLNO7Z/+HdgpNYNs5yWAAAE+dJREFUleNr4wfws8oSfvmZ6xjRuV2kmyYi0uh2794d7q2S5lHXPTezt5xzmXWV13CqyCXq1Tkeq/J+6fltaSmDE+P4fKekCLdKRESilZI4kUtUc5ut/VQxvU+3RlvrR0RE5HIpiRO5RNd28ZI45zN6JLbljm4dI9wiERGJZkriRC5Rvy6JALh4H1OTu9ImRh8fERGJHH0LiVyi/l29JC4mwcfdva58ariIiMiV0BIjIpeoa1JbYuJiuT7QgY5+fXRERCSy1BMnconMjD/NHMV/TsiIdFNERKLGkiVLSE1NZciQITzzzDMAPPHEEwQCATIyMsjIyGDjxo0AFBUVMWrUKJKSkpgxY8Z59axatYq0tDTS09MZM2YMR48eBWDmzJkMHDiQ9PR0JkyYwIkTJy5a11tvvUVaWhr9+vXjoYceCi/k+/jjj5Oenk5GRgZZWVkcOnQIgKeeeirc1tTUVGJjYzl27NgV3xslcSKX4ZrEtrT1a6N7EZHmsHPnTpYvX87WrVvZvn07GzZsYO/evQA88sgjBINBgsEg48aNAyAuLo758+fz9NNPn1fP2bNnefjhh9myZQs7duwgPT2d7OxsAEaPHs3OnTvZsWMHAwYMCO+pWl9dANOnT2f58uXs2bOHPXv2kJeXB3gJ4Y4dOwgGg4wfPz68j+rMmTPDbf3Rj37EyJEj6dy58xXfHyVxIiIiclXavXs3N910EwkJCfh8PkaOHMnq1avrLZ+YmMjw4cOJi4s777hzDuccJSUlOOcoLi6mV69eAGRlZeHzeY/IDBs2LLwvan11HT58mOLiYoYNG4aZcc8997B27VoA2rdvHy5XUlJS5zJUq1at4qtf/eonuBsXuuoe7DGzR4GngWucc0fNuwNLgHFAKXCvc+7tUNl/Ah4LvfWHzrnnI9FmERGR1uz1X37A0YOnG7XOrr2T+PykAQ2WSU1NZc6cORQVFREfH8/GjRvJzMykS5cuZGdnk5ubS2ZmJosXL6ZTp0711uP3+1m6dClpaWkkJibSv39/cnJyLii3YsUK7rrrrgbbVFBQQHJycvh1cnIyBQUF4ddz5swhNzeXDh06sGXLlvPeW1paSl5eXrgX8EpdVT1xZtYbyAIO1Dg8Fugf+vMNYGmobGdgLnATcCMw18zqj6CIiIi0KIMGDWLWrFlkZWUxZswYMjIyiI2NZfr06ezbt49gMEjPnj159NFHG6ynsrKSpUuXsm3bNg4dOkR6enp42LTaggUL8Pl8TJky5YravGDBAg4ePMiUKVMuSNZeeeUVbr755kYZSoWrryfuJ8B3gXU1jt0B5DrvqcE3zKyjmfUEbgE2O+eOAZjZZmAMsKp5mywiItK6XazHrClNnTqVqVOnAjB79mySk5Pp3r17+PwDDzzA+PHjG6wjGAwCcN111wEwadIkFi5cGD6/cuVKNmzYwKuvvnrRnXgCgUB4yBUgPz+fQCBwQbkpU6Ywbtw4fvCDH4SPvfjii402lApXUU+cmd0BFDjnttc6FQAO1nidHzpW33ERERFpJQoLCwE4cOAAq1evZvLkyRw+fDh8fs2aNaSmpjZYRyAQYNeuXRw5cgSAzZs3hzeaz8vLY9GiRaxfv56EhISGqgGgZ8+etG/fnjfeeAPnHLm5udxxxx0A7NmzJ1xu3bp1DBw4MPz65MmT/P73vw+XbQzN2hNnZr8FetRxag4wG28otSmu+w28oVj69OnTFJcQERGRJjBx4kSKiorw+/3k5OTQsWNHHnzwQYLBIGZGSkoKzz33XLh8SkoKxcXFVFRUsHbtWjZt2sTgwYOZO3cuI0aMwO/307dvX1auXAnAjBkzKC8vZ/To0YA3uWHZsmUN1vXss89y7733UlZWxtixYxk7diwA3/ve93j//feJiYmhb9++4XrASzazsrJITExstHtj1WubRJKZpQGv4k1cAEgGDuE96/YD4HfOuVWhsu/jDaXeAtzinPtm6PhzNcvVJzMz07355ptN8K8QERFpPXbv3h3urZLmUdc9N7O3nHOZdZW/KoZTnXPvOOe6OedSnHMpeEOjNzjnPgbWA/eYZxhw0jl3GPgNkGVmnUITGrJCx0RERERavattYkNdNuItL7IXr6fu6wDOuWNmNh/4c6jcvOpJDiIiIiKt3VWZxIV646r/2wH/XE+5FcCKZmqWiIiIyFXjqhhOFRERkavP1fDcfLT4JPdaSZyIiIhcIC4ujqKiIiVyzcA5R1FR0QVbfF3MVTmcKiIiIpGVnJxMfn5+eG01aVpxcXHnbed1KZTEiYiIyAX8fj/XXnttpJshDdBwqoiIiEgLpCROREREpAVSEiciIiLSAimJExEREWmBlMSJiIiItEBK4kRERERaICVxIiIiIi2QkjgRERGRFsiibTsNMzsC/KUZLtUVONoM15Grh2IefRTz6KS4R59Ixryvc+6auk5EXRLXXMzsTedcZqTbIc1HMY8+inl0Utyjz9Uacw2nioiIiLRASuJEREREWiAlcU3n3yLdAGl2inn0Ucyjk+Iefa7KmOuZOBEREZEWSD1xIiIiIi2QkjgRERGRFkhJnEgzMjOLdBtERKRxRepnu5K4CNIXevQws6Fm1s/pIdSopM969FHMo4OZDTeztEj9bFcS14zMbISZ/YuZjTazFOec0we99TOzLGA9MDn0Wp+7Vs7MvmBmi0Kf98FK3lu/0M/1J83s69Vf6vqst25mNhpYA/yLmSVEog36H6yZhL7I/x24BrgN+LmZDVMi17qF4v4ksBq4wczMOXdOMW+9zGwc8DRQACQDk2qcU9xbITMbCeQAx4E+wFoz+/vQZ13fs62Qmd0KLASewculEkPHmzXe+p+r+XwGyHHOzQLmAv8J/Kw6kYts06QpmNlNeD/Yv+WcexBIAJ4CUMxbJzO7Fvhn4CHn3BJgG9DDzG4yswH6pa3V6g+sdc495Zz7ATAbeNnMRumXttbHzNKBBcAM59wCIB74KYBz7lxztkVJXPMpAQYDOOdOOud+DvwEmGtmvSPaMmkqO4F/dM5tDb3+MdDOzK4B9cq0UvnAd5xzr5tZF+BfgC54ve+/MrOhSuBbpb8CnatfOOdeAr4JLDWzQYp5q7MHmOKc+9/Q6+8B58wsA5r3Z7uSuCZkZgEz6xN6uRK40cyerFFkLfARoCSuFQnF/VrnXIlzbnuNU+8AqcBXQL1xrZFzrtI5937o5aeAx5xzX3bO/R+85yKHR6510pjMrIeZBUIvfwsMNrOfVJ93zv0SeJnQL+/S8oVi3sc5V1bjcw5QCPjwfllr1p/tSuKaiJn9I95zUP9lZj8CbgBuBT4Xeo1zrghoA2RErKHSqGrE/SUzm2dmE6rPOecKgceAL5vZpyPVRmlcZjbOzHLNzB96HQvgnPuzc25djaJ+vCF1aeHM7IvAr/CeffsBUIH3Bf7FmokcEAcMikATpZHViPnLZva4mfUIHY9xzhXjPR83xcw+15ztUhLXBMysA/AoMB2YABwE7gZG4fXCjDOzn5vZ08Dngc2Raqs0njri/jGQZWb31ygWxPutrX/zt1AaW+i5x+eAFGC1mfmdc1Vm5qtV7i5gNF6CLy2Ymf093hf2DGAKcD3wDefcceDvgEwz+5mZrQDG4vXGSQtWR8z/DhgP3jNwoURuG/AqkNackxuUxDWNWOAscMI5VwC8hNfdPhJv5tJngdfwhlInOOf2RKqh0qjqivtreLNSqz/wx4H/Bt6NWCulMfmA+Xif7b8Ca0KJ3NnqHrlQ7+xM4J5aQzDSMvUF/tU5t9059wHwLDDMzNqEPt+3Ar/A++zf6ZzbHcG2SuOoK+aft5AakxleBTY25+QG02M5TcPMngAGAN92zhWaWVe83rguzrnHIto4aTINxL19aNaatDJm1s45d8rMEvGWG+iF98tZRah3thTo6pw7HNGGSqMxs07OueOhHtfhwONAVqgXtq1zrjzCTZRGdpGYd3DOnYxEu9QT10jMbHxoocec0Bf3fwLvA981s+7OuaN4Qym3VI+lS8t3GXEfbWbdI9pYaRQ1Yp4dink5gHOuBPgOcBjINbPpwA/xfllWAteC1Yj5T0MxPwXgnDsL/AUoDn2Z3w1828zaRLK9cuUuM+bTIhVzJXGNwMyGAsuAN/DWi1mCNyPpf/ECnxN6kH1Y6C1nItFOaVyfIO767byFqxXzBOD/4j3j2gHAOXfKOXc/Xm/sAuBnzrmKSLVXrlytmCcB2cB4M2sfKnIKOG1m3wa+C2xQzFu2lhRzJXGNYwCwyTm33jl3H/BHIAtvZtJKYAfeMMs0vEVAT0SqodKoFPfoUzvmv8OblTiyejKDmd0OtAc+X2uJGWmZasd8C17MbzGztnjJ/O3A1/HWhdTzri1fi4m5krjG8SegV/XUYufcUryFXicDx51z84AvA2Odc29HrpnSyBT36FM75s8BbwNfI7TtDt7WS2P1Zd5qNBTzts65A8AK4GuauNJqtJiYa2LDJxRambkc7x7uMrMFQDGwzjn3XqjMC8BB59z3I9hUaUSKe/S5jJj/xTk3J4JNlUZyuTEPzUiujGCT5Qq11JirJ+4TMLOxwCt4eyT+0swmAj/HW6H9DvM2QwbYSuhhSGn5FPfoc5kxL4lMK6UxXWbMS8HbqSMSbZXG0ZJjrp64y2Bmhjdk8ktgmXNuvZl9FngBb8PjPwH38rc1oz4H3OaceycyLZbGoLhHH8U8+ijm0ac1xFxJ3CdgZvOAD4CXnHOVZnYj3v8E33HOrTazZLxVvLeHxs6lFVDco49iHn0U8+jTkmOu4dRP5mPgC3jLSuCc24q3oOtsM7vOOZfvnHvlagu2XDHFPfoo5tFHMY8+LTbmSuIuQ6jrFefcs3hTjJeaWYfQA46v4y0pURXJNkrjU9yjj2IefRTz6NMaYq7h1IsILdbaGXgTOOecq6pxbhXewr1v4O2h+B1gpHMuPxJtlcajuEcfxTz6KObRp7XFXElcA8zsS8CTQEHoz5vASudccY0y9+HtlfgZ4AmtDdXyKe7RRzGPPop59GmNMVcSVw8z8+PNUPmpc+5/QlOOhwEVwCJXa7Nb06bHrYLiHn0U8+ijmEef1hpzPRPXsPZA/9B/rwE2AH7gqwBmdqOZ3RA6r73yWg/FPfoo5tFHMY8+rS7mSuLqEVrI71+BL5nZ551z5/D2xgwCI8wsHrgZOBQqry7NVkBxjz6KefRRzKNPa425hlMbYGZxwP1AOvCCc+4PoeO/A6Y65/ZFsHnSRBT36KOYRx/FPPq0xpj7It2Aq5lz7oyZ/QfggO+b2UC8vdWuAU5HtHHSZBT36KOYRx/FPPq0xpirJ+4SmFkbvG7Wb+JNP17inNsW2VZJU1Pco49iHn0U8+jTmmKuJO4ymFks3lD5uUi3RZqP4h59FPPoo5hHn9YQcyVxIiIiIi2QZqeKiIiItEBK4kRERERaICVxIiIiIi2QkjgRERGRFkhJnIiIiEgLpCRORFoVM7vTzL5Tx/FbzMyZ2S0RaFadzGyomZWaWeAy3vOMmW1synaJSMugJUZEpFUxs5XAPzjnkmsdbw8MBnY554oj0bbazOw1vPbMuIz39AQ+BMY557Y0WeNE5KqnnjgRiQrOuWLn3BtXUQI3FBgFLL2c9znnDgOvADObol0i0nIoiRORViPUC/dPQCA0dOrMbH/o3AXDqWb2OzP7o5mNMbOgmZWZ2TYzu8nMfGb2pJkdNrNjZrbSzBJrXS/BzH5sZh+ZWUXo7zlmdik/W+8Hdjjn3q1V5+RQG06bWbGZvWNm36z13heBW82s92XfJBFpNXyRboCISCOaj7eZ9d8Bt4eOlV/kPf2Ap4AFeJtgLwLWh/74gHuBQaEyhcB3AczMB/wGb4h2PvAOMAx4HOgMPHqR644Bfl3zgJkNB14AforX0xYDDAQ61nrv66Fzo4EVF7mOiLRSSuJEpNVwzu0zsyNAhXPujUt8Wxfgc865DwFCvWjrgGudc/8QKvMbMxsBfJlQEgd8FRgOjHTO/SF07FUzA5hrZj92zhXWdUEz6w6kANtrnRoGnHDOfbvGsU11/DuPmFl+qLySOJEopeFUEYl2H1QncCHvhf7+Ta1y7wHJFsrS8HrS/gL8v9DQqy/UO7cJ8OMlWPXpFfr7SK3jfwY6mdkLZjbezGr3wNV0pEY9IhKFlMSJSLQ7Xut1RQPHfUBs6HU3oC9QWevP1tD5Lg1cMy7093lDvc653+P19vUG1gBHzOy3ZpZeRx1lQHwD1xCRVk7DqSIin0wR8BEwqZ7z+y/yXoBOtU845/4L+C8zSwJuAX4M5JlZsnPuXI2inYEdl9lmEWlFlMSJSGtTTvP0UOUBE4HTzrn3Lla4lv3AGeBT9RVwzp0GNpjZp4AleD17RwDMLBboA/zq8pstIq2FkjgRaW12AZ3NbDrwJnDGOfdOE1znP4Cv401mWIw3SaENcB3ezNg7nXOldb3ROVdhZn8Cbqx53MzmAd2BLcAhIBl4CAg652o+P5cKJAB/QESilpI4EWltfoY3qeBJvKU5/oI3E7RROecqzexW4HvAN4BrgRJgH97SIRUNvB3gJeApM0t0zpWEjv0JL2n7Cd5waSHeRInHa713PPAx8Lsr/5eISEulbbdERCIgtA1YPvAt59wLl/neXcDLzrnayZ2IRBHNThURiYDQ9l8/Br5bY9mSizKzO/CGXBc3VdtEpGXQcKqISOT8K96SJT3xnoG7FPHA15xzJ5qsVSLSImg4VURERKQF0nCqiIiISAukJE5ERESkBVISJyIiItICKYkTERERaYGUxImIiIi0QP8fB9pmGng7ymoAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "units_of_interest = high_snr_unit_ids[:35]\n", "\n", "waveforms = {uid: session.mean_waveforms[uid] for uid in units_of_interest}\n", "peak_channels = {uid: session.units.loc[uid, 'peak_channel_id'] for uid in units_of_interest}\n", "\n", "# plot the mean waveform on each unit's peak channel/\n", "plot_mean_waveforms(waveforms, units_of_interest, peak_channels)\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Since neuropixels probes are densely populated with channels, spikes are typically detected on several channels. We can see this by plotting mean waveforms on channels surrounding a unit's peak channel:" ] }, { "cell_type": "code", "execution_count": 29, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXkAAAB8CAYAAACMucA6AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAWzElEQVR4nO2debRcVZWHv98bkhDmIY2SyKg4LBAbBCNjUAFFRFAUEUdkiTg1DYLagiA0UQRBnGh7CbIQlcmBQVRahAZaEHHJYCMNMmkYTBhiSF6SN+3+49yndU+91K1T99areuX+1qqVnHvPPWffXfftOnefc/aWmeE4juP0Jn2dFsBxHMdpH27kHcdxehg38o7jOD2MG3nHcZwexo284zhOD+NG3nEcp4dxI+84jtPDuJF3HMfpYdzIO47j9DADjU5K2jOlMTO7qZw4juM4TpWoUVgDSeNAM3EPBJiZ9VclmOM4jlOehiN5YO8pkcJxHMdpCw1H8o7jOM70pmgkX4ekTYD5wMbA1Wb2jKRZwLCZjVctoOM4jtM6Ta+uUeBMYBFwFXABsGV2+krgM5VL5ziO45QiZQnlp4GPAqcCryJMtk5wNXBAhXI5juM4FZDirjkSONXMPi8pXkXzR2Cb6sRyHMdxqiDFyM8FblvDuWFg7UYX96+7tg3M2SChu8ZIxXVS55SbabPK/lqRodPz5LF8zciTek3VOij7vU4Fnfhep4NeYso+O9OB+B6HH378KTOb02p7KUb+MWA74IZJzu0APNywozkbMHfhh9d4PvW7kYr/KszSWm2mzSr7a0WG8dQ+4vqJ9xj3FsvXzD2nXlOkg9Lfa1yerL2Sz0IdBTLH9xT33g7bVaiXuvqN20s1wE39sMV6KfnsFNLMs9Fm4nt86LATHy3TXopP/nLgs5J2q5VH0rbAccAlZQRxHMdxqifFyJ8C3AfcBDyQHbscuCcrf6FSyRzHcZzSNO2uMbOVkhYA7wT2I0y2Pg2cBnzXzEaTei54Pa2jhdeo1Be3KtwttRS5OpqhTqa619f4ggIhil53+8q7Sorus+wrtfoKtmMUuKhit8Fk7aU+C/H3UOfaKLrnqIG63ptxuxW4Ntrtnilyx7Tinqn/7hLtQOqz1g73TKLMpV1OEUmbocxsDPhO9nEcx3G6HA817DiO08Ok7HidIelkSfdJGpI0Fn3S3DWO4zhO20lx15wJfAT4KfBDYHVbJJqg4mV0baHA12axP7GJJuP7Gh+LyqPR7/JYY599nY8+9rlHzak/75+u89HHLtMmbir2eff1NfaR9xX53Ctm8mcp7fkr8jcX+scLng5rZoapyH+dSOra/fr5oRaW7xbOXZRcQlxUvfB7Sm8jVYZO+uQPAU42s9MrlcBxHMdpGyk++XWAW9sliOM4jlM9KUb+aiApHaDjOI7TWVLcNV8FLspSAl4LPBNXMLOHmm4t1fdWhZ+q6q3qcfMFPtG+/mJf88hw/isZXzGYK/c/l48N1zfSuL3xwag8Ky+DRWX6Ip9kf+xPz5cHBurvaWBgLFce7I/LURuxzz7xe4pDPcRX152P5z0m8ZmOjTf2o46P58dHRTLU+/AjGQr6a2YOoGy4h6Lrk2MG9cXtp10/eaPtDTfRStiOVKr2uReRYuQnXDWnACevoY7neHUcx+kiUoz8EaRvInUcx3E6SEpYgwvbKIfjOI7TBpJzvHaMVnxjFfv9kyWI2hsfy/txx8bq573Hh/JfycCyvAdsxtK8FAMrGnbJ2Kx8eXR2vr2RdfLtja0dlaN1+DYj71+P17wDzIx88hustTJXXn9Gvjx7YDh/fV/++pjY/z1ieT2OjufvcbiunNfx6Hj99zASXRPXGYvLsUxj+etj327s84/bS/Xph2N1hwqvaXR9YTyeAurXnDduv7lGK45VEzc/BftvitbiVy1DkpGXtBdwGLA5EJkPzMxeW5VgjuM4TnmaNvKSjgLOI6yquZ/6Ha9dsAXVcRzHqSVlJH8c8D3gCDMbLqrsOI7jdJ7UHK/fnjID34pvrWTMiMIUbUWXRxXGV+cXqQ/+ZUauvNH99W1s9PvluXLf7x/Mtzk0lCsPzN0sV1697fNy5aXbzMyVx2ZGvt3oCehbN7/wfu6cpbnyzpvkM5Htuu4fidlx5uO58mYDeRlmKlq8H7F8fFWuvHQ8H/vuqbH89YvH1smVn4nKT0flp0bWzZWXjcaeR1g+lpd5xWi+PDSal2FVJNPqsbxiY5/76shnPxqVY599nU9/kmc1Xruf6qOP1+qnxotPTXE4aZ3CCj3gMJiCtfi1pOx4/S2wdbsEcRzHcaonxch/HDhGkoc2cBzHmSakuGuuBtYDbpA0BDwbnTcz26IyyRzHcZzSpBj56/Edr47jONOKlB2v72ujHOk0sRmkcPNGxQkKLJq4UryxaXk0eTajvv9ntstPEtr2O+SviSZOx/PzgXU/w4rih/Xn5zTrZBqemZ9A/MtgfpLyzv55ufLK8fxkMsAfZ22aK68TdTpL+cnd/kjIVVFUtVWWLy+PdngNjeVlGIpkWhlNisbleNIUYDiaOB2NNlzFm53iDVfxROtIwWaqIiYLohZTHyAvf75+IjYKoFcgUtGGLEvc3dTURGwViUjKUNTfVCT+LonneHUcx+lhksMaSNoBeDH1O14xs4uqEMpxHMephpQdrxsAPwHmTxzK/q19t3Aj7ziO00WkjOQXAhsTskPdDBwM/JUQgvjVwDsqly6R1ABKlfvTClxpY7PyFVZvWN9/ncsvcqhFsbUYnxkFQYvcy9YfnY/mAWxGlLBjdn7j0eBgPljY6tG8AIuGNiBm6fBaufLM/tG6Oo2IN/qMxwHIovJwvLHI+hueH6sLaFbvtYz9xXGd+KuuC1hWl1QkXz/euBQT++Cb8cmXTfpRfH3j83GwuqJEKJMlzygMapa49qPIJhTO4xX5x1tK9J18SSlSfPL7EQz9bVl5kZndaGbvAX4B/EvVwjmO4zjlSDHyzwceMrMxYBVQu+zih8AbqxTMcRzHKU+KkX8SmHg3f5TgopnghZVJ5DiO41RGik/+FsKk6zXAd4CTJW0JjALvBa6qWriGtOALq3pFa9265MFo3fAG+Vhuw4PR2usV9Slx+1ZHPsnofJ2PfjDysQ80LhOVNTPvc++fJDF3LStH8vfwDLPr6izryy+86o8SdRf5l4sSbRclzS7yj8fE/nIoTtQdEzdR973F5cI15w27m5LkFjFVJ6Bu5R5S592KZI7bqySxSSGNk4ZUTYqR/xwwEfLwTMIk7KHAbIKB/1i1ojmO4zhlSdnx+iDwYPb/EUJ8+ePaJJfjOI5TAb7j1XEcp4dJzfG6NfB21pzj9QNVCdYSJZN+pPr56/yo8brgeA1utCZ9vL++v7q1xbGLvG4db1SOE2snrvuNk4uvXpVfeD86mj+/cnV97JpUP2gR9TFZGrdfdr13qFMsV9k+GtWvT6pdXubkfSR116clu5jq9eCTy5B206nr6ievlBbvxtqcOTVlx+tBwGWE0f9i6nO8dsFX6jiO49SSMpI/DbgRONzMlrRHHMdxHKdKUoz81sBxbuAdx3GmD2o2BrSk3wJnmdn3W+pIWkLYRLUJ8FQrbTg5XI/V4Hosj+uwGtakxy3MbE6rjaYY+dcCXwbebGYPtdyhdIeZvbLV652A67EaXI/lcR1WQ7v02NBdI+mm6NDGwB8kPQA8E50zM9urSuEcx3GcchT55MfJr5r5vzbK4jiO41RMQyNvZgva0Od/tqHNf0Rcj9XgeiyP67Aa2qLHFJ/8J4F5ZlYXo0bSucCfzeysiuVzHMdxSpAS1uD9wN1rOHc3IUOU4ziO00WkGPnNgQfWcO5BYIvy4jiO4zhVkmLkh4C5azg3j/owB04HkcpGKnEcp5to9W86xcjfDBwvaWbU8UxCyOGbWxFgTbiRag1JO0l6oTU72eIU4s9iNbgeW0PS7pK2b/VvOmXidQfgV4QdWRcDjxFG9u8irJ/fzczuakWIrP09gV2Au4AHzOwRSXJj1TyS9gW+DXzTzE6V1GdmjVM9OXVkG//2IwTiu9bM7u2wSNMSSfsAexPcvHeY2T3+TKaR6fB7wLXA0WY2lNpG0yP5zIDvTQhN8Enga9m/DwMLShr4CeM0h5AQ/HxJ883M/Ne/OTIdLiQkVd8x+4Ecd/2lIWl/4CzCIGYeIbT2xDnXZZNI2gv4OvAsYT7vx5Jekz2TnseiCSTtB3yBEGmgD1g7O56kv6ZH8lHnawEbAs+a2crkBurbOx4YM7OzJa0PHAL8K3Ckmd1Wtv1eR9KrCG9Xh5vZ7ZKuA+42s090WLRphaStCIOXL5jZzZLeS0hY/23Cs36/v102h6QjgW3N7ISsfCjwH8BbzOwG12NjJL0cuAD4mJndKukKYMTMDkttq6VfVDNbaWaPV2HgM1YAL8va/quZnQ+cQ0gW/oKK+uhlfg8cYma3Z+UzgHUlzQEfgSawCDg2M/AbA58guCLfCFwuaSc3TE3zF2CjiYKZXQocBZwn6aWux0IeIAzabs3KnwLGJb0C0v6mO/baJGmupM2z4oXALpIW1lT5McEV5EZ+DWQ63MrMVkTusnuA7YB3QAgq1BEBpxlmNmJmE6E7tgZONLO3mdlnCcnqd++cdN2PpOdJmliB9wvgZZLOmThvZpcBPyAb0Dn1ZDrcPBtI14aRWUyIUPBGSPub7oiRl3QIwXd8haTPAzsSJrp2zcqY2dPADOAVnZCx26nR4aWSTpV08MQ5M1sMnAi8TdKLOyXjdEDS/pIukjSYlfsBzOw3ZnZlTdVBYHYnZJwOSHoTcDnB9/45YJhgkN5Ua+gJaUNf2gERu54aHf5A0kmSnpcd7zOzZQT//OGSdk1pd8qNfOZzPw44GjgY+DPwbsKk7juA/SWdL+ksYA/gv6Zaxm5nEh0+Ceyb+UEnuJPw6/+iqZdwepDNZXwT2BL4oaRBMxuTNBDVOxTYh/Cj6kRIeg3BAH0UOBz4Z+CDZvYssDPwSknfknQB8AbCaN6pYRId7gwcADAxWW1mvwOuB7ZPmXztxEi+HxgFlprZY8ClhFe7vQiz8K8Gfklw1RxsZmvaZfuPzGQ6/CVhVc3Eg/Es8FPgfzsmZfczQEhruRfBh/yjzNCPTozoszem44H3RK/Pzt/ZAjjbzO4ys/uBbwDzJc3InsP9gO8QntGDzOwPHZS1W5lMh3soo2bZ6fWEZb1NL0NtaXVNWSSdAmwLHGNmiyVtQhjNb2xmJ065QNOQBjpcz8w+11HhphGS1jWz5yStTViqthlhcDGcvTENAZuY2RMdFbTLkbShmT2bvQXtDpwE7Ju9Gc00M98RX0CBDtc3s7+20u6UjOQlHSBpoaSvZ8boe4TY9CdI2tTMniK8Ci+Y8EM5eRJ0uI+kTTsqbBdTo8evZXpcDWBmK4BjgSeAiyQdDfw7YSDkBj6iRo9fyfT4HICZjRL20izLjNO7gWMkzeikvN1Iog4/1KoO227kJe1EWB97G7AWcC5hdv1Wwk19PZscnJ9dsqrdMk03WtChj5omIdLjbOCrhDmg9QHM7DkzO5LwhnQ68C0zG+6UvN1KpMd1CHsLDpC0XlblOWC5pGOAE4BrXI95plKHUzGS3xa4zsyuMrMjgFuAfQmz7BcSwhR/GfgQ8HEzWzoFMk03XIfVEOvxRsIKkL0mJlslHQisB+xRZhd3jxPr8QaCHhcoxLKaDRxICE9+iJn5vFA9U6dDM2vrh7De+GfArjXHPgxcQvAfQ/glm9VuWabrx3XYVj0eDVwGrJ+V9wBe1GlZu/lToMeJ5/EcYPtOy9qtn6nUYVsmXrNdWasJ/sx7JZ0OLAOuNLP7sjoXE7JJfbpyAXoA12E1JOjxUTP7TAdF7WpS9ZitUhrpoMhdR6d0WLm7RtIbgKuBjwCXSXorcD7hl+vNCoGLAG4nm2hw8rgOqyFRjys6I2X3k6jHIQi7hzsha7fSUR1W+PohgsvgWuDA7NirCVmjDiVsODmF4Hu6BPgT/jrnOnQ9du3H9dgbOmzHTZ1KiDE/mJV3AR4hRJ+DEL71TcDmnf4CuvXjOnQ9dtPH9Ti9ddiO1TVPAq8lLPXDQmTEdwP/JmkbM1tkZleb2Z/a0Hev4DqsBtdjNbgey9MxHVZm5KUQ+tLMvkFY/nOepPWzyYObCcv8xqrqrxdxHVaD67EaXI/l6QYdllpdk23A2Qi4Axg3s7Gac98nbGy6jRAj5FhgLzNbVEriHsN1WA2ux2pwPZan23TYspGX9BZCurnHss8dwIUWQmJO1DmCEAtkB+AU800ROVyH1eB6rAbXY3m6UYetpv8bJKSb+4qZ/U+2HGg+IYb0Fy0KpOMBiupxHVaD67EaXI/l6VYdlvHJr8ffY5X/CLiGkFjhMABJu0jaMTvvcSsmx3VYDa7HanA9lqfrdNhqjtcR4GzgLZL2sBDb+BZCooo9FRJ97wY8ntX39HMRrsNqcD1Wg+uxPN2qwzI++VnAkcDLgYvN7Kbs+I3AB8zswaqE7FVch9XgeqwG12N5ulGHA8VVJsfMVkn6LmDApyW9hBCXYQ6wvCL5ehrXYTW4HqvB9ViebtRh6QBlCoHsdwOOIiwNOtdCLkKnSVyH1eB6rAbXY3m6SYeVRaFUyIlplpB70MnjOqwG12M1uB7L0w067EiOV8dxHGdqmJIcr47jOE5ncCPvOI7Tw7iRdxzH6WHcyDuO4/QwbuQdx3F6GDfyTlch6SBJx05yfIEkk7SgA2JNiqSdJA1JmptwzZclXdtOuRynFl9C6XQVki4EXmdm86Lj6wEvA+6tDdvaSST9kiDPRxOueT7wELC/md3QNuEcJ8NH8s60wMyWmdltXWTgdwL2Bs5Luc7MngCuBo5vh1yOE+NG3ukaslH8e4G5mWvGJD2Snatz10i6UdItkl4v6U5JKyX9TtKrJA1IWijpCUnPSLpQ0tpRf7MlnSHpYUnD2b+fkdTM38WRwN1xwgdJ78xkWC5pmaR7JB0VXXsJsJ+kFyQryXESaTlAmeO0gdMIgZx2Bg7MjhUlVXghcCZwOiEA1BeBq7LPAPA+4KVZncXACQCSBoCfE1xApwH3EBI8nERI3XZcQb+vB35Se0DS7mRJIwgj9T7gJcAG0bU3Z+f2AS4o6MdxSuFG3ukazOxBSUuAYTO7rcnLNgZ2NbOHALJR+JXAVmb2uqzOzyXtCbyNzMgTkjjsTsiveVN27HqFvMsnSzrDzBZP1qGkTYEtgbuiU/OBpWZ2TM2x6ya5zyWSFmX13cg7bcXdNc505/4JA59xX/bvz6N69wHzlFlxwkj8UeBXmWtnIBvdX0fI5DO/QZ+bZf8uiY7/BthQ0sWSDpAUj+BrWVLTjuO0DTfyznTn2ag83OD4ANCflf8J2AIYiT63Z+c3btDnrOzfnCvJzP6b8LbwAkLqtyWSfiHp5ZO0sRJYq0EfjlMJ7q5x/lF5GngYePsazj9ScC3AhvEJM7sCuELSOsAC4AzgZ5LmReFmNwLuTpTZcZJxI+90G6uZmhHuz4C3AsvN7L6iyhGPEBJBbL2mCma2HLhG0tbAuYQ3gyXwtxjjmwOXp4vtOGm4kXe6jXuBjSQdDdwBrDKze9rQz3eB9xMmW79EmESdAWxDWNlzkJkNTXahmQ1L+jWwS+1xSacCmwI3EJI1zwM+DtxpZrX+++2A2cBNOE6bcSPvdBvfIkx6LiQsPXyUsJKlUsxsRNJ+wKeADwJbASuABwlLI4cbXA5wKXCmpLXNbEV27NcEo34OwR2zmDCRe1J07QHAk8CN5e/EcRrjYQ0cpwWyMAuLgA+b2cWJ194L/MDMYuPvOJXjq2scpwWy8ApnACfULMssRNKbCS6dL7VLNsepxd01jtM6ZxOWZD6f4INvhrWAd5nZ0rZJ5Tg1uLvGcRynh3F3jeM4Tg/jRt5xHKeHcSPvOI7Tw7iRdxzH6WHcyDuO4/Qw/w/rW/kQigmSyQAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "uid = units_of_interest[12]\n", "unit_waveforms = waveforms[uid]\n", "peak_channel = peak_channels[uid]\n", "peak_channel_idx = np.where(unit_waveforms[\"channel_id\"] == peak_channel)[0][0]\n", "\n", "ch_min = max(peak_channel_idx - 10, 0)\n", "ch_max = min(peak_channel_idx + 10, len(unit_waveforms[\"channel_id\"]) - 1)\n", "surrounding_channels = unit_waveforms[\"channel_id\"][np.arange(ch_min, ch_max, 2)]\n", "\n", "fig, ax = plt.subplots()\n", "ax.imshow(unit_waveforms.loc[{\"channel_id\": surrounding_channels}])\n", "\n", "ax.yaxis.set_major_locator(plt.NullLocator())\n", "ax.set_ylabel(\"channel\", fontsize=16)\n", "\n", "ax.set_xticks(np.arange(0, len(unit_waveforms['time']), 20))\n", "ax.set_xticklabels([f'{float(ii):1.4f}' for ii in unit_waveforms['time'][::20]], rotation=45)\n", "ax.set_xlabel(\"time (s)\", fontsize=16)\n", "\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Running speed\n", "\n", "We can obtain the velocity at which the experimental subject ran as a function of time by accessing the `running_speed` attribute. This returns a pandas dataframe whose rows are intervals of time (defined by \"start_time\" and \"end_time\" columns), and whose \"velocity\" column contains mean running speeds within those intervals.\n", "\n", "Here we'll plot the running speed trace for an arbitrary chunk of time." ] }, { "cell_type": "code", "execution_count": 30, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAf0AAAH6CAYAAAANyZUwAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOydd3gkV5W336NWS2rlURhpsjTJ44DHHsYRHLGNvQSTw3pZm2BggWV3+TbARtgFNoMJy+4SbVhysgGDARsPGIzDeDzGY894ojQzGuUcOqn7fn/cKqnV6m51K3SQzvs8/bRUdavqdnV1/eqce865YoxBURRFUZTlT1GuO6AoiqIoSnZQ0VcURVGUFYKKvqIoiqKsEFT0FUVRFGWFoKKvKIqiKCsEFX1FURRFWSGo6C8yIvJBETEicnWu+7JScM73ngy3ea+IPCsifmf7P12i7imKomSMiLQ496Y7F3O/KvrKikNE3gB8AggAdwAfAh7JaacWiIh4ReRPRORLIrJfRELODeNtKba5zWmT7PXOJNv5RORDIvKciAREpEdEviUiZ2fQXxGRG0XkU05/B519PScid4hIU5r7uVJEIk5/P5zu8Z1tM35YnA8iUisifyEiX3UeNCedY1+XYhvXeEj2ujGufYWI3CIiXxORQyIyLiKjIrJXRP6fiJRk0N+r5zi2+9qQZPvXiMhPRaTP+U5Pisg9InJp+mdNWSqKc92BZcingW8AJ3PdESUpL3XfjTFnctqTxaMC+wAD0A10AQlvygm4B9ifYPne+AUiUgr8HHiBs/4TznFeC7xERK41xjyaxjFLgZ8AIeBXwP2AB7gW+BPgDSJyhTHmSLIdiEgVcBcwAVSmccxc0QL8m/P3aaAPSOuhBvv52hIsPxr3/xXA/wEDwIPA3cAq4OXAfwCvEpEXGWMCaRyzDfsgnIjnAa8CDhhjTsWuEJFip7+/DxwBvgkMA83AZcDzKfCH6+WAiv4iY4zpw/6olfxlLcAyEnywwvd7wH5jTKeIfBD4hzS3vdsYc2eabd+HFfzvAK83xkQBROSbWKH5oog8z12eggjwt8BnjDGD7kIRKQI+A7wD+BjwshT7+ARQA/wz8JE0+58L2oHrgCeNMQOOu/bWNLe90xizJ412XcAfAN82xoTchSLy58Ae4HLg3cB/zrUjY0wb8MFE60Tk686fn0uw+kNYwf8I8Pfx14CIeOc6tpIFjDF598I+GRvgTmA79omxB4gCVztt2oC2JNt/0Nn+6rjlBvsDaAA+C3QCQeAZ4M0J9nO1s80HgQuAe4Eh7A32l8DlS3VsZ5tSZ3/HnbYngA87yw2wJ4Nz+nLggZjjnnE+w7vi2u1x9l3qHOuE0/4YVkRKkux/h/N9ncJab93A14CzkrQvBz6AtTDHgTHgt8Abk7QvAf7O6ce8zkXMdzPrleB7agY+D3RgBeq2mDZrgP9yrsEQ0At8D3h+gmPe5uzzNuB64CHns/YCXwJqnXYXAj8CBp31PwBaFvAbcj/r21K0mepbmvsUrIAZoDXB+l85665Z4O9/rbOf0RRtbnba/EHM5/hwmvt32yd6fTCu7euczzUM+IGnneu2dAGf707nWNel8f1dPd/jxOzr9519/XCB+2nADolNuNdtzLpm53f524X219lfWvcrp20d9sHvoPMdDTvb3pBi/6932gw4n6kN+DqwO65dKfB+53ufAEac3/DrEuyzhWndasF6fPuc/e/FehYT9aUK+4B72ml7CPtwvdndX1z7Jqz35jnsvXPI+ftOYPNc5zbfLf0twKPAYeCrgA970hdCLfAb7M36O9gv9bVYCyVqjLkrwTa7gb/EitLngY3Aq4EHROQCY8xzi31sERHgu8BLsK6yTwNe7A3r3Ew+sIi8HfhfrDXwQ+yFuBo4H3gz1rKK51vARU4/w9ib7AeB3SLycuNcfc7+b8SKntfZ/1FgPdYN+BIRucYYsy+mfS3wC6zQ7QO+iI0veTHwNRE51xjzt3Hn4ltOH44556IEeAvW3Zgue5z324BNJHdh1mHdkGPO54piH2IQkVbg11hh+gX2RhHr3n61MeZHCfb5cuywwo+A/8FaXrcBLSLyAewN6CHgC85nehmwWUTON3NbzQvlAieQsQz7kPOgMeZ0gnZbsNf+YWPMiQTrf4J1M1+LdTHPl7DzPplopYisxlqadxtj/k9Ebstw//ux3/0/YB9i7oxZtyfmOB/FCnwf9gF2DLgJ+CjwYhG5wcRY1UvEC0VkN3boow14wFhvYiakPJ8ZcCv2nvVlY8xQ3LrXYH+T3xARH/a+tRUYBX5tjHkq3YNkcr8SkU3Y76wF+/u5DzvU9VLgPhF5hzHmczHtBfuwfauz3+9hH8DXA9dgxXOv07YE+ClwFVaI/wtrrLwG+KZz7//rBB9hE/AY1lj7CvZ+8nrgHhG5zhgz9dtwhssewN5rn8LqXC3WwLkqwbkpx2rIFuww2w+xD+ObsPfH7zjHTc5iPJUt9ovpJyYDfDRJmzbmZ+kbrHB7Ypafg/1BPBvX/uqYbW6LW/cOZ/lnlujYb3La/4oY69q5IA6RgaUPPIF9Wl6dYF1D3P97nH0fBlbFLC/DPvQY4E0xy1dhrdM+4Jy4fZ2HvVHui1t+p7Ofv4xbXob90UaBC2KWu5bKb4GymOV12IeATL0ee4ix7pN8T18GihOs/6mz/m/ill/ufI/9QGXM8tuc9pPAVTHLi7A/WoO1Nm6J298XnHU3z/M35F6H6Vj68a9J7INJWVz7l5DCYsTeDA3wzfn0OWY/f+Xs5+tJ1t/jXG9NcZ8jLUs/7rtOeN1gx6ANNjanOWZ5MfZGa4C/nufnc6//dCz9+FcA+CdAMjjeT5xt37HA78W97yTycN7lrPsA096g2Nd3gPI0j5Pp/SoKvCFueS324c7vXifO8rc7/XkMqInbxgOsifn/A07bHxNzL8A+gLTFnwtm6tY/xO37xe6+4pb/tbP8u0BRzPJW7H3BEGPpY40BA3w8wbkpAarmPL8LuQiW6hVz8rpI4kZj/qI/DlQn2OaXzvrYG/bVzrJfJ2jvxT5B712iY9/vLLsyQftbyFz0x4kR8RRt9xAn7AnOx4Mxy/7EWfbuJPv7uLP+HOf/eqyoPJ6k/U6n/b/FLHPFcZbbmOkbflrnIvYzJllnSH7DWe+sbwe8CdZ/xVn/hwn695UE7f/QWferBOuuIsHNI4PP6F6HqUT/KuA92CG0cuywxWuxnhoDfC2uvfvw9X9J9ne9s/6n8+mzs4+LmHajbkmw/i3OMV4Xs8w9x4sp+p9z1r89wbrt2CGf4/P8jHcyt+i/EmvVtmIfhjcCb8PeEw1JjKEE+3mP0/7JRNdsBn12r8enk6x3HywmsfezC7EW9yXA4yRwU6c4Vlr3K6bvFd9Ost4dAnpXzLKnnWUXptGPI9gHih0J1r3V2c8XY5a1OMvaiDHsYta3A30JjhFJcq27v+E7Y5a5op/W95/ole/u/aeMMcFF3ucRY0yiIQI3EnUV1jqNZVYUszEmLCLdTvulOPaF2Avu4QTtf53BMcG6jP4TeFZEvoH9Uf7GGNObYptfJjluxOmby2XO+04neCye7c772cCz2Ju6BzBJ2ntj2rvswp6LRJ97T4JlC6XNGNOTYLn7uR8yxoQTrP8Fdoz5QqynIJZZ1xB2nBLsTS6eDud9/Rx9nTfGmF8y83ueAL4tIo9gXY1vFJF/NRm4ZheCiGzHWtFerOV2LG59CzZD4dvGmG8tcXd2Oe+/iF9hjDksIqeBVhGpMcYML/bBjTHfj1t0Evi8iOzDDj39uYh8zKRw9YvIq7Dnqwt4dZJrNl3e7rx/Nsl6N/17AHhZzH3uURF5OdZz+CYR+RtjTEfCPUyT7v3KvffUJLmXNDrvZ4NNa8R6H7uNMU+m6oCTGbIV6DDGHErQxL0uLkywbr8xJpJg+amYPsce41T8te6wh9nBuL/E3hveLyK7sF6I36Q45izyXfS7lmCf8WNRLu54lyfDbRK1X4xj1wADxphE43DdGRwTY8zHRKQPeBfwXuBPsaL7S+AvjDGJBGnWMYwxk85+Vscsrnfeb5+jG25Kldv+Iuc1V3uYPheJblpLcY0k22eN896ZZL27vDbBukTCMJnGuqxHPBtjTonIj7EepSuxDwAw3c+ahBtOL092nSfFEfwHsUM2bzDG/CBBsy9i3bXvynT/8yCd73oj9rtedNFPhjFmn4g8hs2guAz7kDQLEXkFNpCsB+shSz3OmwIRqcPGMPmx3qxEuN/5A/GGjbHZJI8CL8LGR6UU/QzuV+695HrnlQz3XuL+Lud66ICF/dZT3edja+O4x0h2P591HzLGjDj1Dj6EjRN6sbOqT0Q+g/V2pXy4y/fiPCbFuijJH1oSfRGFxghQ5+S+xpNuju8UxpgvG2Muxf5QXoIdM74S+KmINCbYZNYxnL40MDOY0r3h7TTGSIrXXXHtPz5H+2vijlGXJOWnOe2TkD7Jrju378mOuSauXSHjWlUVMcvcgNXtJGab8344kwOJLeqzB3ttvdYY890kTXdhHzh7Y4vEYAOzAP7GWXZ3JsdPQj5/14m+mylE5LXAt7FicpVJP9A4GbdiA/i+ZWYH8Lm4x0i23k3L9KVzwDTvV+65/5M57iVvjuvbujS6kI3v39022f084bGNMaeNMW/F/hbOwz4Y9QN/77xSku+in4pBoCmJEOzOdmeWgCex38/lCda9cL47NcYMGWN+bIy5HTu2WIf9McVzVZLjepy+ubjFNq5IswuPYR/Y0m0PNsK/iMSf++oM9rNQ3M/9wiQPY+6Dyr4E6wqNS5z3WAvxGNbNvN3JYojnJud9lks8GSLyPKzg1wGvMsbck6L5l7E3//jXr5z1+53/f57m4aMk99S53/XVCfq8FTvsciKFCC4Jzv3OHXqYZb2LyC3YjJIzWMFPWtwoA1wvXjLXPtgYJLAilAg34+hEJgee436V0b3HGDMOHMDqRiK3fGzbUez1vk5EtiVosuDfunOMo84xtiRocvUc2xtjzDPGmE8x7el4xVzHLWTRfwxr6b85dqGTvvOCXHRokXHHhD8cW0JTRGqw6RxpIyLXOKkq8bhu+okE6/5ORKbiFUSkDJsLC9OWlfv3EPAPInJxgmMXScw8BM5Y+VexqX9/JyKzbroisiVOVNzjfcTph9uuDlvgJSsYm8b2c2zAzoxa/SJyCTbQbRCIH4/NS5xUsPhlRU4K4WXYCPn73HXGRhL9j/PvvzmFdNztbsbefJ8lLh5ERDaKyA4n3Sh2+QVYl34VNkvh3lT9Nca81xjztvgX09fHvc6y/0rrBFjrKFnVwi86738b6wlzrtf/wN47v5DmcTJCRKpE5KwEy0uwY/QbsZH0e+PW34q9b5zEBgDP6dJ3vpcdKdZfgR0TP2CMSRRf5PIQ9qHrhSLyyrh93O7s42h8n5McM637lePmfwhbbfAtSfb1PCfF0+WTzvv/OvfS2LZFIrImZtEXselw/x57nxKRBqbvwV9kYXwJey39a9zvqRVrwc9ARM6VxCWq3WWJ7uUzyPcx/VR8Civ4/y0iL8IGSVyAvVn9iOlSq4XKl4E3ADcCB0TkB9jx3Vdjo2HPwloq6fB9YMwJ0GrDXshXYMfUn2D6KT2Wg8AzIhKbp78FW6BoalzPGNMvIq9xjvGIiDyALThksDfUy7AuurKYfb8H6wr+R2xwz6+xrsi12JvDRcAbmbYKvo7Nc325cy7ucc7Fa5xzkegpeal4JzZw5t9F5AbsTczN049iCy2NZrE/U4jI+7FFksD+FgDeLCKuh+TXxpjPx2zyuIgcwI7Zd2DHGF+AtdYmsGmE8YGnH8P+tl6DDdJ6ACtCr3W2eYuZXVfgy1jP0TU4gZfOA+UDWMvtAeAyEbmM2dyxhNb0A9hyvz/EWmxhbCbFr4wxD4vIv2HrcxxwfgfjWG/Gedig0n9P90Ai8h/Y4QuY9lj9hYj8gfP33cYYd1iiHjgoInuxv8NObFDaNdho/j5sEaup8ywi1zBd7+JB7Pce340hY8wdccsOurtI0vW5AvgA+0DoPHT8Eviuc04PYy38m7Dn7tY0g80yuV/9Ptaz9AUReS+2rssQ1hNzPva7ugwb2wA2ZfoKbEr0Eede0ou991yLPYcfdNr+h9P3m4GnnDiXcuy1vhqbYZRpUHU8/4m1zl8N7BORn2KHp92iUC+Pa3899t7zW+z57XE+683Y+8/c16SZZ9j/Ur6IqWw0R7sXOifGTfG5F/tFf5DkaXN7kuzrTmd9S8yyq51lH0yyTRtxaYOLdWxneRlWGE9g08jasCUu1znt707zfL4T+0M67pyrAaz78i+Jy+skeUW+49hI0mQplC3YojlHsLnEI1hr5CvAKxK0L8GK/8PYsa0g1kJ5AGtF1ydo//dMVyd0z8V8qhPuIXXKXsp9Oef/v7EpOCHsTfhu4KIEbW9z9nlbgnVJry/S/A0k+e6Sve6Ma//v2Jv0GaYrrR1yvseklb2wN75/dL7rIPam+W3i6jQk6NfVCT7fXK+WND63e44zTdlbjS26043NSpn1XWAfvH+NLTITwD7Q/g1xNQzSOFbbHJ/zgzFtq7EW6SPYYK4QNqvnKeBfSJxOetsc+zckSHF21yXp8yps8N6sCnwpPmcr9n52BvsQ1YmdEyBhZc4k+0j7fuW0r8Lmuz/hnCc/9r51L/ahpSLBNrc41/6w872ewHogd8W1K3P2fcDZ76hzPcyqHMocv1mS3Hec7/tj2AdvtyLf/yNBRT6sUfQxrLHRy/S98DskqJ+Q6CXOjpQCQkSuB34G/Isx5gOLvO892LHAZE/+iqIoSoFSyGP6yx4RWZtgWT32aR8KZOxYURRFyQ8KeUx/JfAxEdmJdYG79aFvwo6D/q8x5rFcdk5RFEUpLFT085vvYaMyX4YN7nDHFN1UJUVRFEVJGx3TVxRFUZQVgo7pK4qiKMoKoWDd+w0NDaalpSXX3VAURVGUrPDEE0/0GWMSlU1Pm6yLvojUYgsknIfNQXwLtm7zN7F5jm3YaTMHk+wCgJaWFvbunbO4k6IoiqIsC0SkfaH7yIV7/xPAfcaYHdj5kA8C78fOzrQNW5zl/Tnol6IoiqIsa7Iq+k6t4ytxIs+NMSFjS2zeDLizsN1FGpMGKIqiKIqSGdm29Fux+eZfEpEnReTzIlIBNBlj3PmJu5jH1LGKoiiKoqQm26JfjJ0W8r+NMRdiJ2GY4co3NocwYR6hiLxdRPaKyN7e3t5ETRRFURRFSUK2Rf80cNoY86jz/3ewDwHd7pSGzntPoo2NMZ81xuw2xuxubFxQAKOiKIqirDiyKvrGmC7gVMxc0S/Czr/9A+BWZ9mtwD3Z7JeiKIqirARykaf/x8BXRaQEO3Xim7EPH98Skbdipyt9XQ76pSiKoijLmqyLvjFmP7A7waoXZbsviqIoirKS0DK8iqIoirJCUNFXFEVRlBWCir6iKIqirBBU9BVFURRlhaCiryiKoigrBBV9RVEURVkhqOgriqIoygpBRV9RFEVRVggq+oqiKIqyQlDRVxRFWWF8/qHjvPRTD+W6G0oOUNFXFEVZYTx6YoCDnaPYmcyVlYSKvqIoygqjrW+cSNQQCEdz3RUly6joK4qirCCiUUP7wAQAY8HJHPdGyTYq+oqiKCuIM8N+QpPWwlfRX3mo6CuKoqwg2vsnpv4eV9FfcajoK4qirCBO9I1P/T0aUNFfaajoK4qirCDaYkRfLf2Vh4q+oijKCqKtf5wyr73165j+ykNFX1EUZQVxom+cc9ZUAyr6KxEVfUVRlBVCJGo4NeDnvHU1gIr+SkRFX1EUZYVwZshPKBLl7DXViOiY/kpERV9RFGWF4EbutzZUUFlSnLfR+8HJCH/z/afpHPbnuivLDhV9RVGUFUJbf4zolxXnraV/oGOYrz56koeO9OW6K8sOFX1FUZQVwom+ccpLPKyuKqWitDhvx/Tb+mwBoYk87V8ho6KvKIqyQmjvn2BTfQUiQmUei36745EYD0Vy3JPlh4q+oijKCqGtb5zWhnKAvBb9tn6dEGipUNFXFEVZAUxGopwcmKClvgKwop+vY/pu7EG+9q+QUdFXFEVZAXQM+ZmMGloarOhXlBYzlofR+8aYqSwDtfQXHxV9RVGUFcBTp4cB2La6EoCqsuTu/WfODPP5h45nrW+xDE2Ep1IJ1dJffFT0FUVRVgA/faaLhspSzl9fC0BFqYex4CTGmFltv/Lbdj5878GpgLps0hZzzAkN5Ft0VPQVRVGWOYFwhAcP9XDDuU14igSAylIvUQOBcHRW+6M9YwDcd6Arq/2EadFfW1Om7v0lQEVfURRlmfPrI31MhCLceG7z1LLKUg8Ao8HwjLbGGI44ov+TXIh+3wQisGNNdV6494cmQrzna/voGwvmuiuLgoq+oijKMucnB7qoLivmsi31U8sqy4oBGA/OdKH3jYUY9odZU1PG/lNDWS+F294/ztoaH6vKS2b1LRc8dmKAH/2uMydej6VARV9RFGUZE45Euf9gN9ed04TXM33Lryixoh8fwe+69t951RYg+y7+tv4JWhrKqXRiDnJNx5B96Hm8bSDHPVkcVPQVRVGWMY8eH2DYH57h2odpSz9eWI/2WtG/4dwmtjdVZt3F39Y/Tkt9BeVOHYFEgYbZ5Iwj+o8eH8h5XxYDFX1FUZRlzH3PdOLzerhye+OM5ZWliUX/WM8YlaXFNFeXceN5a3i8bYDe0eyMZw9NhBiaCNNSX0FlaTGTUUNwcnagYTZxLf2ukQCnBwt/1j8VfUVRlGVKNGr46TPdXLOjkTKvZ8Y6V/Tjg+WO9oyxpdHW57/x3GaMgZ8/252V/rY75Xc31ZdTUWL7m+u0vY5BP83VZQA8eqLwXfwq+oqiKMuUfScH6R0NcuN5a2atc0V/NE70j/SMssUp4HP2mio21ZfzkwOdS99ZptP1WhoqqEjyUJJtOoYCXLm9gdpyL4+r6CuKoij5yn0HuijxFHHNWY2z1k1H70+L6kggTPdIkK2O6IsIN57XzG+P9TM8EZ61j8Wmvd+m622sK086/JBNAuEIfWNB1q8qZ/emOh5bBsF8KvqKoijLAGMM3SOBGf/f90wXL9zWQFWZd1Z7n9dDkcyM3j/mRO5vbaycWnbTeWuYjBp+fnDpXfxtfeOsqS6jzOvJC0u/c9iez3W1Pi5preNE3zg9o4E5tspvVPQVRVGWAb841MOl//wAvz3WD8AzZ0Y4PeifFbXvIiJ20p0YUXXT9bY1VU0t27m+hjU1ZdyXBRd/W/84m+qnJwSC3Fr6HU7g3tpaHxe31gHw+InBnPVnMVDRVxRFWQYc6RnDGPjQD59hMhLlvgNdeIqE685pSrpNVbzo945R4iliwyrf1DIR4cXnNvOrI31LLsDtTo4+2LkBYHbxoGzipuutX+Xj3LXVlJd4eOxEf876sxio6CuKoiwDOh2BOtQ1yjceP8V9z3RxSWsddRUlSbepcHLhXY52j9HaUEGxZ6Y03HReM6HJKA8e6lmazmPjCfrHQ7S4ln5J7t37p4f8iEBTdRnFniKev2lVwUfwq+griqIsA84MBzirqYpLWuv45x8f5GjPGDeel9i171JZNtvSd4P4YtndUkdDZcmSVudr73PT9azoT6UUhnIn+meG/DRVlVFSbKXy4pY6nusezUpQ41Khoq8oirIMODPkZ21tGX//snPwh61L/IZz5hD90uKpuesD4QinBiam0vVi8RQJN5zbzIPP9RAIL427fTpdz3Xv597S7xi059TlotY6jIG97YVr7avoK4qiLAM6hwOsqfVx7toa/ujqLbzigrU015Sl3KYyxr1/om+cqIFtCUQfrIt/IhThoSN9i953sBPtAGyqs5Z+SXERJZ4ixnI5pj/sZ92q8qn/L9hQS4mniMcK2MWvoq8oilLg+EMRBsZDrKu1AXh/8eId3PGGC+fcLjZ6351ON5F7H+CiljpH8OYOZHvwUA9X/fuDjAbSd4O39U/QXF2Gr2S6cmBFqSdnln40augcCsyw9Mu8HnZuqCnocX0VfUVRlALHnf52zRyWfTyVMaJ/tGeMIoHWhoqEbcu8Hs5fX8Pe9rlT1u58uI32/gn2nxpKuy9tfeNsqi+fsSw+0DCb9I0FCUWirK/1zVh+cWsdBzqGmchhrMFCUNFXFEUpcM4M2YIxa+MEai4qY2ayO9Yzxoa68lk1+mN5fssqDnQMpxzX7xsL8uujdgjgqUxEv39iKnLfpaKkOGd5+qeHpnP0Y7mopY7JqOHJk+l/tnxCRV9RFKXAOeNY+mtrMhT9smKiBvzhCEd7xmZU4kvE7k11hCOG350eTtrm3t91EokaqsqK2X8qebtYxoKT9I0F2dQQb+l7cha97+bor1s185w+f9MqiqRwJ99R0VcURSlwzrj55DWlGW3nRsgP+8Oc6Btna1Nq0X/+plVA6uj1u/d3sKO5iuvPbuKp00NpzUHvBvG1xlv6pcU5K84TW40vlqoyL+eurSnYyXdU9BVFUQqczqEADZWllBYnd80nosoR/WfPjBCKROe09OsqStjcWMHetsTj+if7J3jy5BA3X7COnRtq6R0N0jUyd636trgcfZfKHI7pnxnyU1VWTHWCeQsuaqlj38lBQpPRHPRsYajoK4qiFDhnhv0Zj+fDtKXvjr0ni9yPZfemVTzRPkg0OtuCv2d/BwAvv2At56+vmbHvVLg5+vkUyNcx5J/Khojn4tY6gpNRnu4ovHF9FX1FUZQC58yQn7UZRu7DdNW7Jx1hTlSYJ57dLXUM+8Mc6x2bsXwyEuXu/R1c3FrHulofZ6+pxuuRtMb12/vHaawqnXoIie1fzgL5BpOL/kUtdpjjsQKcfEdFX1EUpYAxxnBmKDAvS78yxtJvqi5N6MqOZ/fUuP604O15rocbP/EQx3rHef3uDYBN8Tt7TXVCS//p08Nc9JH7OdI9CtjI/fjxfHAD+SJpxQUsNmeG/LOC+FzqK0tZV+vjSM9olnu1cFT0FUVRCphhfxh/OJJxjj7Y6H2AkcAk21ZXzdHa0tpQQX1FCXvbBjnaM8ptX3qM2770OOFIlM++6fm8ate6qbY719fydMfwrPw8wRoAACAASURBVKGAR0/00zsa5I4HjgCJc/TBuvcjUUMwy2Pno4EwI4HJlA9SFaWeJStJvJQUz91EURRFyVc63NSyeY3pTwf+pTOeD3aq3V2bVvGTA53cvb+D8hIPf/N7Z/OHl2+aFUh4/voavvJIO8f7xtga81BxvM+O4f/46U6eOjVEz2iQlgRFgWJn2ktVP2CxcesepDqnPq+HiVDhiX7WLX0RaRORp0Vkv4jsdZbVicjPReSI874q2/1SFEUpRDodgVozD9GvKp1256cznu9y9VmNBMIR3njxBvb8+dXcfuXmhJkDF2yoBZg1rn+sx87m5/N6+Kvv/g6YHcQHsZPuZFdcO4ZsNkEqS7/M68Gvop821xhjLjDG7Hb+fz/wgDFmG/CA87+iKIoyB24J3tga8elS5i2iSOzfc6XrxfLGizay/x9u4MOveB71lclrA2xurKSytHjWuP6x3nF2bazl1stbONRlx8Xjq/EBVDqeiGwH83U4D1Lrk4zpA5SXeKZmMywk8mVM/2bgLufvu4BX5LAviqIoBUPHUACvR2ioyKwwD1hXvRvMl657H6CoSNIK+vMUCc9bV8NTp6dFf9gfpm8syObGSm6/YjPlzgQ7KS39LFfl6xj04/UIjSkeaHwlaumniwF+JiJPiMjbnWVNxphO5+8uoCnRhiLydhHZKyJ7e3t7s9FXRVGUvKZz2M+aGh9FrsmeIZWlxdT4vDRUlixyzyw7N9RysHOE4KQVyONOqt+WxkrqKkp49zVbuXBjLVUJHiJc0c+2pX9maO5z6vMWF+SYfi4C+V5ojOkQkdXAz0XkUOxKY4wRkYT5GcaYzwKfBdi9e3f2czgURVHyDCtQmbv2XSrLillT60Nkfg8Nc7FzfQ3hiOFg5ygXbKjlWK8N4tvSaN35775mK+++ZmvivpVOB/Jlk44h/5zDJb6SooKM3s+6pW+M6XDee4DvAxcD3SKyBsB578l2vxRFUQqR+ebou7zv+rN43/XbF7FHM9npBPO54/rHe8fweoQNdbPd+fFU5Ej0zwz5WVebun/lJYVp6WdV9EWkQkSq3L+BG4ADwA+AW51mtwL3ZLNfiqIohUgkaugaCcwriM/lxvOaecHWhkXs1UzW1JTRWFU6JfrHesfYWFeO1zO3/FQ44/3ZjN4PR6J0jwRYN8c5LfPaQL5cFA5aCNl27zcB33fcSMXA14wx94nI48C3ROStQDvwuiz3S1EUpeDoHQ0SiRrWZDilbjYREXaur2X/aVf0x9mSZqZALiz9ruEAUTN7St143ADE4GQ0qzUEFkpWRd8YcxzYmWB5P/CibPZFURSl0FlIYZ5scsGGGu4/2M3geIj2/nGuPydhrPYsvJ4iSoqLGMti9P70OU3t3vc5Qj8RihSU6OdLyp6iKIqSIW6O/poFuPezwfnr7bj+vU93Eo6YtC19yP70umeG0qt74Ip+oeXqq+griqIUKNMCld+WvjvN7vf2nQZgc+PsQjzJqCj1ZHVMv2MwvXPqc9z7/izXEFgoKvqKoigFypmhAJWlxWkVysklteUltDZUsO+kM4VvQ/qWfkVJdqfX7Rjy01BZMqfLfsrSDyWeDCh+kqF8QUVfURSlQDmTRj55vrDTsfYbKkupKU//IWUu9/7QRIh7f9eZdH2mdAz504qRcAP5JpJY+q/874d5z9f2LVq/FgsVfUVRlAKlcziQ15H7sbj5+pm49gHKS4sZT5EP/6XftPHur+2jeySwoP652MI8c5/TspLUY/o9I4Epb0A+oaKvKIpSoJxJU6DyATeYL5MgPrCT7qSy9J908v/bnOl6F4IxxinMk76ln6j+fjRq6BsL0lCV+XwIS42KvqIoSp6x/9QQz54ZSdkmEI7QPx5i7QJK8GaTc9dWs36Vj8u21Ge0XUVJcve+MWaq6M/JgYkF93FgPEQgHE3rQSpV9P6wP0w4YlJO2JMrVPQVRVHyjL+9+2k++MNnUrbpHLbu7EKx9Mu8Hn79V9fy8p1rM9quojR5IF9b/wTD/jCQmegbY/jIvc+yP27K3zPOlLpzFeaBmOj9BKLfOxYEoDEPLf1cTLijKIqipMBW2gumbNM5VBg5+gvFDeQzxsyaFGj/qUEAvB7JSPR7RoN87qETRA1c4MQaAHQM2X2k496fjt6fLfp9o/kr+mrpK4qi5BHGGAbGQ/SNBRkJhJO2O+NY+vlejW+hVJQWEzUQCM9Ojdt/cojyEg+7Nq7KSPQPd48C0BUX/NcxlP45TSX6+Wzpq+griqLkESOBScIRm+OdKjjNLczTXCBj+vOlstSKayIX//5TQzxvXQ2bGys42Z++6D/XZUW/ezhO9Af9+LweatNIKSz2FFHiKWIikXtfLX1FURQlHfrHpt36J1KIfuewn4bKUkqL8y8tbDFxJ92JF/3gZIRnO0e4YGMtG+rK6R8PpV3E50j3GDDb0j8z5GfdKt+sYYRklHmLElv6o0FKiouoKs2/EXQVfUVRlDyifzw09ffx3uSi3zG0sCl1C4XNTorfB773u6mgPYBnz4wQjhgu3FDLxjo7Oc6pNF38h3uspd8zEpwxNW66Ofou5SXFSUW/sbI07YeHbKKiryiKkke4lr7IHJb+kJ+1BVKYZyFcsKGWO15/AU+0D/K6//nt1CRDbuT9zg21bKqzBX/a03DxG2M40j1GSXERoUiUgZiHrHRz9F18JZ6k0fv56NoHFX1FUZS8wrX0z2qqSir6bhGZ5R657/KKC9dx55svpmPIz6s+8zDPdY2y/9QQTdWlrKnxZWTpnxkOMBac5JLWOmDaxe8P2boH69NI13PxeT1MJLP0VfQVRVGUuegfs6K/a9MqTvSNz3A/u4wEJhkPRZZ95H4sL9jawLfecRmRqOE1//MwDx3pm0q3qyn3Ul1WTPvA3FX5DjtBfFdsawCYKt97Zji9KXVj8ZV4CCSw9PvU0lcURVHSoX8sSI3Py1lNVYwFJ6fSv2JxI/cLpe7+YnHO2mq+/+4X0FRdxsB4aKqeP8Cm+gpODvjn3IebrnfFtkYAuobt+XWn1F1XW552f3ze2e79yUiU/vFQXlbjAxV9RVGUvKJvPER9hZ2KFuBEgmA+d1x7pbj3Y1lX6+O777yc9167ldft3jC1fGNdeVru/ee6R1ldVcrW1ZWITLv3O4bmZ+nHu/cHxkMYQ17W3QcVfUVRlLxiYCxEfWWM6CcY18+kiMxypKbcy/tuOIuGGGt6Y305pwcniMwxj/2R7jHOaq7C6ymiobJ0Klf/zJCfIoHm6gxE3zvbvd/j5uirpa8oiqLMRf94kPqKUtbW+igpLkoo+p1DfoqLZIborXQ21pUTjpgpL0giolHDkZ5Rtq2uAqzAT1n6g36aq8so9qQvi+UlHiZCM2sD5HM1PlDRVxRFySv6HUvfUyS01JdzPIHonxny01xThqco//LAc4UbwZ+qMt+pwQkC4ShnNdvc/6bqsqlAvg6nME8mlHk9s/L03Wp8q1X0FUVRlFREooaBCTumD9DaUJHQ0j8zFFgROfqZMCX6Kcb1DzuV+LY1OZZ+TemMMf1MZywsT5Cn74p+vnphVPQVRVHyhMEJGwRW7whGa0Ml7f3js8ap52OVLnfW1JRRXJR6tj03cn/bamvpN1eXMTQRZiI0SddwIOMYCZ/XQzhiCEemJwPqGwtSVVo8NfVuvqGiryiKkie41eHqK62lv7mhgnDEcHpwWsgmI1G6RjIXqOVOsaeI9at8tM8h+utqfVSV2Ql1mpygvadPDzMZNRlb+q6wxwbz9Y4G8zZyH1T0FUVR8oY+JwisznXvN9oI/thx/a6RAJGoyahy3Ephwxxpe891jbKtqXLqf3eGwidODgJk7D1xRT92XN+tu5+vqOgriqLkCW41voYp9/7sXP2pIjIq+rPYWFee1L0/GYlyvHecs5zxfJhOz9vXbuv4z8e9D8wY18/nuvugoq8oipI3uJPtuIF89RUlVJUVzwjmc4vIqHt/NpvqyxmaCM+Yjc+lrX+CUCQ6FcQH0ORY+vtcS38egXzAjAI9+Vx3H1T0FUVR8oaB8RBFArXlVvRFhM1xEfyupZ/p+PNKINXEO0ecIL5YS7+qtJjyEg8D4yFqy71UlBZndLyyOEs/EI4wGphU0VcURVHmpm88xKrykhn59/Fpex1DfhoqS6cER5lmY4opdg93jyECW1dPj+mLyJSLfz4pkOUl9iHBHdN3YzIanEDMfERFX1EUJU/oHwtORe67tDZU0jHkn4oQ13S95Gyos+cl0bj+4e5RNqwqn5VK50bwz+ecTo3pO6Lv5uirpa8oiqLMSf9YiPqKmYLhRvC39Vtrv2PQz3p17SekqsxLXUVJUtHfHuPad3Ej+OcTI+E+QEyE40S/Mn8nQlLRVxRFyRMGxkOzLP3NMRH8xhi19OfARvDPrGIYmoxyom+c7THpei6rq+1D1kJEP+Ba+nledx9U9BVFUfKGvrHgVOS+S0vDdK5+71iQ4GRUI/dTkCht70TfOJNRw1nNCSx9d0x/PqIfF8jnWvrxD275hIq+oihKHhCajDISmJwqwetSWVrM6qpSTvSNT+foq+gnZVN9OWeGAjNK4z43VX53tui31NuHKrcmQibEp+z1jgapqyjBm8FMfdkmf3umKIqygogvwRvL5kYbwT+Vo6/u/aRsqCsnEjWcGZqeYvdI9yieImFz42xhv2p7I9971+Wcs7Y642OVFhchMtPSz+fIfVDRVxRFyQv6x93CPLPHg1sbKmda+ir6SUk0297h7lE21ZcnTHMsKhJ2bVw1r2OJCD6vB39oErDDM/k8ng8q+oqiKHmBW4I3oaXfUMHAeIhnO0eoKium2pkwRpnNpnor+rG5+oe7x9iewLW/GPi809Pr9o7ld919UNFXFEXJC6Yt/dmi7443/+Zon47nz0FTVRklnqKpqnyBcIT2/nG2JwjiWwx8JR4mQhGMMXlfghdU9BVFyUNGArNrpy93ekZSuPedsei+sZDOrjcHRUXC+jrflHv/aM8YUUPCdL3FwOf1EAhHGAtOEghHVfQVRVEy4d7fdXLhP/6cJ51JUFYCxhju3n+GbasrqfbNrv++YVX5VGletfTnZlNd+ZR7/5Hj/QDsWCJLv9yx9AuhGh+o6CuKkkcEwhE++uODRKKGzz90ItfdyRq/OdrPwc4Rbr9iMyIya31JcREbHAtfg/jmZmNdOacGJugbC/LJB45w+ZZ6tjQujaVf5vXgjxH9Bh3TVxRFSY+7Hm6jY8jPxa11/ORAJ6cHE8+Nvtz43EPHaags5eYL1yZt447rr6stz1a3CpaN9RWMBid5/3d/hz8c4R9vPi/hw9Ri4Cux7v1CqMYHKvqKouQJA+MhPv3gUa7dsZo7Xn8BIsJdD7flultLznNdo/zycC9vfkELpcXJZ85rbbCWqlr6c+Om7d1/sIe3XbF5xsx6i43r3u+bqruvoq8oijInn3zgCOPBST5w0w7W1vq46bxmvvHYKcaCk7nu2pLyuYeO4/N6uOWSjSnb7dxQg8/roaVeLf25cEV/bU0Zf3zt1iU9VpmTstc7FsRTJKwq1+I8iqIoKRkPTvLVR9t53e4NbHNmQnvrC1sZDU7y7b2ncty7paN7JMA9+zt4/UUbqJ1DLF6+cy0Pv//aOdspdijkBVvr+ZdXnz815/1SUV4yPabfUFlCUdHSDCMsFir6iqLknCfaBwlHDC85f83Usgs3rmLXxlq+9Js2IlGTw94tHXc+bD/bW17QOmdbEWFVghx+ZTYlxUV89W2XcuX2xiU/llucpxBy9EFFX1GUPOC3x/spLhKev2lmOdS3vnAzJwcmuP9gd456tnSMBSf56iPt3HheMxvVZV+w+EqK8Ycj9IwG8z5yH1T0FUXJAx453s/ODbWzXLEvPreJdbU+vvDr5Ze+963HTzESmOT2KzbnuivKAvB5PRgDpwf9eR/EByr6iqLkmPHgJL87Pcylm+tmrSv2FHHb5S08dmKAAx3DOejd/Pjzbz/FPfs7kq6fjET54m9OcFHLKi6c52QvSn7gTq877A+re19RFGUu9rYPEokaLt1cn3D96y/eQEWJhy8WiLUfCEf47r7T/PJwb9I29z3TxelBv1r5ywBfzMx9KvqKoihz8Mjxfrye2eP5LtVlXl67ewM//N0ZekYCWe5d5rT1j2MMDE8knz/grofbaG2o4Lqzm7LYM2UpKCtR0VcURUmbR473s3P97PH8WN7yglYmo4avP5b/6XvHe8cBGPInFn1jDE93DHPtjtV5n96lzE15rKWvY/qKoijJGZsaz0/s2nfZWF/OWU1V7D+V/5PwnOhzRH8ilHB9z2iQQDiqRXaWCb4YS79BLX1FUZTk7G0bSDmeH8tZzVUc7h7LQq8WxrFe28fhJJa+O/vbpvqKrPVJWTp86t5XFEVJj0eOD+D1CLs21c7ZdntTFR1DfkYDycfK84FpSz+MMbOLCrX12/Wb1NJfFriBfKXFRVSVLm31v8VARV9RlJyRzni+y3anPO+Rnvy19o0xHO8dRwQmo4bxUGRWm/b+cYqLhHW1OnHOcsBN2WusKl2ymfwWk5yIvoh4RORJEfmR83+riDwqIkdF5JsiorUmFWWZMxac5OmOucfzXc5yRb97dCm7tSAGJ8IM+8NsX237mmhcv71/gvWrfBR71OZaDriWfiG49iF3lv6fAAdj/v9X4OPGmK3AIPDWnPRKUZSs8bgznn/ZlvREf/0qHz6vh+e68tfSP+6M57vDFUMJ0vba+yfYqOP5ywY3Za8QIvchA9EXkRIRuVREXiUit4jIi0WkJdMDish64CXA553/BbgW+I7T5C7gFZnuV1GUwsLNz9+VZkW6oiJhW1Mlh/PY0nfT9S7cYD9TfDCfMYa2/nGN3F9GuJZ+IUTuA6QcSBMRD/BK4G3AVUAJEDtoYUSkA/g68DljzNE0jnkH8JdAlfN/PTBkjHEnzT4NrEv7EyiKUpA8cnyACzbUzoh+novtTVUpK93lmuN943g9wrnrqoHZlv7QRJjRwKRG7i8jvJ4izl9fw/MLpJxyUktfRF4DHAL+DwgCfwtcD+wEtgOXAr+PtdBfCRwUkc+JSNISUyLyUqDHGPPEfDorIm8Xkb0isre3N39/+IqipGY0EOZABuP5LtubKukdDTI4njgHPtcc7x1jY1351Gxr8Zb+VOR+nVr6y4kfvOeFvPr563PdjbRI5d7/JPBfQLMx5mZjzH8aY35hjHnaGHPUGPOYMeabxpj3GWO2Ay/EWu1vT7HPFwAvF5E24BtYt/4ngFoRcb0O64GEM1UYYz5rjNltjNnd2Lj08yQrirI0zFVvPxluBH++uvhP9I2zubGSGp8XgCH/zIcTN0e/pUFFX8kNqUR/szHmDmPMUDo7MsY8aox5FfDvKdp8wBiz3hjTArwB+IUx5hbgQeA1TrNbgXvS6r2iKAVJpuP5Lmc156/oR6KG9v4JNjdWUOb1UOYtmlV/v71/AhFYv0pFX8kNSUXfGDOvmS3mud1fAe8TkaNYb8EX5nNsRVEKg0eO9XPhhlUZjecDNFeXUVVazHN5KPodg35CkSibG+x4fY3PO2tMv71/nDXVZZR5M/vcirJYpFU+SES2A7XGmMec/33A3wPnAT81xnw60wMbY/YAe5y/jwMXZ7oPRVEKj9FAmKc7hnnPNVsz3lZE2J6n5XiP9dk+bW6sBKDWVzLLvd/WP65BfEpOSTdl79NMu98BPgL8P2At8HERefdid0xRlOXJ3vZBooaMx/NdtjdVcbh7NGGJ21ziputNWfrliSz9CR3PV3JKuqK/E/gNgIgUAX8I/JUx5vnAh0kdvKcoijLFCUccd6ypntf225sqGZoI0zsaXMxuLZhnOoap8Xmpq7AFRWt93hnR+6OBMP3jITbWqaWv5I50Rb8G6Hf+vhBYxXQxnT3A5sXtlqIoy5XukQAlxUWsKvfOa/ttTonbo7354+IfHA9x79Od/N7zmqfqr9fGWfpTkftamEfJIemKfjfgDsDdABwzxpxy/q8EJhNupSiKEkf3SICm6vlPTlJfaS3pRCVuc8U3Hj9FcDLKrZe3TC2rLZ85pq9T6ir5QLrzAP4A+GcROQ+4DfjfmHXPA44vcr8URVmmdI0EaK4um/f2bg78SJL56rPNZCTKV37bxuVb6tnRPD1kUePzEghHCYQjlHk9tA/olLpK7knX0n8/8CPgxdgHgI/ErHs58LNF7peiKMuU7pEgqxcg+tWu6AfyQ/R/9mw3Z4YD3BZj5YN178N0Vb72vgkaKkupKIA515XlS9KrT0TWGmPOABhjxoHbE7Uzxly+RH1TFCUPMcYQikQpLc4819wYQ9dwgGt3rJ738StKPHiKZFaJ21zxpd+cYEOdjxedPbMCea1vehiiqbpMJ9pR8oJUlv5pEXlMRP5aRM7JWo8URclrfvpMF7v/6X4G5lH/fiQwiT8cWZB7X0SoLitmxJ/7UKIDHcM83jbIrZe14CmaGaPgWvpDE/Y8nRyY0PF8JeekEv3LgQeANwEHROQ5Efk3EVHLXlFWMIe6RhkNTvJE+2DG2/aM2IKdTTXzF32wLv58cO/f+XAb5SUeXrt7w6x10/X3wwTCETqHAzqer+ScVGV4H3Fq5Z8NnAN8CbgCeEhEOkXksyJyk4iUZKuziqLknr4xmx+/72Tmot/liv4C5x6vLvPm3L3fNxbkB/vP8Opd66cEPpapMf2JMCcH3Mh9FX0lt6QVyGeMOWSM+RdjzGXYue4/BGwAvg/0isi3ROSNS9hPRVHyBLcozr55WPpdw1b0mxds6RfnPHr/64+eJBSZmaYXS225M6bvD8Xk6Kt7X8kt6UbvT2GM6TLG/I8x5iagEXgHEAU+s9idUxQl/+gbs2PUvzs9zGQkmtG23a6lv4AxfbCu85FA7sb0Q5NRvvJIO1dub2Tr6sqEbSpKPBQXCUMTYdr7NV1PyQ8yFv1YjDGjxphvGGPeAMw/HFdRlIKhdzSIz+vBH45wqGv2bHeTkSinHHd2PF0jAWrLvQueZS7X7v2fHOikZzTIm5NY+WADDmvLvQz5w7T1j1Pj805Z/4qSK9JOGBWROuAlWLd+/GO6Mcb8w2J2TFGU/KRvLMhV2xu575ku9p0c5Lx1NTPWf3ffaf76+wf42Z9dyZbGmVZw13CQpqqFWfngBPLlUPTvfLiN1oYKrtremLJdjc/L8ESYkUBY0/WUvCDdqXVvAL4LJBuQMoCKvqIsc8aDk0yEIpy/oYZ9JwfZ1z7IH17WMqPNM2dGiEQNX3/0JH/70pnZvj2jgQVH7oMV0+DkdLW7bGKMYf+pIf7oqi0UFaUuJeyW4j014Gfnhtos9VBRkpOue/9jwJPY2fZKjTFFca/s/uoURckJbuR+Y2UpuzauYt/JoVltTvTZ8etvP3GaQDgyY13XcIDm6oVF7gNUl1l7ZTQH4/qBcBRjoKps7gmDan1e+kZDdAz51dJX8oJ0Rb8F+CdjzNPGmNwnxyqKkhOmRL+qlF2bajk5MDG1zOV47zgb6nwM+8Pc+7vOqeWTkSh9Y8EFFeZxcUvx5mJcfyJkHzTKS+a2dWrKvRztHSMSNVqYR8kL0hX9J4G1S9kRRVHyHzddr8Gx9GFm6p4/FKFjyM+rd61nc2MF//do+/S2Y0GihgXV3XfJZf39iZD1XvjSEP1aXwmRqAE0cl/JD9IV/fcBfykily1lZxRFyW96nXS91VWlnLeuBq9HZrj425zUtC2NldxyySaePDnEM2eGgZgc/cUQ/bLczbTnd4Ys0rH03QI9oKKv5Afpiv4T2JK8vxaRERE5Gfdqn2sHiqIUPr2jQUSgrqKEMq+Hc9bWzKjMd7zXiv7mxgpevWsdpcVFfO3Rk4CdXQ8WXpgHoMZnx/Rz497PXPTLSzw0Vi48lkFRFkq6KXv/CbwH6+Y/BGQ+04aiKAVP31iQuvISij3WXti1sZavP3aScCSK11PE8d4xAFobKigvKeZlO9dy95MdfOD3zl60wjwQ697PfiCfO6bv8859+3TL826sK0ckdaS/omSDdEX/Nmwgn6blKcoKpnc0SEOMxbpr4yq+9Js2DnWO8rz1NZzoG2dNTRnlJfbWcsslG/nOE6e5+8kOukYCFBcJ9RULL1CTU/d+BmP6ruhr+V0lX0jXvR8FfrWUHVEUJf/pGwvSUDUt2rs2OcF8jov/WN84mxunBe6CDbWcu7aarz56ku7hAKurSufMbU+HMq+HkuKiAhjTt+dqU4OO5yv5Qbqi/23gpqXsiKIo+U/vaHDG2PTamjKaqkvZd3IQYwzHe8fY3DBdhU9EuOWSTRzsHOGXh3sXpTCPS02Optedit5PoyhQozOb4NbGxPX5FSXbpOve/wnwcRGpAe4DZk2vZYz5xWJ2TFGU/MIYYy39GNEXEadIzyB9YyFGA5O0Nsx0Zd98wVo++uOD9I+HuLi1btH6U11WzIg/+2P6/gwC+dbV+vj2Oy/jAq3Gp+QJ6Yr+9533tzovFwOI865V+RRlGTMeihAIR6esV5ddG1fxkwNdPN42ADDDvQ9QUVrMKy9cx1ceaV+UID6Xal9uJt2Zjt5P7/Z5UcviPegoykJJV/SvWdJeKIqS98QW5oll1yZrxX73idMAsybZAbjl0o185ZF21q/yLVp/anxeBsazn0jkD00iAmXeBU1Sqig5IS3RN8b8cqk7oihKfhNbgjeWc9faIj17DvdSUlzE2trZwr6juZpvveMyzl5TtWj9qS7z0ubU+c8mE6EIPq9HU/CUgiStR1UR2S4iVyVZd6WIbFvcbilK4dI9EmAsmP2x5qUmmaVf5vVw7toaIlFDS305niTR+Re31qU1SU26VPuKc5OnH46kNZ6vKPlIuv6pO4CXJVn3UuDji9MdRSlsRgJhbvrEQ3zk3oO57sqik8zSB6bq8MdG7i81Nc6YvjEma8cEG8iXTo6+ouQj6Yr+9te/YwAAIABJREFUbpLn6f8KuGhxuqMohc3nHzrBwHiIp07NnnK20OkdDVLklOCNxx3Xjw/iW0qqy7xEomYqsC5bTIQm00rXU5R8JF3RrwICSdaFgZrF6Y6iFC4D4yG+8NBxigSO9owxGYnmukuLSt9YkLqKkoTu+4tb6/B5PVzoWPzZIFcz7U2EIvjSjNxXlHwjXdE/DrwoybprgbZF6Y2iFDD/88tj+MMR/ujqLYQiUU7kIMhsKYkvwRvL6qoy9v3d9Vx39uqs9cctxZvttL1AOEK5WvpKgZKu6H8Z+DMRebeIlAKISKmIvBv4U+CupeqgohQC3SMB7nq4jVdcuI6Xnr8WgINdoznu1eLSOxZKOJ7v4ivJbkS7W9c+2wV6JkIayKcULumK/n8APwA+BYyLSA8w7vz/A+Bfl6Z7ilIYfPoXR4lEDX/6ou1saaykuEg41DmS624tKn1xJXhzTbUzvW626+9rIJ9SyKSbpx8BXiMi1wLXA/VAH/AzY8yepeueouQ/HUN+vvH4SV530QY21tuJVbauruRQnlr6fWNBnjw5xI7mKtav8qVlnRtj6B0L0pDC0s82uXLvq6WvFDIZRaM49fW1xr6ixPDpXxxFEN59zdapZTuaq3jsxEAOe5UYYwzv/fqTPHysH7D1699z7VbefuWWlNuNBicJTUbzytKvyVkg32TaJXgVJd9I6t4XkXkVyZ7vdopSiJwamODbe0/xhos3sC6mEt2ONdWcGQ4wPJH92vCpePC5Hh4+1s8fXb2Fj7zyPDbUlfO5h04QjabOdZ8qzFM1O10vV1SVue797I7p+8Pq3lcKl1Rj+m0i8mciktb0UCJyuYj8APiLxemaouQ/n/7FUYqKhHddvXXG8h3Nttzsoa78GdefjET56I8P0dpQwZ9dt51bLtnE7Vdspnc0yFOnU9cV6HNEv7Eyf57piz1FVJR4sureD0eihCNGo/eVgiWV6L8LeAfQKSLfF5H3iciLROR8ETlLRC4Vkd8XkTtE5CiwB+gEPpuFfitKzmnvH+c7+07z+xdvpDlunvgdzdUAeTWu//XHT3G0Z4z337SDkmL707/mrNV4ioT7D3an3LZ3LP8sfbAu/my6991CQGrpK4VK0oEpY8z3ROQe4BXY6XQ/DJRhp9F1EaAd+CbwWWPM8SXsq6LkFZ984CjFRcK7rp49Ht5UXUptuTdvLP2x4CR3/PwwF7fWccM5TVPLa8q9XNxSx8+f7eYvXrwj6fZ9Seru55pqnzer0ft+FX2lwEmZsmeMiRhjvmuM+T2gFrgUeDVwC3AjsMkY02qMeb8KvrKSONE3zvefPM2bLt3E6gRzxIsIO5qrONiZH5b+3rYB+sdD/PG1W2dF619/ThOHu8do709eTKh3LIinSFhVnl+WfnXZbEv/N0f7uOSj9/PkycFFP54/bEVfo/eVQiXtCaGNMSFjzGPGmLuNMd8wxvzcGHNqKTunKPnKJx84Qmmxh3dclTzqfUdzNc91jc4ZJJcNTg/6Adi2evbUttc7lv/Pn03u4u8bDSUtwZtLqn1ehmMC+R4+2sdb73qc7pEgjy5B9sREyB7L59XofaUwSVv0FUWxHO0Z5Z79HfzhZZtSVqg7e00V/nCEkwMTWexdYjqG/Hg9wuoE/d1QV86O5qqU4/q9Y/lVmMel2lc85d7/7bF+3nLX42ysK6ehsoTD3YvvZXHd+2rpK4WKir6iZMgnHjhKmdfD26/cnLLddDBf7sf1Owb9rKnxUZTEUr/u7CYebxtkaCKUcH1fnhXmcXHd+48c7+ctdz7OhlXlfO32Szl7TTVHuscW/XgTKvpKgaOirygZYIzhp8908epd66mfw/Ld3lSFSH5E8HcM+WfUEYjnunOaiEQNDz7Xk3B9vpXgdanxeRkNTPLmLz3OulU+vnb7pTRUlrK9qYojPYs/tKLR+0qho6KvKBkwNBEmNBmltWHueeN9JR5a6ys4lAfBfKcHJ1i/Krnon7+uhtVVpdz/7GzRN8bQNxbKu3Q9mJ5ed21tGV+7/ZKp4ZbtTZUEwlFODS7u0Io/bMf0tSKfUqio6CtKBnSPBgBoShCxn4gda6py7t4PTUbpGQ2yLoXoFxUJLzq7iT3P9RCcjMxYN+KfJBTJrxK8Li/YWs/vPa+Zr99+Kaurpr+TbU02YPHwIrv41b2vFDoq+oqSAd0jNl+9qTo9AdzRXE37wATjweyWio2lc9iPMaR07wPccE4T46EIjxyfGfXeO2YfdFIFLeaKHc3VfOaW589Km9y2uhJg0YP5NE9fKXSS+qhE5IsZ7McYY966CP1RlLymeyRDS7+5CmOs+Fy4cdVSdi0pHU66XipLH+CyLfX4vB7uf7abq7Y3Ti3vHbXBfflo6SejqszL2poyjiyy6E+N6WsZXqVASTUwdS0zq+/VAjXAJNCPnV63GBgGFr8KhqLkIT0jmVm9Z6+ZLsebK9E/PWRFf31tecp2ZV4PV25v4P6D3fzjzedOFfGZLsFbOKIP1sW/2O59fziC1yN4PeokVQqTpFeuMabFqbbXCrwJGAPeAPiMMWsAH/BGYBT4g2x0VlFyTfdIkNpyL2VpWnrran1UlhZzqDN34/qnB/2IMGt+gERcf04zncMBnjkz3d98LcE7F9ubKjnWO0ZkESP4/aGIWvlKQZPu4+rHgH82xnzLGBOBqRK93wT+FbhjqTqoKPlE90iA5jRd+2AD5M5qruJgDtP2Ogb9NFeXTU2yk4prd6ymSOBnMdX5eseCFBcJtU6kfKGwramK4GR0UYsjTYQmNXJfKWjSFf3nAUeTrDsCnLc43VGU/KZ7NJiw1n4qzmqu4lDnCMbkphxvx9DEnEF8LnUVJezeVMf9MaLfNxqkvrIkaWGffGX7VAT/4j1wTYQiGrmvFDTpin4X8Lok694ApJ6XU1GWCT0jAZoyHNs+u7mKkcAkncOBJepVajqG/HMG8cVy3TmrebZzhNNOjnvfWDAvI/fnwo3gX8xgPn8oopH7SkGTrujfAbxFRO4VkdtE5Cbn/cfArVj3v6Isa6JRQ89oMO3IfZcda3JXjjcSNXQOBdK29MGO6wM8cNAW6ukdCxbceD5ARWkx62p9ixrMp5a+UuikJfrGmE8At2Pd/F8E7nXezwVuN8Z8asl6qCh5Qt94kEjUpJ2j73JWs3Uz52Ka3e6RAJNRk5Gl39pQwZbGiqkJePpGQwWVrhfLWc1Vi+veD0fw6Zi+UsBkMrXuF4BNzutS573FGJN2Pr+IlInIYyLylIg8IyIfcpa3isijInJURL4pIvlX71NZ8fQ4hXkyHdOvLvOyrtaXkxr8HW663qrU6XrxXHdOE48c72fYH87byXbSYVtTJcd7x5mMRBdlf/7QJOUava8UMBklmxrLKWPMY857ppFJQeBaY8xO4ALgRhG5FJsB8HFjzFZszr8W+lHyjkwL88Ry9pqqnKTtTRXmycC9D7Y6Xzhi+MH+DiajpmAt/e2rqwj9//buOz6uu8z3+OfRqFerW5bcux3XOHEaaSQklCVhAyywQOBSLvdedmnLAsuycGFhgaXeu2zJhZDsEsiyLJDQUkhCsumusR2XuMm2ilWs3sv87h9nRpZkSR5JM5r2fb9eekk6Z+bMo5OJn/m15zfsp/pceGbw92hMX+JcyEnfzLaY2c/NrNnMhsxsa+D4V8zs1lCuEfjQEBxgSwt8ObxCQD8LHL8XuD3kv0Bkjky3BO9o6yryOdHcTXtg7/e5EmzpTzfpb15YSHFOOj9+8QwQf4V5goIz+MM1ma9vUElf4ltISd/MrgGeA9YAPx73PD/woVBf0Mx8ZrYXaAQeBY4Dbc65YHHyGqAy1OuJzJWGjj7MZlak5rrVZQz7HX+YZOvaSKlp7aE4J33aicqXYrx6bRmHAr0TJbnxOeK2oiwXs/BtvNMzMKzufYlrobb0vwo8jDdx7+Pjzu0Gtob6goGiPpuBKuByvA8SITGzD5rZTjPb2dTUFOrTRMKisbOP4pyMGZVg3bJwHqV5GTzy8tyubq1pnd5yvdFuWls+8nNZnLb0s9J9LCzM5pXG2bf0nXP0Dmr2vsS3UP/12gr8U2AMf/w4fjNQeuFTpuacawOeAK4E5plZcEpsFVA7yXPucs5tc85tKy2d9kuKzEpDR/+MuvbBq8x38zpv69q+weGLPyFMatt6qZph0r9mZQkZgSp+8bhkL2hVeW5Yuvf7Bv04h2bvS1wLNen3AZNN/63A23Tnosys1MzmBX7OAm4GDuEl/zcHHnYn8ECIcYnMmYaOvhlN4gsKbl377PHmMEY1OeccdW290x7PD8pOT+VVK0tI96VQEGcleEdbWZ7HyeZuBmc5g79nwBuBVEtf4lmoSf9p4KNmNvrdHmzxvw94PMTrVABPmNk+YAfwqHPu18CngI+b2TG83ft+EOL1RObMbFr6AFctLyEvI3XOuvjPdQ/QN+ifcdIH+OQta/i7P94wsuNePFpVnsvgsKO6uXtW1xnZVldJX+JYqP1UnwOeAV7Cm2XvgDvN7FvApcBloVzEObcP2DLB8RN44/siMWlw2M+57n7K8mbe0k9PTeH6NWU8erCBL7/J4YtwLfua4HK9aa7RH231/LyR4kLxamVZsAZ/FyvLZ/639AaGZdTSl3gWakW+l4Br8WrsfxYw4MOB09c5545EJjyR2NDc1Y9zM1ujP9ot68s51z3A7tOtYYpscjNdo59oVpTlkmKz33gn2NJX0pd4FvKMFOfcbuDVZpYJFOEtswvfnpUiMWw2a/RHu25VKem+FB4+cJbLlhSFI7RJ1bZ5/3vOdPZ+oshM87GoKJujs5zBHxzTz9SSPYlj01975H1QSAPmtsqISBTNphrfaHmZaWxeOI+9Z9rCEdaUalt7yctMjetJeOGysjxv1mv1+0a69zV7X+LXdCryvcHMduPN1D+Ot/kOZvZ9M3tHhOITiQmNgaRfNsuWPsDyshxOzHJSWShqZzFzP9GsKs+lurmbgSE/nX2DfOKnL017GZ+69yURhFqR73a8ZXTNeDPtRz/vJN4yO5GEdbajD1+KUZwz+6S/rCSXlu4B2noGwhDZ5GpaZ75GP9GsKs9jyO842dzN3zzwMv+5u4YfPls9rWuMzN5X977EsVBb+p8Hfuicew3wnXHnDgCXhDUqkRjT0NFPaW5GWGbcLy3JAYh4a7+2VS39oGAN/r9/+Ai/2FNLQVYaDx04O63d93rV0pcEEGrSXwv8e+Dn8RX5WvHW1oskpK7+IZ56pYmV5blhud6y0kDSb4pc0m/vHaSzf2jaW+omqmWlOfhSjN8fauDyJUX83R9voKV7gOdPtIR8jfPd+xrTl/gVatLvAEomObcEUCF8SVj/8PgxGjv7+fjNq8JyvYVF2aSmGCeawrMJzERGluupex+AjFQfS4qzyc9M5dtv28yNa8rISffxm/11Ez7+qVeaODZutn/vwBBmkJk2k/nPIrEh1Hfvo8BngiV0A5yZZeCt1/9d2CMTiQEnm7u5++mT3LG1ii2LCsNyzTRfCouKs8Pa0j9U38EVX3mM04F942taA8v11L0/4utv3siP3r+dynlZZKb5uGldOQ8dOHtBed6W7gHu/OGL3Pztp/jzn+wZSf49A8NkpfniujqhSKhJ/7PAfOAI8H28Lv5PA3vxNsj5QiSCE4m2v/31QdJTU/jUravDet1lJbmcaA5fS//xw42c7ejj94e8Er+1bWrpj3fp4iI2Vp1vt7x+QwWtPYM8d/zcmMftPtWKc/C6DRX8/lDD+eTf1KXxfIl7oVbkq8bbae/XeJvkDONV6Hse2O6cm7iPTCSOPXGkkccON/JnN66gbJbr88dbXppD9bkehv3jp8jMzO5TXoW/5054Cay2tZfMtBSKc9LDcv1EdO2qUvIyUvnNvvoxx3edbiU1xfjmWzbx9Kdu5EPXLef3hxr4w5EmFeaRuDedinw1eJvriCS8gSE/X/rVQZaV5PDeq5eG/frLSnMYGPJT29rLouLZTbZzzrErUNb3xZMt+P1uZI2+uqInl5nm4+Z15Tz08ln+9k2XkObz2kC7TrWyvrKAzDQfmWk+PnXrGj7wqmXc/fRJinP1IUri27RnpJjZAjO7zMwWRCIgkVhwz7MnOdHczef+aB3pqeGfuLW0xFsJcDwMXfwnmrtp6xnkymXFtPcOcrC+w0v6mrl/Ua/fWEF77yDPHPO2Ox4c9vPSmTa2Lpo35nFFOen8xS2rI/IBUGQuTaci37vN7CRwBq9b/4yZnTSzd0YsOpEoaOzs4/88dowb15Rxw+qyiLxGOJft7Qp07f+vG1YA8PyJc9RojX5IrllZQl7m+S7+g3Ud9A/5uXRxeCZtisSaUCvyfRi4BzgKfAB4Y+D7MeBeM/tfkQpQZK59/aEj9A8N87k3rIvYaxTnpJOfmcrJMLT095xupSArjauWF7O0JIfHDzfS0j2ganwhyEj18Zp183n45bMMDPlHdj9U0pdEFWpL/xPAPc651zjn7nbO/Sbw/Wbg34C/iFyIInOnrq2Xn+2q4b9dvXSkcl4kmBnLSnPD1tLfumgeKSnGFcuKRybzqaUfmjdsrKCjb4injzWx61QrCwoyqSjQvZPEFGrSnw/cP8m5HwPl4QlHJLrq272lbletmKwWVfgsK82ZddJv7x3klYYutgZqCFy5vBgXWBCgln5orl5RQn5mKr/eV8/uU61sVStfElios/f3A8snObcSr/6+SNxr6/F2jJ6L7WiXl+by8921dPcPkZNx/n/FnoEhqpt7ONfdT3NXP82dAzR395OaYnzsplWk+s5/Vt8zrjv6iqVFI+e0Rj806akp3LJ+Pg++VEf/kJ8PKOlLAgs16X8EuN/MmoGfO+eGzcwH3AF8EnhbpAIUmUvtvV7SnzcHST84fHCyuZuFRdk8dqiB3x04y1OvNNE/NLZKXIqB38GNa8rHjDfvPt1GisGmhd5s87L8TJaX5nDqXA9leeGtLZDIXr+xgv/YVQNoPF8SW6hJ/6dAPl4X/7CZtQKFgA/oAn46aj2wc84tDnegInMh2NKflx35pB+cwf+xf99L9bluBocdFQWZvP3yRVy+tIiS3AxKctMpycugvWeQV339CQ7Vd4xN+qdaWVuRP6an4I2bKnmx+lxYdgRMFlevKKEgK43+oWHWVuRHOxyRiAk16T/GhbvriSSctt5BzCAvM/JJf0lxDiW56fQNDfPeq5fy2kvms6nKm5A3Xl5GKnmZqRyq7xg5Nux37Dndyh9vrRrz2I/ctBJv1E1CleZL4YPXLqOps3+kSI9IIgop6Tvn3hPhOERiQnvPAHkZqXPSSs5M8/HCX91EinHRynlmxtqK/DFJ/8jZTroHhtUdHSbBOgciiWxWH2nNrDhcgYjEgvbeQeZlz12pVV+KhVwqd11FPofPduIP1OvXmnIRma5Qi/N8wMw+Oer3DWZWAzSa2U4zmx+xCEXmUFvv4JyM58/E2oo8egaGOd3ibZu7+1QrpXkZWponIiELtaX/Z0DvqN+/BbQBHwUKgC+GOS6RqGjrGZyT5XozEZxgdjDQxb/rtFeUR5vqiEioQk36i4HDAGZWAFwH/KVz7v8CnwduiUx4InOrozd2k/6q8jxSDA7Vd9Dc1c+pcz3q2heRaQk16acAwYXD1+DN5P9D4PczQGR2JRGZY7HcvZ+Z5mN5aS6H6jvYfUrj+SIyfaEm/aPA6wM/vw141jnXE/h9AdAS7sBE5prf72jrGWBeVuzume7N4O9k1+lW0n0prF9QEO2QRCSOhJr0vwF8NFCR7x3A/x117gZgX7gDE5lrXQND+N3clOCdqbUV+dS29fLE4UbWV+aTmeaLdkgiEkdCXaf/YzM7DWwHdjjnnhp1ugF4MBLBicyl9mDd/Rjt3gdvBj/AKw1dvP+apVGORkTiTagV+XDOPQ08PcHxz4c1IpEomcu6+zO1bsH5ErEazxeR6VK9SZGA83X3Y3dMvywvk5JcLz5tASsi06WkLxIQbOnH8pg+wPoFBSwsyqI8X7voicj0hNy9L5Lo2noHgLnZYW82vnTbJXQPDEU7DBGJQ0r6IgHB7v1Yb+kvKs6OdggiEqfUvS8S0N47SGZaipbBiUjCUtIXCWiP4br7IiLhEOoue34zG57ka8jMzpnZo2b2mkgHLBIpbb2xXY1PRGS2Qm3pfwmvxn4TcA/wNeDewO81wL8BpcDvzOwN4Q9TJPLaegZjujCPiMhshTqRrw84CbzWOdcXPGhmWcDv8JL/VuA3wF8Bvw5znCIR1947yMIiTZITkcQVakv/Q8C3Ryd8AOdcL/Bt4EPOOT/wfWBjeEMUmRvtvYMxXY1PRGS2Qk36pcBk/xqmA8WBn5sBm21QItHQ1hO72+qKiIRDqEl/F/AFM6sYfdDMFgCfB3YGDi0G6sIXnsjc6B8apndwOKZL8IqIzFaoY/ofAR4DTpjZ80AjUAZcCfQA7ww8bgXw43AHKRJpwRK8+ereF5EEFurWurvNbAXwCbztdTcA9cA3gW85584FHvc3kQpUJJKC2+pqTF9EEtl0ttY9hzczXyThtAW31dWYvogkMFXkE2HUtroqziMiCSzklr6Z3Qm8HVgEjN/T0znnloczMJG5FC/b6oqIzEZISd/MPgf8b+AAsBfoj2RQInOtrcfbVlcV+UQkkYXa0n8f8F3n3MciGYxItLT3DpJikJeh3aZFJHGFOqZfDPwqkoGIRFN77yD5WWmkpKi2lIgkrlCT/pPApkgGIhJNbT0qwSsiiS/UvsyPAj83s3PAb4GW8Q8I1N4XiUttvYMUqBqfiCS4UJP+K4HvP5zkvJvGtURiTnvPgErwikjCCzVRfxEvsYskpOauAZaU5EQ7DBGRiAq1DO8XIhyHSNSc6+qntq2Xd1UsjnYoIiIRpYp8kvT2nmkDYOuiwihHIiISWZO29M3sb4DvO+fqAj9PxTnnvnSxFzOzhcC/AuV4wwV3Oee+a2ZFwL8DS4Bq4K3OudbQ/gSR2dl9upXUFGNDZUG0QxERiaipuve/ADwE1AV+nooDLpr0gSHgE4Fd+/KAXWb2KPAe4DHn3FfN7NPAp4FPhXA9kVnbc7qNtRX5ZKX7oh2KiEhETdq975xLcc69OOrnqb5C+tfSOVfvnNsd+LkTOARUArcB9wYedi9w+2z+KJFQDfsdL51pY8uiedEORUQk4qI2pm9mS4AtwAtAuXOuPnDqLF73/0TP+aCZ7TSznU1NTXMSpyS2I2c76R4Y1ni+iCSFaa+tN7MyLtxlD+fc6WlcIxf4T+CjzrkOs/OlT51zzswmXB7onLsLuAtg27ZtWkIos7bnjDd1RElfRJJBqLvs5QPfBf4EyJjkYSF18ZtZGl7Cv8859/PA4QYzq3DO1ZtZBdAYyrVEZmv3qTaKc9JZWJQV7VBERCIu1Jb+94A7gB8A+5nh1rrmNel/ABxyzn1r1KkHgTuBrwa+PzCT64tM154zrWxZVMjo3iYRkUQVatK/Ffikc+57s3y9q4F3AfvNbG/g2F/hJfufmtn7gFPAW2f5OiIX1dYzwImmbu7YWhXtUERE5sR0xvSPzPbFnHNPA5M1qV492+uLTMee0yrKIyLJJdTZ+/cDfxTJQETm2p7TraQYbFqoojwikhxCbek/AnwnUFBnsq11Hw9nYCKRtvt0G2vm55Odrg0iRSQ5hPqvXXBi3VK86nlBDq+73hHi7H2RWDDsd+w908btWxZEOxQRkTkTatK/IaJRiMyxY41ddPUPaTxfRJJKqFvrPhnpQETm0u7TXlGeLUr6IpJEtLWuJKU9p1spzE5jSXF2tEMREZkzIc9gMrM7gbcDi7iwDK9zzi0PZ2AikbT7dJuK8ohI0gm1DO/ngP8NHAD2MsOKfCKxoL1nkGONXdy+WZP4RCS5hNrSfx/wXefcxyIZjMhc2FujojwikpxCHdMvBn4VyUBE5sruU15Rno0L50U7FBGRORVq0n8S2BTJQETmyu7TrawqzyM3Q0V5RCS5hJr0Pwq818zebWYlZpYy/iuSQYqEiz9QlGfrYnXti0jyCbWp80rg+w8nOe+mcS2RqDne1EVn3xBb1LUvIkko1ET9RbzELhLXdlR7RXkuVUtfRJJQqBX5vhDhOETmxI7qFkpyM1hakhPtUERE5pzG4iWpvHiyhcuXqiiPiCSnUIvz/M1FHuKcc18KQzwiEVPb1kttWy/vf9XSaIciIhIVoY7pf2GKc8GxfiV9iWk7TrYAcNmSoihHIiISHSF17zvnUsZ/ASXAe/BK866IYIwiYfFidQt5GamsrciPdigiIlEx42V2zrkW4F/NrBj4HvC6sEUlEgE7TrawdXEhvhSN54tIcgrHRL6XgGvDcB2RiGnpHuBoYxeXL1XXvogkr3Ak/TcATWG4jkjE7Kj2xvOV9EUkmYU6e//uCQ6nA5cAG4DPhzMokXDbcbKF9NQUNlYVRDsUEZGoCXVM/0YurMjXB5wCvgPcG86gRMJtR3ULm6vmkZHqi3YoIiJRE2pFviURjkMkYob9jkNnO7nzysXRDkVEJKouOqZvZulm9gsz02Q9iUtnWnoYGPKzsjwv2qGIiETVRZO+c24AuCmUx4rEoqONXQCsLMuNciQiItEVaiJ/BrgikoGIRMorDZ0ArFDSF5EkF+pEvk8AvzSzLuCXQD3jJvY55/xhjk0kLI41dlFRkEleZlq0QxERiapQW/r7geXAd/Fm7A8Ag6O+BiISnUgYHG3sVCtfRITQW/pf5MIleyIxz+93HGvs4k+3a+a+iEioS/a+EOE4RCKitq2XvkG/JvGJiKAZ+ZLggpP4VpYr6YuIKOlLQgsu11tRqjX6IiJK+pLQjjZ0UZaXQUG2Zu6LiCjpS0I71tiprn0RkQAlfUlYzjmONnaxskxd+yIioKQvCayuvY+egWG19EVEApT0JWGNzNxXS19EBFDSlwR2rEEb7YiIjKakLwmhk/NUAAAcrklEQVTraGMnJbnpFOakRzsUEZGYoKQvCUuT+ERExlLSl4TknONYQ5cm8YmIjKKkLwmpoaOfzv4hjeeLiIyipC8JKThzf4W690VERijpS0IK1txX976IyHlK+pKQjjV2UpSTTkluRrRDERGJGUr6kpCONnSxQuP5IiJjKOlLwjlfc19JX0RkNCV9SThNnf209w4q6YuIjKOkLwnn/CQ+zdwXERlNSV8SztHgRjuauS8iMoaSviSco41dFGSlUaqZ+yIiYyjpS8IJTuIzs2iHIiISU5T0JeEca1TNfRGRiSjpS0Jp7uqnpXtA5XdFRCYwp0nfzO42s0YzOzDqWJGZPWpmRwPfC+cyJkksRxu8mfur1NIXEbnAXLf07wFuHXfs08BjzrmVwGOB30Vm5PDZDgBWabmeiMgF5jTpO+eeAlrGHb4NuDfw873A7XMZkySWg3UdlOSmU5anmfsiIuPFwph+uXOuPvDzWaA8msFIfDtY38G6BQWauS8iMoFYSPojnHMOcJOdN7MPmtlOM9vZ1NQ0h5FJPBgY8vNKQyfrKvKjHYqISEyKhaTfYGYVAIHvjZM90Dl3l3Num3NuW2lp6ZwFKPHhWGMXg8OOdQuU9EVEJhILSf9B4M7Az3cCD0QxFoljB+u9SXxq6YuITGyul+z9BHgOWG1mNWb2PuCrwM1mdhS4KfC7yLQdrOsgMy2FpSU50Q5FRCQmpc7liznn3j7JqVfPZRySmA7Wt7Nmfj6+FE3iExGZSCx074vMmnOOg3UdrNd4vojIpJT0JSHUtPbS0TekSXwiIlNQ0peEoEl8IiIXp6QvCeFgXQcpBmvmK+mLiExGSV8SwsH6DpaW5JCV7ot2KCIiMUtJXxLCwTqv/K6IiExOSV/iXlNnP7VtvWyoVNe+iMhUlPQl7u065W3cuG1JUZQjERGJbUr6Evd2VLeSkZrCJereFxGZkpK+xL2d1S1sXjiP9FS9nUVEpqJ/JSWu9QwMcaCug21LCqMdiohIzFPSl7i293Qbw36n8XwRkRAo6Utc21HdihlsXaSWvojIxSjpS1zbeaqF1eV5FGSlRTsUEZGYp6QvcWto2M/uU61cpq59EZGQKOlL3Dp8tpPugWFN4hMRCZGSvsStHdVeUR619EVEQqOkL3FrZ3UrlfOyWDAvK9qhiIjEBSV9iUvOOXZUt6hrX0RkGpT0JS7VtPbS2Nmv9fkiItOgpC9x6fx4vlr6IiKhUtKXuLSjupW8zFRWleVFOxQRkbihpC9xaWd1C9sWF5KSYtEORUQkbijpS9xp7R7gaGOXxvNFRKZJSV/izq5TrYDW54uITJeSvsSdHadaSPelsLGqINqhiIjEFSV9iTs7q1vZUFVAZpov2qGIiMQVJX2JK32Dw+yraVNRHhGRGVDSl7iyr6adwWHHZYs1ni8iMl1K+hJX9p7xJvFtXayWvojIdCnpS8wZGvZPeu7lug4WFGRSlJM+hxGJiCQGJX2JKb/eV8e2L/+exo6+Cc8frOtg3YL8OY5KRCQxKOlLTNlf005bzyB3P1N9wbnegWGON3WxboGW6omIzISSvsSU2rZeAO57/hQdfYNjzh0+24HfwXq19EVEZkRJX2JKXVsv5fkZdPYP8ZMXTo8593JdB6CkLyIyU0r6ElPq2/t41cpSrl5RzA+ePkn/0PDIuYP1HRRkpVE5LyuKEYqIxC8lfYkZg8N+Gjr6WFCQyYeuW05jZz+/3FM7cv7lug7WVeRjpp31RERmQklfYkZDRx9+BwvmZXHNihLWL8jnX546gd/vGBr2c7i+Q137IiKzoKQvMaOuzVumt2BeFmbGf79uOSeaunn0UAMnm7vpH/JruZ6IyCwo6UvMqAvM3F8QGLN/3SXzWViUxT8/eXzUJD4t1xMRmSklfYkZtSNJPxOAVF8KH3zVMvacbuPe56rJSE1heWlOFCMUEYlvSvoSM+rbeynMTiM7PXXk2Fu2LaQ4J509p9tYMz+PVJ/esiIiM6V/QSVm1LX1UVEwdjleZpqPO69aAqDxfBGRWVLSl5hR19Y7Mp4/2ruvXMzi4myuW1UWhahERBJH6sUfIomksbOPxo5+LqmMvQlxtW29bF9adMHxednpPPnJG6IQkYhIYlFLP8l85/dHedtdz4+pdBcLOvsG6ewbmrClLyIi4aGkn2ROn+uhq3+IHSdbox3KGPXt59foi4hIZCjp4+3R/tCBs3PyWg8dOMvO6pY5ea2J1LV7y+L+cKQxajFMpHbcGn0REQk/JX3grqeO81e/2M+w30X8tT7/4AH+9Psv8Oyx5oi/1njOuZECOE/EWNKvG7dGX0REwk9JH7hhTRkt3QPsPdM24fnu/iHOdfXP+nX6h4Zp6OhnYNjP++7dOect/raeQfoG/SwqyuZ4UzdnWnrm9PWnUtfWiy/FKMtT0hcRiRQlfeC6VaX4UownDl/Y+u3uH+KOf3qW996zY9av09DufXD4i9espqIgk/f8cAcvTfJBIxKCXftvu3whEFtd/HVtfczPz8SXoh30REQiRUkfb0nYpYsKeXxc0nfO8cmfvcThs50ca+zCudl1/wfHrTcvnMd9H9hOYU4a7777RQ4G6spHWnBDm6uWl7C4OJsnjjTNyeuO1tk3yHPHzzE07B8XWy+VGs8XEYkoJf2AG9eWcbC+g/pAaxjgH/9wnN/uP8vq8jx6BoZp7Rmc1WuM3lCmoiCLH7//CrLTfbzrBy9wrLHzgsc/ftjbXW46Bob89AwMTXgu+LctmJfJDavLePZ4M32DoS3dq2/vnfBDT1vPwLTiu+upE7z9/z3PdX//B/75yeMjz69r79V4vohIhCnpB9y4xqv29sRhr/X7xJFGvvHIEd64aQEfu3kVALWtvZM+PxTBpF9R4CW3hUXZ3Pf+7ZgZ7/7BiwyOav0ODPn50L/t5hsPH5nWa/z1L/fzxn94ZsIEXdvWS5rPKMnJ4PrVpfQN+nnh5MXnFVQ3d3PN157g4ZfHrnDYe6aNrV96dFqTEvfVtLOgIJOFRVl89XeHueLvHuMzP9/P2fY+zdwXEYkwJf2AlWW5VBVm8fjhRk42d/PnP9nD2vn5fO2OjVQVesmotm12E9/q2nspyU0nM803cmxZaS6fff0a6tr7ONrQNXL8yNlOBob9vHDyXMjDCn2Dw/xmXz3HGrvYffrCuQL1gdr2KSnGFcuKyUhNmXAew3jPnzjHsN/x/ImxHxAeP9yI38Hdz1SHFB/AwfoOrlxewv0fvJLffeRV3L65kp/vrmFw2FFVmB3ydUREZPqU9APMjBvXlPHMsWY++K87SU0x/uVdl5KV7htJ+jUhtPR/9VIdL9e1T3iutm3i1uzGqnkAHKg9/7z9gZ+buwY43hRaF/+zx5vpHvC66x/YW3vB+fr23pFehsw0H1ctLw5pMt/OU14hnz3jJh0+f/wc4A1DBOcrTKWps5+mzv6RjXPWVuTz1Ts28vxnXs233rqJ2zYvuOg1RERk5pT0R7lhTRm9g8Mcb+riH96xlYVFXsuzICuNnHTfRZN+78AwH//pXr74q4MTnq9r62VBwYVJf2lxDrkZqRyoG53020jzeTPZXzh5LqT4f7f/LHkZqdy8rpxf76sfM1zgvf7YDx3Xry6j+lzPRecN7A4k/UN1HSPle3sHhtlzppXXb6jAAfe/ePqi8R2q9yYsrqsYu1teYU46f7y1ipwMbQUhIhJJMZP0zexWMztiZsfM7NPRiOHKZcWsLs/jC29cz9UrSkbHRlVh9kWT/s5TLQwOO1442XJByzdYGGeiln5KirFuQf5I6x68se/tS4spy8vghRMXH3cfGvbz6KEGXr22jLdcWkVL9wBPjxprH/Y7znb0jZksd8Nqbx7DVK39c139nGjuZlNVAQPDfg7XexMOd51qZXDY8eZtVdywuoz7d5y54EPGeAcnSfoiIjI3YiLpm5kP+B7wWmAd8HYzWzfXcWSm+Xj4Y9fy7iuXXHCusjDrol3Yzx4/N7LO/MG9dWPOdfQO0TMwPOkM9Q2VBRyq72Bo2E/f4DBHznaysaqA7cuKQxrXf/FkC209g9x6yXyuX11GQVYaD+w538Xf2NnHsN+N2a9+UXE2y0pyply6F5wb8N+uWQrASzVtgb+1GV+KcdmSIt51xWKaOvt55OWGKWM8WNdB5bwsCrLTpnyciIhERkwkfeBy4Jhz7oRzbgC4H7gtyjGNUVWYRW3r1BP5njt+ji0L53Hp4kJ+sadmTKIOfmCYbC36hsoC+gb9HGvq4vDZTob8zkv6S4to6Ojn1LmpX/uhl8+SmZbCtatKSU9N4XUb5vPIwYaR5XvBNfrjX//61WU8f+IcvQMTL93beaqFNJ9xy/r5lOZljFQtfO7EOTZWFZCbkcq1q0qpKsziR8+fmjLGg/UdrFUrX0QkamIl6VcCZ0b9XhM4FjMq52XR0TdER9/Ea/U7+gbZV9PGlcuLuX1LJa80dHGo/vza+7qLbCgT3N9+f007+wOt6UsqC7himbe//FTj+n6/4+GXz3L9qjKy071x8ds2V9IzMMyjB73Wd3CNfsW4noYb1pQyMOTnuRMTL7vbVd3KJZUFZKb52FQ1j71n2ujqH2JfTTtXLS8GwJdivGP7Ip47cY5jjV0TXqdvcJgTTV0jk/hERGTuxUrSD4mZfdDMdprZzqamua0mVxlctjfJuP6Oky34HVy5vJg3bKggNcX45agZ9HXtUyf9ZSU55KT7OFDbzr6adopy0qmcl8Xy0lxKctOnHNffc6aVho5+br1k/sixy5cUUVGQOTLMcL5GwNjXv3xpEVlpvpH6BKP1Dw2zr7adbYsLAdi8sIATTd08dqiBYb/jymXn5z28ddtC0nzGfS9M3No/crYTv9N4vohINMVK0q8FFo76vSpwbAzn3F3OuW3OuW2lpaVzFhwwsoZ8sqT/3PFzpKemsHVRIYU56Vy/upQH9taO7NxX29ZLemoKxTnpEz4/JcVYv6CA/bXt7K9tZ0NlAWaGmXH50qIpi+jc98JpctJ9vHpt2ZjrvXHTAp58pYmW7gHq2vrIzUglP3PsDPmMVB9XryjmiSONF8wbOFDbwcCQn0sDSX/TQm9p4V1PnSDNZyPHAUpyM3jtJRX8bFfNhBUBg5P41qulLyISNbGS9HcAK81sqZmlA28DHoxyTGMEx8JrJhnXf/b4OS5dVDhSeOf2LZU0dPTz/AmvW76urY8FBZmkTLGhzCWVBbxc18ErDd4kvqDtS4upbeudcFe8ps5+fv1SPW++tIq8zLET5G7bXMmQ3/Hb/fUja/TNLnz961aXUdPay/GmsV3zwaV6WwPJPVhP4OW6DrYsLCQr3Tfm8e+8YjGdfUP86qWxkxjBm8SXl5E6UvNARETmXkwkfefcEPBh4GHgEPBT59zL0Y1qrJLcdDJSUyacwd/aPcDB+o6RMW6Am9aWk5uRyi8CM+gnW6432oaqfPqH/PidN7EvaPvIuP6Frf37XjjFwLCfO69acsG5tRV5rCzL5YG9tRes0R/tmsDyxB3VrWOO7zzVwqKi7JHtbguy0lhWmgN4wxjjXbakkFXlufzg6ZPsOd2K33++5yA4iW+iDx0iIjI3YiLpAzjnfuucW+WcW+6c+3K04xnPzKgszJpwrX5wkt3oRJiZ5uO1l8znoQNn6RscDi3pj0r0wVY1wKqyPOZlp/HCibGT+QaG/Pzo+dNcv7qUZaW5E8Z8+5ZKdlS3crSxc9LlgkuKsynISmNfzfmKe845dp1qGxnPD9ociGuipG9mfOTVqzjR1M2b/vFZrvzqY/z1L/fzX0ebOFzfoUl8IiJRFjNJPx5Uzrtwrf7gsJ/7XjhNdrpvTKIGeNOWSrr6h3jowFkaOi6+oczSklyy032U5mVQnp8xcjwlxbh8yYXj+r/ZX0dzVz/vvXrppNd84yavtG3foP+CSXxBZsbGqgJeOnO+ONDplh6au/q5dMnYpH/LJfNZV5HPlkXzxl8GgNdvrGDXX9/Mt/9kE1sWFvKfu2p51w9epHtgmLUVeVP+/SIiElmqezoNVYXZHKw7v9Oc3+/41M/28V9Hm/nb2y8hPXXsZ6jty4opz8/gn588jt9B5UW2jvWlGK9aWUJeZtoF3eDblxXzyMGGwNh8Fs45fvhMNctLc7h2ZckkV/R28rt0cSG7TrVO+aFjY1UB//zkCfoGh8lM87Ez0NV/6biW/i3r53PL+vkTXWJEQXYab9pSxZu2VNE3OMx/HW1mz+lWXruhYsrniYhIZKmlPw1VhVmc6x6gZ2AI5xx/+5tD/HxPLR+/eRXvvGLxBY/3pRi3ba7k8FlvvX4oW8f+y7u28Y23bLrg+PalgXH9wNK93adb2VfTznuuXnrRcfLgRjZT7Ve/sWoew37Hy3XeLPtdp1vJy0hlVdnsWueZaT5uXlfOX966hvxMVeITEYkmJf1pCM7gr2vr5XtPHOPuZ07y3quX8Gc3rpj0ObdvPl9jaDb7xa+tyCcvM3Vk/sDdz1STl5nKHVsvXsPordsW8pU3bWD70gvH4YM2BYYmguP6u6pb2bK4cMrVBiIiEl+U9KchuNzsW4++wjceeYU3bankc69fN2VLe21FHqvLvdbyRDvshcoXHNc/0UJ9ey8PHTjL2y5bOFKBbyqZaT7esX3RyL4AE5lfkElZXgb7atpp7x3klcbOCybxiYhIfFPSn4ZgVb7f7j/Lq9eU8fU3b7xoS9jM+J83LOfW9fMvWNc+XduXFXGiuZtvPfIKzrkJNwaajY1V83ippo09p1tx7sLxfBERiW+ayDcNZXmZ5GWksrYin+/96VbSfKF9ZrptcyW3bZ79VgLB7vn/2FXDLevLWViUPetrjrapqoDfH2rgD0ea8KUYmxdOPENfRETik5L+NPhSjN9+5FWU5WeQkTq7VvtMrF+QT25GKl39Q1Mu05upjYEk/7NdNaytyCMnQ28PEZFEon/VpyncrevpSPWlcO2qEmrb+kZm84fTpkDp367+IS5dpK59EZFEo6QfZ779J5vx+4lIOdt52eksLs7m1LkeLl0S/g8VIiISXZrIF2cyUn2znhA4lWBVQU3iExFJPGrpyxhvv2whhdlpIzUJREQkcSjpyxhXrSjhqhWTl/UVEZH4pe59ERGRJKGkLyIikiSU9EVERJKEkr6IiEiSUNIXERFJEkr6IiIiSUJJX0REJEko6YuIiCQJJX0REZEkoaQvIiKSJJT0RUREkoSSvoiISJJQ0hcREUkSSvoiIiJJQklfREQkSSjpi4iIJAklfRERkSShpC8iIpIkzDkX7RhmxMyagFPRjiMKSoDmaAcRx3T/Zk/3cPZ0D2cnWe/fYudc6WwuELdJP1mZ2U7n3LZoxxGvdP9mT/dw9nQPZ0f3b+bUvS8iIpIklPRFRESShJJ+/Lkr2gHEOd2/2dM9nD3dw9nR/ZshjemLiIgkCbX0RUREkoSSfhSZ2d1m1mhmB0Yd+4KZ1ZrZ3sDX60ad+4yZHTOzI2Z2yyTXvMfMTo56/ua5+FuiYTr3z8yKzewJM+sys3+Y4ppFZvaomR0NfC+ci78lWiJ0Dyd9Dyeaad6/m81sl5ntD3y/cZJr6j04+3uYNO/B6VLSj657gFsnOP5t59zmwNdvAcxsHfA2YH3gOf9oZr5JrvvJUc/fG4nAY8Q9hHj/gD7gc8BfXOSanwYec86tBB4L/J7I7iH893Cy5yeiewj9/jUDf+Sc2wDcCfzbJNfUe9Azm3s42fOTnpJ+FDnnngJaQnz4bcD9zrl+59xJ4BhwecSCiwPTuX/OuW7n3NN4iWsqtwH3Bn6+F7h95hHGvgjdw6Qxzfu3xzlXF/j1ZSDLzDImeKjeg5M/NtR7KJNQ0o9NHzazfYFur2DXXiVwZtRjagLHJvLlwPO/naT/Q0x0/0JV7pyrD/x8FigPc2zxYjb3MBzPj3cX+/vvAHY75/onOKf3oGc29zCU5yclJf3Y80/AcmAzUA98c5rP/wywBrgMKAI+FdboYt9s798I5y1tScblLbO9h2H7bxCnpvz7zWw98DXgv1/sQnoPzvgeJvt7cFJK+jHGOdfgnBt2zvmB/8f5LvxaYOGoh1YFjo1/fr3z9AM/JMmGAKa4f6FqMLMKgMD3xnDHGOtmew/D8N8grk3195tZFfAL4N3OueOTXELvwVnew2R/D05FST/GBP9nD3gTEJzR+iDwNjPLMLOlwErgxcmeb2aGNxZ4YPxjEtkU9y9UD+JNECLw/YFwxBVPZnsPw/DfIK5N9veb2TzgN8CnnXPPTHEJvQdneQ+T/T04JeecvqL0BfwEr+tpEG+M/n14s1H3A/vw/uevGPX4zwLHgSPAa0cd/y2wIPDz44HnHwB+BORG+++MoftXjTdhqCvw+HWB498HtgV+LsabMX0U+D1QFO2/Mw7v4aTPT7Sv6dw/4K+BbmDvqK8yvQcjcg+T5j043S9V5BMREUkS6t4XERFJEkr6IiIiSUJJX0REJEko6YuIiCQJJX0REZEkoaQvIiKSJJT0ReKUmd1uZh+f4Pj1ZubM7PoohDUhM7vUzHrMbLL9IiZ6znfMTLujiYSR1umLxCkzuwe4yTlXNe54PrAOOOic64hGbOOZ2eN48Xx4Gs+pAE4Ar3POPRGx4ESSiFr6IgnGOdfhnHs+hhL+pcANeJughMx5O839CvhkJOISSUZK+iJxKNDKvxOoDHTlOzOrDpy7oHvfzP5gZk+b2a1mttfMes1sj5ltN7NUM/uKmdWbWYuZ3WNmOeNeL9vMvmZmJ81sIPD9s2YWyr8h7wf2OedeHnfNdwRi6DKzDjPbb2bjd027H7jFzBYiIrOWGu0ARGRGvgSU4m2h/MbAscn2FQ9aAfw98GW82vlfx6tL/iDevwXvAdYGHtMI/CWAmaUCD+MNGXwJr6b5FcDn8LZv/sRFXvdWvE1SRpjZNXh7Q/wfvJZ8Ct6W0PPGPfe/AuduBu6+yOuIyEUo6YvEIefccTNrAgacc8+H+LRi4Crn3AmAQCv9AWCpc+6mwGMeNrNrgbcQSPrA24FrgOucc08Fjj3mbeTI583sa865Cbd/NbNyYAnw0rhTVwBtzrmPjjr2yAR/Z5OZ1QQer6QvMkvq3hdJHq8EE37A4cD3h8c97jBQFdieGbyW+ing2cBQQGqg9f8IkIaXkCezIPC9adzxHUChmf3IzN4Q2DJ1Mk2jriMis6CkL5I8Wsf9PjDF8VTAF/i9DFiMt/Xp6K8XA+eLp3jNzMD3MUMPzrkn8XoTFgK/AJrM7PdmtnGCa/QCWVO8hoiESN37InIx54CTwFsnOV99kecCFI4/4Zz7GfAzM8sFrge+BjxkZlXOOf+ohxbh7YsuIrOkpC8Sv/qZmxbwQ8AdQJdz7vDFHjxONdAHLJvsAc65LuDXZrYM+C5ez0ETgJn5gEXAf0w/bBEZT0lfJH4dBIrM7H8AO4E+59z+CLzOfcB78SbvfRNvUl46sBxv5cDtzrmeiZ7onBswsxeAy0cfN7MvAuXAE0AdUAX8ObDXOTd6/P8SIBt4ChGZNSV9kfj1fbxJdF/BW+p2Cm+mfFg55wbN7Bbg08AHgaVAN3AcbynewBRPB/h34O/NLMc51x049gJekv82Xvd9I97EwM+Ne+4bgLPAH2b/l4iIyvCKSEQFygLXAP/TOfejaT73IPCfzrnxHwZEZAY0e19EIipQDvhrwF+OWgZ4UWZ2G94QwDcjFZtIslH3vojMhW/hLQGswBvDD0UW8E7nXFvEohJJMureFxERSRLq3hcREUkSSvoiIiJJQklfREQkSSjpi4iIJAklfRERkSTx/wF3j16GFXOD5gAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "running_speed_midpoints = session.running_speed[\"start_time\"] + \\\n", " (session.running_speed[\"end_time\"] - session.running_speed[\"start_time\"]) / 2\n", "plot_running_speed(\n", " running_speed_midpoints, \n", " session.running_speed[\"velocity\"], \n", " start_index=5000,\n", " stop_index=5100\n", ")\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Optogenetic stimulation" ] }, { "cell_type": "code", "execution_count": 31, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
start_timestop_timeconditionlevelnameduration
id
09224.653399225.65339half-period of a cosine wave1.0raised_cosine1.000
19226.823619227.82361half-period of a cosine wave2.5raised_cosine1.000
29228.643539228.64853a single square pulse1.0pulse0.005
39230.653749230.66374a single square pulse4.0pulse0.010
49232.423759233.423752.5 ms pulses at 10 Hz4.0fast_pulses1.000
.....................
1759562.688319562.69331a single square pulse4.0pulse0.005
1769564.758429564.76842a single square pulse1.0pulse0.010
1779566.868559566.87855a single square pulse2.5pulse0.010
1789568.988609568.99860a single square pulse4.0pulse0.010
1799571.118689572.11868half-period of a cosine wave4.0raised_cosine1.000
\n", "

180 rows × 6 columns

\n", "
" ], "text/plain": [ " start_time stop_time condition level \\\n", "id \n", "0 9224.65339 9225.65339 half-period of a cosine wave 1.0 \n", "1 9226.82361 9227.82361 half-period of a cosine wave 2.5 \n", "2 9228.64353 9228.64853 a single square pulse 1.0 \n", "3 9230.65374 9230.66374 a single square pulse 4.0 \n", "4 9232.42375 9233.42375 2.5 ms pulses at 10 Hz 4.0 \n", ".. ... ... ... ... \n", "175 9562.68831 9562.69331 a single square pulse 4.0 \n", "176 9564.75842 9564.76842 a single square pulse 1.0 \n", "177 9566.86855 9566.87855 a single square pulse 2.5 \n", "178 9568.98860 9568.99860 a single square pulse 4.0 \n", "179 9571.11868 9572.11868 half-period of a cosine wave 4.0 \n", "\n", " name duration \n", "id \n", "0 raised_cosine 1.000 \n", "1 raised_cosine 1.000 \n", "2 pulse 0.005 \n", "3 pulse 0.010 \n", "4 fast_pulses 1.000 \n", ".. ... ... \n", "175 pulse 0.005 \n", "176 pulse 0.010 \n", "177 pulse 0.010 \n", "178 pulse 0.010 \n", "179 raised_cosine 1.000 \n", "\n", "[180 rows x 6 columns]" ] }, "execution_count": 31, "metadata": {}, "output_type": "execute_result" } ], "source": [ "session.optogenetic_stimulation_epochs" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Local Field Potential\n", "\n", "We record local field potential on a subset of channels at 2500 Hz. Even subsampled and compressed, these data are quite large, so we store them seperately for each probe." ] }, { "cell_type": "code", "execution_count": 32, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
descriptionlocationsampling_ratelfp_sampling_ratehas_lfp_data
id
760640083probeA29999.9496111249.997900True
760640087probeB29999.9025411249.995939True
760640090probeC29999.9052751249.996053True
760640094probeD29999.9052751249.996053True
760640097probeE29999.9853351249.999389True
\n", "
" ], "text/plain": [ " description location sampling_rate lfp_sampling_rate has_lfp_data\n", "id \n", "760640083 probeA 29999.949611 1249.997900 True\n", "760640087 probeB 29999.902541 1249.995939 True\n", "760640090 probeC 29999.905275 1249.996053 True\n", "760640094 probeD 29999.905275 1249.996053 True\n", "760640097 probeE 29999.985335 1249.999389 True" ] }, "execution_count": 32, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# list the probes recorded from in this session\n", "session.probes.head()" ] }, { "cell_type": "code", "execution_count": 33, "metadata": { "scrolled": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "array([[ 1.18950002e-05, 2.73000005e-05, 9.16499994e-06, ...,\n", " 0.00000000e+00, 2.73000001e-06, 3.89999997e-07],\n", " [ 9.41850012e-05, 8.95049961e-05, 1.22849997e-05, ...,\n", " 5.84999998e-06, 5.84999998e-06, -1.15049997e-05],\n", " [ 6.04499983e-05, 5.79150001e-05, 1.48199997e-05, ...,\n", " 0.00000000e+00, 3.90000014e-06, -1.44300002e-05],\n", " ...,\n", " [ 1.05299996e-05, 5.12849983e-05, 8.32649966e-05, ...,\n", " 0.00000000e+00, -3.80249985e-05, -2.16449989e-05],\n", " [-1.36500000e-06, 3.56849996e-05, 5.46000010e-05, ...,\n", " 0.00000000e+00, -2.84700000e-05, -2.43750001e-05],\n", " [-1.01400001e-05, 1.46249995e-05, 3.56849996e-05, ...,\n", " 2.73000001e-06, -1.26750001e-05, -9.55500036e-06]], dtype=float32)\n", "Coordinates:\n", " * time (time) float64 3.774 3.775 3.776 ... 9.966e+03 9.966e+03 9.966e+03\n", " * channel (channel) int64 850126378 850126386 ... 850127058 850127066\n" ] } ], "source": [ "# load up the lfp from one of the probes. This returns an xarray dataarray\n", "\n", "probe_id = session.probes.index.values[0]\n", "\n", "lfp = session.get_lfp(probe_id)\n", "print(lfp)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We can figure out where each LFP channel is located in the Brain" ] }, { "cell_type": "code", "execution_count": 34, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "['APN' 'DG' 'CA1' 'VISam' nan]\n", "[ 0 27 35 51 74 87]\n" ] } ], "source": [ "# now use a utility to associate intervals of /rows with structures\n", "structure_acronyms, intervals = session.channel_structure_intervals(lfp[\"channel\"])\n", "interval_midpoints = [aa + (bb - aa) / 2 for aa, bb in zip(intervals[:-1], intervals[1:])]\n", "print(structure_acronyms)\n", "print(intervals)" ] }, { "cell_type": "code", "execution_count": 35, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY0AAAEPCAYAAAC+35gCAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOy9W6xty3Yd1HrVGGPOudba+zzu9XUc54IJGAK5JFJ4hccHSKDwMkIQJCN+IiJf8QVRJD4j8RGJSEFCQkSWHAniSMgI4RcGRKyAzU8UsCzZoGCZgGNMHGzfxzln77XXmnOMqup89Ef1Mfe+N+uc43tuNlSXztlrzTXmGDWqaszZe2u9t07MjGHDhg0bNuwplr7dAxg2bNiwYW+PjS+NYcOGDRv2ZBtfGsOGDRs27Mk2vjSGDRs2bNiTbXxpDBs2bNiwJ9v0zf5IRF8G8OXPaCwf29K0/AOH977w7R7GNzcGQG/4+Rsd83EtnvtNf3tbkuM+zRwME3vKXvtGx/+tYL+d44n73p6Db9e9/q02zwAev/LXv8rM3/FJ3ktvc8rtzRe+yH/Pv/bH5RdbmKsFYv2ZeP+a/c4JoNb/BevP3F9nknOm0n/uJ5PfqYW/sbyf7fWsr+n54vHEABrAU7h2w2ubzI7dXV+PB4BU9+/n3H++vj9QnxcbSxz/9d9240jhtTBXuzm1c/L+nLv74r4unACq4VxX8S+T3N/udX59Td/4BXq1F4j7HLx2jtRfs3VP9fW/2blsvH69b7Tv3vD3uG8AoE37/fXaHq1X57d1DsdRkX20W+c3YQl6f6n0vfmm+XrTe3ztv8Gz9tpeiPsunN/3W3zN1vj6eXrT2GtfAzuf7x3ezxfnN5w79XH6c4kwJhtanJurefI5tHOF/R33mj+P4TX/TOB+r7vPom/0sfyGtdrNZfxb2MvXn0+/8IN//OeZ+R/8Blf5pjbgqWHDhg0b9mT7pvDU22AxEojefPT07TigfyMzqfdBAPQcnENk0ICW9+dpGTvvzv4OhGP1W72Fb/7odcGuYx6s/6+PI74veqw770g9KT+Pvp4K3uhhpC2MwTycMC5/Xb0l+zd6jWgAXXmv5uHZWDjLUtjYbS08EspXc7FbzL3HZWtHTebGPEjzpqO3Ftfffo5eNDHcRbIxtalHEnZtn/MQLcZ547Ce8d+4F4ArL968W7x+vM/lGyIse0Pawlq0q/l5Q0Tq+zjt58OvC/g+bFn3jL5me9zvJUQI15Fi9IhjpBTn4TpiiM8Lh2vv9lTtY7seS4zuKIwtniP+G6MInyN7RmeASr9HamE67dl4UyRm62Jjt3umfq8x2rPzxWjZ5yrscXuu29Rft7WEjjcVyD625zPv7/M6gts9XyEy+TQ2Io1hw4YNG/ZkG18aw4YNGzbsyfbWw1NAgBjUqPRQXF6QEJ8TkAIZvYMgSEI/YoAtZHwDVOK/s3zjOvwTCVbsITMQOklZAZQ9LLEL8a/vJRCpTpSivzeOyci563D+NVL06r4jmch6Pg5QnEE3CftQfwfT1Q494eq4N/1uCQB2zx7WR2KS+2sOOUz6ngDXedjPEsI7TAUAqd+X7Yd4vUhi+hg17EeARpgUdrsO/wNJvYOf5v0a2NxRA1qEUQJ+EH+nAK8Z8XttBnEZycsB8or38toahDm+Pu8uoSLAfjGBgsLfd8TzmyzChzrmVHXcZf+aHW/H5rXPcXzu3CKciD4GIuzWjiI0i/56KtjDvHZt6nN/Dc/tEiAg14lbm3AF0V1BaAaLUglzqxB5hG+hcKoT+La2ud9jhKN2a2tj0L+1LMdfk/6f1EakMWzYsGHDnmxvfaRhhJMTpJZqZ2SvEcXqObQpeCfBS0zRW6Tuwdo3s73Pvbo3EJA7jwlXnnwg2Xdpm0Z0IfxrRGBMnwRe8/gAoC0SRbWle0sthzmo++Op9Xux33deYoyUQrrkdSosk3iCbdLrh3O+tj4WrVxFQSAgawTo3p5eP5V+H9G7BSsZSPvIy9fxEu6D+3mZgBzmmTPA5o2at7dpJJOAtOowdX18fyS570joU9gnoL5uZKRlSFbwRIYSzn+1HywS8GjJUrLRPUg0gCy6mvo8U9P1mNGTN0Kk6XvQUlanvqdjggUr2XqdGuqRZev7fZf2G+4lPkceLdc+Dpu/dOV1e/JB7ue6Ti+2iNLXM8lrnGVuI9nrUZHdd4je2rL3vuNcxLXcRYEtrLGl714hEs0I6vhs5T5n9v629PndJV3MYU6uxvUaOc99Hdg+30LSTEx0qPObo9aPYyPSGDZs2LBhT7bxpTFs2LBhw55sbz08BYTQ+Koq+hr2sWOd1Iyhcsyx5hDa63sthN5VAQeSK4bQ1yR7CvBErPsgCAwSCeR4Pqu52EEtdl27x4tet/bqVHrTOdHnJtWrMFz/c6gshcSBrYffuyrmtL9GvMfdulioHEldG2eEi+hqHez9ce0CVBfhtV24HklBu+1AmANh3HYtuy89Xwpzfp0AEespvHYjh/Nyh83idfxedf156dflK3jC6iWcfJ320AwzhOzV8Ud4hLPAVjtSP8AcNmfU9rCFjbtFOA4Aar+uvddgvmsxCa8VKJBPFq3riet0Xb9wXelutoO8wty9sfod6MR3Ce+x59gguNz/5nCc7b0wjghZpni+eJ/hGP+s4f37X1NBQJ9XP1+A83Z1GtzX1sfAYX7DZ8z1/PvPV2R5fP3T2Ig0hg0bNmzYk+3tjjQsnSykm8W/mcWqyWsCy48JUYB7GfXqW/mKqLP03VjZeX1tf/3Kc7omtWIKo6fQRZLW7i2OOSmxhl5ha+dvGT1lL0RPTuJbCl84njhUsuvv5Xh1X+rlsnqSMS1wR1ayEsohHda8rmaesx7r1573c2FrZ17krjr+aj08gotk8hVZGD1yJySvKrljBBRTclPt+2gXyRB2e4lTCHoiualrY5XTHt2Fc3lkFfag75cp7AFgT5jHuTFC3NJabdxXezRWq19Xmsc5o+v1CASrr3ecDt0TNjfX77G1j8fvIt6r9bRx+PmMqA97yOZulwBiEb+dQtfN1rHFTz7az7tHB1frEOfD1tGiGKDftz1TNs+RSN/tNQpjsqgxRBmeMBHmJJLx0SyyfdNnVnvT65/CRqQxbNiwYcOebN/yLw0i+h4i+iUi+rNE9FeI6KeJ6EREP0BEP0dEv0hEP0pEN3r8nyOi/4iI/hIR/QoR/eFv9RiHDRs2bNjT7LOKNL4XwJ9h5t8L4EMA/yqAH2Pmf4iZfz+AXwLwR8Px3wXgnwDwLwL4U9/wrE1y5tMmIWIq8rP9bvnzRvJRBfJFf74ioiyXPAXC7BqGsOPsPwQC9zrstHNbvvd1OHldH+F58Aor2BiNsLy+RgvkqFf2BsggVZ2H1v9rgTCOhJxX6SoBmkr/e3w9EpKwsa19jDGEtvvZkYOB/IykZgrrRCy1G7Z+aevEfSph7cI1rDYhb33ust17xX4O9Vz2dzun7Q+HFQyqqH0ubH597sL6RpjH71f/3R1/RajaXqIi/6Uwbrtm2sK+tftZ93uEmhzjeytAOhFOivcW996bEglcOQEBMkWff09w0HFabUJMILmuOfE5r6/v77jndveqSg0OtUWILBLJeqxVkr9JFNCOjXspbZDkjzgu7tenq2di93mywivcd3us9WMQzmUwVJyLCDPuyHj03+Nxvp/q/nyRtLe5ifsPb/is+iT2WXEaf42Zf0F//nkA3wPgS0T0JwG8C+AOwF8Ix/8EMzcA/xsRfef1yYjo+wB83/L889/aUQ8bNmzYsJ19Vl8al/BzBXAC8OcA/MvM/ItE9EcA/JPf4PjX6Btm/ikAP3XzhS/+QF2wS2ONGjEAeiUv7QkhT/00ogrYE7Z4veLVSFknMI3UI3jaJDX0Slr085p3vUulDJ5cJKPt+OtKaL9/gkudRyO94PWEmSdp97JLIwwRQZRst7/HFOJrT9q8vmsPJpKYbdK/GyGO/f3HVENfp2XvzcbUXfcWjdDXa9Yj3KOLulk+n7Qfq8999LyuvO9YDRzJyV366xVp+6aGPy1443EejPQEw59ERpcrt6r8RuEcVql96HvKrmv/7RJC7NIM8NK9e1sX2xctVBL7XJf9/XkaMb2+Dl6pnXvq7i79c4anT+/mMmO3Tn7PMZ0WfR/GyNiuF1Pu2wQnx13XLJDQvi8tutb9YqoGls6+S0KxaM3ScvUYCuf1hBz7nIj3Gfabf7bEvUjhcyaQ5nIS9ASPN5DmXtme92OL92tJFG9suvUJ7NtJhD8D8P8Q0Qzg3/g2jmPYsGHDhj3Rvp0pt38CwP8E4Cv677Nv41iGDRs2bNgT7Fv+pcHMvwrgS+H3/yD8+QffcPwfufr97pudP5I8QIBANLSsc4AAsIdDLDR2+ewYlqrFjmQxPHeSOyk0pRCXS2KH8e3E7TTn3oTVYm46Z3j9gQvURRllI73oagzYy8C/Bu2gh+VIcOl3gyX6ZPd53Bn3EDreRyTXr6EEP4b7775OFs43rXUJ5J/DhuE+r6EtE0n0CmN6w7wZVBCTEALMdr3ODjnGYwySiHUSHM4f7teuTaXDIs2I4nh/V1BOHILdi0EqcTyxVuC1xAqD96CQUoDTdtXoto8DDLur77DzvwEeiRahv0hy2x70WqgAB+1gQPT3Ws0Qx79fQaa7tUCoObjakxxgqx3UGBMA7BmGlmZcz5POZYQUre5jB4PHz4hY84MAlwWY2sdP/XWHF8Pzcl0r4zL6Vs8V4bKreUeYP69ha3aj/T2jInzYsGHDhn1m9nZXhAP+7bqTXDZvdurpek42XX1Numwz7Y8Drjwf+zem7VXsGirFb/+dF29elJ0vXDPeQ16DF2AeYdlXc3oTKXtr6l6bE/vhPn08rZ/TyHDr0fxaymUg3SxSuiZ3fczhZ78m95Rk8+yuExUawngjeXjlCcX+2E7cWmrtGl639QmedpxbTn1+nfAFdp4/leDZmiccIlcjeHMJKc8hnZO27vXt9M90/F75ruPL2+vRwK5RVPC+G/r929+9Z30gPu0eEO8zRAtWTX+d4mnjjdeNc2Tv9Tk1Qj7Jz6ZTtktysL2pa2ZzHeW5iQHUq3XW1y2ivE5usQgzpiVbVFKXkJ6qa+jy/UcZs8nSx2r3ONZY5f2mCOA6gjAzTbUYTcfPpRip0PX+syhzVbSC+nu8TUCw66j0uglWjGQIff5ckeBT2Ig0hg0bNmzYk218aQwbNmzYsCfbWw9PXVfYWu69wSuxdiDmXu/gA315JygWCMJIIDmZZReNJKSFzwFGAQHZ4CjASfedCF8kI42EDMTfDhIKY/DxhlA8VmDv+h4HaM3fY8eHY1JhcCK/D2o2YUDaGG0iH1PaGDE8F4iA5D3hnALhyeuskzRtch2vz7DEgCvC1+8nQF8RUvKc9DBPO6Iv3nsI1cmIwXgNhicJxPf6mFqH42LVrc9hgsiq29sDdJSanpvQ90CEhwx+DHVEfD22SJgG+MLF9nQ+HIJivBFaipXUdo/WQZGvxhP3ltcJpA4N7vYSwvMYIE9PSrA6J1zVQDV4p0GzXdX61ZqbLLkTvQHii1X91zUPXp3N/e/xuXRIJ8LJdm4OY7oiopHhyTC42nscnudYA+MJH6mfixOknoX6Pfuah33lYzboOUB7MZmk6TN13Sbh01aEj0hj2LBhw4Y92d7uSIPQ+wKHNLydVx9IZLfg+UTCy1PV5uDRXqVr1iBR7ZW1uPKAg4dF0StQ8vCaAN9FGvqvEXrundm9WYTyBmnrWF1q0uh+3eAN23je1BSnNdqTeaqVLvdKu0QAzrSvGPb30X4d7DaZwlpQJyqNBL+S/3aPy8hcJVt35CSH3yNhHyOEsF7RW/ao5CoSi5X6sU/7dXW4DzMkGby2ttfjsHlJ3eOUqC1UoMc5jee382hktqtG13PUuR9vnuhOXt6I6/C3a6I1pmm7VLfun2oRn43d1ulqj/ozdpX+a6nlVPU5C9XMvqe5jzXuc59r9NT23fnVa2+pn9fupR7CmtvaxGeZ+3h9D3B/nq6TT+Kz7OoNfgDCwa/vVUb4XArR6i5K0395gifbpJB0gzifIenFIhdLhjB1BUu+iAkOn9RGpDFs2LBhw55s40tj2LBhw4Y92d5ueIqxk0DfwRXXVdTADjLZCX2hh34x39lhkysC+To3Gxzy5i0cpR5++3ExdA/wwDXsQQxM5yvYKeSJO7laBY7IBTvogSqE4DVIIhCBMdxPa58PswiF7CqzWQj9CA2ZyB2a1oFc5YpHeMJf0nAeYY0MonpN8jmH91tefpiTKLBniQc7SDHUORgM4FxrgEGu19UhS9IkhghfGWyl4b/lvL+Wxx9Jz9znfget2d7lvUgh6fhSuGefu3DPO8nrChAzyDZ78z+9URXAJ8LmK0Ke9kb7sUGSGDSZoS60TwCwc15BixE+213jipBGIMKvVQxS2CNR8NDvJzzTu30WIZtQOxOhSxf95A53ed1WfG/cWzb/+t7Ye9zO5VNwBb/uEmR0fC2HNW59HWW8tK+9udqrBkXGeqK4v+Ke3dWLxGSPT2Aj0hg2bNiwYU+2bxppENGXAXz5MxrLx7bl9j1MZ37jt2dMD5VqYBbiVj1k8/Qm7h4Ik7h55vXkuj8vJyBfWKtaySWV7fyz6Q4VIbLnV93TzBfx1qYzo2V6vedz0orl63Q8Jw1J7mkmCR1ISOU8d2+VCagHQl4ZbRLiWv7t40wbnGCThj/q1RAhb/Kzec9p416prR5VnckTAKTXMnUvN0QC4K7BJOePkQRraq783CZCPcC9Z4syGgj1GLxM8ypJ5sor7oPHyVNoRlSv7r2yVNwu5FFCKqyJB+JFU+ukNBA8O/3ZX9e9lXTO5P1wD316ZHACylGuxal7s06upx5dcJYkC5vDpI2EOMH3TC7sUQXQI4C4R9v8esRsY7f15KTPgVVW6/15tHMV9fbnScY+P3CPtGyuPHGg71NvbMaMciRvU+DeNmRN6oFkjcKn0S5VuIX7CcSvpYiLN09IhXfHMBHaolX8tu9DNFUXfeaClLlZ2njXQsC8dK84t+sHtKJ7+6TPga7NLPu7N35ikK4vTeT3EZ8dWVNGtTYBOpdtph5hGaluUacl5oTPEDtnvsg8A6/vjY9r3/RLg5l/CMAPfbpLfOvs9nNf5L/5UcOGDRs27LfLBjw1bNiwYcOebG81EU4NWF4y0tYk9J4ILUsIli8N9ZA8ZJQwkr3ewGAcgzvKkZBKAydCs3xoBqYLeijPwPyKBV5JGuYrDDQ9tA4ZrXIeq46uB8L8SjCE+UVBWxLaRMhr8/G2JYGK3AMVlsrs3OG1ckpIFZhfVrRDAicWsr1Qh6cUVrCx1AOw3nYYLdUemJW5h6pCkrHcW2MP+dOlodwkgeQa+7jBjLoktBkoR7joYSrcyXvNw88rHE5LW9O1YdRjQlobUpGfz+9mTGeWdUxAPSaUo5CvDqNcE6HXBKTNQajNoQpMF3YIsRwI+cyeCJEvHZKj2n+OkAsrDCPQBnUSkiMRzl5V7TCbrkdVKK8eO+Qoiw5MjzLGepLfvd89dTgLj33tqMH3xnRm5DXip7JP2kxIK/e50vnPlybrRwJ30SLH5bWhzUn27sZ7IUQ9x/yyok2E7S6DuMNu+cxoi8BdBqV41XiVfVQOhLoAjfsaTo8BVmO9bpM922adb10/quzQre3z2Nc+nxltZtnjReDOthCoNZRCCn/JXqoHWdfr5AyHHXUNprNAyakwSJ8HJtmXnOUZkLki/50z6dqyQk465hMAEGa957Syz3M9Jt2n7HOeV/mMARHKiXbCjOtz+OcMdK6NpM+bfNb4uimkJfC4rjl32O2T2og0hg0bNmzYk+2tjjR2ZJPqJVGTb/x6SKhH8m/hmuRv4mnJ29vUCVUhMQltFjLZ0nk5sZLn5ORSly/ukQBnQl0keqlLclKvLkm93yTRzzG7R1uXtNN6IgZQ2O+hzRJ1lJN4N8wMKJnPSbwNS380HSjzhtokf2PzmBNQJ0K+MNZnfQ7ApPdIoGMnkVsmmKPLE3lVal3kIubRSEQluawWNRnpZ6S+ka11SUImz/LfpLmf611COVlERE4a14N6nkZus1S4Tg9wafI2Q8nWTvR7imWsXve0VCOlu0dmlputud14JLiF6OdF/5R75bGkRrKPiTOBHtnv31OtdR7aDFDRqELJSi+iN/2jCiA0cJK93aM32hiWSy2eMum5yV/3iCyRRyoynk7U2t9lnQGsmrZLfU9LxJDdg7dIpE1AmiTCqDO5UkEL47aEkdcrukm96X4ccTiu6JrqvJielu1Bi2q75D+BJ0ZVz79lIIGQClBOckxb+vwayW+9zC0aFxKag94WgdK+0t6SN8rBFg2AJhdYwkib5Q8Wtfa10EQMne86a7SaZa9PjxItUCWdS8KkSQhxrSwpAdDIdONddG1KGYBEYoBEfi33/fFJbUQaw4YNGzbsyTa+NIYNGzZs2JPt7YanLL987kJ6AJSsVXiGhERrM0Ab9W51GoJKRzUjhSU+blpDkYOYGjGDQagKh1gudqyKnc4dAmhKgjfLi89CbLUFyI/sEJXIhQPzfdWwNyGVhnLKQphdmoSuM5DPDdNDQTp0Bng6p57fDYOP4ARaKwAehFwDUYfoWAk3D8MZeTUSnJEA0NaALAQ9WCYrr+yhPVXGdpdAlZ3ELqckcxOIaYO8EguUIeGxhMlUlcDc9gRdrNBPVoNhEIIfZGvTSVGv+LcKc6vrUNjK6jFMIK9oXYGshUABXXxRIYK5E6RWhd9FEkk7vRESuCc2TAEmQ4dFUgHKLbxjodWhtAWubGDwJ+cOdVi9BqCQxbnXQhjMhFCLQaw1O0r059VIfu5VzkWOn15VSXKYCWltDqWUm+yQmCVANK2vyZcAq4aqZIP28ir7IYOxPk/ebZHqFQmuA0+bErmXfq9Uge1O7iGvEEFLvU+rUUlFrpUvckKrmzDoN1UGcYYJ+WVLVNgU6rsIfJUULkybwn9F9qmshzyDqTKo6D0fZN9LHYnCzYcktU6NUW4y8tqQzw2cJpSTwES9QyUDhZCJvRYoVyXymTBdmkB2GZjODduNwNv2WSdQK2F6kASMZM+uLkA9SJKDH2/EPHGvZ/mENiKNYcOGDRv2ZHurIw3OwOV58ujBPFUjJMuJwImwvBQiiY57sjQ2PwHEo6szoZz669Ropx1UD4T5oUczqYoWj6W1GQkn3qGmGi4A54RykG/45SW5RySVoOqdHuw7PHtK6/TI2G4TygFY7pWInBPyKp5Im4X4y+emcyKe73abdtXp5SSRUdoI2x1U70fHfQag1ctpE6+uHoBZUyk5mycl82MplayJA9bNKGUh2au+zyK59Tkhn4X44ySetEdjdxnbDekY+3ihaZD1qJ7+Iu9PF5nPtihZHirvrWrcEhvMw2oXa/Yka2tJDR7JVE2VvgDTkZzolDlR8vVAPQJIwHanVdsAmlWzF02gYKDciIdXTjJWQMbOGSgnVnfNcnr7mFPR/TLZdeUQqkoAB40zJ5yZfA9K6rimF58IdEP+rHgK8NzZ9elRUkrbQig3CVSTppT3pBCLniQ1XcaZV71e07TzGZqYAUwzYXow9QBGPcg8UAHmh54MYFGgRO0SxQgJzJ500qZOZlu0YJX5xNQ1o7QRUdPnfrsh5FX2c13gMu/xugBQbvSejHRXkny7I7RL0s8KTQjYeqp9PUi0F/WoeuJD0nElT+9fn5kaha6HJqe4zpl+Hlm1PXGSZ+JIaHPG+oxApZcQ8KTp7ivtUumjPpV9/lAlFNJII/c5+6Q2Io1hw4YNG/ZkG18aw4YNGzbsyfZWw1MgrakwSKIKgWbwSLmBi3hJ/rqGbsRd9AsSxnkVdOpkuJF3UAKzhcpR676GAhe8W140ybUuQGXg8px6LnjuxGg9aB5/JuGXE2Ey6egkpFa77WScq11PwPKCwVkgBUWNkM5CKBu5Xk4J9SAicdOZvcOeEaVohPlRrsNB6K1lrfK9GOTmxRxeeVsOhPwg0Ee2nH7WKnQIRONd2nKHDKkxmC1/Hk5iN63J8PoNXddYK9EWRj73+g0j763CupyAOdZgHOCy2mkT2Mnz1lm7uGW4oGJT6JEawBsAtkp/I6LlmE4KK3yke6ueFGY4o4vLocMhBjEBcFnsdmgoLSGtukcWRloFTrCqcM5yjnoUaIsykB46lGE1G1Z71BSaBAzO6qSu1UV4PUcOc0xC4hoEk2snv61+oi4Kv0yyRpy72F9d5B5N8r4pjIQMNCIlpoHMvb6AqcMqvQYBnqhRFyGALSkh1tSkVfa2rbE9+7EupWUCFhZ4meT+m615kETfiV0qhFWDoGXTvc8Z2JYkY+aewNIWhYZZnheucg7ycZHLnxss6kkOSY5ziDwBrHtIElnk2ttJ1pVDR1GfswmomqRh+y5tDBwJk4oUtgXAKvVYMFjzU9iINIYNGzZs2JPtrY40rEJUmhb1CEMkwpUw1GjEmwvZe1U3irQatJGk9m035B6VeQXmmZj+DIBdlSsAJ1qJVWvnoLLksxCbostDu8ZO4q1bymb2NE/RdJJxzK+SE7GcCMt9U4njpOeQ1MK8AqQkfD0mr6bemngadVaveiLROQIwkWnlKDmXAGaRI28LoWpasnmg5ZS6lhGsqhj+XkDHnTVtNMv8UgO49fmoFlGF9Nlm1bFh/agqicziefLEmDZyzyx6mG0Clked7wKpptY03XLUplahQtsiP+YwDpIxTEY223o39c6WUN3LfS/E/aA5ATvtKUDmg1S+Wia1p0LafkjqdaZNjq9KHgM9fThfJMVS9MDEq3RtohugHmnXBqAuwEHJ1YRetWz3azpWlmYOdD0kew6sn7xFata3uoVnxO9ff7emTE5UF3hKsVS791TT6OVbcolEQ/Is8Kqp0rUf01ECJaqPhOmxSVKFXr/MEkU3lSYXTTNLPZU90jTZIG09xb7daEJGA6Yzodz0zxWprhdNt/lRUYCDRBl1BrJW20Of83aShABL3rA96c2XdH7LQdZ408SF6ZGRWa7dsiZHGOmu89zbJ1BXtQCwPte0W0vA0PRiajKH9Rg27iewEWkMGzZs2LAn2/jSGDZs2LBhT8ugEO4AACAASURBVLa3+0sjkGTbLe3gBwuLpbaik5oGzUBzyjl30sphi9TfS7WTVXZ88ypg9N7fUJIv94pNjlXB1K9hOfcm8Wz5220mrz3IFxayUGXHo/R4tm6FlR2mMBJ9ukglro055pLbfRvsY/cnA4QTfkbQGaRg4nXU2CGMtDHymbXi1earh/HWBTB21/PKaq1vMMIyn9nDdtaxAFr/QACoVxC3CQ41tJlRb9s+bNf8d6vjMOikagc3KHyyvdNQb7hDiFNfn3rQ+pCwJ8pNr7moh06mlzutg7lhWbsbee/1mrOOWyTQCcgmAc9oCzscuhM5DDCM7V+rtmeDyRTOdOhI96fBd20WGLRpbYbVeADwvWW1PrZXBfJi3wumgkARcrOahpDgYRBXKrJ/HEIzCfOt11MYHOcJCMn2MO1EI60Kn21NDYZhSKdNvZd86eoCvdugbj0bd+3/udQ6+r60dbL3XEOvHUqUSvO09VYLESZque+9eiCvx2gpzCcBKdy3dSiM9WaAPOup9Geid/XrYxM1hd7SwJJppKe7Qpore4uDXS/3T2Bv95fGsGHDhg37TO2tJsLNWpZmNiZxXG66V8kZyC+DF6rErqVBMgGsntp6R+7RcO4VvFbRax5kPUHT/ST1FIB40hN5cxpq7JGDk4fW91m9s7ShV5NrdGFEslUDr3ekqY+SvgcIUSjXSqrtJL9zlkpwGytrlXc9wj1A86RTUQ9LUwvLjUYmD+wE5/qcMN9LP2Np4KONl26SVNoqAWgNY+x+ZRwm7Qxg6Z6cj82IaAJqJmzP4HPl6bcHoB7U4z2a2wdPHgABqOReeTynTBRAVn0+a+U7ibR6PSRwlgQCI6nnV/36nqqqT4g05oFHdDaf7QLwCciv1Ks767nuGdsd7fpMkxLqVAAqhMMHvTrXGj25hlZTb13fn1fV8CJZ/3wRj3F6bODn2fWp0irRpsjJk3vylmqZtVXApO+nyq7TRE2ahVEDzu+JFLr1dqeqqc0PwHYK62iV+BYZFJkniQaNrZaxk0WuCEkGAIgZMcW1HgjLy+bRtTVhsmp3603fZmB+NB0svZQpPWh/+LqQKyN48grZOXraMljmzvrYTxr9ghmpkDeYml+J/lM5EpYXjESMmsilyS0VuRxD1g2iCkKP8Gwf2f6Sf6U6X0oJGPmi5H0FqkWJIXnD91eIjKQZFVA0KhMVC+03btf9FDYijWHDhg0b9mQbXxrDhg0bNuzJ9nbDUwojSOjInudORdP0EwCtF0haIUtazUmtk4Uu7azhclo7CeuknMIfae3HmZCbEbGpSA69Vbzms46T+liBNxBZxUi8BjpkJ8TqLHACMQcim1zo0Ct8tVJ5emzgi/VEJpGBRie1LayNfZbnc4ftTBYaALAwUOQ6AumJeFsOdSZZe4iD7ThGPmvJdxNohRTqmx4Y2y31967QkF7gpekRaFuHYDzUhxCj5cZIPz2HkZIB7vBucluHFK3ugRgCV5LJswvc5xAB9y5q3mPciGmFEh2GsSpidBLYITK9RjkKpGHii7HOoR0YPLMIRzJgLera3KGgnDqJngqwab2J7MeE+UGlx88i2pkqe22O7W3bXyLLvV93rgL1bHdJhAKXXsdjnf3qovdb92R3m+H1Em0xCAROJDtxa5CwIjVG0tasApJaZW6KDtY5T+atd4Y0CMnEI+UhtWcQyCzPs0mvy75gUJLkDYN1pQ0CerJBqCPx9dH1NyhPBBPZ98p0YVwO5M97WUycUK+vMv+z1RLpXkpVap8MsUPr24YUvnMYLSlsvNnfhNTOa78/g7CZBEqznuOm7mBtDwSmZIXWBO5e7j8dEz4ijWHDhg0b9mR7cqRBRD8D4E8x818Ir/0xAH8IwBeZ+UtEdAPgzwL4fZAv0Q8B/LPMfP/bO2wbQPcaUpVKbLMofc2TpLsB8m859grxloFJtYkoeEhmJrNOwF5K3Y5T4lTSa8mbIEW9HPGGdDxKStYDeZqcXIdEDn3qHoRUhkvUYqmO611yzR6qLHLW5sHpTZYjYbvpXlRblExT8qzcwCupS+3VxjHt1Ih1AKBDv0+rDt/eTUIQaqMfSwLYbuEphsRacXsDNPUYXa68AqT9ty2N1lOadQ7KnaUYE+pJXDNqCTwzaJXGVpyBtpHfY4wKjQxNm3iAAMDqzWeNGElJyaTzkEOaJtRD5KAlBctYDNFiWntEY2tsnmvURGpGnp8JrZCT5qyaXz6WzchyPb/1EU/7SCgVIcVlHwGcGMkk+/W4ZFETxPtsEyHHyEGvLXML1ajq62Taal2GvZOxcZ5sX1svb0KvvLbkiDajX9uSQ+xZpR515LW/Hs/dJfn1vKFC36JlSXUlf92bkdneThqxzT0t25ovpQ3+uZBXeM9zWx+7H87kc1VnmUNrTmYkPairI1hE5n3tlx5FAPBIztPDtWrdG3nZs2lJNRmOLnAC6iu9nkZAprVVDrTbg6ZN91kS4T8C4PuvXvt+AP9++P3fAfCbzPz3M/OXAPxRABuGDRs2bNj/J+zjfGn8lwD+BSJaAICIvgfA7wTwf4djvgvAr9svzPzLzHzR43+CiH6eiP4KEX3ZjiGieyL60/r6XySif5iIfpaIfoWI/qVPfmvDhg0bNuy3254MTzHz14nofwbwzwH4SUiU8V/AA1UAwH8C4KeJ6A8D+O8B/DAz/1X927+p5zgB+Dki+lFm/hqAWwD/AzP/u0T04wD+JIB/BsDfB+CHAfxX32hMLhxnufn6X6oCBZh4HOsxFuJXDXmpArwABRryhUrONnUy1WApQHs6bz3v22TPUxEpdJAS6UuHKYyAFLln9J7mBvnMElsbGW/58UJGhjoEEhG1pnLP07mThqmI2FnapD6gnhRyq126u0FJy5smk8ACkRjScvhIRB/zKhWvrLiGV4V71W6Ya+2uJskFDAKh6by31Mcd3ZPYtYwqQJbjb4J+6MQzJSFxt3cBNCH4ufSe8GyQV9FrWnWvQUYG05QOPeARyI9ana0kpMET8yvteKdQAlqHalxUL95H2EsGG0V4yolN7n+3Y0zi3ebSoCm/ZoByALlHq2Q2eKnc5DAgOFGaCnuHPs6S45+/KusLCJQxgXuihycfUJd/N6gtKfxK/fmwfZE26Xlej5okArg0eIRwgb42nABMfZ4sccH257T2XtpWU2QQGScgK8QjlfiEcrb9kLA+S64A4YkRDivp+LPU6nj1d5zr2p9V6yuPJs9oSoztLkk9V+6V9m0BqkKI9iyYuGQ5EeZXjMu7tIOcuMq17LkoOjar2+IGcCKUQ4eiHEIPCQbeXVHhcVO44MwOkVsiQdqAdhew909oHxfdihDV9+vvbsz8CwB+N4A/DeB9yJfD36t//reJ6BcB/GUAXwTwvfr6CuC/05//VwD/IzNv+vP3vGkQRPR9RPRD9fL4MYc/bNiwYcM+jX3clNufBPAfEtEfAHDDzD+vMJWbkt4/BuDHiKgB+OeJ6DsB/NMA/lFmfiCinwWg9dXYmNmilQbgoudpRPTG8THzTwH4qbvPffEHUmFMD9R1lpISU9QJREuV9GrM0lMbXWq5BcKxdLKIqvKE6gWaZ0QhvnKP2ao1K6Ok/o1uqb05kHXiZUn/cjC75yleFTu53+WqyT1J8wCnhwZ6niS9rkoVtjXw8bFpdbFp1qQNSiJ375GSVaySRABaHQtlfa3xjKUfWjV8XYQEt0ZYRqjauFPRyKwF71rn01JkoZcxr9WJeNPGsvnSPt6RxBPvnwEir9K39FaqnTicrqIji5pcOynM1XZL/veoISSV93AFAaoScXpv70AOW9qoyau7Z6jX4FnWhJPuSxvnFqLjK3fOIp1yAuZ7i/psLcK5U5/nlBhVExqmR602zkb6s+sSVa20tn71HgWHJAloJnVaZQwWQaSiiQBLj75tLfNqvb6pJxFYEkkK11g7oS2V99pA7MLea52pR1mWIm0V+iBRJZjODZyTrI2OI1dLJZZoy5IVpkfgcuzPBJJEnzJ2SVedHiVNnCqQqEvSpw1IZ01tvcjC2Pw1S9tu0vOcqh6jD4fvewJSfDZZj6D+mnyekStPkH326J6oCUgXdM2pxsgPWlpQgfmhYb3VVPmzzE9eP+NIQ78QfgYCQ/3I9d+J6B8novf05wUCMf1fAN4B8IF+YfweAH/w0w582LBhw4Z99vZJivt+BMCP4/VMKgD4OwH8IBEZiv3fAPhRAAuAf4uIfgnAL0MgqmHDhg0b9pbZx/7SYOafQI+QwMy/CuBL+vOfB/Dn3/C2C4RAf9P57sLP/943+tubB6PhpXb6YujvYOmJG6omwRKqAvBKbYMcdoSjks0WNkehP9ZQPWvlKhWNsi1nvrBXiRvEki49LzufgeVVw3bqoWra2CthpfqzSRWsElsApFrcCU4JfecHkQQ/vJBOfkaQifQ0gydCsS5llt8f+hZHoT6C5qU3Rn4E5vum5D05FAX0PH+vjtcqe6mYFbIwn9GrpI3YtXu9kn22ugQntbP2V69AOwBpJfDMChdZbQrAk/QmF8lurZBf4XHzjtw1QheBhDWIiAOxmKF57D233jZ5FMNDgI6qdnhrM4SZU2joGlrjCV2wbgHaZH2n5QomilhtT239Or430WFHq/re7gSatHojJ8h1ztvce8ODpctj3rTmgg0i7evjBL4Sulbj4bU1SWp8TCnBJNJNpj12tbxWUqAm7yd9b8sAK4xSTgrlZXkey1FVALTjZstd+UGeKyX4DeJh7rCpiYKmXtdhe9HrZSZgfd7hWc6SONMytDifQFbP0fr8+OeIznkqNjZdA6uR2QyWY0l8WYQMN/g4XXQ/hv7gXk2+siR8VNYOjHL9fIFCZtrqQfdxBJtM7SKvpAoTjGnSf88itDirIOmnsVERPmzYsGHDnmxvvfZUKvINPT22nk54VMJWtXRSqJ50MpSlUVBr2ivcyFrr01yCHDWHNEP1VtKmjYY27UFexdvOzQhGrXC2KETT6+pCPVJRr8Ua47i3tInbxkqItSDvbB4EAPAsFegtExKzE4iWamhkrnmGQI8QzMx7Md0s0gpjy1UmaCShnmTLOrdMQNEK4wt7anDU1ZrOjPUZuZ6U6R9Jgx9JD/ZKfuqkpGmGpQ1oINSDyFMb4dhUzChd5H3TWcnUWdcLve9z2oDplWgGCcErkYQGFb5WVIH5UZISRNaaJCEC3YvORtgqyR6rt5eXqh80Axwk1UmrfKcHleyH3SeJx2nEaOtV6haRMfS1HAju1iNWTtrA6mARCYEftBFXYeBRn4VN91YSae9ySk6kOwGulrSpFueETVN2LRqkqvNRwrj0mcFhfx92D7LvJP13WrtnPT3ASWN/jgMBP517E6jDRw1tIdGXMr01TaOWBkMy9jYTiBkt9UZoor4g5y4n9Ojb0vTtvjW6M5l1ef7Zn7tylH0uOmlC0FuU0sfP/X1ZxpNXbZGQuwpF0qgraZSV1n1EDkDRht7/vUvCwxMozOz5t77qUskunx8t93MD8M/IT2Mj0hg2bNiwYU+28aUxbNiwYcOebG83PEUSEopcuJHGQlTXxcg8dsE/NyWMrHrTK5+5k51G3KWQ+++XrT1k96rbRODUq7qt8xqrUFlS2CT2Frcq6oRAWJKElqlCKqsbgy6dZJP7Y1ARsvu1mgMjIzV/LUpk78QYDUbS9zMRWmZMBQJNqaXKfn6vWq6M6gRj6M2OHq5T1f7I6ESfJxt40QJeWxeraTDxNp4ZPLGTx20i1GPvhcyzhP/ToxL0Or/1KP/ls1bON7mm9fa2XHZYXQE6lGOCczZX3rmxBTJbazWayqy3DPCh31ObZf6tQ2Qr6KJ1mdFIam8M6vKaIt1XBis2DiSzwjVpAtbbhOnCLqZn89zl/qnLi1ttRul7v1exyx5khR0BIWPzgTqUoeuJGXuz9UodAuGkz01h/3ucSyBAmHGuLKmFQ9U0GZxFr7UjMLl12y+p9SQNv5aR+ArxeHc76v9aH/ccIFxJrtGfNYkgBWHGBO2/XQOszfp5swnESaxwls5TWgBojUTL3Vt3kUTu9RYGB0vNDLvaQyT1TW7daoOsG6BIwcu6gqTWZToz8rl5LZYJF35SG5HGsGHDhg17sr3VkQY1TVeFVoMmuJdcZ/mWTRt3j6N1ckq8HfWslIA2/fPpUbyB+RE9JTMFeXOtGp0eNdX00FPi0soa/SSRP2+ibZXU45FGKkpAbgzaGKk19/QsYuEdudWbE+WN3bugEsZvFbCaUmkVy9aIxVIRa+4EYSrd00lVPZKLeCVMQDsk9dQ07XVKMvZLAzUhU1krY60neqxGRwOghLFV3JuXK4S6eZJCdMtYhFT3CvEZoI08+CH3mMW940DSRq+rWUKDEYnVkgxIKmn1vi1izGdWyXTR3SrqaecE8KV76y6Tbr+Hit68QXu5a4TK3ftPGzyFmyqBCvVqavNmS58na8rjVfypk6Fplf0zv2rIj00TJUg8S90z7nFqhbclUeRLAyi5dwxoiqil4BIA96LZveAGkrEBIB2zyc3nVbSTLE2973XWtFTqZKytF7M0grLXCU7Yp03I5q7Jpp77ZntDowqo5xwUFbLJ02chtX2fMdBWYAvRHIfPhb4/NSpbZXLymVUKXT5LqMo5p0f2zxurriei0BxMnmW7N1cCuP4MqzYGVpUKjWL0syTZvaYekdj7kLqCAic5vs2E5VE/C1tsRMVoU3J049PYiDSGDRs2bNiTbXxpDBs2bNiwJ9tbDU8xkYvlcRYoxcg7I2FxklCyaUc9qdcIBLKGfEa88QSszzohbhXO3jkLWoNx1OscjaRTqCgTiKWLXT3Ky+Wmk8BMkm+eCmO6AMQC+bSZ0Gz8Fj0a+TcB222SivNJa0K0ong7kROoJmzGCdie78l774U89cpaYslbn+N1SUhUq6ZtGYDCUkasgrIQ0gfyvtoi0dxJQTtXlJgn7jdFDdgmgTw4A+Vgm1H6XNcTUG4Z7SBwXDs10CX1ehsIQe7S2woRkcqrmxy9i+JpZXxT2MvmxirlLUffOv2l3EnzXYc5JZY5ay4B93miSaAZQFSvneinDoUITBRhjA6PmOS+QVl7iEf2bV7ZRf3yuQnclLPuZQYZjsdKIJtooj0z1tdeCVGRQif5PUVSFw4T2r5pc692t8QO26P1EOYfwKx9sznJGpUbuUcTCiXtiR47HEoNBSFlIGsNjjzfss/sWS9H8j2VqpDEUn+jz91BYULtlV4OcpwkR1gSBaEdWFQSNqnVqlrv4v28VXCxaXc+0jFwArab5PNCVQhwS6DIJDBQPcox5QB/LqHjATRhwEULpRZLIE7yBAtrPbCd+tybAoCR+VuRcU0PmsShsUAqWnOEhHRpKDdJ5/DTxQoj0hg2bNiwYU+2tzrSoCbkLQDRVslCdIoXnYJMtHqrk/YftjRGSxMlIfekfy8hHYXgFHnnTkjKRVUeuQLTg1RRlwMwP6hWTCLktaHljOmxe+Jp7X2HQepBKmmeNIVW+j0noO1TKaWPMzsxZlpUQpCL90CNXfK9TcB2lkjHUzpNj8jSXwMhaHo6WQlI0cNi0cApSpypTpaQuuo9nhLaLF6VkX4c0nWpMdJMoiU1SYOjpqSipZvOr5r0Pdc5smhKzk/g1MQzr3r+SQnIzGgzS0puIuRzlhTnBLA24eGJUXnfVMjmxNUBSieETfYe6FFK/M8r7dXrTgDKDSNfyHuwtxkunx5Th11DqgH1rqo8vQzCZMERSHdLl64H2kmCcxHvXTzn1COdmVBncklxVI0qdVy17lOjbV8lVRgwrSxUBjJ5YkLeJIGgMSHNADaATUNMPV7TnrI5JI2oU2n9dXVwWb3n6/1njZuoyTXtulRJGiJdrKkQISWAa79m1IeSZ32fhmxjpQIgSQp+mxic5WG05kx41POvTeXiZRyF5DVP002ENutnSpPowMj9fGHMqk4x31eJ4Fp4lj1FH65YYJ8HohShiSVK/Fv0m1dFRzTN2z5HXE8tzoMiEdOjfA5JdMqYHhtSTYI0fAobkcawYcOGDXuyjS+NYcOGDRv2ZHur4ak3GTmU0CETIUH779Yhb1NyysNyJS6d9MsBxojXaBaO9tBQCEutrrXQmDqJnjSnOkFCbRMozOcm9RYJKkbYOlmpUE8mITAtz17gKUaGkuwpaf69hrAkkIZ1CJTuYf1eTEzPhBRNXE6qRhuWjzaAGW1OLnQn55HOaKmIWF6alDXlXgMhNSoGOzBECZ12MJiLIyoxPJ0Z1AjLq6ZS2SL1bqQxACELJ4vJ0fuMa/EMTwCsH7dVx4dqeFZYwboDRqFCgQYECujVshbzCzzS95USuXat0vu5OwQyoecyaCWxVfHWOwbNTRZ1TVKdftTaikoOSzl008J5oHOo47b9RiuQE2ule6+edmgN8FqGfGGV6mffU3bPVq9ElUHH5L/3+YMnixg8ZD3o/Tm5ul7aGDR3sb5Yde0iiFbbovdkYopWQzM9cpdfh8xxsiQDrTGy5023m2yZqOKg128ZwFxBKYGPDVwItSTkSxcgFOi0i3QK3Ezama8nGuygN5Y9TJWlPsISHMBoOfXn+SoBwuTos9Yo+b5qUgfma6JweT3KfXCGC53mc4fhOLPXm+RzwzQnpLUhPxa0eUa6NHzaWGFEGsOGDRs27Mn2dn9pmNfMrFrX0D7KkkLYXL+GAa3WbJMQj3XuBJ4RbJwkXa+cNP0OcKKRU08bNE8wbUKOTWfx1mjrnppLcZszPndPLVmzFQCk3mK6VOT7DVQa8mN1788rS1mji3NDXpt4oKZ9FapQ2yz3Z/dQbuRvnIB2gKazCgnYJvFapYmSeNvi3cqY8qUCjZHWClor0iolwVQa2px8vq3Svk3o/2WJjiQ11yKu3lyqBF0q85zKgTylsc3A9qyJ7tRNBY4NWBraIgR4OzXgWJFPRZuAa0qivree5Nh61LTJhTzqM20n1xnTfWFEYpslcmmanhybebVZJbbvWOZxYidFrSGR9RW3+/I01lnmfrlbgdx6qq1Vldcrgtirk+EV8oBGqJeGtDKmh9KjIxaP16XvaX8+aoy0yvvS2qT6em1+TiZpAib7mn3fx3YCPlbA9bVc8yrvj/PnSj1+2ytAn3tLCaZq96/ogD0fjb3JFyD3h5D27PfdZO7LSfabSddH3al6BHBbgGJ7T6Pi2iMh25OuGwWoAoImq2zs1dvedqD1cYiqQHPi3qJ/STPu68RZIqa6aHSKECHrfmuTRbFdQ6yc5D3lhlFuZX9vtzKWcpT06XqQhAiPkgOBX4/J9fI+qb3dXxrDhg0bNuwztfGlMWzYsGHDnmxvNRFuucgAkLcGnjPSJlXRaRPBM69rWCU/O5GEpKkoouXVxOxEVZsg+f8Kae0E/op0eMtnxvQgpDUnwvKiID9skntPBCQJEctJ4SPLR1eSK2+M6b5ierVqNXAF1QqqGbxMyI8NmVmgoGUC04J8aXI8gLZIbD5dMlpmLB/KtZv26b68mz3UTVppbFCcVE0T0iq1JtNZBB/nFwVprZi++lLuIRuTzMDjGTgckB4PSOcVVE8otwtiJ0FqyUP1tDUlNhO2KnM0P1p4j543vjJ4Jmy3CfN9U9hkAihhe5YEXiraKzwx0kpoCwvEYJXmG3mXOINFqJBDD5IPb7U6pLUohEV7oc/3klyQzw2pNLQloS4JVHIXnUtdlJKTkL9O0gPeA74egGwQTjP4VCAIh0p0DwrECZRnOs1Ja1VMrFGr04l5J6GdLyos+ViQzhUmGZ9ycjI2rewd9izZYX4l+43PskeNCJcNxaDWFC5rqEvCfCCFUgh1FuLcJLmllzc6HBWIcXu+pkdZY84Z6Zn2ci8GRyn5bjAPuthmXhnTY0VtSWpwNiGlTe1BJNy1BkqFNtNFr1OALVSZA9j1oUdmYGagEWhpQJO95WupUJIlqaTKyI8VaRM989akZkgqrwklQUUWGcSM6aEKvDwpw02EPPdqcoG9BLKz+0hV1jNtMkiqCW0hTA8V02NFm+cOnU2SOFHuGnBsUn+TM9qs4qgHuQnSKnFTkLDPCyDAep/QRqQxbNiwYcOebG91pMGZcHlXvjbrISn5A/+3zsB2S5iP0qSpHpQsVU+onII3ojo19QSUdytwKrg8HjwlruVOKpd7jR4oq/4SYX6ZAMxoU1JNqITzu4RyC2x34tnatfIlaRowoS0J+VHzNAHUY0Y7iKcrjWykQvryrnjxy8vZSbE2ES7PpeL5+IHoD13eFY/u4bsZ7dDE67skTC8lnbPcKLHcCKlkbHcSEWVtEENt0rRhQjtm1CUhrw3pcisE9u2M6eGA8+cXrHfJeyjXhXaku93jeqcpmRmYXimjqqTxfJ+QV4kM2wzMN4R8yTh/jvD4eWD9joJ0EpYwZ8lxrLRoui1jPm5ImVGn0FQopKhaD++kkvQtRF0AY37oyQiAePRtSlrxS6iqH1aPcCntciu/tyWkVaoOWCqaaLB0by6SsdYEiZmAc8b0IHpBrDLfy4fA/CDnnLUHuMiCS6TCGrXks6RQ5ksFbRW8ZPBEGhGQE9Bt1rE/ypjqnEA3sxD9eo8xbZw0IQJEePz8hPN7okFmWmXlqA+e/mx6ZuVO0niha5BWreKeCZVFsUBSwzW1tAKkUQudedesy+aJJwLPyf/WtNqdmJXotWQDQioJqSSUA7A+F901avq8atosJ3ne81JRmcCFkKaGShlp1RRvjUitCVLsZ29rVE+iu7bdaK/5A7kceypSpU9FPH8/9pZQbshVCWze6qKfU00+n6zqu86ihcU0YX5IuLyTcH5f1v/yhQqcKo53Fzw7nXEpEx7fWXD56IB6knupJ+DwIXAuGetzws1vApf3Z7Qse2J9NlJuhw0bNmzYZ2TfNNIgoi8D+PJnNJaPbYfTu9/uIQwbNmzY/6/sm35pMPMPAfihz2gsH9uevfO7OHYY885eSkBaKAzAPAwE9wAAIABJREFUqzmpI0GI/Y1Tg4u8WR53m3qee8zVZ5LaDKsDyavkzefHDWmSkDSdkkMT1PaEqZHzQlhKlXW+VIGiDlnywak5gWcdCqlJDnidRQSNSTqaOUkKzemfBCIASbk7GQkeKoShFabWtS9W0dJWQUSot5OH6FQb0kNFO2Sktfbcf+7noEaeWGCd4oipi6rZNWYjeOFVtUAnICPBzI2ARmisFe+NQInlMi0hTUVE6BK8v7S/9yodfdcvnURSe3pkIAukV1tSuIac3E8bAKt4DokTcqJQb5D6z16jkQLJS/26RNzrJ1TMkapPjwsQ2iZlAnJlryVJlcE5gakJzJMMRkEnpgPs5Otha0kMTJC12RqS3ZPWNAnZLd0UfW2sensKc2DrOUnNA5FMughEirBinanXxLQwd7reXk2PULOhx6RLA+6Sy7eLXHiXVLf6EUs2aAv1FgApnJukYyUALEvBeUvgW8bhuOFcCeU2Yfko6d4h6ZIJoC0ixmk/MwmkJG0SKPS8B0A6rlUhRU1I4Jl8jJz1cBv3jC6yqXUWvb7F9pCQ2U3rynCquHn+iC88u8cX7z5EA2FJBb/09d+Bjz53xMPXbkBTQ/o/Fod9AeDVd2Ys95K8s30nPpUNeGrYsGHDhj3Z3moiHImcELbqVyPBrXfu9BiOt8pcANZf1z3wi3qFDIAY07GgHRYnC+tJSOS0ScWlVTxLJbmeu4rbnZA6gcnihYGFVDTfzXtXb5IymV+ewXNGnhJSIpS7SSpRmb0BEjEw3VekRTSm6TZj097f0r9YK8QvwHwP1JXQFnLClgqAmzB9VonaRCY7nxsu70xoi5LycwIyYXq5gS4V6bJhup+QHlbk80EavzwKccqreXfi3Sz3Tbw/nT9JpewRm5GOpv3EWSS9JQ1Xo7SVgJnAWwIIyIcCL3aeGJSaeM2HJvpNVbxRKpDmTRCSUQhcWTOp1iavDO9RELnml6VSA4FAPcOrvdn6MlsTKK04LyrJLk23bDxK0jeSCvJnBd/1zgv82mVCucmgRijPRP593TTCzZ0knR7hZO52J2s5PWbkcwPSJKndN1Pfixldg0vJe6tKB4A2JdSDrKvsP4uoJIq0yIPK5JFfKkJkpxJ6zAMeNfAkP5gieT1JVGQpsqIMAO+Hbk2cxMPWtF7VfEtViH57n+xTdi8cgKfAe8Mt3UNtlgibVP7e0nnNs+csURYlxnSoeHa6oDHh8jhhfZ7Q+4QTprM0/Jo1wqwHiUSKNV9TPTKLysohrBdFAl2eLUt95wwY8FCPQH7skRVPgG9wtXqQpILyTA5abld87+e/iu999hX8oef/C8484x87fh0//s7fgffzPf7Mr/1T+IOf+1X8Z/hHkI8VrRLu/8YBH/zehptfT7j5rYSH38X4NDYijWHDhg0b9mQbXxrDhg0bNuzJ9lbDU9L/V+ovDPqoKlpnNRnSWUykwtdnPQymCqzvCjwyvZJ6CjSBoTAzDoeCh8xoB8LyAlgN2tKcdQu5jfDcnk2g0lCPE4gZ5/cytltguxOoxCCgpJWt223Sjn1S7Tlnwvru7L2Hy4kwv0pOiF6ey7/rXfKK9+0ZYX0u119fJu2XrPf2XOSk29LAx4b0kMGZwUtDOlS084SWIWJnSrRRYZzfT8jbEUzA+T2r8D4gnydM9xPOXzhifjnh/rtnlJNAAKQ9wrc7WxiAk4zn/L4KxaET75d3Wboaave+egDKnUAneU149TuB9QsFh8894u50wde++gzLacM0VTycMlATKDdMU0NK7EQ4J6AujKn2+oO0AYePNAkiuEgmnrcT1SPJl+ckkMB2q/2mj52ktT7TnAR+4sxOChtshdShSZN3nx7k/OV+wsv1gPbBguNLwuEjye1fPpC5PHzAsKpkTsDysmkNCOPyTsbhnrG8KKDCOm5VPTg30F1SCXxJksirdEg0ZYByk0AHQjnJRKQicGa+iBDl5Z3JifbLuwmX94DpLPtuu+vPlUGd3qXvoJXMl+TkuwkGbrcyl/XQn1kn/hWKsY6a5SS/Tw9So7LdJqmHSMD6nKSuqsm5ttue/LE1ralZgPUded7SRi5KWg963YWREyNNDctS8OxwxoevThDJfqtily6c00PF4+cn5NzhqKY1MEn3u7VVqEZ2q0BnOWZQY6zPpEve+lwgS4PKrR7M5tKg0roA0xloJsioihTnzwHtvQ2ohC+88xK/++6r+O7lA9ymCzI3vJdukMCoSPjK/R3q5xLo5YRKAG8Jz35tw4ffu+D0VeD5X1txfu/wiT9zgRFpDBs2bNiwj2FvdaTRUu/53GYADCwvGI/fIWmo5VY8jfkeePyCfLPPL4FVK7SThQ8kmi3LRxJ9oBK2knHzNxLSBUATIqq9t+HmFxdYumlexbOdX4ksen65op4mzB9cQN+94Ph1TS9dE+Z74Ph1Vq9XPUgCDl89I60F9NE91ne+S3WFGuZXkmaYNiEVk5KkeWVPS9xulfBbu6dkXhO0IpgpY30vYX5JKu2dkbYZeQUOXxd9oOMHDeuzhLYkLC8blg83bM8nzA+M49cL5hcr0uMGtAamI9qcVLdJidkzi0c4EfKjeKptIswPjMu75LpMaRMPf1KSl1XPaXsu62nS5fUo2kDcCC9fHcFrwloXrATkr81SgT1NON9OwNyQXkyYXpHOgWhqAdLgKJ/FcywHAEeJHKgCibqnKte2+QEKVM6dNMqI8uAApgdCoSTneSWpmPlRI6kVOGchh/OD7LHpAVheds/8xf0Jy4cZx6/J2M7vi0d5+grj8FHd9V0//dYFnBPKTcbho4T5VcP81Ue004y2JJQbeYRTachnxnqXABbSvE09M9Yks+ssSQb5osSx3lSdk0ctpp4AwPvOAxLFJiWGl5ey/9IKpHMS/a9VPPHlBbC8lASOpp76/FK86NvfaHj8nOwza2x1+EjGt92Qz3E9JB/z4aMmcvQnVXK4kT2SL+TPgkVB9Uaizvwonn1bZE3zGSg3hIfHBfXrB5Tbgr9eE9b7BdNHWcb3KONe7ptrpHEWDahyymDS+2qM9Vl2RYlykrle7qXdwON3TMgrY72Tedzu5Jm0RmhWGZ5Wuf+0QSJRln/rASgmkW4p3A8ZSIyHdcF//Ve/hM89f4WfnH4fbucVP/nsK/jZX/+7cJgqXv7qO/jp/Hvwzi8nfPAHCDe/NmH5+keYzgtuf7OAGuP01UGEDxs2bNiwz8jGl8awYcOGDXuyvd3w1CKwk3cDI4En2gyUZw1tYnDO2J6JaGA7NHDKqEfpeIX3V7RLRrkkIDPqTUI7NeTbDXXLSAcJF8sNkM6EVgnru/AQmipjvcu4vAscPyDwdKch9Q3qTLg814piltCXqlQhpyoEfl7Z8+Xb+89QTiLQNj1U1KMIMLJWK6/PoJBO6v2OtW4Ai+Wqaz1EEziAtYNe0yp5EcITGA4E3P5GRcuEw4cb8jlj+fACTgfkc0E9ZkzUML0qyB89Ss58zkLurg3zQ0M5SpmtdRmzftaWv18OWkej8MB07qTn+qyH3utzlnqGIvdWn1fk5ysOS0FthNWqY7ckkCID1QhoXXcL+73KVslkYukFL/AHsD0D0OS4CxOWl8B6J/n0lnufti48uN0C9aaBJ+qy7EoEp5UwPUI73sl/knsvsETaBCbJKkFfD3KO9eWC23uBM9LGyGeB+fImFbugpmQ2MH3tAZgS0noAZyGt06szMAmcCAi0I7L91qNe95R1UUzaqZKS941PG2kNhvxcTgnrM4GNTBDQagvypjCTQnT2vOWzQFfTS62jUaJ3eSGwmycIJFl7gQ3lvomF8BbJcyHQDy9UnPP9CWmV2qRyBF78bRnrOx22bEcR3WyXBGrJBSLLLVDeKaBLQj30vWkCpWkjlC0hbQR+MeO8JeRXGfmRei93r2fR55O13iLUjNSDfMZsz+Xci6sCkFfRX94jXN4B1vcE/p4/IqSLfGaVW6DcasID634+9vUqJyHPrQq/zQAqgTbC13/zOdJHE37zNyRrIF0Iv7T87Zg/TDgT8PwrwIf1fXz+nnH7KzOWD4H06oLnv8Le+uDwUcBlP4GNSGPYsGHDhj3Z3upIgydge0cqj60605rv8PsrwIQtQxv2NNCpoFZCu6lIh4rDacOmabWUGDVPoImRp4a6mVCReDFIDGzqQa767T91+el1TV7Z2u6Sv540ddL+BnXI+ZRA3Lw5SltETnk7EQ6HpF64SF3XA9AOXVJZKsCV5NM0zxZSGl2XpwHTBlQl2URaXcjvVID5vqLcZEl13RpQVRb6XJAfexNmnqWZTL07aB/15Jo4McWy91iW9EfrHy1aRPo31SDiiUUPKBHaXQUndn0fHCsOhw3zVFHXCSY7JVEOeoOdoo2EbEPQ1Vi0F3jVat2q/ZWzpmymTSI/6+lt45weNFV6VmJ1Fvn1tviVJP2aAV5lQV1+W2XUUyFPK5VEBdEjShdCeshCjK7svb/TJuS0NQNLxaTRG7gA6VKQtgX5XGUymnjpLol+lP1jKdptkvttlhZrvc51HaZXmjSwAfQsS8OwG6imGXk/+bbAtdN8DfVeSSTIeu9yrfimkIYdNapMgSCt2mdb+4A37XFNFaAkSSmTPS/JKuQtNZXRlgZMDOaGekje870tDJp0YRLrvfTK+OkR2B4macxVgHSekC8kJPiD6m1tGl3Me5K9KwjIDUWZ83rqz5eT1wdVBpgkPZunLM/rYtL5DM6MumSpXNdzlRv9704ajvmcNokquExYXsg+ItYI/pFU0h04vJBmVIePKgBJ68erRzz/1TPyiwuoFBxz38efxEakMWzYsGHDnmzjS2PYsGHDhj3Z3mp4CrmB3r+glQxWfIrvM0DA4WYDM2FVue58rJiXgvOWkY8Fh+OGm+OKVwCaklFtFsXCWhLaZfJ+zVSBfCa0JcvPFyF5pWOdVYtqvna2jl4AkuTtI2m/5DO7EF1zITMS0i6Ryyc3lYIuSrjVRXPTDWJIwPyiw1BGoLnMskIHqUrIPT2ScMYEzK8Yy8uG+b5ifrGiTQchKu8r0lowvcqgtSA/ZL3fBp6kp3Q9SXfA7S5LKK5Eu8tCE5DRYYXtVufnyMiPOsf6N9ZaBgDAoQriMkkVe54b5qmiMYlc+ZaAyqBLcuIZTGhHAtYEKtQ79xmqqBXcUZZa4BYhU0nJR1tDyf2Hk6HljvU9UkVPE4MvSd67yXxOF/I8e4cxrG95Ebhmue9JClRU+DAnzK/kd0DJ5LMQw/mxSlJBIu9PTpt2LzxXEcJbMtpxRrmZULTC22pjTBGhzVoJnfueEMhJiHcf9ywbo5wUTrrriRc8CenLWu3O2iogQeEk22daH2SV7F5rsZDPBwCvcjfYJ1Wtak8dVgOAaqKABxLFggOkJ/bcQGsCbirSUtFyRpsZbdNn7tiQjwUVk8K9OmbdE2kFaE1a0U7eiz1HWK3pfs4CXeYV3hOcKqPcSJW6ENpCZtdV9l9lCCSqz2m9aWgnUSmth4RssuqnJj3vCQJ9zkA7kKtNlBPQjs2hx6Qd/eRzRGqhIsx8/GpBOyTM9wVpbbg9HTDfF+RzEhHVWjH/+gdAKcCyYHpx+YQfuDqPn+rdfxMjot9BRP85Ef2fRPTzRPTfEtHfrX/7Y0R0JqJ3wvGfI6KfIaJ7IvqPv5VjGzZs2LBhH9++ZZEGERGAHwfww8z8/fra7wfwnQD+dwD/OoCfA/CvAPhP9W1nAH8CwJf0v29qKTFu7y64bBNaJTATiqa8TbkhEQO3QGuEaWp4fnPGepkwLRV3xwtyYixzwWWbQObo1IQGAr3K4okFojJdjNGTlDzOjHoDl9yuLHo37i1kIHPw+k0aeVLNnw0op4zpsaIcs5Nr/l8k245SwduKeCt5CV6tpTZ27tqbPU2PQqza+ZYXDaffuiDfXySiuJmBBKTzhv+XvbcLtW3b0oO+1nofY8651tr3L2UMmKLKKv+IqRAU9CWgUV8LE4iayosBST0pAfVFUAyCCXkJGBIo7psEpBCDD5fgH4qSMliIsYpQISimEghi6ufWPfvsteYcY/Temw/tp/e5695b65zDPrc26Q02e6255pxjjN77mLO39v00HBW8FdDbd+DM4GPR7VMDkJRq27JSNdPWkF+sR3gdfHmqAbk7QGf3Xur/+46Oj94Yh5JAKttuVpBzhQjhKIxjy0gvHLTJyDQYaFcFbJd3hHRDb7h1ILyB+EDPbCwzq+Zx5HMBcuWw7Rx9R3hqkFW0qc3S0Eggu04OHZ0EEAD82n923yldQwququ03jPosSIcYecMy0ecDVBuIGXQ0UGnAbQP2A0SE9JUzaC+grfT7TLoC3wkXnnlGhpG764Ha9COooUQIbyhvbqRrRV/TEkBpvLFtnBmAOxD42Bvo7E2/PPuDaEO0vAnyrYEOfe/86YG2MtJN089qx+dds4BmmaJam1slIQmkElphSCEg2bUvYug5wdsbgCyjsnNLO5BeONZjMhpw2qDU50MptULA8dCbMnFRpTcxgd5JB7yzgtnlSangTmcuRp6Qp4Ll4UDdE+ojo+wJkpVejoveDO1Y0C4VN2SlcjdCeaqgpwNyJNSFUY3IU8ko5zAa81XPJb8UyMbgo4KPhvOvFeRPdlCtoNIg2wa8ewZEQG+eQNfbb/XR+n3jQ2YafxDAISI/4w+IyC+KyF8loh8H8ATgP4R+efjfn0Xk56BfHjNmzJgx47dZfMgvjd8L4P/4Hn/7owB+FsBfBfBPEtFnakBIRD9JRN+sz/O7ZcaMGTO+zPhBAeE/BeAPi0gjor8M4F8D8GoMQ0S+BeBbT//E7/oTl/UAkeAoCbUyCgA0wnGkKHO0ymgs2EpCOxiVBW+vZxCA/ZbR9gRphPQuga8MsGD9hPDwq4LlXUO+MY4bIT9raSPdFIDyHsFeeor+x64pOFSBLQycPmna85iSApxu5X1mgLXLmRu21bOqXI+HAcA8C2QVFJhq+kzRebAtat4G9JIEYADsJsiL9jPHoV3R+HbEWLZVjeF4W0CnjHrOWLc3OH7HA27fWJDeZKRNNQPb1xNefojBBVjfMbava/pP1YFTqHoW1unQlK9tbagvKWzSJQPtZNfzULEsFcVsxmVtyLliPzL2LaN9suLyHbIOad06fBOzoW6E5a2VG3agOChtehA+TFeTe6mED0CM0JA34PZo62rR57RVSw/UCHQlNAC1KCCfrhzEiOUdwBt6/+2GO6O/5Z2O//quIe1qbFlXAn8KrG8r0q2hrYx8A9ZPK/imZIR6OusaIQKWRXUDX3lEvWRwUlLC9jtOuH0joVy6BTig1uAKgGtJRdeZQE5NrykJ6lVR7HTVMpAsqi8RJ1MkoF6auiucrIzV+pjCAF/ViXQwOfqzW0mpWs/uKE1WARUxUJcgC6OtCeWBsT91m3yuiH7f5aKAMh4qpHBoRlQhrWVCEkBM5FxvCXhJyO8YyfaULVsJale1uutn0k3PbXkWcBWkm+pHnNjRVmu7sCFKT3WlUIRH10foPZgLhV16W1Uc0ipDjqSmjmLOEgtr6S0L+EYQSnYfmX7kYLQjaYncrOlxS6Cia+70SQfB+WhIt4K2JqSXA6iCTIT06RWSGfTpC6RaiYoYRATksd742eNDfmn8EoA/8v6DRPQTAP5xAP+Dwh5YAfwyPsOXxowZM2bM+MHEh/zS+J8A/Gki+mkR+SYAENHvA/CfAfhTIvJn/IlE9MtE9CMi8nc/ywHWVPGPfvXb+PZ2wcuxYi8Jb1nAJPja4xUihPR4RW2Mcz6wJEVKv365YkkVW834znLB9baiVUZxBWmxxjErQd4wbt9wPxndRezWEMkbrJDtvNxnJ3yMGqJxDOAZBGF/YzuZRGiJkQ71R/JmMeUEbbD0VX3t8UYgTwacGfhHVbc4dQHA0vuWm3cNGfjIpvJuiQI0o+sB2g/IZVWA1pojqbwXkDXjeJM1A6lOcRWjRuruTFhVxc2ukwui9zFM+e7KYDIfJW88o35UAsktKLJpbahPFXwuWJeK26a7rfTC1hhId4bJ+orfvk4BqAMIHysxr6XILAqwfU19gupFrQMctHcA/PiKoLxpwKUquAqAT5qlohLSWpHXiv26oHEC3TgOmgloRtVsZoPNh+3Yn2GkCEa5aCOtZjtzYUI7MfY3CZKA9TsH6Khoq9JF+TDK5SmDiNAeVtSVgSaQhwXHI0eW4cptwNTTZ1VEa39wzej4UrCeC3KqeKEzasuQhcA3hrwR1EvTBl1XtQDHU0G7JRxvCGz96ctFDPDW348H3b07bTl6hxOwW4Ow40nV1ov5TQHA8ahNiuiiWXczQgIZoQTmF3U8GdX2SVM5yk0bEy12Q60NbVUQvF3U8SGtFUUI9UV93I4HHRv3E9NB6sQIMrvykglpU0ptXQnbVymsz+lR78V81XkLL7uvFEgj1FUvTDJrU65Lw/K0Y1l0LT/nE/YGSFI5QDs35KcDIkA9V+RzQbkugADSCPmh4Gtvrvj03RntYEjV6gdeMiQzWiKsnxL2J8L6jgB6QF0J61u1jEhbRXtY0c4L8ifPoMcHyHGAzifID30NON5rRP4Z44NhGiIiAP4wgH/FKLe/BODPAPgXoayqMf5rKM4BIvo7AP4cgD9ORH+PiH7PhzrHGTNmzJjx2eKDYhoi8v8C+Ndf8bx/d/j5Rz/kOc2YMWPGjM8fH7UiXITw91+e8HKs2ErCbV+wPa/g3PAdAETaE/goCeuygFnw6dsL9iMjp4ZSGde3Z+BdBldgfWasnyD6Sj/+/Wrd23KUn1oyBWlF2HyT8fFhJRIMCuB8dY1HMxM0MzxLmuapQlxCX0GiSli3+fbSkZhSNVUARfna1BzktY55xQz3btrBcHluWN4WQDL4YEAE+d0Oen7REsNhZokLoTxkTdMfEqiesL9J2B8J5SzIptA9LmpqByhoF4pw68PsduCuDpfQjkhoAOqD6T4ALU2xoB4JxFo6Ui8+wr5l0NuM9TcIp2/reOdNcPp2QT0zlmdNkvNVy1Zuic5j7iz6TwF6e/9Cd8Cm6xlAAKUGqX4uAKoqzhuAvTLwksEvjHylmNt8RS935F6aWp6917QM/cp1ztZ3guW5aq9uEQXknw/QXgBzA2hLUjv2bzyC94rt6yccbxLSWS/w+kOM/Q3CBM+V1uVRUB9rGHgCqoPhrCr7xA3pVFEORgNDLk3LqmsDLQ1ysF07gzZbZ+J6BtXf5Gctfbp5Z342TYYo0E8FocYHFEhengXLS1NDTCtT0VDSdfDcS71uwIkscT7YGFQJKAy4JmcjyAI1ryyMciTwJxn5RdXcIKDt3Z6ezdC0LVoyU7KKLkjvkum6q1F301aVLKXNHCBODbimO7NMakbmEFvDe1a90S0ricJBbWEU6h+91cpWaKTq80K4bQvqloGN1XAVQLoy0qZ2/Gnr5cDQFVmnTwXVDdQ/DiAl8NdUQ3189az6ny8Q03tqxowZM2a8Oj7uTAPA0ZJ9s+sug2y3CiD+Z24gEiysgOZiVNxaWXcLDUCjoG3GN/nRAOsdjawHVG8oQExFKwTAdiZKf7VzM+yKTWXKVVDMUlyS0WjdNpop1LBAV/QCfUdMuzaKQqWgjvpOI+2uPNZjpk37di/PDfndHs16qAj47RV4virtjtQ6WdXQ7oOllMBqO616UuW6NqPxXXunePq1xs/m3QRTcPPeG9joSYiqyw+zTzefbRHS3eJaVeH/bsHpNxin3wAuv649m/O1Yf32hvq0aB/tau9tO9e09ewhmzJZsvpKQQi0q3dPvurus2UAbt9tu1611rZzbQTaGdIoFLx8UKdrWo/ndOjGV9iyHcs8802QTEVfbQ7yTb2/0s1t6dWenN9egdYgF11AYsSFcklITKhnUyiLZgK620XYuXf/JwNlrUlVUFSFkLghJ6WCUhJgER06BmhpWC4FhxDQCCIAV4o16fOdbrhrVOXNvfKmtG4lLcjdmugK7GZNonTNA7DMe8j4oBRgSZZBLQ15rdqq4KqkCDF6qlPbG0vPSA6KzL+ZTbnOh2hjKOg8709kfbuVKCJMdv9SUG3r2VwCnFq8Kwje/cX6upZzs2xWMzuIUc8ba8ZKnbJMlUAbA6lfX2tNQe/EWM4FzC3mkaDXFZ8NZuNPpB54dbGsfyEs73SAFmiFJKWk9/qyALXheMrgIvgiMTONGTNmzJjx6phfGjNmzJgx49XxUZenSmNcjwXXbUGtrOndkSBccBwJIoR1LRAhbDtjp4zWCNuRwSQoewIdhHTlwbhM1dv5pYGroFqZQM34lJMPABDTKIhVBMzAzW3JYeAhYIrS1A3uytnewwDU5qZqpir2UgA5kAsC7wxhCTDVS1Jo1pd615/hKvBbQ9qq5vKWjXIRLYHUCloXICcrSbGWDawbn3bmcw2I/s9VwTa0XoYBaTmsUS9TkAA4ABgwDesGxwVoqwxg51CyuibIogBpq4yyZ2Bn5GcFjde3FVwaeG/g5w2yMNLewCUBZibH1fQVps52PUQ13UxbtXQg7jzjmhQvGxBALJCqimBpWi7jnSANaEkBSe/E5+WgACStzOUgLwRh3Kf23wjtSn4xi3MDZPNVgFqBlJSH7zbhAshpcAAwfUmYXq69pFNPCvLDxoFIpx7+mJk0Zm5IuaIm1nkyMgIlwbIUHKyLj25JjQO7eUCsT3c/YAOa067GmMcjBfnAxxbQtbm+LUi3ipa5r2tGt3/3EqEr6/0eMGBYDkY6OEqH6drvh3oWA4sZ/Jyi57qH39dpa8i3bka4vDNgvgi4qusBRKw1gZam2snuH9JBbbaWqFr3vEbqbnD0zwkI0Koi++1g4DDgvimZAJuWrdqiA3Xcxo9h0c+yRvqeu5YjeeO4Li2ndzPOZqW8fEUYWNJerFx36Hr+2hn09gWAkl2+SMxMY8aMGTNmvDo+6kwDALYjo1ZGrQxpDOSmFEPWZkpE+jMAJG4KfkPK+Nj0AAAgAElEQVTpuK2wguUyALtiO/Vri9+pGcBtO+mwRuZ7mmD0yPZ+x60Dg9RUte2NlNqiDYsa98ZFbnEOdAAcprYGqFM6veGQ+SeB+7GaeTRREVUPM2u/6UP7TmM/IPsOMIEeH4Ka57tePX8FmGNMSCl8fJg3zo4A08qD7RQLQKtlFxmGDDs4bVnAYbsycj8is1PfGa2pPxIBqEZPXD8Fzt+uyC8F+TtX0FGB6w0pM9bsqKkqrvc3uqN1z6PVvHlKBbZKsVv0plr5AHYHNG2HK40QVFtbF7wTpGqm4cp3H3ffzYb/kKnjfS65ivqNndwMzHfqDbwVACcIEdKm84Iz226WAFJ6dssEMkV/WMJ7D3iCZmjVwFWBugUk0QZlRf2KJAnqzpCHnt1xapa5UFBy16ViPxWU2xJZlfur+fnHdVimnTZV6ae9oZ4SyNd37iC6jrGArwXykFFPdm0rx3V4SwG/b8LKfm3Ip4p91zcjAcjWIYy67p5llATUtOe2KtgRfmDa3kDURpwXlEtSgor1BOejoWUO14O2AvWxAaemwPvGms2JuRksAjIfMgDAItrMLYvejyRoewZS08cOglv0jyG5ISV1RmiVQCxYlopazWfLMkGg09vZGrv5Y/VkivonQtoJ5ZKwLgktM3A62drM4McT6olRHr5YrjAzjRkzZsyY8eqYXxozZsyYMePV8VGXp0RUddkqK/BULdd1QzMS5KRK2FJZu/mxILGqwdOpotKCdtIUf+xp3BJBThz2zr10o2mvqqfFtAJdkevd9sJIz3p+10vC/qjd6epZU8p060Csp/tUEMaF/p56LQgQNMoGBki6+tpLKvE6IlCtqOtJ9RY3AOl+n0CiPPVyViM0QEsLwFB6E30v2HUREIpjk1moseFuFQxL2Z0QAPQSToT/Tq4ngIKZNv5pM2Vx0bIG7QXYDqBU0MsGviygIxvHHqDHpKU2dDIC7wJaKQB6QR/X5G2SXctzmDYhNcVaDaznA4CDrRjmQ/rPXAT1TAES+/xrSU879LWVwLuoLmCr9l5WNt0NCG/KsU+HWahbCVAy9U54BqxHSY060QCiCum2MGSFgqiwMiAIRKpWrtV0Mb5m/JKUAwDiFpKPloaSLA1aCrKSZHWgn6Jc21aKOQ9L9KOBWgt9Rkvac7utDNe6uDYpiBYOeqeG0NJ4CXcsB69iJoak4LKVQ9vSCSJaBqxIzzvw1cXMLkXPTbSUS1X6kvRjJLFyMHUlu5MurFRcAWBn62B5v8ylsGp/kpfc/M0R45+WFm0ciASnteC6LaCHAilsNWfYZ4CupZYBmPlnPetnBxfVbUAYsqrhKC5nYN/Vhp5PENbe518kZqYxY8aMGTNeHR91plGFsb/VrSkdrKAfAZUE1RobP9t2mVmUUjlQPesnK5a32lSImnro5BcgvzSka0E7JQgz0mZ9tq2ZixigmTa663vtGQAVAwg3BdXTLpEJtDQA2DC1qtmPp+uwo0tAM3Wx9gMGatVswftM56u+R7p1Cq6eo4CLqW9TUoXuLqCqO1l+VAMpuayop4S66M5FTEF7PBKOJ1Ucp6tmYFwlPHm0D7XuFLsq1wZV9DnelxnoY1PPMfS/qVlUp2gS8JKQrsD6LMi3arss0l1qYmDJqA+LNcyBqsMbQkUNKAgN6LmXi4KX1Dotsrlf1oruodVIyRQQSGGlNxdYhkVh9Z5uBqg3263a/LsduxMV0mb+P2JkA2ZQa6DalGhgu/O0mfr3tOL4ygnlzEbdJLMOJ+vvTaG2jl3/+9u+Rkq9Jd35ohJgfbWPkrRZ2ZaVznmwZmZZ7wsiKP3zOWP9hFVZ7RmOrbfl2V0OdOzSbkpvy6roRAgPNs/iCsC7SblFrf/z1lsFeOMu7Q/eM2rJej21Mqiwja3t8m28lfRBQNbjOk34LuOTTtxAlfidS1PCiKVYYuC9klWMol1IM85mpAgGuAHiLQIsI6FmY10Ismtfb9rNKysJ0os2vXJ1fF2Vzn2w4MgLCqfINI4jqVX6ixIZtPmS+n5J1mZwaVMvLacCV/M7W98Jlk8L+HlDup2A5xegFG28Rur44BnV542ZacyYMWPGjFfH9800iOinAfz0l3QunznyD331B30KM2bMmPEPVHzfLw3ruPfNL+lcPnOcfux3C920DMUVoN3MAJcuoGipKfd9zMgMMKbdSlPFU1hNW9O1IG1V7cINHCZTW0Ogwgr0MoQbuLmJoBvWhVGblaeoCtgNB9FTcTLxpud91ADZtBITqmI3Xzu6GtlTb0l6/Vy0zKBaApeB98uWxGpcZoaFktWaO1TLAz4W12apt2sPevlFQsXu5oQe/rOPi/ipHJpegzXVb7uWnPiw+ckCKfo77wpk81bBt6Jv0gTgBFRVh9dVlexkzo96rvqzMIHtwOO5xbg5V8KMDZlUH6JrQ0sLvHeAmc4UY8HN38PGwNefq6TRy2NUm40fRf9pBYBTtwRnUjX4qvb0bTHrfAPQtVxp/zcEKHp3DVYO5Art7kjQ/tlVAX5pwL5nkBMPgjhiuHJRrZPajlOs38p9Xfvcp920Ieg26B2ot1Kur13S5/OmnQnDoDDZmAxrKBThfrwCSCW05vegOQuE8Z+ZB1aCuIFh6YD1HfkiSqVV1xEpOE5k6L901wZ3CEBy5FtAB0UpliqUSND0aVyAxnpuspCu1V3L5VS1x3y0A/DPiOpOCqp4d09/AaESIAfrZ0WjKI3yrvPoHSudPBCluKKkll6qFTUrPA4bD+6uDV8gZnlqxowZM2a8Oj5qINxpj9TMDrkQGiSaloSHUITuDrT7ke1ofdfZ+i6ej6aNSsx223c3XNQ36m6HJwh6YOz47jIOA0FdZU199363WzRKqFMJncIK0Z+r7/SlvxYM8E2AB4qxUJqj73JF3893F6Kgn0gDLdaMhRRo9WzBrd/9+oABtJbhHzodMzYuAzUzRtwytJESrO/pfFGJ3SUX9erhgwxo9icLUJtts5xGqt5gMMW9N56JneJAPnBaqrBzSvu5Aro71XFzjyjzcbJ59PkZ5zde7xfvlFD/laBAaxWkrYGaKXwlRiuaMwkBWBdVEvvYZgO+jX7ru3GnQPvO3x0DfLcZ58wKoOo5qhW3XAhCBOzqh6SZomYibUvY9gwRIBUKModPkVPIeR8yDleD39TDiRfdWYcPl69Hy0zpUC+0dPjaEM08fe2IZnGo3RGBCqEV8/2ytZxspy1GcedCaGY1HpWD8X60+ZBEoKOCD7kbL0Az4PFc/EWUtDHV3VwDYYHv2Q0WXc9UFTynSpbpaRbrnnExj8USRiMk4Fz1OHY/6eOjA4Pdn/Z5QFZZoEbqZedr2SsMTe8RLAtwFO1Pzu9l3Z8zZqYxY8aMGTNeHfNLY8aMGTNmvDo+7vIUCWQVCDXALZSTQM6aq1ES5HMZOvmJcqHNzLBujGNPd4A2QNi/cQJvDfsbRl0IxyOFPqGuXfV5vBG1R7ZSFFXrZmYZYikwXrny7ssFcA57KMi9QmOANqDHaYvx1AWo3rN46SWJKG0JGXgKU61an+PMECKwA6ur2atfVtAnjriTgbmiVsyu4CXVIpSTAexVwqyPHbRHLwF4yY3R/3c9igO0YeJYCWKmbtraUEKT0JL+3ha7Bufwr1lLG6ZmF+ZQIXsJ6/2SX/xc+nxQ60Cng536u6iWIYuqdwW6rqwPuupSBJRU7Vy9PJJV5e3dGNWC3Z6/kvZbL6p6ViM864y4ptBpUIWWQVOCA7IQ62Ud67z/Gy2/R6X2+Dx1KBA996ImkdBGjap4zwLhqiUdM8OjVVXJ+9LQTg31rH2r60Wvh61cVB6hpS9b6xBCfkpqWGj27ccFAKvORwgoZ0J9XMGJUM9ZVcsAqCkRA4TeEdLKruP1cBKUc0XdCckAaPEOdgloS9PyUBaUB8byVsFnNyzU0pfeE+3xhHpmlDMhbRxrx8fTS7GSEWMDlt7BkPtz/T52pbf2a2+Qxda3fZ60LMBZ0CqQdr1278AniwDnCl4rJCmynpaKwoKWkpZrF71XW7bPj6y6KGElbpSLdqdMB6nGJxHyVy8oDxnpKxe1fV8YbWHrCjqW7D97fKmZBhFVIvoFIvolIvpFIvr3iIiHv/9zRPQ/E9H/TUR/nYj+ChH9xJd5jjNmzJgx43vHl51pXEXk9wMAEf1OAP8FgK8A+I+J6B8G8F8C+GMi8tfsOX8AwI8D+Bvf9d0KI79VJJH3vrusZw5QszxaUxkHKQMEJZy/Q1g+RTSTyS/A+q7h9KtX8K1A0hPaSkiHZhyA7pq8H7jkrj71HWDWPifgAqyfCpZ3grw13XFdFHROJz2eq8KT0TQ9+3DQPezRodZE0ZvagGXejc6b9DzSrrv2dKjVs+60VakrSdQKe82g8wlYF9THVdXGF0Y59WEVVgv3tir+zKvbdNvfxx3tuCH2XbADth5NN23S+mt5IwgxJAvyDfBm1a3oXOYbkG7m+2MAKo6i1ERmSGYFN1edG2Gdm/Bk4v4PAMga1oy28rwDadGdVwNAN1Yfo52i6U2y+cxnCspzvnXaqboJNBzgO7V+uolShvcK3hh8cG+cFeOlu2zt8Zzgtuhuzy27nZv1jHeLfqfq+prx9U2ihAkuQCMKyjBXQiFGXTNqEvCnSVXOG8Vuuh6El3YBfZqRboTlrVI6Y7wsk14/USBbqAP1y3NV/y2nQAsBFeDN1vnR2RIk6vXkzZeUIDKA0nZ/ivUbp4NQ9wTaGGmjrvDe9Zx0ThjSBLIDyzvtac+7vkeypltK4W7glx28X5B2Nt8pW8tMQQPu65aAjXvDpUHtD+rvbUfQcT84qhLppvTf2hj5pdOTebe2CCvAhVHKgrbkXqFIAr4x8lWzqrTZfW/Xmw5t3LU8m3V+U+JIvgqWd1Ut+a8H0ikZoYcNFNdzzLcvxrn9gZWnRORXTDz4vxPRnwLwbwP4z/0Lw57zcz+o85sxY8aMGb85fqBAuIj8beiX7u8E8E8D+OuveR0R/SQRfbNdrx/y9GbMmDFjxnvx2xYIJ6Kfh5au/nsR+ZPj30TkWwC+dfqx3/0nyletViMIbn27dMI8XwrSUtEqgywVZxa0yridVhxPHCrS/AIc7xhcHpFvDe9+lyp06xnRwcwBLBLgeLRjGDBKBdG9jYoqTFsiFAO/9jd6nPKISMMBA5LRdQ/NFN51RQC75UGPW08YyjkAoIZ8PKTWx4P2PY9ezAZ8sfW/BgBsO/jlQD4lyFsCXziA8HryUp+m5PmmXfCW5w76JtOQhC7C+ed1eAy99NcygIzeH3wAO4MUwErWl6TlsXJRS3nekhHUGXQUe98KXhlUWvSadsV1uVCYUHIR5BfqneSsfMVVwDuBLr20o7UOrXFKViC5nSjKJU44OB4U0PdzJlHAvGUAZ73meiLUMyNtCnq37FoBhLEiNQkdD4y4kI6GtGvZQTn1ek356qVHK1HsgLwgSpNUejlG9UC+uBD/K+YsCuo3cxAn07acGvhUtdulMMoTQa667lyDxKaFkptea7lo6Wu/JqSbBBBeLno/NOsxf1wI7aylkmYdF10P5DonLjZ+4mvETpsFlBraytrnHU4WgJWi9XqQBZIVjK8nio52rnNqC3C8ScifntFWNUpMi+ubJMpq2s3PCAoVqjlhRF9wyUCgsFbS9X7iIL3/27npa8n6u5+kOyqU3ne9LUC9NMhTBa01NGXEgnZh7Gc1LCyFkK/dSULL1HqdQjpH9ayfN2nLWjptF9RzAh9nMDPqw2LkmK7D+rzxA800iOjHoMP7KwB+CcA/438TkX8ewH8EYBpMzZgxY8Zvk/iBZRpE9A8B+BkAf0FEhIj+IoCfJ6L/bsA1Hr7vmwhAO+tupJoalXQXGDuVlFDMU0gKgZaGKqRA4E7IL135ywZU8tGAapbmCQATqoPSTt9tutsL76JD/+bUW6rAclXAdHnR/uC+w0g3hNcV0Kmsyei4bof+m0A3UXtq3vV5+YbuQ7NDj7N2YF0HQNT+2XpNw7ONnGN36zthLogGL21Vpen6rp9LPfcsy7MhoGcXLetbN8so3PK8JQAjeJukNwEalMOAbfbrQFxoQDtlUCIlJyy6TarnjLowsGiP8LZSqHyrNaSpK6E8kGaKWQK1Z2scFJRJV2WTqDrXFLyB8jvz0kgPeetAv6uC3TmAXCXcFHj1Hux63fa38J6yxk0DjVaYUM4UY6GPwfpqA02M2unZnDscGFU1lPfoa0dprHYOZfA02pWOrRNKaIcCznxjpGt/j7B6v+ma0+wIqGdCukIB/ypmP07Rq52M/MAFSC9HXFNLCqD3+ZbwlRrH2wkr7ZZUIW27dPGMNum9zlVJGt4egXc9dtr0fpHsc2cNl4A737DIyG3eJCkAT4t7aFFkljyA33zoc7kAuA2ZIcxWfu/EjPxCfTyH+6YtBNkYcvhkK/WcdgIfagef31lLhM2qANXmYdfrENbPsOUFyFdV56eXopnG7YDa8Qu41TvA/fPGl/2lcSGiX4AmfQXAXwLw5wBARP4/Ivo3APxZIvpHoNnHrwH4T77kc5wxY8aMGd8jvtQvDRH5vtU0EfnfAPwLX9LpzJgxY8aMzxi/bYHwV0XTFBBmRBh9fL3WwaJmfI2jZOD9g1EIfOMoOUB6tz3t5dwCIG1JXZKjZGKlqrQhzAC9LNUWK1fV4f+mnP60e6c29HKGlycsRR5BJvHyjfPW5T61FQKSqbnj9aWXBnQMVCXumgAwVFmdVOsQneVELbspKbgpu0TnurBy945o+T6l15NF2IKnIdWnauJY5+n7PIXpHHXjvUMB8uiSFyZsZiAJA5Ht57AaNxV1GFi+ZzLIO7RXuIGiMAO9tGvHs2TnBFawNc7bAOawBfe+1aKlDi8vOYFADwqQ2aaHnTn1udOSEcWAhEEkEST3Pu2jrbcD+hTHBjgDza+zDP+7qr/23ugkAKoZ47FEaYqKdqSTZL6WC2mnvqEk2k4+N+hmnOJjaD+Tiyv6+HhpirxMlRNor3E9HlwE1RTmAfDzsM6KDiDVDvgj9fcIZT66C8H7Vu7N5kUSwVsBRNe9RckqVEQV00bqkMUW7DDmdyVJ6dcvebiXdx+L3tWTo/TUX+cOCenWOwaS38dmwqjaEkLa+rV4KVvLpLaGbr1U6VotkJWjba1RUVW4j+8Xiek9NWPGjBkzXh0fd6ZBCnDGzrpYImG22wEKWjMVyQLy3r+ku8q20N3OnBpwPCVINkDSgN22Go1wHdS5CYrOuP9StV0H1C+KC1DNf8rplgBC7Rqq6uHYMgKcRkf193fKJ9vuRoxm672pXbENAxsBO+fMkIUhVWmrbpEOzz7QMwY+gGreWqSYnj3BOI7+XKfYSj/ftthOsUFpiTb+vit02qn6TVF4QPm4tEV3SS05tZmUHtkyaGGw9QuXlOz1BBjNmKTv7gNYFkt5fGfpCvGB7svVdqJpuC5bO/H8APD7v7ZodutrQYbdr4L/Sj+Vhe8aXFFTlTcZ7dd3kLIoJdV9vvx6AFKqcu2Zk5MWeAN47bvPcBQoKn4KENuyN9mNMlr7hIfVuve0tl2xr08++g5e31/u6LGeSXmWlw7Bzr1hlbsGtExIQRKQfmy3qh9A/+h/7pmjZ7R+Dw33kvci93Xlv7f03nyJradTb3QFp65X9z+TOB/exzm7J0TEubmKXXQ8fBfv4+ReYqNHmyS9P3yduG+VkhiU0IOk1QOy+8DXlqTuEiEJQc4JwoT5St31kTdfM2/KRE3uiTKfI2amMWPGjBkzXh0fdY/w9I2v/aBPYcaMGTP+gYqPu0f4j/ywUCEFxmoH9tyemkBoxHDlMjt4m9V6Ot2sQ5l3yNt7NzLeW4BKwtTNAb0cUtTsDkAHCgG01kGx6O5lVSAH+97vKhYKUS/fGGArZlNOrYOeevAOVgK9tObh6tNITyP11/ScHy56vEsOi259I7oz+fP38jHw8od3+IuOfGMZwUtwDv5aGS8UsV6Kc0CQEdoGLoRG0stepGWEtOm5IWnnOWpNSw0L6TlbeaKtei1aXqNeWvLyBfr/IZgeykb9ohGkilGbM5bagOFaB63H+JqwqF+6It2t0QGgrmaZf2bUS9ZzP3X76nrS62tmqqjdAAX1hG4N7qXE6uXK/jeGzpFfsHjPa78HDory0biG7q6R7uesLYRWe1dEWMm0NldiU4C8d6aKpNfi5URdc3J3vAC37bVBHDBQH+j3kz+fi5aCyfqdO6kkuur5/Vh1DHWND+aEIoBbhZN1NnzvfvIxi3UkUOOAXrGNY+i9cd8uoQmiX7qD6nEvJYB3RlucgKG1Od4IaadurukmjDQcqxohw65fP2/E7kM2DYdqmSQpGchLaV8kZnlqxowZM2a8Oj5uIJwF9dG2uJXCQ6ot0ncLDzW+YQWw3ZE22Dk4Q4hRz/btbTu45YWR1qH5EnRn0FZSC3EGcFLPF6db+re/JAUi3XJ5VLqWs762rvZcOx0Hv8fdImjwnqqaPek59Oc7NbGu+v7V6KvaKEozjAqOHZLudh3Mtl3WSMsEggLsm03//W636ePp5y195+Q7oVEB7hTN93f7fp0B7tkuGaR9setq2QRgFtq2x0mmAhaAjgY56+O6mxPA/KJG2uUIVjtpYaQTO4041NNEcY7xOHT8R0rvuKt2UNlpm7rjbRBiU6EDELWtV98pBteEvDXw0dR76taQDh1UpXkqbTw1CVtsB3bJxs3psL4e2gK9s+0c9MRJM7lV4n7wdcGFUM/OJ3VwFhDPKOke8O9rScHYlgc1/snW6Wm4b7LTSrkrxYfbuIO2ml07ySOIINYEqSW9ZqBfryQ/Z4Es1sBrIb3PTn1tdu8wDiKCrlkKlfjYYEl/8PMTgCkIK5L11oGdowPzDXpM9amy9zanhBhDsUqIj80qaKcGnBukUPcDywxZ1ZLd3Qt8bpv1DVdaLaFetGFay8D+laT0+ppQLww+BOlWUE96cfXcPwM+b8xMY8aMGTNmvDrml8aMGTNmzHh1fNzlqUbgF+5AmpWn2CTJYnxnGUoHDgZSI6QXDgNAEuW95w3ILw352nA8ENrR+0q7EtNV3w4GOuDNxVJiU4KnG7BcpZuzGfjmwG22Lm9e3mjmyNVWfY+kGL6WNlJ/XJXUdswd4JOXyPQ4XEwBbnbhJEANpbEqjz0kKyjYTC3raXSUjrJ1lqPhb2ko9fg5oqf3YvxyqirG7zz6XhIYufheguOCUAF3M0cxFbigq6g5bOeRtIyl19JLJyRazqlrvx4fw5bVzFD7QONOPxPaA7YTYx1rL2fo4ulaCSHl1Ycy3nQ1/r51USA8yjgVqCe2MqoqkMtJ+zdLYjQDwutCSGs/rxaEBtUiVC9TeklvG8pHA0DPxYbYy4My/HM9jQG1MKV+KJdtjTXXoDigK1o2o9ZJFk4ACOLAqJAXQcsMTi1KUW3t5A6/Nr+WAOLfB6RNfxVkA3+Ol1eLlaibXdv77zNUZVpGlP3qqpboY/94L4tpX3mJcqaf353zACOU76GXMQW7uzy4M4Kv85bsNU21SF7y5aKfN7wrUYcL1BSy9FI0m7mqd7Z0Aos+1rTNw83V9wK34JdESDcBzvhCMTONGTNmzJjx6vi4Mw1xAJpiBwQA8Oyg9a2FU/IU1NJvct7tW9z7DhugGP2/qx5EqXrQ3bsBs9Q0UwgL89ZBSafQknkcqRW2A9B6jHwg0GbdFRPSZn5GDrgZhh+eM4daPTtgrv3CtZlQvolRUxG7dHGWHd/vzmRVJK+ec1CA2XqJt9UsuJOCyW6/7ECuDDsqv0ZAqX/Nmtp4//MRFBfzABr7KtOV0Ba5e8znhYv14W56/ogshmw8uf/ehiwA3ZMnrOptbtILosc3F0HajMaa1PY9XU1d3yh8yJZ3tjM+9Xl1+qPu6CTWRj3pmqEKpE2wvCjgjaIAtoLbaiNeF7ZxJeRb57g6PZlrz6zUu0gB8ZF40fKw3mxdeR9zAMjPliGL/86QJEE1j8xYHBAG8rPacOcXUzgn9eZC0yx8eRHzwSJUmydt0qXAvdqRU2RsDTYeV2ueNfpl2ZrMxcZuNxJG0vHVzJrUrv0gpCv1FgQGvOu9S2gG8gfxQe7bCHhm0LyPeaX7zNzWUNqUipyv2ttb1ztFhk+3vu7DFp/0c0SSjb2RX3yNOA1/pMvirGNQHgE6gHSwzoGvZf9sK3YdZZhf96Gqfg7mhLB3ym1k8GHLr2vneOTIRD9vzExjxowZM2a8OuaXxowZM2bMeHV83OUpC2oGBrr5m5cyCJHO6xMlviaD570A8G5gokBTORPyzfQPgujwpl21EMaBbh4HT239PQ1QyzcF2dxAsCUFXyXrMUeVa8uaRuaboJysq1waQGbq1xOA2GAkJ0SoJ4mOdTmTAdidKIBsnO81h6o6/ub8eeq/+796Ni67dJC1mg4kuPQYwG5SkI+tZBg4ZOullJb6NamUHhht5r10URdSq3Foqq1q6hbn6H2SdU41TS9nCutyBzVJusmeg/R+3mmz57wPEPpr/NocaHbwvPU+1P58f049mQqcGJIUCPdrrStHCVDfi1AvObj0anaoc5o3A/QXfSxtrhDv1xWdFUfzPj8lW/9k7gJxPbYGdb34+FEvXQxaGiEFe+VwAN7WtK3Rat0ei/cIP/dyTDcNZJQz43gwvcBJS2JcpY9rAmjra3FU4nsZNdwQfM02LX3CrMzJ7leIltN8rWEB9idC2hjlrOQJSaqLaCsj3RqOB77TZblyXkjH3Q08HRCHaa2EAHHSgt0DMcZteNzAbh+3tPXSoLCi+TKYPerx+31CNp7VzBHLiZT0A9WAZWBYQ4uNT8ZyNJAI6il1kP8LxMw0ZsyYMWPGq+PjzjRYUB4b+Bhkuw3RBahlgVyqguDFQFrb0deTgmv1AizZwF/bZexPjHoSHA+61Wmr7oyWZ/1GV9DUaINLB9D1ffvp1VVprCS6E6sn+zvp+29J8B0AACAASURBVHiP8WPxrbIpam0XdzwZkIee3RRXutr5eg9s9XLSXXcSBe/bQoNq2cB2QBuyGO02lM6J1DWdySiBog1wMABwAz04dtvi56LXqJRZ9F7ivnOzXRYVoD3065HVGmWZ/bzvxHgDykVVzPmqu+t68r7a7pHVt9TCUMB5E5QzxXKIRkF+3hkBdivgDJTLcI5GtxWjMUbP9owY5yYADPisdg4OivZMTLONtNkOPHflcbkw8kvrCvLcsyV5z+q9DTtDHjPZIbsj3037e3h2VaHW/UAAo5EpMUALOu3YVdXNXBBuNj+W0fCma1b7XkvPMC07T0fvNe+K537vqKcWmMzu3qnHAHbPChH2/k7Zbsl2+ll9s8qeNCtc0ckiNkfqlKCAuoPIBbb7tvXGhbC8sJ0PcDzqgKXdaOl27/o56KCjZ5Se4A6tCNw3baw8tKRrPN0QpBW28QpVuFUvyrnPWcvSsyiBNXSyazMXgHruc98SsLwoSK8Zn92HCWCjhLeV0E5JG005Wcd7sX/OmJnGjBkzZsx4dcwvjRkzZsyY8er4uMtTjcAbG99e06+0D+pZIpQK0EHK/y8duCRRLrr24bXSi3HXnYvuKbMkYP8K4fQbAn4iNONqFzIev6XpyUBet1pPu+D01joLLgA9aLnC1cRUgXztStQRPKyNUC5dZ+BKUKqd/616AdUb+PFCq2Eq9HRtahbHWqIiUTM0zZeBtDUcb1KUc7hKKKy9nMFWRkubIDqtOcDq4Dnr9TdRgO94Alzn4YaQ+VlNHt3qWeeI7/qruy18ck1E0TLNCO62obSmxAArSwBhqOeGig56+3nAwPm0aQkvTCG9x/PRdSLRkxroPH1fN8NcOWjpAG5LTlYg8G69wjO09OOljZOXSQjyoroTYSUdOFBKlcKg0q+Xgd6VzozwxhJc9JEfCQrZwP5BzTySFBwolzqU+6jfE0hdPwHYNZrSn4dyClUFcnkgeXRDSNXXjN0Uw77fy2XS1ed+L5eq9y4aIe2mHXFQ2Y/b9IRlMZ2I6VPSDiVXmC15ull7AyMmBOAMm6vD1nXr78u73jvpqq+XBSB7nmsxymPXJTkZJplCn6ppMQpUOW6lW/+7a70AglTVuNST/l1NCTtgzntf16EJ290xwa9HQNR1WS0R6jl1pwQn73yBmJnGjBkzZsx4dXzcmQZsd7Ia3W6nAJjuaKCLoDIgB6GdRL/tWXeVrqAtZ1VeVkYogh2gddqhA2idjqdttiXrLsA9iu4swq3vMNkOvDwgfKpGTxz1pHJ0z5SpBkRrn+/7aw7ar+1wuULB2yS94Yy9dzSjOaS/x17VghuWgbDuUnjTc6EKtM3Vvv3Yae+gIFl247tD7wNNoip1PkxN7/bdMijeB5qq++Z0hb/+KTy07Jp1N90AdvBU0Kqdw0AfzpuEmhzQXb4riCGmpB+8fN63T/fzcuV12Lwb2E7e/MZcB0jElNm6GybLNNLu59HQcqc+Ly8NVDSjy9chK9wEdTWq9kmvEYeCm57RcBGkRGieGXrG6S4AlulW7vM+Ujep6K4U3OeA906uCOV0Nm+0oQmQZ6JUgVyAdrU14Vnh0CIg5tDPz7LBGGfWLLueTT1tPmVp70r3ZnOgPk260GU4b28Z4LvuRiP9GrFjJ7NbV5qyNeny9zHreb9vi42D02Op2eeLN48y4gGGe5D3nsU5dd+zCSeCtLXPkbcKaANJoRlluJ4FaJ2EQQbC5xfNlNvaj+EkinFtwggUQCdiBCHGqg08mnB9jpiZxowZM2bMeHXML40ZM2bMmPHq+LjLUwLrbAW4iRkMqwWs1PBiXdMsbS9CvY/wjjBZAxAgtRuw1bX3xXbQLl87mC5b1xY4SF0XbegFUhXvqQIigrJQGKW1VWUDyTtxmW15XVUBrJxqiRS4eoo7mM9JBrC7bbmV4RLUHA1AeWAzS6ToA17OQDoRTlVQnhbUs3YxO54Y5aTHhqg+AgCORwz9jgVCjHKxUkboUqgrTMVTc7OjbxSA7ZFMr7AO48eAdmXr9vMiw9/s/3LhMC6kqqWocmHUM4dCeX8iZAOZjwdCOSlqXE8Kynt6r+UG4GDV6EjuKb8C0BJdD2Hz6NfaUgc6FQzW0heZKZ4rzt0avC4EPjHKxVTqVp7YnxhpVx1QXQlctcManVR3Uy5k5UgFjOtZSzcEIN0I5cFKG2Tc/FUJGW7ZXx5MuT2WpxzE9hKcAd1+3XYovewB0PcyTV07sIqTlT+s5BJd/Yx4UC9mTOn3TdL1yEXHNjpNnu1ns8ofy62h40kASEBuHuhluNTnBcAdiO3jPOotvATp97Pa45u+hHV8R81KW0Q/W3z+h1Kyl/vIS1+mK0k3qwbXDrA7CcNdD7gAza4jNDPUiRV8ULyej06qoKanwF6+KwOZYfy8M8A77aKfRVsvVZez1tbqoKP5PDEzjRkzZsyY8er4uDMNUpCKDwVbHUCrJ0SjE1kEIh0klSRKFwQUaLaey05r/U0YkSlCyay661kVl2nXTGFsTqM7F/1dwUkFS93nhmtXgfMBJANTs/3vu9p8k8iM3Oa6rUYnfEEog5fr8JqrgalHb8QCGCXyUPA43SqoCHgroKpU3XJJem4FWJ5bB9YEACllVHcuACDRX1gtsEV7ImeKJi9Od01mqU5Cd3RK3gE6225sU2ox70AbCAbgAbgmVRGvbwt4b9Ae29pz2relfOhjPlZpEyxXU8UnisZZodA1MNOpkbFzrNBM0O6K2PkOADm96Pl5NqZ/6xlp+HWdgPVTB9p1HGJJGUFAG/ZI2OeDdId4PFLQfZ1kAaMj6+sRjgBKhe4AdoDfhDsCw13jJQdinfrdgLIMu2L09w+F/tF36e4JFs2bBN0a3+fOMxnu947umm3Oqp2LZ7G2Bvno2XsfL79h+9imm2Y0ACJLbYuCvG0dMo8daGdfz/1eD9+nqjT1uipAHjt585riDWjWYsEJFWxEmtGnK21WbTi+C6lgyFadvh6UXwPpvbmUHx8DXdyvj6rRxv2+tixF/DPKiANy0nHmhfR+qUoKOZ74jmb8eWNmGjNmzJgx49UxvzRmzJgxY8ar4+MuT4l2Wxt5/1wAeob1CgeaceddAwBQKEp57zzu6Izl6etNQBdBejFAzcAlPW4HboHOTx+72YUS1lPT7H8zpJ7uSwptAOhGla0b5gGWGlu66roGPSeKTl5AB8cUuASI1SYdlZHQIDlpT2o2q3TTtjQDqx2AFlbDs7ARlyFldgAViA5owMA9B1Q3MoCx7GpUVxpDryPfOqc+OhRa5zgt7Vipq0k39CuC9oAgDKgeonf6c21LpPxWanG9jFvM+3x5z3Uf51CmX/v1+BirWlfLMctVAiSmRlGaE9LnUBPUM/eymPTykZ6vldeqlqpa5r52WNdheaDej9rV2zYf3rtax6SD4fkFd90sm0CN/kxz4aUoNxdMtp7zC0xDoY+7wWY6uvZE7etVu+BaFD+3dOvEjbivRIBm+gDq5xRW+RjA4mGs/XHJADlAXHs3RXaVe/XrpiC3AKYA3/p7pk20O+alE02iE2DROaiZQvnuJb3RHYCrlaG2987RSkTxOdO6Spx8a07oqnzxzxlAHgHt6kjxWeGfDWnrThMxdzbXXqakBu37beXAZPNULvZZwFoz9s+X0V3h88TMNGbMmDFjxqvj4840AP3aGzKE2OkanVABMtsNkO28hx2GP5+aJgC+23GflmiitMC8iigswR0ME/sGdxVtz0IIxyNHBlDXTo8tZwBCobAVa7wDAaRINLqJXb3RB+ugCNUdrlPodNenqk+9CC5KdcwvTQFs0gZAvKsfVct817u82bWKAb3RsIfRtydO78sKEIb3EnozHwcrA4gd6KthT+5ALd2/zsfRfbfqyazaM4e9c8uEetbmRhAJ1X6zvu5iGZOPVVAvSY8rDnSbd5OTEIR7xgPoc2EgalCrXZ1vWYU36jqeKLJE94aqZ1V8R8Mpbc2OerYx5963eXluamNtFuyuXPcGR07ZdBvwZmtQs0FASh9PDNccFFUfA89e7fqdLk1Nj3s8Ga18aCo0engJW1Lv98mitu/5JjF3oaYeqL5itE+/r5RubX+3jCQs3VvPEn390bCGoue3ZdJ+r2uP8O7vJfmefttyn7OWCalK91oj9KZYY6MqPz5bpnYbsmX0jDyaMnnVY1Sutz7242PBcRZdT6OnVHiIAUG3RuvHCUqvNUfj1indfi/0zFuPka/aaIrbwDL4HDEzjRkzZsyY8eqYXxozZsyYMePV8cG/NIjoDxGRENE/Zb//KBFdiegXiOhvEtHPEBHb40JE/87w2r9ARH/8+x6gdXAw0r/vkn2RcfEdJPPXetliNPaLdHMoV41KVDc59PTZOdoOUscxvcMZ9ZKVG4cpICj93DylN5BUO43dp+xxjQPveyzBVesA6IpmTcOtX/WiJR1ASz0jSD1272tmg+2lPi8/xZgMJYPg00svJ3gpY+ww14b/W+4lwWbnHZ0AuY93lDWSm7epuKItBKRe4lD9h/H+R4DPyg0xvjyMVX7vWLnPq7BYf25EZ7bg0ycvU/Y11WzMvXTj1wpXVKOf5532YBc7FyslGqCdTJUfRAkrQzhRYrxGdiv0YZ28r1yO9VsH4N9Knq7R8OsLTVDu5Vt/vpeAxo59Dqo6SSHugaFE5uuxLoS6cpxfM9NAXfvdVcDLON6TPbQHboXQ+vXGMbz05/eVjZOD/KFZKkaWsPvISRPeAkENMtEt/7m/Pow0rcTNDQF864kPS8/Gy1X3Ot/9upwoEPdKBiRLzPVdH3o7vmBYp/bPS2C+BmNMhi6OXsasK0f5rdf6Pl98GZnGTwH4Ofvf4/8Rkd8P4PcB+D0A/pA9/isA/iQRfUGh+4wZM2bM+BDxQb80iOgJwB8A8G8B+KPv/11ECoC/BuAfs4d+FcD/CODffPVBfHc1AGW+cxptyn0n73TD2LW5N8+we2/Jd91j86K+83g/owhAfdjl+O7Yd9ax8079eQpyGmDrvZFXO7Y13yFTfvquvK191+tAXYBdZDun2GWO4KP6aSkl0FC8ZL5UZg3t4OkIjsa4vLeLdxDSvZto2HW57XtQm333hv68aBzktMZ9oCxXhJ+Rq6X5MNW0QOmbZpvuGSAwjDH5PEnfRe/32WhQVocdY1CWbYfrFGfPKtPuO9J+bmwUVD9vtp17Onx3KuEScGdVnsjs7/vreVhnnrmkXbpFO/Xjj9frtvGx3u3aeKBl+pg71XjsRR2762FO3F/MMxEeKN2qZO/j7uMRIK+9h1933ItOny6WnbsTgr9nGsgT/r4Vajm/GZ3WPaQ8Cwr6cj+PuNed+jxe79BETO8NvT9C3e1Pq/36+4M2fp5JRMWgZ0TxVE+MBrqtH5fGNQg9x7TR/Ty0/s+bnLm63tdxNKOi/n7ChHRodcHptnqPK9Hli6rB0Yfug8W/CuC/FZH/C8CvE9E/O/6RiB4A/MsA/sbw8J8F8O8T0XvTePe6nySib7br9Xs9ZcaMGTNmfID40F8aPwXgZ+3nn0UvUf04Ef0CgP8VwF8Rkf/GXyAifxvAzwP4Y9/rTUXkWyLy03y5fJiznjFjxowZ3zU+mE6DiL4B4F8C8BOkbbecqfwX0TGN7xV/GsB/BeB/+a2O0xJA74GANHD/7wBoUh1FGxSrsva/aX9xB5akA0sr9RLYwEGnIeUHYMZnQxnE0mZ/3zCM8zTfTOCS95s2DjZXQRMKMLJ6v2ML724WZm+Hajy8jMRFrOubAGdGvjZAgPxSFRwWAe8NfDTUU0JOWi5hB/lDX6EmbsuL3KnLpWppIUFBTOeKO6gIApZnid/rSUsVZehR7aZ5RL0M1MxqnovZxud+3VxaV4NXAWxcXY3eFoCtZpH2XuLxEg0AbU+dOlhLzosf7KrTfg8StgTkDShWHuC9lxEBMpWwgZisx2Ar1WhpknpPbysveJkjVN6uN0D/PbqzOfhs6yfU9QPgHIZ9TlKw47UMJNcuWSnWH/fnhSkjbK2tQBJAzIDT57MZwOqq9yAUJJ0rYbO+t2O7gadri5rphMqpl2vD8ttJCUN5rRMhgLYIUlUb+rbodegf7f1Pw3wNYDGJtiBozZ+npdu6Unc/iHmmKDV5ubmetXum27R7CcjnutmcOpjN21DetY8MNxVsZoYqw+dF17BIdBItD/0YrqUZ9VpgW6tW4qKq1+Jz6p8/3p2PSAJ4h5jh6BcsUX3ITOOPAPhLIvIjIvKjIvLDAH4ZwA//Vi8Ukb8F4G8C+MkPeH4zZsyYMeMzxodUhP8UFJ8Y4y8D+A9e+fr/FMD/+f2e4BbH4S9DAB2AmAI81KOle+o4tdF3OukwkFR090yJcPpOix2pZy91VStwoQ6E52ey99QnCWtP3rRL7NgVBBYQmd11kw6kOmC4W2ZgDVLUK0viOGS7LLfy9t16vkooSPkAFjs/3T3rTn99WztYWgSpCCQxvI8w7w10Yb3eA7Eb4UMA6zHMRgU9HhRQL0bxy1cJqq2qeM2/Z/Ge6ILjQgEgeyzv9H/388lXdDtr6vOVN30PagI6GogIck5mr63W7lQEdUmWfckAeKI3/KG+e0u70VoBVMtMookN63HdCjy99Kwr3fS8PAvybJKLIG9ilvw6x6qOJizPgrw1LC/A9RsJtZLNNZA2VekvL9ZL/Kbbv4NTAMBpE+Sb9AZONq+JYKp4QK6WPXNfrzx4UI0ArRCw7sDybBnUbfhbssZJsHvqNtCLbS0LAfllBOtVCa5zBKzPDfWgaNzlO/R8FZx//UA9MYCEjXUd+TpPhzbOSjfP2ro6uh4IEDzudctO4fMVmZO+R7r1jCHdeuaRr3ru+aqlBe8jr1RcAESh3tcqQLeovyPQGMgOV903oFWbhwzwiMY6OcIyVB9HH/OW1D/PiSbrW2sW5oB4uSdoeAXF+9znq6BcFOhOG7B+ql5oaRNtXlYF+TAyjM1beOh9zvhgXxoi8ge/y2N/HsCf/x7P/zsAfu/w+y/iy6EEz5gxY8aMV8b8UJ4xY8aMGa+Oj9qwUBJQHrWsE0ZyBmyP2ghP9VzjUM89hZcdoNVS+bOm1ceTAbhrt6Rua1deBuh0dqC0lzn8df7++aalqbHvs3PVScRsnbs5YD0pIthWUvmAq2uXwaZ6s98rhWYDAIqVJqSpApSahKEcVQGf1A6di0Q67DxuLa04em/cdT8n62Pecge620KoBryLaEmQpPcMb40gPJAJTD3s1+EmbsJANeC6GXDaDSL1OGkTtFMKILLZtZEoScHt47V8oGk5V7lT3gaX3YBQN3cMEFEQXHhXc5PpYty6nakDrC5QrqY6D40BGagqavrI1fqaD4plJS1QzE1dCaemZT0fP2Htauivia6SV4pyS11tnGytwXQR5dJLbHx0EN3LRV5iKbC5sHFxm3EMv/sY8aFllnKxdUK2/hdC9hLNMhAf9g6Et0yoJzXHrCcDtMnW+aBlAgCphHrqQHs9KSDdTEsU15L6uPh5qmqcOqhedVp9vHjXXu3l7MfQtSXmMHA86Fpy4kA7CUqlmDMnWPAOVBnKYnb+9ehAvCvCASsrLQPhgYa1YDonLa1qybE8IPRHadf59bKj3zut2P1COp4+1uWFoiOjJOi9UMR60fvz7skenzVmpjFjxowZM14dH3WmAVGQzMFqB8SFjfY4UBWj2YuBrQ76OdC0PAuE7imb4asjAJiid7ew0QxtR+m7OO9F7eFAm59rqNAFAUSL0TRD3QmE786d3btfz7ALpwXIBWFVHR5cGMB5e8+2ENpJ9wgi9rv1efbdbT11ANPpmBCAuQP+sbMe6Z5GuxW7zt63uPcHd2orSGmQ7gM1UisBhEL7zk+MtFkUVQGYbNfO6rVFOg9O5/Xez073bUO2Edmoq3WH49+palOn1vLhVFMbY1c+D7RZEt05j81tvKkPVSUkOPGhLrpTj2ZMds3RoGlYS9Qkdq1B7aaepVEB2htANlsf9p5UlWob1+yX6BRkb0rmRAunuY5Ar2WsbdWsKlT9gx+UH0+JAXauQqH4djV0ZLZEXYGf7sfKsxS2e7Xkrv7mTTN3Kv2+hWU0XHU9az91wvIpwpHASSL1BFSbq7RLHI8PiTWZbmLrQe3sy4MSXWLHfxvma/g88fuAXIV/KPU5bQi6bdo1+/PxG+m7AIBN6bZ+fUF793sGfdzboHyPfzuQLEtUkodVFoplhQKkQ90LxiZfnzdmpjFjxowZM14d80tjxowZM2a8Oj7qL4075SyA0cp87JwVwBN62SlUqVZ2UPvwDvz585uBk1Qw2H9TByGtVMRmLHhnrz4oP0k0Rach3QxAytP8HQEyAgjgL/Qeztlu6H2gaze88/KFGsq5fTjdGZ9x9HPW0pnrA8Ye52HiNgC3gKfNEqWmbufeS3sY5sM1KR58DOl8G8oPBXdaDhJEJzg/V4jXlDTNzs813ufOMnwo8d0ZCQ5W39HTnO6P6WPo58TeY9vLnMP10cC3V4cACT59KLITUE98b6EuBuC7oppxN87NufyMbprppZrQR/Q17EC3rxUvXSXrnz0aUMZabMN5egsAANFJj33+fH77ON1Z+A//Ly8Sa4HrABKzriVlEZg2qHZ9zxjuEjDex17eDICZEcD3aMTopSB/3McjtE3Sy8Xec1us1FlXRNfKUZnvYxIK8MWO7WvYNRh2b/o6jA6Kds+NZcvxc8jNMKNMylrGGj+vYn21PvZe2nWdkK9Lf18fsz4eWlYPksX3dPV7XXzUXxozZsyYMePLjY8bCB92epFVmJ+RGIUybMSXAWDyb+DSgVH/mzAgZtNNSVAezAMq9ecrLZNiZyEJ4Snjj+WrWAMhiXMTRuzm6trB0XF37iArV4HYFsV3P2ElbnTIelY19d2QNN+NSrwmmkAxQcgyGdHneI9wjwCuD4EYfVHBXrkfb3SqsO+wUSkyNSIAg/dUTNOw03K793LR8y6PfR72J6VYcoX6/6RkoLJeB4DwEwIssxjOKcD4cQdmj9VT31X6zjF25eb/Vc8AD+rjkeDgnkyS1BfM+7TXc58nVRNLULB1vKC0yrC3J1sHqvrWDJaC+BDn5jTTrEDxSCDw9ZhM3e3Zcj2h9xu3sWfzQBtBWe9x7msTopt9pzH72NWTPc+cEor1Y1cLdaUWK33bXrv396PWG4RphkSRzelY3jdhiuPaWhgbfPk8+k5emxDp707dbbu6CRwPANxnzijBddUPB1fsA/pZMXpKefbq9GS/v/2+aSsgnskN5zOSOpxEERkPAfAs0tfue1t2f47Y/cPovnPN1++i67NVTd68v7mw/q2eKFou+D3Kh9zRbH0uPm/MTGPGjBkzZrw65pfGjBkzZsx4dXzU5SktKwgq6A6sc0X4qDkA0FWk5w4gSumvw9bLWXR0oCxfLe1vBmZaCarlXopx3nY1RTrv1JXPBhLXk9LT4zUFKlpABw5VjUy985eXIQxwd8PEuH4zOQwdwNpLVgGyOpjZBOp2N5SuYOC4pdcMgjjH31Slo57gvvxFHZhvygUHqIPQrm3wkqCbG/rvhHseund4s2vnHQaYmwHk3iALQxwUvwE4+2pQlbdaxpMOdDW9RVZ+ewDwVoZcrsD+1Ln+1UqWPg+hWTBTy9Fm3TUPdenP5R3RX5yGkuNoi+7mlGnTgaRT590DauJXTxRlEbdthw+nndOo2RjN9KIcZSWtEaAN4oCNsZMR/LzrYmPh5ZWrlngcuAcB+VNbzwMoS7GeBM17br9HUmm5OxGMj/v69BJLQ7fFZ7hiWhDGncP94KUpdy6QbE4KB3AkoJmDAqAlpVKA5YVQzsP9xFYOJCVzCAHHo46jj6GfZ2h0oDoOLxn6+Uepz8wix/uvnWycvZPncF+1k/al54265X3Wzya9EewYRgiAaXeqAN6qzjstVmvj4CW9ekdIsLU/lFo/T8xMY8aMGTNmvDo+6kzDd/SqhLzffXkIAfl5eEzMJt127G5/PdIzASBfG1pmXH5N3zPfOuDVku6G6kpdae671013XtQAevHHjY5Jugtg6s9Ju+7064n0mKvthLIr0CmovGrvjKDeOc2RD33uuAsGaUahylADwszvRzIp0G2gdwDcQCjgHbxVMK/buRdrZJMPQKqowrl2S3ZqZllu11dX0qY+1LMpz0KS7Wod6PtuGQ0fEqAeSK3QZel9zaOX9tYpuqOVd1ssm/LdqzWQcjW8Z1PRYMezHG+Q5QrzBLDZcGcDyGs2+qaP+dJpxOkm0QzLrebd40gJEm4Prv5H6VDreZ8LzZoMMLZ1nOCZkr4urLZt15r2/rOTJKJvNvt4doCWKtCM7txWux/sNWnTMfHrQ1N6ab5KjGVbCMs7fW6+SgeZzXsthZpesDxXXXdVVP0s1ve9EZarrv+xp3kc/2aZI9lc2O7be5Y7QK5W8NSzQqfWtmF8bnouq2VLOjYC2XW8ywlYnrVCwIdZlHt2wWrp78SZALm9oVcDFvtcceJHsqZiaEC1v3vrg+OxrzHeKIgM+cVot+jrMLsKXhA+VGRW7GkT7G8oWia47Xk0nbO1VQ8x/7gvbo0+M40ZM2bMmPHqmF8aM2bMmDHj1fFRf2l4WghCt9VGL98ECO5cfVeUmhrTS1SjsjTtalfufOe6mtZg6Wn+eOzeL7qDawC6HgBWynKTQZGwi26Z7H0NIGS1bfYyz6gjiGv2GaNeVvMSTVhHW7SsJSlV1FLXLlhJqriBoekd6kIoJz2vcqZYHcH5NoBUspap6kpm60w2Xp03HlqItZcPgkef7h8PtbHNjaulvVSUrHwXPH3jrKuVtZ6H2l271XgvhzkIHWpeXxMOvlIvO3aQ347f+nMw/kMHkX0+AmwegOZQ5SeYRmaYm4VwPHLoGkbuvI4V9WPDxm5QL/t6cjPFlnWNjWs/DB99XRgZIXQDtoa8nOI6JAdqY86yXbaVG0clez3p/+VsSFF8ZwAAEtVJREFU6ytRnIPPqa5LQjF1vKrfzSY9IdaaA/AOMsd5rL74+/jEuh/mMMqb6H/D3ZjDepdTJywM4LbOo9cn+5oIUoc/j/Vt745rZIEgc7S+xn0du+W7oJdgaSixhX5svI/tfoiSmBlHshEN3IZ/vIeqlV71HtBxB5F2KfVy4xeIj/pLY8aMGf9/e+ceJFlV3/HPt7tndpeHQCAYwsOVEjQaSYIY0QKFECkCEaSkSkgwbgJBRJEioJFKtDD8ocRSUoQKSjQFCRpISIhIeBmEiFEeK7ILq2jQECDGEuPy3IXZ7v7lj/M7957u7Znpmd3pntn9faq6uvve27d/99zHOef3DILRsrQ7jXKkmEeOPqLKqZRzr10WR6mig5tp5JbzElkjFWDqTqhnxNZteaEiH/FU+YgatWEsu9ulEYxSuvDs8tvwWuSFOyeW8is1OmnkmCJNC3e5PKspZhJ5VGmNtIv2ijo3EaT1nQlV0ctpFG8+q/FRlIHatYG8dtm0qt51yh9kdUS1y5CNsFV0dOGW2noh7bs5ZdUru+2Wv8/GZ6w+N52JNHKqRl55tJ7Tx8vrOjdEc6pLa2OXRseq9OFVTqEpNxK7obrHLdTqc9GdqF1Gs0G1GoEV7Z+NmMnd15d3ivNRuJHkc5BzFKViP8UML8+CCxfo3EbWcGeC0l21UbtCV7mVGkUhoFx0Kl8fzfqYsxtoziuVZw3mbqF5ppBnET0ur5P1bKMaAXfx1OPFzL6VDMlVoSavC99e4ed0RT1b7DZrA3852+1MqGpXoMrDVNWKL+6BKieWvA1UF6aqrv8iR1q1rpnlZfOZSuFK3G2qytRQzhoaXm6hP6V56T+SkyzIDeY9ac+hdrkujOr9efHKTAllCvXsni6j5xrLMln5rCC1qax2ckmF1XqfkZVjyTxZ2p1GEARBMFKi0wiCIAiGZml3GlarMqq6vHn6mNUTXX9lw2Dpi19Gy0KVZKxSoZC3s8ponlOGl0ZNuT97rrFsrd51Jo9vcAN4ruebVQXdpgqjoyqjaTYUlknUqkjhSpWTDqbbksthdZQrvcea64HnWIycVrky/imrx+TL6UkG15OKWvWUOBv8IKvmagNdkq2eRmejbVWpry91elpIHb3qKoluM0WE5zJ0VqglKjWgG2IznVx7Pbefq3Mq43CpXsqGz05v5Uby5VEad5t97eFOC91mHSFeqVeaSabcZp3JFJeBpbiGjlesK1UGlbpChTowR92/mK7F7mQ6riruoopryTJRqebMjyune89p6PO1L1IMQ+uF/B8eJ+FtlqPE1U7qDnVgYqNVBtp8/zQ2WUrX79Hx8mjzdFB+H+VEjh6/0WjXqf2rtOR+/2UnlRxdXhq7Ue2IUMadqF2fp1K9VWceSPEK+f+6E3VMUlYP5qSMmXz9VgktXcWUSyiYX+rVPZdlLK7VRq50aPWzqXRWKDMoVDIUMUTVNe9ODFl2KK7jbr19vs/rTACuMi7u2/mytDuNIAiCYKQs6YhwqEf35ei3cnmkNiD19/5lAZjSTTWP3ivDZQusQ6q5XRjGG5uo3HzNCpdcT62dRyTZMNXoGJuW+wgnp3qWzwg8l1I16pzw6NFltQGt4yP+TTumY+gsx2sx10WW2u6W2nrRUvpkn9UkA72qEU1351Y14sr5qmpjee0+286RrT7yaU/Uxady3qVGJxsIVY3iu2QXSlXRrc0XoLu8Hrm2J+rRdOWq2gabrEeO5QgruWg2aNKtHBOykblJSi3eerFuR4rRXLfhLoqt1NT5WskjW8vXgA/M8oiu9Xwtmwka+bfFSB7lUV0xa/WRfc8McrL4HcnpIR9/Z1LVqDm72mbjbJXC3Wc3U7so1d622qBdjVjzZMXlzPmbsjE15yfKaeQtHzz1umpGNJFmJOVMIs+UG22rvVTzyFhAM7lg53uhcvFtpGJUkN14PTKZ2lGgnHFmA32P80DZrhP1/1ap09v19SW/pfIMq8rR5ZkSGh1j0zKhRjqWnHJfHSPXMc+G8663C96OOYdUlW8su71np5vKOu5t0K1nSKXBOrvPlgWzgOq/8/a5NrnaVOUZMq2N2cidrrNGB88iQVGb3rdpCGtaz3NvvsRMIwiCIBia6DSCIAiCoVn66imfGjeop66NNlUFM2vWU3JreaK9RhGfQV2JraqzPFXvu1S95EjlziRM+FSzsxy0gZQfME+nc+r1VprKJuNf7edvLWi70T2nZ88xGnkq3Jms1T2dyTTl7ky633iOzC7UFrjhmK4bjRtJB9FekQyvtYE2GSJrY6GBGn68ySG8J5Fh8V5FFee2b7rvQfaDV52ErdsipW2ufMOp1BWdZXVbdyfq77nmemNTOtb2iuzf30iRrSsarjpJKrT28pSosb0sXQDZkaDHUOkv2rW8ORFdZxlVbfey/nOOE6hSa1vt288kKSU7+dxSqS2rc9EF+fFro6upihib9gpXgXhMjRrQ7uKJDP385+hub+fsPJGdObLKS51atdRop32lCH9vU5JaLZ1sT51eqIPaO9TXeXOqVv00lP6HRkrMqE76v9ZG6OZU/5NZlpSIsJtjVxouv/+++UJ9btrLVThXpBijfF/1xH240TmlKDePCldP5LOyM4m3Q3eZ0fFrRp2klqyeE35vbtoxxTblBI1dkjzNF606H51l9TVRlU0gydMtzku+thtTgFc2zE4X+V7PxvLuJDSyyqvILlFGvFuzvg9yws3KEcTPXz6P6blQeGooxcg0NiWVVK5u2Z2UJ/1M935nQj0OIPMhZhpBEATB0KgqaDNopXQGcMboxJkzvww8NG4htoA9gJ+OW4gtIOQfL0tZ/qUsOyx9+V9pZjvP54czdhqLHUmrzeyQccsxX0L+8RLyj4+lLDts3/KHeioIgiAYmug0giAIgqFZ6p3GFeMWYAsJ+cdLyD8+lrLssB3Lv6RtGkEQBMFoWeozjSAIgmCERKcRBEEQDM2S6TQkNSV9W9KNA9Ytk3StpEck3SNp5egl3EymmeR9s6T7JbUlnTRg/UskPSHpstFIuzmzyP9Hkr4jaa2k2yW9rFh3saSH/PXO0UrdI+O08hfbvEOSSTrEv/+6pAf8tUbSiaOTeDPZZmr/VZKeLGQ93ZcfWSx7QNILkt4+eulnlf+SQsbvS3qqWHeLpKdmOm+jYBb595N0h69fK+nYYt1Bkr4paZ2kByUtH63km8n6qMvxgKTVA9ZL0qX+7Fwr6eDZ9rmU0oicA3wXeMmAdacB683sFZJOBi4GxvbAcmaS9zFgFXD+NL+9CPjawog1NDPJ/23gEDPbIOm9wJ8D75R0HHAw8KukxAp3SrrZzJ4ZldAFM8mPpJ19m3uKxQ+RjqstaS9gjaQvm1l70D4WmBnlB641s/eXC8zsDlLbI+nngEeA2xZSyBmYVn4zOzd/lnQ28GvF6k8COwDvWWgBZ2Gm9v9T4B/M7HJJrwZuAlZKagFXA+8yszWSdgc2Dfj9qDnSzKYLRPwt4AB/vQG43N+nZUnMNCTtAxwHfG6aTU4ArvLP1wFHSdI02y44s8lrZo+a2VqqRO09v30d8FLGd7MPI/8dZrbBv94N7OOfXw18zczaZvY8sBY4ZqHl7WeI6wVSx3wxVSYpMLMNRQexnDrN1kgZUv7ZOAm4uThPI2OO8p8C/H3+Yma3A88ukGhDMYT8Rt2Z7AL8yD8fDaw1szUAZvZ/ZtYZ8PvFxAnA31ribmBXHzBNy5LoNIC/AD7EgIesszfwOIDf9E8Du49GtIHMJu9AJDWATzH9DGRUzEX+04Cb/fMa4BhJO0jaAzgS2HdhRJyRGeX3Kfi+ZvavA9a9QdI64EHgzDHNMoZp/3e4OuE6SYPa+GSKh/GIGer6cbXmy4GvjkKoOTCb/BcCp0p6gjTLONuXHwiYpFtd/fyhBZd0dgy4TdK3lNJC9VM9O50nfNm0LPpOQ9JvAz8xs2+NW5Zh2EJ5zwJuMrMntrJYQzMX+SWdChxCUilgZreRbqJvkB5Y3wRGOtKaTX7vmD8NnDdovZndY2avAV4PXDBqnfSQ7f9lYKWZHQR8hXqWnfexF/Ba4NYFE3Qa5nj9nwxct5hG40PKfwpwpZntAxwL/J1fVy3gMOB3/f1ESUcttMyzcJiZHUxSQ71P0pu3eI9mtqhfwMdJvd+jwI+BDcDVfdvcCrzRP7dIicS0WOUttr0SOKn4/gWSveNRP4ZngE8sRvmB3yTpfPecYV9fBI5dTPKT1Ak/9fWPktRTPyLZMvr39dVByxdD+xfbN4Gn+5adA1wxSrnnIz/JNvamAcuPAG5crPID60gz1fz9h8CepE7wqmL5R4APjuM4pjm2C4Hz+5Z9Fjil+P49YK8Z9zPuA5njQQ+8mID3AZ/xzyeTjFSLVt5ifU+n0bduFXDZYpSfZLj8AXBA3/ImsLt/PohkWG4tNvn7trkzdwwkVUnLP7/MO5M9Fpv85U0NnAjc3bf+bpLxc2zXzmztD7zKH8ybDe7G2WkM2f43A6v88y/5dSJgN+B+kiG/BfwbcNwY5d8R2Ln4/A3gmL5tjvPjEXAocO9s+11K3lM9SPozYLWZ3QB8njRFfAT4GanjWFSU8kp6PXA96SJ7m6SPWVKJLFr62vuTwE7AP7q/wWNmdjwwAdzly54BTrXx2AQ2o0/+6TgM+LCkTSR99lk2vdfJSOmT/wOSjgfapOt9VbHdSpId6d9HL+X0DGj/k4FrzJ9cxXZ3kTqUndxmcJqZjVzN1k+f/OcBfy3pXJLNYJUfx3pJnwbu8+U32QC72Qh5KXC9348t4ItmdoukMwHM7DMkdfKxJE+7DcDvz7bTSCMSBEEQDM2iN4QHQRAEi4foNIIgCIKhiU4jCIIgGJroNIIgCIKhiU4jCIIgGJroNIJtHklHKGWzvXDcsswFSZOS/lPSTfP8/ev8uE/f2rIF2y/RaQRLHkkr/eF45bhl2cp8AHgFKavqnLGUCuNfgIsk7bQ1BQu2X6LTCLYH7iVF7o6tPslckbQj8CfAV8zs/i3Y1ceBXyB1QEGwxUSnEWzzWEp5/vBiie4ekt8BdiWlmpk3ZnYv8DDwHk+qFwRbRFxEwZLG7RT/5V/f7Wqq/Frl2wy0aUi605dPSPqopB8oVbv7nqQ/LLY706ufbVSqqPix6R7Anlr9Okk/ljQl6XFJn5X0i3M8tNOAKZJ6qf8/dpb0EaXqiM9IetZlv9brsfRzDbAf8NY5yhAEm7Fkc08FgXMnaUR+DqmeR/mQfWDIfVxDqlZ2E6nS2knAFZ6D6iDg3cCNwO3A8cBHSXl6Li53IukPgCuAF4EbSHUKDgBOJ+UYO9TMHptNGEm7kFLO32d9RZS8uNgtwJtIqec/R8pBtQ+pfsldQH9a7//w97cyhnTpwTbGuDNJxiteW/oCVpISxF05zfojfP2Ffcvv9OX3AbsWy/cnjfLXk2YxexfrdiWlVn+SIoMvqQDPFCnx2959/3MUqa7I9UMezzEu118OWPdaX7fZvkiag90GLN/FfzNrBtN4xWu2V6inggA+bGZP5S9m9kPg66QO4iIz+59i3VOkIkh70Fvh7L2kLL/nlNv7b24nzTzeplSbfDb28/f/nWGbjf0LzKxrZusHLH+aVDdkv/51QTBXQj0VBLB6wLJc93lQBbfcKewD/Ld/fqO/v8VT3/ezJ6neyIHT7LMklyrerAMAvkNSu53i5VK/ROrgVpvZ1Az7/BkpVXYQbBHRaQTbPT4S7yfXAZlp3USxLD/oPzjL3w0TL5FnEZuVmjWzjqTfINlVTqK2qzwr6SrgAjN7bsA+VzBgdhIEcyXUU0Gwdcidyy5mphlewxRH+om/7z5opZmtN7NzzWxfakP7w8D7gcv7t3dPr12L/QbBvIlOI9gW6Ph7c4wy3O3vh2+Ffa3191fNtqGZPWJmnwfeAjwHnDBgs1eSynkO600WBNMSnUawLbCe5B00TkPvZSR33UskHdi/0vNIDduhrCN5Zx06YD8vl7T/gN/sBixjsAoq7+eOIf8/CKYlbBrBksfMnpN0D3C4pC8A3yfNPm4ws7Uz/3qryfCwx2n8DbBO0i0uxwSpMzuc1BEMM3swSdcDZ0h6jZmtK1b/CvDPku4Dvksy2P88aYYxQV/siHM0qT2+NN/jC4JMdBrBtsK7gEtIMQ6nkNQxT1CrehYcM7ta0hrgPFKg3dHA86QH+3XAtXPY3V8BZwC/B/xxsXw18AmSOuoY0gzjSZJH1qVmdnO5Ew8UfDtwo5k9Po/DCoIeZGbjliEIggFIupUUkb6/mc3L80nS2cClwOFm9vWtKV+wfRI2jSBYvJxPUj2dNZ8fS1oBXAD8U3QYwdYi1FNBsEgxswfdTjJMFPkgVpJyYV25tWQKglBPBUEQBEMT6qkgCIJgaKLTCIIgCIYmOo0gCIJgaKLTCIIgCIYmOo0gCIJgaKLTCIIgCIbm/wEnZNRH1g5yNwAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "window = np.where(np.logical_and(lfp[\"time\"] < 5.0, lfp[\"time\"] >= 4.0))[0]\n", "\n", "fig, ax = plt.subplots()\n", "ax.pcolormesh(lfp[{\"time\": window}].T)\n", "\n", "ax.set_yticks(intervals)\n", "ax.set_yticks(interval_midpoints, minor=True)\n", "ax.set_yticklabels(structure_acronyms, minor=True)\n", "plt.tick_params(\"y\", which=\"major\", labelleft=False, length=40)\n", "\n", "num_time_labels = 8\n", "time_label_indices = np.around(np.linspace(1, len(window), num_time_labels)).astype(int) - 1\n", "time_labels = [ f\"{val:1.3}\" for val in lfp[\"time\"].values[window][time_label_indices]]\n", "ax.set_xticks(time_label_indices + 0.5)\n", "ax.set_xticklabels(time_labels)\n", "ax.set_xlabel(\"time (s)\", fontsize=20)\n", "\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Current source density\n", "\n", "We precompute current source density for each probe." ] }, { "cell_type": "code", "execution_count": 36, "metadata": { "local_metadata": { "scrolled": false }, "remote_metadata": {} }, "outputs": [ { "data": { "text/plain": [ "\n", "array([[-15929.94620634, -9764.69052489, -3800.63513633, ...,\n", " -3489.058296 , 4490.24559366, 12683.65566757],\n", " [ 4926.68166033, 1219.23331186, -2377.20521849, ...,\n", " 395.4923896 , -2357.37356288, -5173.46220986],\n", " [ 8688.152839 , 2851.90658771, -2829.81051493, ...,\n", " -1258.75053607, -4710.39792094, -8222.47505453],\n", " ...,\n", " [ 795.13335438, -375.73063321, -1540.35855172, ...,\n", " -1500.27602117, -1208.60446194, -970.13472244],\n", " [ 39999.95166919, 45568.25650865, 51358.34764164, ...,\n", " -42702.91915903, -41541.34974384, -40075.3287913 ],\n", " [-43228.19424952, -44941.33900006, -46869.87931214, ...,\n", " 43678.78644758, 43072.4632542 , 42324.69354813]])\n", "Coordinates:\n", " * virtual_channel_index (virtual_channel_index) int64 0 1 2 3 ... 381 382 383\n", " * time (time) float64 -0.1 -0.0996 -0.0992 ... 0.2492 0.2496\n", " vertical_position (virtual_channel_index) uint64 0 10 20 ... 3820 3830\n", " horizontal_position (virtual_channel_index) uint64 24 24 24 ... 24 24 24" ] }, "execution_count": 36, "metadata": {}, "output_type": "execute_result" } ], "source": [ "csd = session.get_current_source_density(probe_id)\n", "csd" ] }, { "cell_type": "code", "execution_count": 37, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZcAAAF8CAYAAAAD5fZMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOy9a6xty3Ie9FWPMedaaz/OPec+yHWuLRHJQbx+ONhO4A+KLCUEhOT8ABIRBQciXRFFChIKwkZyDAb/iBJAQgRHlmxiI4hjLCLsiMhysKMQ8kIGx8Lh5dhx4htbufeeex57r8ecY3Txo7u6q6urx5xzn+N7rrN2S2vNOcfoR43u6vqqqqt7EDPjdXqdXqfX6XV6nT7MFD5qAl6n1+l1ep1ep3/40mtweZ1ep9fpdXqdPvT0Glxep9fpdXqdXqcPPb0Gl9fpdXqdXqfX6UNPr8HldXqdXqfX6XX60NNrcHmdXqfX6XV6nT70NH/UBHxUaXr+lOdPvDXOwPQKteaw7nOLnspX7tdwcRqU4SYb6avDtkjnGEak04n7fdaL0rmR8F4+OnGfTaYPGnVPAIib72U8VGf6Y9ERdl6DW1nZfJ5sjgbXnfI04OXNMd7gt81HHlV6op8cNh9m1HlO9dcHTZaeD6O9c8r9as1Rkw5/53NfYOZPncr3aMFl/sRb+PS3/6EWRIgBpjSvGOneqQGzAgeqSnIK53sk5UaTkCRvykMqLwWudUixCHCml9UzSTnyaDE0Ne3Dqe+UgNdt6ioNUOv79l5bMDegx6NUYoRfEbQE5vZ3aW40yfVY27waPAKDJwYFABODQgRNDAoMIs79ldrnOOi7Mv7s/5bmdd93/U5ArG24/YL2elM99/ebjARwyM8pfNdl3eLtnueafnB43uNZt7lBfzVtOKRyzA8RfZrPer6TikLloTI2QD8+1CuJbMdHywkACKZPPJ7O7diti1UBMnNG5Ium316yiYBf/JZv/cWNHCU9WnAB4HQuAGIwKDGAjNKJzgY2AMUwUcNUjuDQjEEyqQmFJgDgNRM15PV6I024/EwdQT1w9XWdSDYPOZPcPmNujEgJZS8RUodIpxH7AKGFH7MZ1rEQbOjzJqYVDrqfIsAI4JjAxXZrBQUtZKD4pS3AREOA6QjP9Qh/MPNAWCnh7jrAnb5p6lb8r/uCtPRTZSMaXmXNo5dq1Y6S05BJlYdKHl3VSIEhVbcLLOcQaolWAyx0Bek7gmxUbxTKfhq6QNEqC5ZWS4pqxyvfKVRAxzgweWzZC7rn8YILZQYQTbe5Jwx7eZ3uZQ94FMOz4k2dWA0+kaWHTls/0o5mNtUeURIUHNIEKRMCjsZ9Mkl+B21sYi4gJADT3rbCgMeTwM5KT2BYbXcDSCtGaXDg3kJgAtZ0n6MvMMqnw2MtT2RhTFpQ2Qcy9UpZUjmUAKCRRdPQuaG1Gh5qrEHVKDnD3rgKt4RhR3fLyy5Aa9I9RSbf5ML3thH19WJQMahUflqkUG0Tt80MeZCa8WuAvVxzyBz170jJtbJBt3XOWF2QHi+4AMnUBIMs857NdIOJ7zFAJ3gGwFbyaC2V8+TOQNNgVAKI4sJQ5YtAyGpr50nKdJGeqCMNZaBVtjTnjKeYVJDSAkCj8avrnVpHdbLl6wUYnbarm0YucHvPkAUkOoprK1KmK40ZIoEjACZQROpfcSdRW39JRgiqVpuBEcDvnsXjzyDP1VoItQ+tqtvm18qELZue3RPq1NTl8W9Vlmrbrm7QKEb1ewcqpr6qHDn1IZcTQWzwoOelrWQb4ParBfAgStCAF6XvdY26P5tmTd9rIHDBMdexQXIp03kWBjx3qq4T6XGDy0BjknsNI7gKEucPc5OoZ+qGeSpDEdSEaQaWh3UwSJaHxs+U6xYZs7Xkkh5fpPugTk9zHFbo0WPuZ0nOyO6gRig26qtfB+kvXKygrVQMIOUy0OVal1ir6ZLWhonrGLP6FIHN1IPMFuAoASPWKp0SgqIYqPUNoY+g3aDOmBreLtYHVFmLSWVouCkzSkOl6cQYFUIGwCJtM7dtlHFtXHl1nDucPaksUXtPBH4DMK1yWLHNmTBWnneegY0OtRazByKmPc0PXTZXJsn1kQCALwc20uMFFzXBGM3sSre9hXDLkFbpKAKSoQGkL9vfdydrB1oCQtxOXgcYpW4CgUkLG7gTvAKMl9QzDDVZJ3mTWlepAKY2o4QK1TyNttYhsa23JZtzndT1G5nPithi9bn+espkiRbZTH6HNF2FjGFDoAMyyONxShgrHtXrV82aQyfZlOrR0KPprECHwAVgTlqluf5GaSqVnngWLWiFBwb81buJbV1GIOuojnOeQejp5lnlVbb3RfALgaUSFL5oLfNe7pydPICwWex6puY77bpr6jPfRTu9mMDHDC5WcGwlL1sjcypIVa2x1yQAR1httSO+fnW/zpE6eZvFVy2EM1XQrhb0QFZdQeiSdSe3BU+pr3QaYGCYvxEoeqJuSZIKUmIFAa122GlyrQKax4facrYVYlEFINYLhzz+8qyEarWQ6j/b/5mWsvCuotqEf0S2n0q+ADF0O0EWGnQ3au/4p2Xvvt6iAZ87v2w9DCC24NQGGAzqPRUReTY55LPbSKk/V5u34CnXlNLS1S2ZvKASr2ENYpu0WxAc1LdZx3Z6vOACmM7S2jM3QEHujB1Xe8o9UxuibUYhGjNcBh7f2mgZR1w1I18+wS7Y1raKRWMDBxiNpj9MFmA6TQ+u0GhcdYYmRUBH7AgYugVeUy07UrwJABBSs9BHoPK9USbEipDorFEor0QQxQwyMfPahRPY9msX0usVYQeENxUobvsit1us9DZzvn+mJPdIjIYfOz7MYHzKeinPYYDxVPvePUf4l/Y3H9WYB5r/XOXL8rvw7YaSZts6mU8nnVmVt/Veypd49OAy0PhIaU0jjWdDpjf3tYbcTbhecLYWjjPQjZYjebaQTj61cNCTjYDIFWDOSU1zFwKM/IYSDENAUADjhSXl5itNW3TYvjQTxpvgeeytiymtv6AADBRpnRVJpj6bgrQt1spIK7c0SptGYClhpkO+bfI0Wy+fBhW3HzzBU0Cr0tyAA2DGXE+Sfp8SVB9XwirfDYMFlDXZ8f2Q16n9annEtNGF/Q5Z0Mga68EY8omZq2NiWqI1r2zO65H26jR1IcA8XnBhgFcq37tEqKG6ncqCnlnlOvpJ6m+E89ozE5nRtS1rQTycnOhnmxaangYtq7VGyYJU5S1MF15O4DTawFXboYasGslGrbyx7iS5scq9gZZtN8cVehWdpb7attDSblYjRUfbZ8WazZGGOnyYur7bAJVCSw4qCPkZGgXF9rWpi9VNLZCh+0i5C2F5kZrxLgqNpdkAi7TnRnVZcJAqiqBTSgzbm+a6p3QURWUDWEqjDjPaPjuVRgK6kQEXSN3yzI4CovnMAyqxzLvmPIBwFNPmYUwfbMzbht4L0uMFF+AkT4wXudWMpK5Ak6UFgbNUiSZ7Wc9hIyCkHnImihFyTYWsmJqdTA2Db9PWCcKRn3ernkvSSPg19y1N8DVQDwxfYQJtRhSe89wkgAUgjITCqD4PWF4xNYK+13wbJccCywla/WCVwfemjjPAuamTNgAF/Vw5u5+d+1bp6tqy13KHEtq+9ZRUXU4Be7Wam8KvkDbKXbROtp0eN7ho7fwDp43ZPZqEF7TrR340KnUrZBwrpPmhJ5hDemc5kKm4Ecp+Ha/K+5215IVi6vpHVohNjkbc75VIGbvNnVpZeFVBbvtMfS8Aoy+O8nua54eaah+X6DMt1DaVkhpeX+9p07RrYkwCzPhYC3pk2bjJAe2tvCd5N1ur2lW4tXZlx1L1F9yvjjLJuABYPEX2DL7x+nXT3TdOjxdcCPXYjpPCqC87cjWdXsyvgnF4RIXWbOz9UxNS03yOoaQEM7AlmLVQN7TqOa+Mo4Y0y69Fdiq3o2Vi3ceuIDE/uX6SnYPmOWsbjuVhszEGE7wf7yYUuKNPAYaMP5nfYiVod6UlZitdKgS2hLwWdlaoNTyqwH5zlT0L5FzQfTQLKq57SN1rrrcZvX1LHn93pydIp7i8qGkcWC7DMbCaz4ZGxn0w0eaJBZrGRqnUFx0ZoodV5vI5c+KM9HjBBeh2ODfWwSlN1WMwj2/YXkAvWAB0EWlem1Zj7DSxE7+BDW3tDAtuFGRQKkggcJYfXKJ9NKFk8pQyOc+rmuxb9HZCYwz4ngIwCgP2w57J5IEPMgK4Q4BxnssVAoNnsfdPDrwRShZYBm32xElZ0fqBxj2pgcVdiD/JoOjcnc60OmXZMhJd7qkP+lGyq7qz6EYbf73GmmQa6qIfnXHQt7z5TzrDCVqKcmCb5G0lZJAeL7gQY9pHgBghcGdF6GNA6g2HcQdaVSnXaewK0OS+CCo5ZkTVo0pWzWIrNa6HcWb/LKgq+HW+JlDLgi1ZYXAmB4qAaYhq6+0/2cmchXh03DE6m+2XIrg6wuqkHmnMJZ+6bttxtOqeb5IAYwlSOHvNpwe59rKnqAw05gLctm5HkNkgEq1gOcpWPdlZ6CR/HJl6DLEBFVLPVipb9ytw2SJDl6sevzKHEy2+h0OeTc1LPec7YISpQEvrjTlvUwcghCYS08s/whXVF+4pFVbxeQ0uFyQBFnPGEoEzn5KZLPl7DJvx7VxAqM2w5TLbXE+Ra90Ehz9RvGQETyOIO6CrGqDW8hqPRxNUgDMmk3drkHfYTY4mqXfZbU0ya2FuapZ6sp+YUWpchsfH6LxyL/czR3UAqSzoD8g5P230OyCS17k3GAPFd8M1LWc+9Js36/h1IfeiJOR8pL0K6QqaI3i8JMQpPibd526AQHtM0kXJAK+eG9Xq2Rq8EagM2tJ8eymtlySjNDQbkC9o93GDiyQ9MYrW0jNF3TTFvQYPVY798rq9sgfBui4EWDwl/VK3UBfnD8UgVntFN+mGdeqktEytzZY6tEZs7zVCxhKjv7a0+kebKAHFfbGWXu+5nN/k0W3ya8HiCbKuHJnv6jwxUbkvGWYru60AGILtSDNyynmRdaW9KlRLmLazEN02XfmkcQHKfQMstuzmKxqE5wpPCw2WN9sHqasbjOE8s/2rxtuGXzdKg63uFEB49706RBadSp1yYe7RQBG+WKlp0+MGFybE6M8z74ymcl0DyAbANMkOILcT5dRJsG66KHTWgokDEs7l5hqniZ9evCQCAHVSOwKhnhtmVFvCWMiMBB/1TK+P3mkFi9HCt56vJTh/Up28jlbe5G2uUfvZrR9xm1dbgF4kXJdOPIAj+ADVradcKJq2zXa0lM0gCRsq6yhZjpDUB22e9XK7jaT5o9mIbMe/kF4vFIA5Z8zPkekMNKdMjEBl1JZOW/fZyXN297XAvtnWhUPyiMElH5sOco/+kJQ0MfU7C/56DHtfr1dLo8GXuqyaOQYWd41EV1cEoZa8hqlHk2VgITTfuTbcuBGVduZpO1bYdO0gg6wIJo/Zz0h6Das5PFSe7xItzLo4ztASyzroyFryG2p/iTDaEm62Xhfg5LN11XX1d+XaBi3PddNEA7A+1aIjUhPlp9FJAKlOpcydm6Qe1Y/+S8OUMiNutC3Xm9tWXu87l3X1uOnPUVd581Nb6SOF8BxaRKFtyvkbby/qfzxmcGEgrv3r+dyjMoxGcNJ91VSIyryakQYL/rbBzaPLXQDIADMAlmotZa50NEnJZ6/XY6RMh1ysabac72q3wwnW3uuO2teasHc6dVfZRmJpQ2hqy9lACAKBA3dNeYdXigBzlYZzgOWS5Gm2zf3+xikhOQzz9YDcU242QLjbMKwF2xZd5PODlBu71NRc0ptIz0mWB/Tc3syPV7NgRvXZenQboyAfrch6dRb+P6PvnfR4wQUAlgQuek04YcZGL26FOjqD2BxgqH2zLMeeUC2aLYKtNcD+OBY4363muyHIvTYkek4xGbM6yJOiA1ZwmXXYHlMFOVVX8xoEZxg8YJcjWHToaN1nooSU7gorcBsyuY6ljJPKz3kMOPdVFajqFctu/f0DdaxmlRU90bcA1/vO3As7j7fdtY1a7sS2lZpPty1jqhe287pHeZ99V5G+4gyMN+ccYa3P0vSi17q2G4WqpWXziHwFLJe0U+twhLbX14UP9Dg6+ey9U2CgeKM9fRp5en0wDefxggujEfQA4L6fw5Sp32seb77KwJT3Z8O4WnTbxGKNdkxzeu+JlOktDfe7nSibdZrLJ6LfGgHuaa/6ATs6qinuApLtey00c6QVR7Tvs2/m4sZCsJPayLiWDmGRdqMmO31uZnnzU8/mM5PnXuyKG8XjXE3cqVpA1tsl70VYJTzXpoL3DLmxhh7qBaIHpAbMmna8+ticC2jb1vzhRpJBWcFSAZk8VRErdeS5rQ/u1G1c6l6qtCu6B8qj+xDlssqnv3YKjq/YXXo80uMFF6AIqMoTHZfmG0aontLkqBgqhQlGm7pq/aqA0ogujhA7K/uZdRZNkAwzOm99bJQ+PRltc9wzLyOF4Wph4Gl+um7Oa2ZZ0hMywHASCGcrXQMgHSbKQ+IAS7fuI0LdBVr7XHLPF34ld4MdZJjR0JGv+efbNbX2l7SPzuNB8iOstllWja1SrBoSzDpRIWVLrnlKX1kHMlK5q6fynX7pWq3anv6sB7Tms3t9OGpL/4RQ3nq+LTfekHfNjRPtF6NShseTVTLPLpgr/aLDlzER0TUR/Q0i+ptE9LNE9B/l63+KiH6BiH46/31dvk5E9F8Q0c8R0c8Q0T+j6voWIvr/8t+3vDJROtqniebJ/HqmBmiVq+aT+DRmFEHF/Z+tV7UtriWi5CYivUHUFdj6L1/NLiv5S1oYtdkY/f1qT1fhMdAUSyeVP7Rlm3pg6hb3IqWXSpXvcm+geY1S3wVoNoUqIBGXWOeeRM0DQu9aHORr/oQY+/tVktCg/qqFa/5cWvR1w3vqOqnvZrq0SZqLyGPWzzOOWWGIBFrr2HJsQZVZC0Bq65B7jWuq6dAPIfVjMrJGNg82bTLifFLP5e9z6iqAatsA+vl5WfqoLZcHAN/EzC+IaAfgLxPRn8/3/j1m/mGT/18E8Bvz328B8N0AfgsRfRzAdwD4BqRu+Cki+hFm/tJm63kSNWdbbaTTgKC/O1p7U57BgUCNKnqBxl2rqXWLwnJWHYY+DYCE7BfX9/RvZzObLr+heTe0QmlMpYzRbh2yvSPdSyRUdr0xwz++w6GhewZFisZIAEBQwFKui+on5cz77M+1PgtNjJbA3EliLUifNTw24F2hodPA7bO2F88JC0+fDIrKgtHtDgSWF8TQrUVmLONA3bwcbtExAERmXE4JSL2ueDq1yph3llxzLxfp1mO8pk4J8rPcU8JDaFlJKUpa2a3FWoKqByYVuARjPlJw4bQg8SL/3OW/Lfq/GcAP5HJ/jYjeJKKvAvBbAfw4M78NAET04wB+B4A/PayJqvDwB2uglZ6ZzjuuiVtBORKCZ5Am3KKZeXPDma3byLImQ9cenSWcG8BoZr7JJoJAT9Ai1dFeb8gwApGR3+zIZQ2mfy710O4zt/WXCDDAAZUmc3HJnSWc1NwfZzA0Zp656BTv3M4WsHRFrKbqtidCmxLgcquQdBsIHWA5J5V1nAv9/ZrMs/NRBZjm1lBzz4Mjz06mDOS2nUce6qrr5N1zmj4naaXzVB2MyvP5wrmKt5c+assFRDQB+CkAXwvgTzDzXyeiPwDgu4jojwD4nwF8KzM/APgMgL+niv9Svja6vp0mNoxEvrAh83mxjeiMImVtsYm0MkzYtWt+azKU4OTYAkuJzmmeyQh8XTnDf4c5UJksGqZzQbBOPtid5yIoNfPqSUDqWlMfqiumlKu0VncZIC97G/affLfd0PR7Cc3wMzXKARUrx12Tsg16SoWlh9UXd/d+z79l3DWfNfWaStgCT4MIzfO4e5Zy3SRv1bRNeHoa9b+1QCsUdGPHw7rHR/337ZuM7bCcNb0Vk+Ru6oMH4CswhX8tbyp6y94be/9cDVSVIZVnxOsNrfoNm7xpwG6ljxxcmHkF8HVE9CaAP0tE/zSAbwPwKwD2AL4HwL8P4Ds/aFtE9FkAnwWA6RNv9mjs9aIGFBlvB8VHx7A3C7u5Ph1dUtwmjLKp028/06BvbIBM3ZuR8zIcxnI4RiaKyV/43c52WZT1+H4oYOsjNBq6/tR5XNrVxMztE2RjrKJZnl2DoEvradrcsGutFAgAjKKUusYc4dfQ4amWJ1KTRSkIllcsCGhgUWBZwmyLrKsgY9cTxnuyap+dCrNPXcVVSWjaYCWYUceRzf3mOakt7y6GdpRsy2udLG964Kuvm7niRlwS+s4szzVkljMIbUHUTQ2b8skx20of6YK+Tsz8DoCfBPA7mPmXOaUHAP81gN+cs30OwNeoYl+dr42u2za+h5m/gZm/YXr+FACaBfBOoGhgyakJWVR5mnpUsvmbsEW5phddwV3dvnRV14yiWQElV8Koi6h6gS6aMlpYepNzlGwer8hoTpD5K9py/tPaXRPk4JU1dWeQrAu8ZPpoQIOhT/NHb5FYsM2F7FioR2stBK+8U4euZ0SrrkMCHaJ+dsUPll6oe939PnUL1dJPoyACghrTcSonARDKKzEg17rMbfun+6WCLTOSRe/xxdbfKI2iGez1BuwM/RjIFztfamWmrVN0nqGceG2P+vNE+qijxT6VLRYQ0Q2A3wbg/87rKCAiAvA7AfyfuciPAPg3ctTYPwvgXWb+ZQA/BuC3E9FbRPQWgN+er51MNiqq70VHs7ggjfKfPHxv0H6bb3BfA4d6L7sfZYMOWFrl6EyGHNK38dsFUXQCvQMYC0RKeHW7xNWzpy96ousvzt9wUp9IVmA3bdm2gc3Ze0qoufmlzTzGkVpFYtSGvr+hy5T5YlKzoXQEBiOQkWsh/dVIRwEbHvJKr5y07Rcw0fxv7vUgsPFnn+mSZJVYp65XOldtk78uKGeTVdwueN6P2i32VQC+P6+7BAA/xMx/joh+gog+hfQoPw3g3875/ycA/xKAnwNwC+DfBABmfpuI/mMA/1vO952yuL+Z7AS32mz7Jd+v/uluwdyWdxhRQKzEwm/5skdJD3amqYmyAtBYH5J9pM2NQmq5fnePMOnqQst85FxzC7Vlzp5cul5G4iD1Xpduvqlucmn1mjhFi7hatH/fG3svqf7tiFBgXy5s9iOpD+6UBPftih4tnftGBUbYItzvDdlemzHPZ91UGiC6TReaBouAtsNPMt04nVQee/DSfZ5+WwQ7Uee5PNPdp/H9S5WhLr+p7FyeVumjjhb7GQC/ybn+TYP8DOAPDu59H4Dvu4iAbBa7m7aGC4eklNELB5f1V1J4Zhj2RNlmThXZ0wNMe6SDamOLSUT7766b7x498t1YDS7oegI1520P9Bxo/t21/EPZ4iTrL3bSN/3MFdDc8R78HgUyNNr/oF2bhM6u38gBREIJr9U86dBXToUQ7ZyotS6kTKSWV7pnGQAAEh9771lhccsJbUMg56bOdj8OKj+M5harOpprqs6Gfu772UsKEFyQtknxUk8jO/MlPZPIgYYgl75z54G57k3mS5S9WtHFeP1RWy4fbeI6+Uo6pwPtZLlowD1GF83glHZ6qo0siUZtk/obgYPk8757ec559sFiZlfGTqaTfTFCSispR+BtNcwBbbZV0c51J1ghbP3sdo3CA97mO7WPYKpv2vPG7xwtc5TPRpd5i+DqWBm9pwdQYNCs3aFVhjzNP98f7pAfPashrb+vxr/5PaiTgdFRA80x+va2VVr0RdvXeh8ZKXpKvkuVq3PTlrDj/hbre5ehy+MGF5sI8P27KtnJcqK+tozV0g3HCR920WYXJk9oeBOBB9+9/JWiUxlM9oGQlf7T/TnYYJd+OEDQZTJ53GdxZqRokKgC8pxUNmlKee9wuHPS5l4kA4z1hg9QRsD1uzZOkOhFZAGDcFQ9tq2GDwUw3btkrMDPn975Xs0GUBuqr8nwtHy5XqzZCggkEWm2jObLcwDGpi67o/BpPhcloZM9bd82n17Sc+vU3NXK1RCQzfcCeOfz9+MGF6rvYZDfnXZT8uZ/5wjurh354jDrOWse25XWupvbg3fKb7Xhal4fTqo78ZXWZ4HFuLHkINFSzuunBuvsA50x+c3ELQJsIOxG6eSGVWnj5LhKhb3wVTfbOrd4CNYtNGhOtyPjP9LsR9fs6QpqTEVWu4ILaN2SIxlW2rTI51TYXGpBpfneKAbqGVS93pawCjC6LSWs7blmnSWAOnb5e+J3ak+WOAdYpO3umnmQ5toGXZvpfLnwuMElQDGVXBSB1ndie8rpSGP2pNeGdj1Kw2yORtPRM6iP0JJzCljOFoQnGt4KVVaacfrSHyTKMMLPlG3rdog+CQ7U94U+zPBUn0FAiQY0qYuXKH/agrBJCfD0e0NzPScooWmPSx+kyTBQVNSYeRte3dN2VVvuRtOBsKvArfrYi87oxsfMZ/W9OaKn1KvqkvJcD2zc3GA53PO1PeiW393+PCe5ikgPLMPTzLfIPVcWqPS4wUUmkaPVeElO2y1vOqw32jq7QVAqkNVGHCzqjp5n08hIm+m0QuFaVc8Wk1hgedXUlTU78U8k7p4jl9uiqQFPJXROlRGhoi0ARnNKsz43ahgdyOb3JeGkXdRUy5dGizgNYJqoc3bAWcXC9j879StgkVDe00cenaGGcxX6XVt6rJp6Tb+MZHkBiAGhZW7kfiv1sMrSl3VPqi58qIhSfGmPWOmG7xIlRGjXn6XN7WLDE7Ot0n0p0OGRg4s92NAKdG/XvXab2Hvl/lCAiyYIn3l02/YmmzyAcjWhnfye5mrntaeZGC2vm+QNPQowLaG2joZ+r101FtbSkefSfnMpOOpnqwGPBJX8zsKxEZKxCoMhoHi/TfUdjdKeFQbdvg/bwEggGiHgAHv//GZMPKVCA69TZefGlDUMQlk7cK3NRn7ZfvWeUXWWjf7bAj0veQrCVtqyBBTIDd3PFmAa15+8WC4rquzUsvUs7vw9UdB9fjMP9HXNu6+gbD5qcGlOMyWUg/e8DZX9++5zolrP0NLoGh78PoPpXd+vFaTy6QlYK2y1EFOgABiwHVOkKuoFZPVrS9sD7buh1xO0VrOOcyoAACAASURBVPgpoPbq0xPbThpLutwZyTabd6j5DgT9qO9HiQY/BsA8/K1vjcC+KSx9NRI4KM9eNh7q6xZQOoDU9cCwDPV9TSceyta1kX1TQeiSrzD12agC3Kk6RYkya0tNtKrX3x80eeN8Qv70J5UzzuZdlR41uFjrJCVqtFl7q3waQdgd/HeGBtVesxEkps1R2UIHjZngTGDpSFKb5PS1rk6PMDuZovSRQ6AVQu5ERm9RuWe3a2LVdUtf148DAQi0AtUjzevTwTO4bY/a3UpnTfQW8LdeR10E+Rlg6r3yoDvrTRQCgqN46TZMmxYE7HqQvraVSH3xzuPq2JDbe7oOo3SlLNRqdmeMbXeEEAGEtJm6kFje84DaF5e4WAsxg2eWz0EUXPmuzugDicvzMjoeObiYDs6d3r1bQrLmv+rCwVio2QE8sWu31WD0vYHWBGwLmC2QsRn1fO7o2jpFAK7B4rY/yucAnG1vdF5bezikTNiBgNw8MdH5rsawAX2Li1agnmuZeMLd0yhPbsTcECJF89cW6Ei1d9ps6GP/uqZNvmtgKa8rSIpPVcIcoDMg7kYJ6gOrzlHG9MWRxi6NefddZSyDQgdcUH2u60/5urdSytAGLv3gHl7rRQNaAOySAenm88SrDzo5lINq4NCxkR4vuDC6Y+UbQDEdTAAQUML3+7h9U7fds1E4qZ2kbkSNR6sjG7p9IFvWi1vpGZcJvtap7nc/WO1NUBOKSEXlDMDGuuX6Nk7QIZbREBDyhYFyVy5qi4epa7MDlS06zwEcq5wADQ+pQ+h7WpuCVvMfZBvRYF0jgAI2AzBmfPpj9NW4nwzTNnPRSwq0yiR054bqeA+A3PZH7Zk8Q77R+QyPGV2xi0IUC8bjS6Dt5/Nlewvc5drgRBJTrLdcFcCcmR4vuACNhQKgBxU7MDHFoHPhC63m6oq3td2TWuBAW+2U724R2NFuNjVd75ICEgJcl4IuyOZemfTm7Yde2uLTM3h4uNnUDkvph8Gg6HsWpNArtZsHKXoauaVrKxkBL3UUhUav/Xlh125ytNgTNLngmSvQGzM7Bafpk1xixOuucmEvqDqJG4UjnXm2pUio6+cu4ut2VfmtqMGhy8yaPWyUK6D1gjSVWKRWn1YRGT6zUw+cPgaa59WRbF37F6RHDS6IvpVS0mDQKKa3E9Z3prRhmK48tpM0M6q/wY3bfF1dPl1u6rTnDdXLY0gtLDrB5AgtvSZDAIsAbOpw1Ln8cXJvCS4TVoWW7vtgVrpd4y1Up2dqXHhayHWviUanLHTtWu29e275kvktsD8GXrJgp5+jXCMoUwlbz3ha1gwOvLQ0WOAf8nj7XpmmfFevAfhTbiBb1ANJFr7r+bac7uC5jJrpVvuvvIIu5npKPqvJKFrOfIZKnnPiBbFzFn5fcRmSS9tU6XGDi01bk18l13PF7dwsVXpCqWlkY/Q6La601t8Y0exqdVa1VJ+uO09mxIak6Nav8iQJg45x1dZ8h1stUa5tFW0qGPzsk+6UjcweOInQLVhaX/p2ckKOtE0MFJNBvtHWllJWs9gIWBpZ2Qtvd0f78BkdhnWluvNgjdz2O6G8gtjT3rVL+MNIHS3U/gQUiHF+1DPU+04Jk/nh0TAAU/38lyiaJT9v8lbW8vKYDGg7Iz1ucCHl5zTX63ec3bmbpyvbQRU02qrfZQAHABsT3EzMV9F4uiZHkvCCyTSK2pJksckFky1pu11fk+9Un5zsL2tSOFrt1sLnGd3WnGQN9FZNuXbB4A6ijxpXkw6iIHMfSeN2XZ0s/6wwouajS46FMsyo3UqSteuPfKMRyuqE6I3Un4Z+ooDmbdYXMr36q6Gzs0K3XNxaKe0Wtk7QpkjUsmjr/EIZe/d08gvSIwcXVG2nTCSMweWcRUeo8R8BS6lXA8U5g7dlWXk05wfbqtozIJTC6R9YeEFq1gjKv57eIU1GYzxHlg7p1XX1AHF5fRvlPINoNE91V2j+a6wPzixkhbpnBby6Bn/Wu3QIaE5AFlqtNYHBb8fA8QvZ8q/AiJr9jCHlHoyq5+up1FkRG/Rt6AHlnLKhC9zp2K4px7I6I3XBOhoTdVQmj5h3nB4vuBByCCAl102+1g2mlYWceWBLa7cx/6oeqwVC/eoZw5NMJ5JmSg0wXnK1fc5fL5jI7h4RMt/tpHBmm7VQGg3VB/bGM2H73K1btfGBQNOMnxWenkLhJup5ReroFBIqIJPaPPMBRoI+D4EXcNEsXrtWyjntbvDdSRf0QKkYgvkGUSO+PiXMm7mvFLURiHpTzdGlOvK8Mhpwz9I7VeMegDoBCm3eOpFsyHQT5XkBej1ecAGq5aIm8uZJuCx+9Y1J7lgrI23QPTamXCj/epq30itqrE39l07gkSXl7SNqyhTp1lbE6PrWRvYJPVqh6ncWS2V0eqxGz908QieV+4x23B39oHX5OfymFRElnLqNdl4fe+Q2ZGoho4Vlm9mLvtsMKRbLwozTcOOplbqFHxQpHg9IeZm7qphpYJDOsQ76rF3do3tWwR8A0VlWk3kGVzYxxmPSudpy1aO9YEKYAZhXeu0HHju4hBSBos8Y2wz3ZQJz3lErb9qzG5wy0+vNY7LQ64YvakGihY9lYBfsBje3yp0LPkLfVkikrrSZTKSeRa5TFfzabWOjnfQm1qYJashK2amfQB1tihY7ZvZ48xFIupeVINR9QoqnFD8Nj/lQZU8d8U8Z0Ao/RUInJKxQaxaO1bOYPV5EKt9AmPDQdeQoBaruthJzT8ZA0TsM49egRQwKlANG8s0tGVh4r7/unkIhfLxVn3qezbSl2JS6thWSEb3NGtiWciTPz2jHXvVJBewkf1hraq+AL48aXMpA6s69oGx/sGNlkOEZXTK5jOmZMuYq3Lox0CSMcNafTpbNtDVRRguMF9Tfbwg09YyABU2WniatFIwEdOl/9SmClGyjnlbdk9v0d+4T72Tt5lgNb/+UEiqjkHYdXdu8OGvACjWzM05awHNzqe1gR6ttjgHpFIO2DjdI0NP69VjYti0gjELkHJAod72+kurOWWOywN1UgP55vLJD66JmGp3Kbk+q2IycdMDTo7VTdvJY9RZlLnQOiJr0qMHF11psFmrvWRlkjt4nq5F0wqgOVtmO5mhB1gXhvvvC+620u9ZCMJ+ekPSSnvSedn8OsAxIr5sC8/WLwM0oA94i+Kgea21uETyqSwuNUV1cn0mDysiC7YBFg5JXf+E/hwZ7LJEdfwyEufe8KgortWY02k7A1bpdsDwlkJu6+kcpgGMj2rY0/jOT+24T266irVzzdJNSzmqJYxCx8qDhm2ydjEHGEGiVQABbocXNfLLrpJ7cOJEeN7hoAQ9HwwSaSdsdx28YSh93IfmkXBuqqiYr1/ZtOq1VnZDsW4JvpEECjqAaIRlafub+tvtoWlMaaYODtOlr7yYTNRp1nVdcftdn05Jii3h9m9Rnepik/bWKwdbxOYX/tHLoAJJLli3Q5DGdq0GFSH+MgWUERHLPKlGapxy+E0VNrz2349kqMtYaLeUBn2+8+XsiuflECbT97LHICGDg/AZcJclVOKHHv+WfkxtC9bjp3wqUu1MW7Frch5AeN7gAZUDlO9AyXPfiLpWvJMNszRH8GoiGCm47mP5bMEezSVkV5afRzi2zwXmW0drKOYm9Wafq2eovfflUm8aNaYjo2xtNQnIm1Iiw7rHGmp/kb/lpIz8BZe+G3s0ufBg3xmRAeuNS7d7HoAoHAmIVMsNIO85CqChOTh5LW3k2m0nV4fEnp7q7U6ap3oN+JM3GLoCfqyhYYgeMqEFkpBRtzPPNc+gUz7B9hq5O2lAENLFolN72JOfB+3ZM2dPtjNOjBpd28m5rl+5kNpqyWCHMVMuw+ixljZC3P09pJoa69hGoo8tXqfTMFMlkmX8kfAcTWd/Owo3ys3ehwp7M85i9u8/thBlqWbXf3SgjWyyiT6fQzl0nyEBho9yK8Ndl8wUNSE1d8t2CjDP53Vc/mIqafuXyts0WO3uFxDV+N7odcManE8jsyHRq73mVj65H9AfR6iqHghR1HM5JHsBYULEegC2lyCsHBbyo907zkmlDzZOUXza/boCc4skhvWemRw0urYDFCY3UAwdVVr5qBmEA0WEKYR7NVA2DNKrciKD6CCNhcm5y1yvMBOdT9AzK5VVd0kUtpjfgaugnQ4SZMH5ylIETJKdPR8DrcbmgniZ02tYxCCl1aZDLmj+7hXVV2fC5B8/R9T/6Pr5AW7X56xGI9WIfYm20KtO++/4e3ZidZ0q410fztBmVtgDUzrHNaenc6C45FVglSAOMDXQ5JRZOjZdRAEpRJ/y8qffC9MjBJactLfFkcvIrJmelxTaC18bu21BdDTKuAZEzn6NVdnkGTGQEVv9yro06pawWDKSebxTW2GiNW4DWP+jYXy7fzz+wcJjXjstG+USTosNGpunkaoXqiH2t9ziKz9DjNUx6DLU2dF7RS1Prnmt5wg2lVdGRm8qDB8j6t6sg6N9qLE7Nk3OVCi9thpWbeT2SOSVkvl0jAYzVYukt1sfgmJ5uzuMEH7xaJ7wSuBDRHsAnAdwx85deqeWv1OSYo939EYM7misp11tnkppyrZZl6bB0yj+rdo645ASDDIAFUIJiszoFLLp8EYyOJsyqTxTTtz7iMV3npOagX4IPEHZvhb2daTv7ZUlWyOkwY89FcqJK7+iqzQVtV3vWfewInKaxKpS6E6rPTMMXy5nvNvhhWI+hod01vpEIvSDWFklpCCMd5rxU6nL4fKuNV2hvyMe6DSHAVZi0kiuXTihqr5DOAhcieg7gdwP4bQD+eQCfUvcWAD8D4CcA/A/M/Nc/GElfYcn61XVqTFUFIspyKfnOmZwaJ0oE0kY+yVy0lfzb21xw0sIZa1rbkTctCOnPRNrgGdBrrWdrrCdpkjKZHlv4lHLgE5u7WKQi189zrd2tyL3chhteLe2SslgG4azDnfE2NFi5XGoeqbcSVMbmg0oanU5016kTsFs+EeTPdDdKEXwLwgWCE0B1loaP/tlGYHJpd2brRb53bXlWl/ebsG3V2GTl2wXK3Sa4ENFnAHw7gH8dwLN8+R0A/w+AtwHcAPgEgK8D8PUA/jAR/TSAP87Mf/psKn6tJG+tZaT1Gv8lbwkEk04eFsmGYzsscZjGtXycCorB4TEetUw6ACT9auTT4HgZqEj9J9Po+c4uc36xTlDrvsm/x+NZzKK023w0TgUoB/QW5cKAnREOdZf9CPHVKb0qzyucW9gl77j8GqavaaglnItexenDvnirWIjOdflaojp5DDAaWNznV2Po5ZHrI/lwbtp0taG/51myjI3XYOhMauyV9+VDeRMlEX0ngH8XwBWAHwfwgwD+V2b+207epwC+EcC/AOD3APhviejfAfBZZv6Zs6n5cidP6ALOpM0TVi/O2miggStCtre42qYFEesP9rQtzv+GocmDn6OIo/aiW01noeloNyUsqpBgMCWA0cegnNpQeDKx5N9CAW8cTBb1LJuvSdiq3tN+qzPJtOOQK/NXFnSoCsfREejlu1SjLON2T4Q5Yp4JVNb+qDxfjT1J/NRudaj5Eo86muto6CwQCZkFgwd8piu2c1P1U88zXF6A5b6jfmvhGmhdc5ZXdBtUS3T0jm7B1DeyLG0RLRtOsXyTx3R+NMEAMn0ZqYGOXlEADNhmfr0kknXLcvnDAP4kgD/GzL+8VQkzvwTwFwH8RSL6DwD8ywD+QwC/E8ll9pWZPFDQUVwlnwYSR8sa+bgBUEAVVhs8WSszv90JnGeAF8E2AqRNc9aZ7Do0dxR84PWV1Beg1ipq1I4Ija2Nhb5kV/k7YT/SfNH0UfsuFHT9V8Yq5AwNoPsk+lFV3Ap8maR23woqX1CoR8dYF5T0tX8GVhYeMTcbhZDKHxIOXvuOKphRhUT9rAJR0GOH2mfNAaGjVIaO6zjpciOdQClsjRtQpFvD19JHAoSnwc++LmBTwVFtdBe3dBpPmdlqoyfSeDAcLahrX8sLmXyD11Jb3vZkUybglMdwlLbA5WuZ+e9fWiEzM4AfBfCjRPTpV6Dpy5MY1dzTTGp6eWuhN12v+dvADcrm5wlhNdCu7P2G7iIsuGUOlxHJb3eUFIAAaLUenU0Jqa6sCMiQo+VCP6Frnb1gaxm+ze+NWVe+uUYt7prnSzcYHNKhpJTHigK77zd3rQp55iIEkQVjPuR0RZnVfTRYaidMDAoRwXPt5Ha8x+VIiJHAFDKwoN98qcBHAkyaLRXee9xFgR2o8i1QC5FOPZTnlCg455RTwJJxug1lNwJRW8jpd0+Grb62M8qkaBMFQTe8VVY9Q6lD1XnSjS43NRAo4PROBxE+Kr+lq2UvkweEXj+dUIAvOX9xCC6vAixOHb/yQev4VU2N9srqf3ufPGbwOtneV1zcTGBq840OrCtZtPxlgPTJzCaMtwcpxZCE+rwnJpYNqe3WUBsCu+LpWszAyiKk8nc23G001XLNm28aXLpG+/y6bgDtWFK+HJB975UsCgya8gnH0qTQPnAxBmV9AFnwrwGRUd8nb9biaErAMs0rpimBSzBWSg2UUI+WaVnWgBgD1hWIJOsX8nC5vyKBVmr6T9YaWL/T6CzXae3vfl5UZaNWxcWCFYvXPb+vIEjK14Xw63URNfiNxafBfSOJy7CNOOv5px7k2GkErZKiQVMARFv+ROWjAxavHzWLCXBo16juU6HPAFAhm9nn2VHy5p0OJrggPe59Ls3AUrNOXvySWkswGhMsMzcLX0kbrhXWCV3yKFeMCDFvDcD62WMkUADiiraAAqpuTT9mYRLhTyZvToow0iC8BbS5PwhKDpxKGliyQKk+YS+v0Ro98FP0ESONC8OfxAHgSQFinsg0MaYpJqtCaYyMBBqsgFDGiAwwcCCsxGCeetdLYCAwwhwxzRFXuwW7ecUcIqYQO4Dpuo0Jaww4xoBlDTgcZ6wxAExYI9VTAlYCLQlcaAUQsywkAiaAptoHTVIyq1eqqZ8fery0wiTzqig53rNIucpjpF8nQPlQeVL5ypxJc4hC7MAXptp6jzO/aQugZbhiNXGqoLwWoAht3Zgq5/Aw53nhWXuunBFe1Faxssz03BOQdOe+eDY0yNg0mPcfRroYXIjokwD+CQBfDWDn5WHmH/iAdH1ZkhU2GmjKoERHcAFJ4yM0E8IKYRKNSzXSaKR5UoSBC6bOJa6aJhMoKKvFCDkQF9eKbmtdQ/XLd0Ax0vqpCOZWoNvF39x5hGSGn6E92nY4Vi27aYtsXtW+BRDYa6lOikgL2roOBSxxl75rt0IICVzmKWKaUmFmJCshJsFe11RSX08h5Zf+j1HGi6uWLIkYYYqYdyv284qb/RFPdgfsphX7sCIQYw6p3ZjHJ6pxikxYOOBu2eG4JmQ4LhPiSkgLXtlayeASjqgAI88/5eef2/6u46nG0go2BdrNWpLmA+F5oD67cRHpS/XhtNBHEbYcWyEr1qW1GJs6HdamDBqxWGwYCN760BzVZtpBYgFFAffcPkl0llsILs+TXrMU0LDeD5Ex6poONZcz3MTSEY9H27yRBeconWems8GFiK4B/KcA/i0A+1G2TM5Z4JLr/EtIEWkzgB9m5u8got+AFJ32CQA/BeD3MvOBiK5y3V8P4IsAfhcz/51c17cB+P0AVgB/iJl/7NxnA5AFKRKYiKBjJZRMVsqRFiyCXDMJAExZuExr9uOjfArnFzdIiJhC1cQkybWAatWsnDTVNQasa0gTRPNXSOwSsiYXiBGzgFuXgDVmFTVa14OiTQvviOpSMeBZioigzlYYy0QQ0JQJgsTM/anBub9Xqu3VbhrHS8QqLGlNNFNE0c5pSb/DUq8J3RwAnpNgXa8JCEAMVPpwnlc8uT7gel6wn5bSj4d1xmGZcFgnLOuEmCdrCIx5WnE1r8XyWGMAEadxEhOAs1IxMeb9imc3D3i6P+AT17d4Y3ePm+mAm+mIq7BgUlEVK9JYxxwWtTLhIc54uVzhdtnjC/dP8PJwhfdiwPKQBHE4EMIDYb7L4LKkvhCejhPAMyHugbij/DuNF8/Jq4kJEIvOtSRlvogeRcpSKdFI3FtAms8KSKVMQl+tM1XHs9CSLcps9QWlUNkkVqder4jZ+l9DErZrWhQs84HFlVi6n1rQlUv6t4C5WImxXE4ejJHrW3ifm6oaSxoEhCmmdTnxDORn4RwN5rm+9IsQSx7pS7GcpF+sEmnquuy8w5QusVz+GIA/AOD/AvBnAHwOwHJ5k016APBNzPyCiHYA/jIR/XmkEOj/nJl/kIj+JBJofHf+/BIzfy0R/W4AfxTA7yKifxJpk+c/BeDXA/gLRPSPMfO61bi4S3WSiYKs7VpwkfERzZe0BiZaIZBCcYMIUS2JqwuMFLCIdqwnw5S1YbkW88SLnBaLIzECgIieqaQuynnyvJccVaBr60W0VaAyWGY2C55W8Gu3cxMdpzSv3HISNSMtULsLYspHXEG8zaua02AY01gkbR0Iax5HNYFjNuQCZfeiOviQKIHFflqxnxZczwsCGBF5TWNOIM8cwRwKOQLmesz0kphYZ0zZfRYYuxBxNS14Mh/wdH7Ak+mIZ9M9drRiRysCRUQOWEGILMCSPh/ijAmMQBG3yw7HOCFka4fyOktYKIHKQwKWsGY+BRAmIC6oYzxl3gqiQHFdUigasXT8QBOHyifCV2nTbTFVcea3Ov/qWHDg6s4T1spzSIBlCr0WqNfL2jlEAEKaQ2KxcoZAzd+NgBWhroSGfh5hT2PNke4vLf8bJDHPHLQLjZtnbbwYSHxcwo1RQaCedl35sHe5V8BtX2h4wbFJG+kScPnXkMKKv5GZjx+8aUhk2Yv8c5f/GMA3IW3cBIDvRwpr/m4A35y/A8APA/gvKb2f9ZsB/CAzPwD4BSL6OQC/GcBf3SQguyrK+CtBK8Ko0wZYyiWBJbJFhBvpQdZCzzadNZAkyKowknsBSQAVgCAGZbdYoAQshXFQNRFhuqG/nu2fBRigQ9y+25rv7lqhgImY9Nrg2aqelOAa1ZvbpFC/d3M+mj8F/IkuJay4f+Qpr33MIWKm9LnEgClELBy6dTCvv0VDjjn4glYqgCnrNkAWkGDsaMVMax77iF1GgYlW7ACsxrUyUcSKBDzX84LbZS3WrvAnxQQo5e9YFaay/pb7L4pukddiiobL0uFFcmXFCpDFNc1C5dXDeew1MPURdc4wNzyZBCUIaa1EeAA9j9vf2vKveRKwADE9VrYu+1i87URKeQLLMynFyJsjrLJp93kGFoqSL/V5ehzHGikCC0XRBdr9LMxI7nPu13KHIdha4bPsfFn3ALgMXJ4C+PEPC1gkEdGE5Pr6WgB/AsDfBvAOM4tV9EsAPpO/fwbA3wMAZl6I6F0k19lnAPw1Va0uo9v6LIDPAsD0iTfLBOCYF+wa3zEU02zQPxKukkaDpbMwpcCq7HoJAFYQiCPsOmt9FlOh+hlBotJgClkbxYZp211vBYkodAUgtLYm97WW6gFLAUIqoC4ViHYqk6luTOXGNdJqz4oAmWyU3Cwc28nPQIoI41pEux5G41dcKExYYsDC2R2p/mJMoovXBPrHUC2ZNVJaB1kCeAlpYV1CgWNAXAnHGHBYJ9yvO9yt+2SdzMCOJxxpxi6kaTDlQQrKlA4UMSFmUEoAGEJyGcXAxQJhO25qzIsbUf604mGSHsfSlYQUai35A4Dctl2vKeslhX9YtUUFqIoFbWkoQFfHh7MVPwwRd5K/cbbvm5pBIWDhcW74Tpdh4fmt+TbgucYDcEYqfSDRo03hDPwa+e3YbsouGTgNzufTdgm4/CyAr7og/1kpu66+jojeBPBnAfzjH3Ybqq3vAfA9AHD1j3513SgcBGCAso6Sf3cDbQZGLJfiztSTrJQRBsiMGICYQ1MDI0X5IBb3lnVz6cghEXaNpVL+MlkkOBmKttccs6G1Lpkc6pkQxB3CVThH2ub8Uud5U6NoiyF1Wl6JyWHBuR+jaq6hOZHNCYVTHUTAmsGZ83oqI61vkBKcyHMsALxLay6cI6aK4GSkCKwlQXtZO+GA++MOSww4HPOay0rVrZDH55hdNMsacDjM4MMEOgSEhYrbJB4CFppxt98VK3XhgH1Ycb1cYxdW7MOS3GMhImQQCcTFookgHHkq7rLkkssh1DODZ07rKQthXfPaE1DcYiCURX1ZM5O+yTEBxgrhuhM+MBDzAnFQSpYoFF7ofVE2Kk8WGZwFMscE1ETcHPpqU42aJHCsfC68lXgorWmy4sk1EmLM61c5KGO0l8vycpk+zdxBAUVxJaY5njskuxbber22lCzRkWFQlgZSQIm4sCJT4r8Y8n4qM0Gc9ooc4HrP3Xgqz6fd/hfMb+AycPnjAP5UXsv4fy8od1Zi5neI6CcB/HMA3iSiOVsvX420voP8+TUAfomIZgAfQ1rYl+uSdBk/GW2axe86AbRSWtj0+lFzimUcpcGwaG/IvMdpz0MJaQyEiIgFU1n0bcijtCC8Tmtj3idfvwIVINGdr0HcYuKDls17MlHzc1NeqC1avn680O7tSMIj+4Gt9qOsF9FYk2AZMKFMPgKaeP0J2c3FwCS7zqkBhI6xmYApKQIcAJI6Qh7DLPRI1lx0UQlBnoC4Y/AkgiIJt2WZ8BJ73B+5rGPEqIIpjhlYyoRmrBNjmbhI2rgS+DABdwHhGBAO6ZlS2G/a9HgXrrAsEx6WGe/N15iniN20YqKYgglCCk++no4ZbCKuwoI5JIR4iDMOccaSmW2iFIHGK2G9IXBIHcKBmnWoxiLMEWMccuTczKlPZgYmTlbllIE/xCKQmMVSTBXJ2WEjq8EeBUScjgmS0CiWgA6xhpT2X63lzOMZhFaeIOuYpZ1MwxKSG1Pzt0TwMVBDyrNw9tzgqUJ1eUtzp8y7lI8/YisfHP4l5LeQGgEf6m2hmyRYQiwV2NQASwAAIABJREFUBuIawBlg9EvqklIobjHF21EGvRBhXIJ5jMSDYJWFXw3LhZn/eyL6KgD/CxH9VwD+dwDvDvL+pXPqJKJPAThmYLlBOnX5jwL4SQD/ClLE2LcA+B9zkR/Jv/9qvv8TzMxE9CMA/jsi+s+QFvR/I4C/cZoAFIQWXygHNWngCDX2Q5OLf7rUrZg9h4QWhcG6i1zGTdfDFEEhf1IbsiwaSPLpJ2FVw2MnpI3htX4iIExJYNQ6WtqDAIuZsE2bQGOG6+cOdpKw4A9VMBeNGECYhWnbDYt6gbEuVjqcnQVNXLMWuhJWEwVXSNKP0wiMOnGICfEw4eFhwkHWSFa10Jz7l2JW6m3EXcYWWoA5fwa1vwRAOg1gIsQ5gKcZPAG3E+NlsZwBnpJw530EzYywX7G7WjBPEdf7I/bTWkBI3KnMhKvdgrfCHdYbwvFjKZrtuExYlilFrS1ZEGXw1vsymJBAJJ8WUMYijwdNXKKzpqlfJ9Sf1TpoD6a0YfUMGTtkCwRFC5dPHXhCDPCSJu4qZhRTPw6UFIbu+KXR3C3RoWoNVrOLgHEOyABTjf6UPBMDRanjYpHpdmB4WhsHOow4B7BBBFFcMohk/pMx5MyjzfNnYVaiNz06pCmJZAvqhngTpM+kQzYUBy9dus/lLaS1lz9yIt9oqcCmrwLw/XndJQD4IWb+c0T0twD8IBH9JwD+DwDfm/N/L4D/Ji/Yv40UIQZm/lki+iEAfwspgu0PnooUA6A6PGvToV0ss+sFULdK4TxJMx3pDlWhrePeSzUlRNOhRwk6JmANydqRz7Sju1XDC7DEynyV3NRQCQ3O4YxBTG87iQJXYaLAICihACSXj5jmAjCN9dScTaYARrWD0g7KBkQbli1CKCq3X/Ps+n5ePBd3hH5Ou4FV++1jI8xCCid9CAgPAeFImB5Q1ia6ISvjnP8WNBFqbUgqkkYq7tZmwiuNMyQAinsg7ifEHbBeMx6uI+73Ebf7FWFX98hMU8QuJAt3nlbc7A4pEEFFUC0xYIkBxziV9aIlW2LHZcquWahAE27GV8ZsniLmaU37f4hLdJwEnQDJNbiKlcdpX5CXZOzWEPPaVSzrBxIEEZeQBLoIUUYJVS/ALyDfbLxEce8WVzfUPaPQeYDSyAcZa7lBUN4Apd1PsSiF2kpT1RTlVbfTrU8qd11RItesfWSrrYQ/53z12fOcj/W7Xf8CMk9mVz2JDNT9okEl+MrmVrpkn8u3AfgOJDfUnwHw9/EBQ5Hzicm/ybn+80jRXvb6PYB/dVDXdwH4rg9ATcd0cr6Uf/YSVS1LtB7U8kXLPWRgWfqNh1oTBpAng9byUP3eEyOKL32iRouQCVkXRlG1Mai6Q4pCoqnuJk/tVBCRkE4d/jhRFfiiJa8xYM2fop0Wf3YkrGtoLBvtAis72hXT6g2I+2kt0VryfGvWhJnTWkMwkkDChGWj4RRi0e53eVOi0A5UAXiMEw7LhPvjLu1fud2B1wm0pv0h0z0w3+b9ISuUsEIBZx36PD8wwpExHQCK6ZSGuAPiTFh3AE9UIwwjEI6corgWLhFtyV2X8q/XhHUPLDeE5cmEuJ+wXs9Yd4zlKuLhasW0i9jtF+x3C55eMZ7uDni2O+CN3V3dM5PHeGXCEiccOeBu3eN+3eHFcY/bZYeVQ+kfZsJhmXCME47LlLyVgcspAvt5wS677HREHZCA7BDTXiABMz02qX5kegImJsQYmzwxpu/rFNIROscUFMExWzIyp/LGUFooWYh6jgUqSppYyjJ+zRiSulfKAtXi6ZWSZqlS1uwmbo7zEUVNJ0YFi8QEVXGbs3dC5tIaA5bjBMRkuYCpAG0BFX0igLRRZJhFMOT1SQWW2dWWostQ19iUpXLJuW06XWK5fBbAzwP4emZ23WG/5lIWdiWVDuQigOUIkDJeSqA3C2qiGGRmFa1LQIRi2m8g7RAA2UHeaBzElemFTKLs+wZ4x4i7vIdGTNmyDqIjrahqc0Aqn/3nTHl3TBbwonna0E0Bl/28YKIkrAWQrCbMTM1RJHqzWuM6IyT3Qe5LPbF2c1q8vp6PZad66iYq7VkXS+OGy2mfyz7bPeBmOuLp9ICr0OpBR55wt+7wEGe8d7zB2/c3eHm4wjuRcIgE4gnhCEz3wO4lEA6M6VgtkLQInp4trIywAPNtxO5lxPSwIjys6bl3AcvNhHgVcHwS6mkAGVjmu4jpgTHdLQiHmPz04ja7mrDcTFj3hOOzgONTwnoFLE8I656wXgesNwHrnrE+CViuAuYpAlfAPiz41P4FPjbf4ZPz+3gSHgrAyPO/jFd4sV7j7eUp3jnelPWbyFRA52GdcXdIwEOU9uXM04qracH1tGA/rbiejpgp7dcBgGOccLvscZgm3K8zlqIYECKqopDYksvemrKPKKfIhOM0JesKc7Ves5ClldJG0aVajGJJViYRQFFAUwBHxpMKyEhgA01J0VPbmFJ1qn5xlXEk0MzAnJSlaV6x2+XNtKHl0QrewsNorM6yWXeZcVgn3AEJYIAWWGTDt31eoZHQoqX8lJtCU6QShFDCwpW1n5RrAM48O5UuAZdPA/juf6iApTEjlZsmWyuh/PU76EWbXiikTXhSVc4X1+T7WHMIGq2o5ryiQfvjE8PXTWxAHdMkcDitL8RQwEJmSnHPAAVsaMmfnCfQnMAlUkzBBUDddEcoFopOc9b8kxBZMGc/z5K13EOciuCf1hlHmkrfpC3eylVHKBaMBmvp513WiJ/uDkVoAUDkFAYs7YjlIkekzHndIVD6fjMdcTMd8NbuFh+b7vCx6RZPwwN2Gd1XBNzHHW7jFd6P1/jC8Tk+N72Jt+cneFgmrMuUIrk5Ca3pgTHfM6YHLsKogAQjWyqM3YsF87sHhLsH0P0RYAZf7RHeuMbyZJfOGotp8TxZORG79xZML4+YXtwDd/fAGtPOzjAB13vsnuwRr2Ycn+9wfD5juaEKMjfA8RAQrxhLnLFEwt1uxeE6CaOrsOCt+SU+vXsXHw8vcB0W7FEF2Eve4f14jX+wvIEv7N7Abdzjdt3jgXd4seyxD0/x4pgO45AjZqYQCz/IGD2dD9iHpQD4Eifswoq7dYc5RBzWqRxXs8SAAC4BCDKXdASkVhoOIVlAzITjmpF9qUKe1mo1Br0h1Hc2NBZLOVOuRMpRjZ5jZOd+W5E9uYOAFACRhblswE2KUnIfAnCVoK4/syW4xIDbZYfb4754ACKlA1ALmOjvXrLXPYtDhIxsViY5XSMXUZGCnVv5jHQJuPw8gDcvqv0rPYnQCwXqW+uFuGj0Qdw2aI9iCTRhyYwjO4WJOGvvebtJaU+BCKo7pew1CKhrNcrlogEi7gi0z2GmWaFxtZdsKRXrJTDiTIgRiPuA4xqw7laEKYJ3K3bzihhUdFamoSz0g7HP4bGSkkUxFaFxv654WGasnPd3SPQcZ02LshVGsTnUU/z2+3nBzXzEs90B1xkggAQuDzki6rBWlp1DEm5XYcHNdMSOVjybHvDx+QU+Nt3iM7sv4RPhFp+aVjyjGTvKZ3Dxilte8HYkvB/3+LvLx/Hx+R/B5/Zv4hCTIHv35Yy4C+AZZQNcWDhvnGXEJWt/DEwPEdN9xO6dO4S33wdu78B39wAR6PkzhIkwBcL6ZEKcKR9JwwgPEfP7Dwjv3YHf/hLiey/AS95GRgHh+grhyROE6yvMz59i/8Y11psMMtcBh+eE+TlhuSaE44TlIeCOgLd3C+YQ8enr9/AQdwiIeBoOeEoLPhaAJ5T68IgDbvkOn5pe4PPze3gZr/DO+hS3cY+3p2cZvG8AAPdhLusyaUyqoAlgXIUFT8IhAVcgzDHxys10xN26wxKTFXOgCfdc3ZoBrdvZKgxpzCe8N614j65xfMgWDEIeC+OyEjelcldqMGislykXmaAiB9PnKr6iQJCTvQuYMYrVILxBhByWnkWK8grMVNekBGTk+0wRT+Zj6atAEQtPePdwg0CM+2VOlpuV64SkXMr8GqSqnHK3B6nxbLBUChTtj1CU7BJUsxEebtMl4PLdAL6DiD79FX+U/pmpmKbKgtGLaHK43ZqPi0hnAkYE5mYvipxrJGZwqkpJ+8zQZQ3FXJfIELmn/fmNFqbAJrm9uGKi1VRKmTwJcv50/hGAKWlDALBODFrz4rda5yAwgkT9IGmegcNQC5N8bR8rgFHgPUqtCyHRdyyWy4SI6pcPzIgcSr4drbgORzwJBzwND3geHvAkrHhCE56EPYLafDRhLRsTbfty0q6E6MaZyietnkqMtCcISBpCCMB+B5om4PoK8XqP9XrGckVYr3KI9ArwLoB3EzBPoHkG7Xd53waDAqXyITMOkBSQNYIWTq44WW+QvwXgI+FwnHF73OOd4w2eTU/x9vwM13TEMdwDeEAMCwKAIxj3rKKu9FiibiC11wIYh7WO1T6sCGte4M+RHBZ85NoSZZE/txliPsKmFbxlLSfXt5+TFRDniDjFdPbZMoFmrkEHlOfHinS2moyNDu2RuULqT07asEqa3O/mYc/EJApgXoNdZGvBMmOV0x4oIhpwQUCZV0cOmEA4KoWtuBA9uiD08tCCafbdBRVBB6SoN+mz5mFq/Zcu4ut0Cbj8KIDfCuCv5Fcg/xTGoch/95Up+nImhcbJUuBynSMlZZvS5KubEdPCZlTgI6m6zAScZITQahpFaadkektEkZjncz3TqYyykOaAU7UB8mU1eThbZXrfDRjJdzvVnb2RAta1PRacKAmSY5ySMAMjTlSOKwFQ3VVqMuiNnaU9BtJ7O6q21eTJSRaDpe50bercYpI3MiFOhDmsmIhx5EPy6yNN1iMT7nlFiAdMRDhyxD2veDsSvrg+wTvxCT6/vIEvHJ/hneMTvDzuywJ2OTV5j7QJcSWEI1WzDkgAL2HFuwl8cwWaQgKbaUJ84wbHt65wfDbh8Dxg3VN1zSBgerIDmDGtbyDsdml37bqm+ucZuL4CdjPizQ68nxB3E3im5CYV96nqQoppj879ktaSPh8WPJkeAADvhzu8nG7xnB/KoZj3POP9eI334g1u41VyjeW1mLt1j0OccVARZjqqbM1jAiC5R3lKx9dkt1vkUAUlp3E9rulvjaEA+bShcIh2vwvJul7XgHXOG47XFGUmFjFPaI/7OWajg9At9svcadbQmj+19kmc1juQFcR8moToTGUcstxYyysQYt6nFjBRxGIirsRij0zYhwmHOBeX4YvjHrfHPQ7HCesSavi4THDbZx4GaFAqe9BQ11SynCjAChS5obcFuPWdkS4Bl19AFY3fu5GPL6z3o0siwUXmZ+7Rx1OvPIFCLPtfQiDEUDWxZiEfFViicC5QgQVmcDKTsJjYITGunP6aZBgjEKWd6KSYP8iaS65Sm6vatI1pIxWCKqO0Hgn7pJCjvfKLPWTirxSwZH+7rLHMIVZtFIRDFhYPazLhl7Uu2G4xo/Sd+NtlDet+TYuZRUipBX0d0TRTxGFO7hZx0c204iok19I1HXHkGfd8j+usvt7zhJfxCd6Oz/D55TneWZ/gVw5v4nN3H8MX7p/ivbtrPDzsQMckNHkC1h2Kr32aAMouE2LUqB0ELE/3mKYAWq/AIST34xs7PLw54fiEcHyaLCEAWK8I645AvMN6HbC7mhEenoCWWDsmhAImcTdhvQrgHWG5CqV8nOsGSHHfxCzc3nm4zmeWRRzjjCfTA96cbvEkHMr605Fn3MY9XsYrHHnCu8sT3MU9vnh4gncON7hfZ9wtOze0eAoz7kM68v9q3uF22ZfXBcgxNUucUuRYnMrrAR6W5NrSVqpo9YG4rMtIHh0BOE0RYc4hy7vE2+vECHMKrqEcRRbWOldoAVgdXlr4T04mmKs7LH2mOag31srxUGVjdJnDKl92P8QlYCFGzBaMPlzTHhZJBNxPuxLVKKB9d9jhYZlxOMxYDxNYjg7SSuYJq6I8ryihssdNyuU6qLjD8rUzPAznpEtA4AdwEW595aeEK1rSVhugbFYCQDEdmT7NMUdAKaEOlIVxOZphWVP4ZNnrQebFYdJ2fg0wcdroxFmriBOyTzS5RCIlNwmQrZqp7p6u5Feuq649TSQX0zgRrGdZNuXzaQEJk1ota42EJUzunoZlndI5WrFu2mPZb2JTcR0k7V9OqV1jCn2NnOqRMShRRvm5NLgEYszHtFZziBPud7viurmdrnAfd8VNtqMFkQNeZu38C8tzfPHwDO8t1/jC/VN88e4pXj7s8fLFFdb7GeGQDxKcgHgFLJTGK84oh0GKmzLsCOvKmPYEEiDeBSzXhMNzwuENYL0BluskiGglrHfpd9wHTPeE+X7CdLhKrsuIYh2VPS8z6ncJbb5G3gtTj7EBku//4Tjj/YfrAs4v1j1upiOeTQ94Mh0a5eAYJzzwDscY8HK9wstlj3cON3j/cIVlnXAs56jVN1/GLBynEPGwTJinFE14NS3lwE9JEpL8cJy70ObIhD2nvS76kNYlWzYCLmLFiqDmibHOaXGFM/9IFBUtCWjCAyFMec/RUq2azPLN+2wKqOyUEiaWvqxNWGEuLJ7nFmcXE4OwYkouMEIJ8tGvBdDBC/dqTZeIEWM6emhdApb7GVjTuXRFgQxcFNPOuiAlB8S8grZYuNmzIgeTehtd9fMOD7vcSJfs0P99Z9f6ayiVsUA+KkFuyHVx3YgRkveLpHsoezXkoEhIqKXs80ASCjRzPYWWs4ktFoU0KQww1folekP8xhpYeHb24HC76xrgOgEUM9ZNW8kVFstRK1lw54g5sSj0cd8Sogygvhsjv1+GUa0hNr7c4hrLedIzZxfWkhbSD2tl+lV2bCvGZrQTMxBjN884LEnDPqwpxHgfFnx+eo45rOVMroUn3K473K07vHe8wTsP17g97vHi/gq3d3usDxNwOyMcU4irjMl6nYRP3AFhl5alyjs7WDTEusDLUyqzXgHH58DxjYh4HUH7NXXvErDcTpgeCMuz1Nb0kAMwGCXIQ8kJw7TVoor7LCTnKgx4DVgOE15M+yLYX+ySVXE9paNjtGtTrL5DnHC77HC37PDi4QoPx7nZYS+h95q3KTAOeX+SvFzNBr/IfqjDcSr7oIAE2HNcESM1r3eWctqykX0f0qZsJBZA1TvX45FAS0h7io6EuFD/Tp/ch3ECYg6Q4YlzRCWq8sXJai2Hc4p2LwqaGOhaYeO8KbdUkN2IxmNQhUqOTtVHBy1pQy8fQz7ho459ywvcXhfLQ24ZQCp794pTRaI3GbLWrE/10Gl48O0g/dpwX/1qplgFlZ3EzFlbiHVyAS2TgOoRLRTUDmPZ9CSbMGc05xdpn21z/Ij2buVztiDHuiDl5bxZq2yGVKauPZal2Y2fadbHvTNTOk5DgKVMHlW3FFV02CPnpT19j/WCQJ6kANLEC2mvTlzSyQNLqNaK7MaWoz9k4trj2oF0/Y4YL3bpxVGfn581m9GAJJjsTv71GBCPU5q8DwHTA2E+5pdqcRbeewZfo1kDI7WIruPFyx6kKwb2EfPTA26uj/jMsxf49U/fw/P5HjfTEUuc8M7xBv/g/hleHK7w3t01jsuE+yUgLkkpwZJOCcCRymGX4YhkTckBlIzmhWfCy/QQwAshThNe3s64nRnvzk8Q5vrGUxkfvYlWhP7xYQYvATiEevLExFVwylEjMkbIS4ZiGZuzyPrTLRSPgXEMcz1zzNmsbDfbCo+k0wKWsvlWQn7XSHg47LBmgF3zDn8sVF5GJ/OSdwyaI2gXMe3W5tSKcnKDnN6w6jUPKGUtHxclPJmtnKJYZYuLpStE4KsXikmdq5mnJCcSaJaX7stWk3wvGUnmX+4reQFeARbUcwfLuCirxQGQsrfowvQaXPJiXRk19wUT+bIcp1DHDkCOaiJU11XUIy/t5EHnLKTlsmLUVBjtQMoRFqWAbGqq5iupKLVIBKbkkhPdSY58SbQlxzyXtQIUWvWR3ZT31axRxbhnoC3r2Y3gUIJWjk3XzyP9USZibi9PKC70UXIB5BddSR+VUMpJt4nylr+Yfd3rFPCQ+yvtNaoCpdlgmt8aOK0AieWQ3SaF3B0Q9xG4WYuvWo6XYbVnibLwna8W3FwteLI/4JNPX+LN/R2+5uZL+MzVl/A83OM6HHHkCZ9fnuNzV2/hneMN3nnyJK1rHHe4X5Jr6u5hh2WZUtjtYQIWAj8EcEAKKCA06weyzkD5lGJeU56y6L+LWOw5W6jfiTjxxUrAQwAdqZwowZTBVbR5EXrquBWxeJMSgBo8IlY4GdlUlCmqY2/5SU0IfeyRtrxlP8l+SsfgyGGvROm13g+Bq6WVj/epmjwwzSvCHLHLofj6uKHyKutIWGlCpFitNTK71rNbKR04pbVDtclR+D+2/Vfe4UJIEYqqOGlZYEE6UnmpWAGuciJo7cJy+oZVzqAUVg84vHwXpkuOf/m+M7MyM//+V6Lmy5mywKK8gaikzAxsF9+ByiBA+4rgPHDl/CI7RzRjyDk+ogoHXUAsAENqk8fWJ4I+TzgAa9mkAhco205A0bRorVJAIttoyn2hdgeTIle09oaeEmWD8jzFRJeyEqFnjtYgcTnJ+96FTFlz4LZu4voYoHwqQrYwcMz1NKcgqLbyxlY52oVirTvuGPEqAcv+6aEIIADZjVijpuRkgaf7B3z86g7Pdvf4dVfv4+PzS3z1/m18Zv4SrumY3vfCoSyqv7u/wRf3z3G77vD+8Rq3azqG5f3dFe6OO7wMVzgQI4apgEZkrq+BVqc9hyU9Py/1GRO4cDqZeVKWuQxzBmwGylpFOCRgCfLWplAXu9OxQ5zBGdXNFCtPFIDJJxg0i91lU56RoHLa70BZQQA4Jo1MNG85QijtbI/lVdRrjrNdQkAIsbhbBShirNb8lE+FuJqXsklajjVa1gBa04ZbzCuAqTmfrDkDLPNTIV0UmAGwgFHOREPMwxXSPBsdr9LI97xOgiK7sjzJ65ic+VgfdGvPBitnALaiqfY50OR/lXSJ5fL7TtyXac9IryP+ik80cRMgAaCOopHwzRH0rJhENGMCyrlgohEGLhVTyO++KGo/14aVwCufGXw6bbNh4nysd7491DBkAmT6694TKPcTGuGfsKmWQ7YoaKl5EkAjH98vRBAY6RlJ09z8OSdLFy28bv4UISqhnoRsFTXBCLk+9awFNB6ogodoiDp8N4NTWc8qoeBI7q2bFbsnR3zs6R2eXT3gWT4QUqeZkmC7mY54Pt/jrfkWz6d7fHJ+D29M9/j09C7eDA+4IkYEcM8BK7/AYZ6wpwUTGLfTHldhwfvLNfZhX+o+LhOOxwlYGXI2HNlDTyX0VvpIZmAeH4CqoJfnFhdwtmxSBEcCqPBAzauQecpjOgFx5rTvBrXvRPsu60+ZeUo4b46wEv5ny88Qa0D+tfwAGW/Kr6xgRkAAU6xuX6qnNQRKe9DqJkZuTmeWCLSQz56bQjreqITWhxpuXVzHCGmzMeNyLV4Bi3wvvG8VHrlG6pMcpUCVpawIp/ViMhXkPOV0ET3/qXFzS2Vld76ZoE1w0JnpEnD5DYPrbwL4RgDfDuCvAPjWy0j4iFLWpIjQvkkP+bs+b1wv7kG5V4ow1hMk/SXNPw1yib4IOG+Ha1mTUSCk+UW53OpJyOlm8RNHahhUnqfcE2ukLHIqwCGhgasrQE4R0CCUQ1+ZROhkIM3rJOUlTeJnUs9WJplMuBLsgLJYXiwJCDhkV4DXZ0WbFxAEpnsqr/aV54r5/G17ZpRM3LjLC7zXEfPNEU9uHvDJpy/x8atbfHL/AjfTERNiOdBzl0Ofd7TiebjH8+kO13TE0/CAp3TA83DAFTH2RDgohWVPK67oiCch7UE5hgkPYcYxTOkQSIqVb6DGngRoUftNvqPoJK0SksOU6xJY5gX1kjA50TnkP+i+l89AyoWlwExIs0JTMS2DcuBLqrCT0Q3goCpYsk8rUnnfTxKQKBaJbDSUv4D0GvApqNcRBJT9UVO+t5vSK6V1PsTUV1MMWAODOQGX7G2JEm2mNP/20FgFIFahKmNVlSZxPZY5rrsO9V5n2WFwXeZxQJrbZVM3mjwCLNrVl+DJgkp9Jnvi+ql0SbTYLw5u/SKAv0lEPwbgZwD8BWzvg/nKSMQIu+xHpVA1C6AK2KIeSBmBfmoFvgCGTBARtFT9xbJJkygtYmvw0psv04X8Ah+1SIdsDejFwmJdrHWXtX4XhiQmMqGHaRIV116xwlT/iKCvlZTXB2gggOCaor0chgeySlSpu2i9Zf+Bjb6qE49QgYZVuw2tokGvefH7KJ91ARyE5OabFMgUZSBHDl1xWme5WnF1teD59QM+efUSv+76fXx6/w7enG5xRUfsaUWgiD2tuKYU2runFbv/n7y3jdlt686CrjHnup+939MWCgQQS6X9UUFNDBAiPyoIKAFJTP2KASNINRYSiR8hBiwGmgIKESH9QdAKhDZBEGsNiE2wShr0R1ttwSgSCBGkQFsstLQ95+z93GvN4Y8xrjHGnGs9z9kPvu05r+9M9n7u+15rzTnXnGOO7w+XRm5iGQA6FHcI7moxNh+MGz7QB7wZN4wlMr5mDDgFsV0gmymbOteqILbqdltKn0R/6pHplSDJFaNV4KHOIRiXK0n06ln17Njr9q2EhvcqFkbOmR0BVBqGmg3s7nntWGWDRKS5tFgTdjJwsRKVd2lhuE8+rtjwksCE8Zt//X3CzKT+H+2z8WPevpqeVDDbGv13U2sWW0pRcwldp30eUQqahCWYUk5RwnO0pn0KAloJzDu2T5tBX1W/S0T+WwD/Nj4DiEsTxavXplgOw10pyBPeFT39041LaVmBsNgh8mTDvLluFuy13azeBvPzDHfZZYEkAAEcIVW0wsYU7pXchoyy0c1T0ezeGQ26FQiqFwryUEStmSuE7X3ZA5jvGwm86uovTZ2I9+3ELpCZnvquqdKTyJR7HCmq2wMw3Ka8mS2OJsvnAAAgAElEQVRhUm3taSsgQWmPiNoqIbm4PUDoZRVxDl4S+L0DeHXg9ec+4sd9zgf4iZ9KwvLTHr4PX7B9Pz6vPeLz24EbBK89X9kBxVsdeF9N9fVGN9xV8APjU3ijGx51ww+NT+GDYYTlgKWtOSA4XI2ztQOvmmUb3rXh9bbj8YHZClzFfheg27vqW/duK8Fy3N+Q/IZn9FmIEwTQAxGdHtc7LIgXyIDBSPCokVq+EiXZrC96s6XEXLbS52JqLqSjCub71ibDyJEM2FlzG9HhTNYHh6BvA2/6DZuruU59iCVFZZJIqtKO0XDHGkslEbN133uk/mc4grnuztz8swi3Epmy/tqGe9PV+wDWfuK6RLzNtF4acSusG0MCJ+rMpQJR/VYVwswZ1dkIOQ49A6pTz6TleIHEwvbp9hb7XlgVyM+IRgPtpsOCsJq7LvouShtWm6Gla+tQyyhs/5wQ9ILMxQhSvw307cCrhz2KOTHd+OO9R50KAOFXHvEhkgQuDn11PCBnN1zCKV4qU60H/qwE6gIhz4m4hdMEH3NiNNEInwMPBQ2ekTm2EqwrVQj7rik7yryZlkIAgKV51Y3aLfsz91xThZG4SCVYVXUkCKktOGMfi8FzrXvMhrP+h8616jsUNwjekw2vZMOA4q4H3mLgroK7NrwZG+7oHrT5Cu97Bua344YD4vm0LK8W5MB7/a2pZTbLpcZAwmMIelO8EWBvCr01jLcNuLdYqEimWPdP8h3rb0+1Wf1S1qQQibp/QWxyJ0MVXFV1ASPTYOSUMRnJa6uqPaG07l6WkWqNBeuOhrEN7L3GY9k9/E5MxziaQy3Tc9Qh8pdkbNV+9IzbmuwSFgNGpxlxAGWEnLkIE9D8b6icct1IoCcX7yMPa5xXEhbeJ941S4F0naUpt79VNbcOQTgoUVPBRZ6YTnufwVQzfq8WYveS9mkjLl5N8hfhiXxjn7QmgoiHAGxh77viLj0SxYmnbDA3RYTksYviaIrWJYkM9943nN5Fr2/3qIsOGEA3sSj+vbUkIoBFX6tY8FfldhSuBkByhDy4quEWa8ZpSRVfAA8JlVQaeN0CIZT7+FBRV00qD5dipEg64dHk/2nTGTavxtecl5bvgReDYLhNh8bHkQSlP2KKxq7qiEn9Q8LCoWl78FgQGob30fD+/gp/t72HH+jv4fP6h+hQvCdvcJOBjgOHKu4YeKOK9/UBb8aGD/QBj7pFWn/WTrkr0+HfcYNGqpqhgr4pXg0r7MUMuU3Ughq3V/hwMxflvXfoveOQBpXm3m5l7alCXDICUz2W3DMmQhKp553QTlq7lanwrBLcWyig3SUX4lWHGTq6pJpTY0wyF5PHWGF8uP9kQOhkQvumEhYOsZxuTb1UtzM6LbNJaEliFkk0h4TnH7NA1HioyuQxe4UK0DFMFU2gopq5AVT+CV3tXZ/L9ULzAOiaYSMYK1NhUWoPwkKiAngZap2r0i4qrgRufpZkAnm2WeKY8wJSsqFWxplKbsbJVvlMe4kr8s9/po8vBPDlAH4mgN//7sN//I2lWgEEQB4FqLaetVwAR5KikEMxxIG5Z+yHSLo43rYDr2571Guw8QxhPEpHaz2ilYEE6iElyJG/Y0BaM+6aNhQHAqkHsgZnBTHRYgdaFqCKF4WwTHUrVq54eZyuxlp+mwhFu7heOGWh6quOscxzjevQBfGFKqyoiYIIPiWknZBsrg8LNv2wPOD7+3sYELOjyMB929BE8YHe8Z5YWYC3KvhBfYUfOD6FN3rDG71ZXrNxw/vjFd6Om9lZ1FRgZpfZ8VrukefrdbvjUTe8bvfwIHvd7/jh+2u86jt+eHuFt/uGD/oD7veBQzYTyrpJbVEXaJiHnHb/nkJOGvELoaGHXCRNXdQwFRYmO4jOa5hefXl9YY7NbAhnRmCIkE4aEti3MDXO5IXziaFtkw5qTZgmVrBLFIPnVRDEBsjzBSBS2ay1ZAhPNTNBa0lYWP9owLwg1OO+VBpU1H93AiNazmfdA425CgkzWjkDkoh8jU/xz2ukfT3jWglLDGq31BCKzEhSODpNlX94htJ+I0/Y1p5oL5FcviVncdkEwJ8B8O+9oM+PrTGjsRJ4YYTmth2Qo6QEv2iRAqUNU+KXyoprVUWWf6WKBd2AHBuA3YqJjbrZKmgiExdley5xkMP7i7sxEgimqF8/2Ke0DcLATAJLYuAAHldTTVzLSpiyO9dJPwEeRBT1OpH6phgiZkspKix1RFjpnhQufPJmokqNz18QtuinZd8jkoAi19bbcTS82bdAPB/sN7w9Nty14+9sn4sfvL3Gj+lv8HntQ7tfGz7QV5EAkhLKo27xfag5XtzEvMtuckQRsy6KR7VEm6/ljjd6w3vtEe+1R/zw9gav++fgB/qOD/Ybugx80B/w4XCVzqMFDlJ91HY16ddtKiGBNEQOsqr+Gp4+ZsoGXNVVrl7UYDxgjIt7bwUQEEYrYce8rmQmUInUUdzWhfBS9hApHVAuCM6kMlJDU+VUkDC64hDzButONCIC3/9OE0SZmw9R09oYHKmtvZ9flYGBhgYnOGgBd9WNV0I6HhExb7ZUV/U6PtKWdpVJHe4M7KWKigSABKvuQeg8kR5qtZGwE48wT1t4nRZG9R3bS4jLVz/R8wDw/QC+XVW//QX9faxN4QkWPTfRaggMxK6puqLdpdaNB5KosKhYb4ruv1G1UnNxsU0xCfGb/dAAL/uK+X4pQAgkB7naQ6ZOy98KmKLh3SIegAXe4oCVKhXnMEPaMAhVOQOqykz7YtxyPTkx2mp87EIciQRN3YdwmQ3EUw/d8q6hJViklkijvyFSp6hX6AwDqzMebx/NNfjt3vFDj6/w/t0qNf6Y24f4vofP9SSQb3HzoJBqlwGAJsPSzmsPIz4Ar6I5XIodIRE1jPA4e613PMiOmxyWaNIl7Nf9wZNGkgB6hIY2IwIQj01BEvCen5mkMSQTSjMkKp5tIFSOwXTLibBTTYV2xlaTrYv70Jf90nm/T43I1NVN4XJPYjAhPx+vJ5GRTiYSAJjdnMQFVp7ciebl2D7v6s7L7MaqgjYE+wHgaBgNEOrF7ECmE0BF8h7nM5cPTgaOQa0S8FikisIQxDRX/FEDuSmtTLrwQmDyqZggM7QHQ1j36mK859pLXJG/6t27/eQ3HYIPP3hA6wNvNvMk6c6NHKNhf9zCZe/0bCUqXbF5XiIRk2RUNYsFeVtdS8NzrOh815Z6Xz8Iav1Qxw3aegph0QqQBRjV05dIjZgGHIjMU028yBJU/IwkMBL5BkLiw4LJ2Bjvt/kdhZDlYiD0ycMR0xgA7u2Ub0mFkol4Odv0SDoRUyKrZ4gsJZWIZ2EiUE9cGKrRe8f92Gz/3Z7xtxvw1zxlSHeYYfqRrQ+89iqaLP/70HbcnICw3WRg71b07G0zVRmlmO73NVjhrVdyBzpwkz2yQTcZWe+G+cCaq8d2gd4bmiOL4bEh4X69AeP1wHiYCUjkv2uwvFOSjIsOgfbGtNAItSnhD5pIqCKiyL+GtOUUIheSE/fxCsFXaZkMEH/QnAORoXrVyFETu3aFDsUxbGUnjn/lPq44c0kc0EQ98NL2aT9anumjGRFvR6q0LwhYVdfxvapLcN2HmmKm4qH0HjVDPZnOyLpcvVud+xu736uFYXXckSJWWQv2IUjtBX94x/bZm1tMgXHvnixw4Ah3YTPSH564T/d2KRGoI1XZhhV23MZkKqBTwJrKOsRaIFwDCQRhhJQEzFEMtXzm8nUoDawqDSAkhyktS7W/uNeLKqyAmMIOpQgwksOdCEnp+3JKlJAqsavP0CgZLsUC3NSITIgr/m7U/x5iyQbdLflJpFQJzyLVaFev21GyS0cS0Dz0OmBZaXex2i4esT6kWx5En7fpzwfabeDh1Y73Xj/i1bbjPScyrIveoJGN+FPjjg+OG1553flKXPj5JrunizGV2tth6rV99JB+6S7f/B0s0JBEQzA2i+gXNYSrD55Y8/URyGgyWIce3xghBuQavW7Aoa5SKciweAmuMFEl82QyMCP4EDx03kspktUKQ/xYYq6S20ZmKxj+twnCG+bEWC2wc6VOeMcW60jWi+oyMzTNQ3AKMYeF6i1gXZN6TtlC1jnU+5RMrK9JPVeT+q/gmJByEJkRaDuKTt+xfVYTF300hfwYgtGY4sH9xO8NsjfjlBfRXQWuPpAg/jQC8obBQMYV+VEPXOexcDXx+2iTz/vpUPBfQeRTBlvey4PeCtaVHE+duxQgjHwDEonxeH8QsDoXnsX45xdoFO6a49dlcEmqbWPm4ta1JpE+jNgPZrdlFL8mhxXz4XtjIUBuJNWmwE2BMKr6vkgagrXUBpFHyWzIoRrie6qn41e8eW/D/d5xux348NUNt3a4Q4jZ3FjnxFLGHFFlsXlE/qu+46HteK/fsXnJ5sPVau/vryL/2JvD6qKEXVD8PTwfnALhnh4F5Zy44FMH+sORKesLY8OsyVWFq0MsxgYCHBq5uSo3W70EYw8aQnUbtq2wbz3BoEw6YCRhKSq8eV+RhGVkvBXzBRJxa1X5EoYDwNIZ5wqpx21qdtBDxeys8NpCowQuAgFDZBAt11mzY1zsjjVr9+rqHGu5npll7kIiUWA3PNoAhPvxU83P1okRi7PO8/X3RnCfJC4i8r8B+M2q+sdf2qmI/CQAvwnA31TV3/niWf1oNDWkYcprQ4LDXRX1EMhj86A8qmEKgqIut8MMX81KusrI7MHhcbHGnIhiLAhXl+ucnxbPr6h9TWtc5TCA5MC3mUDNY+f9MgGpx8s0uMRiHO+U7iGQt86EBshgzGO5x/u70h2TS+5OXNZI6YB3n8PhGY4H058PeOVB4XKleofr51KQFAIdhtKeaodK1OeYAXG7E2NoMk8Z3Z0hXrzrZvr3fQDHQ8e+N7Sukcdqtsdldt8o9ducuPQD7213vO53fKp7kK8K3hxW6fGD/Wblb/eeRdkA97gqeeYkcZk2IyzyMLC9vuPmalyqZln4SwB0J4ZMw78fDWOzMYZLCXoIsBfCXRG+KGoJZhvf/llWhMUxpCCyqTl8hfRCvPwcntPk1mdDmwQTZgZzIvW8z7qu1OuiezVVmDZzDjiOVGtzarXiZCUezdfv2WSQkh9UYcwN7T1UlUkSJiVjCRKeM8+Xcz8TGmbGOOGJli7X57m9e3tOcvkBAN8oIn8JwB8C8MdU9a88dbOIvILFufwqAF8G4BHAv/LyKf0oNUUmRhyuz/WAQHE1DPNUTbmWRDBg3jhMGpmRsYjswlLKksYhFFc1BcIF6JIJ+Hd+GzNRs8JimkbRcisEoV8WRuz6e61qoRNwF2KjA0CHe6mYFHNWGyAAnBAcMF6t+KKZnqJXpO+Xi2HTCn4d4eYZW0R9NNI9fLjacgzPgEx9ONU5PR0vGGFc9dVZ04STzvfnmJMevHDH4hUNa/S/wGwZxytAm6XFN24/OUque5WQYixvvQ9s7r7+qduOh23Hq75HoszHo3sZ6Y43+2ZJLXcP9CsqC2GJ7K5gvRU0RXs4THX3sOP1wx5rSoO0rc2IKPcuw2K53Hi9OzwpYPVeBJZ1uiJocbhxKiAe9DjFzlSsFxgZT6tby+/hfLIyTBccN3JJJrtNOLFwfO8v1NyLxFDtG0OaMRAHgjBr2cfmWQBY+Gwo0NXKVlRmsroPm83E5zTpy2RiOkVG1Juha7PwHeKeslb+35RrkAvENVQB688E70fnmtrfgkPetT1JXFT1nxCRfxHAbwfwHwH4D0XkewD8rwC+G+Yh9hrATwDwMwD8owBuAO4wYvSbVfVvvftUfvQbpQoRmDG06iuLPrdWsAv1pKt8tCFdgXerQTKpUCYjmR+yLmFQrTEI0cYca0IRXx1xBCQ4F0ii0rYxIdcAUC2IrH4GwIA2ImYgrwvvnVgYv9+ROXOzGYHxk+7xErJpzGlKoVP7K2u6cvUnTxhfB2Y6OI4WsQrVDXwdq8Y3xBKPp+IbMKsTQr0nU7qO0A66FNMaoqDX0BaBrSF9Fjqtfqjp1qsC7Bvw6Kq6v/vK6sdQZXgifO5oktUMS9xDG3YKfb2kmfPBq9sezgdMffJGLV4niiz6WnQZeNgOAEfUR7n3jnvXSJE07t2IqcM8EfdwGB31hQO5+7rt7jxCXOdSd+TPKoQlYIGZJ5iVghyNePyLI/CaaSECEKc9zr2N8wmk9O7EjmsavN4QjGESaaZR8X4aTM3o8TBZUdOEeUoBSVxSqkl1NVAr1bLGlDpTaeNk31Uqqsek2noPL0AHFbNXFkYJCg9KLoQGCY/zxiHVmU9HaJzaszYXVf0GAN8gIr8Ylkb/FwL4Zy5uPQD8OQD/NYA/oKr/z7tP4eNvYfhDEpig4F6AifEToTv2kqgsoMRCWqKJNCbCsnBVE84unNalyC+pSghOrKgMKB1UbuMq0V4QlvXQT2MlZ2RsOZ+XvF65f2imnOAhCcO4Xo9RuLIDDR0D+2H1N9Aa5GIRmBLdMrArUKSclXBEyg8OV64zfmhH96JaeVCfVM2EFxIghwm4jK2RwTgRzDEzvv/tgBXfKhxiZJjmIfc1O14BurldqZv6NNR4RXXHgm2pYjSYaC2JkYghvCaKh9uOV9uBW8+CWFmeWgIhjeYejE0xlB6UlroIG8JbcTTDMLQxDvVURMWV+QTPKoYlvJDZJHU7Qq/p+AOxUwqKvoyYpiHa7RseY5OEpZ6vhcCw2wAQX0f1dyTsI89TlOV2hmSShmFGe1tTDyKQXF9KETHcMpcYR/J8BiFwfu3KcSVi4ArjCFBaaVP+w2kfnmtapNEJT/g5eIHt5Z0M+qr6zQC+GQBE5KcD+AdgEsuHAP4WgD+vqj/4zqN+Utq8J9PvFJObMxFhO2mL62rXqPxXmxGrPGQhpZCz4kHkAapA5BbGSVVQbR0+x1DtSCKUS28y77sm3OObp1guE0J+VreNOrZY/IC2iK+gWq1GEFe3yCm2QIFDOyBWv2S0mTDwc286EZ3JCULT4w5ovhYS2W/DA0wBEXk2QDberayDNrXg1w1u0PZLTiBIXMaN0qwTQoU5HpTknCjMR004aaWKBYMBi01CMp2qOnJaWuCxw50vzFWZtp7bZklTrVLjHnatx6N76pMWSVuZ6HCnBNha2A56UwwMbG6TDLoxDqgXAGFV0bANVhXYMA5cPBCvcspUnQYcB4dciIyqwVcj4ud58/WpsOuEKvsMiPE/T5yPS0BYHp3USwU+XBLV4UXGCiGqaWTsN8S1+v3JuZT7KjEJoqJzX7N0mwRGyuvHHkj+JnV9CgMEACz+9uxaXbQXe4up6l8E8Bdf+twnrjnSqIBeuR4e5IgVqJl1Nw21D20mEVmr4v7uC26uiKIGqtUDEMz+hfufG0ODsxPMB5BzuNp9RckZhIQuskXknlWwSg1K8WjiYhAELWq6RCoJ+JyKF5j3E2nJix1ExWxXTHd7tOynSmG7zBLJGtCaGW1tzxhJjTY8SaRnj64cZLxftjAb+RpTnZHBl4YkISjOFkZgrGJjrgm3LrI+H4WwLEk6RQDpdu/w9D6RcbrBiNtRGI6q2hRujF1rYimIKmFhhoj76Li7oZ72GurlRYDD13frA31kIsguCu009PvZuEkmy/bnwwswvNEkbZI+yzEkJNEqzQejRcbEpTaza2oSlYnpMmZs0gJU77ICk6FKA4ypCihYGtW7FQETZv0c1cwe6h50xxLbFsGaK0Erknvg9HrPFQL3c0OUEEHc5bnqiBLallEkEa4vjHkRNXhlrj6uT+SpW5szAO/aPntdkaHQm6t0iCSapkRy8x1Rwdhc38va5JvFNtC+MdCsGuNGAqJnDomcp/iGkijINCVE5tcIYkRKLJWwhNJ/Jk5TzAwPBrncgaz9Lsnt6SXxQBC7iSAtsGUERizthXuYMf7CCBaSeBfiksYru2doCwSFiYhgNor7mLxObydz/XYuuhuxYU3H1o7TgV0P97Mcmc/J0tWIB3+W9/LYGd007TLT2iG4weAIeT36L8MNI7oEI2ma+bgoJVca08oYvk5UZ9ENWkRxqEkqu9uqokIj/wEwLsakyC6Z7iS92gBgoHe7/3CbDbEe426kzcRFDwE6bXMaWYgppZCIUyIhYZFmOuuAp5Zu0AaShEn2Vzd5+T591gk2rze92DZIVKqTTIgACOll9wDXKlFMUlW9Vs/SMs8pwwUJixMvOhFdjoHS96Ium8dyWEVlWODEyDUaZDqp7q024ndon73ERQC9ubGlxEqQaPTbcHWPHYxxtKx22KzQGDmXhuGFnwawlViN0OUXCaMh1GVrjiCm1Q9DOacqC+6L53RCtJOY7Ac17CfkIHkw23IoOYdgYfIdYi4qSfT8YBl3r+7eWVRX5SCx3ziYK/ALr/sDC0EJgurvHllvfarVc0yd0DTDgthU0G4K0YLslH+f5tDMwMu1FpdE/WUaJv0zY3k0bHCJGYJrzOVMJMplbcu/jyJ0K7JYEFWNtaAqjITl8eiWTn7keiXBR6RKuTeTfoAsFWwVHoHeANVhhKkrVEe6RIsRBHo2QTUL2SmlfLNJhPdWVWP5O1bXW8JEGPD52V8dlLirNKcGjfEsClM2rV1hNNZlVQYX+1yLXVVXtZsiakFNMO7nI1V82Xclfjw34TnW5qmqCsbun4sEFdeDUeWg5UXy+OY8+L1IwqbG9Rg3wn0wVWkGeNf22UtcmqK/ty/6dY3CXtRXs/xpzaJakZIC0E0APU7I6kokXl2Bq01iuJqCebxOXNjE3tKo7oBSxXbADZzu+uwcSeWWhZwqkZXOfdffwzmB3CMadBwALBNszkfiXUjkJoIS75HfzUOmzUiYr1EObxp4gcEUJYXjGnsL4yWlRx3AuFnt84ebVykcEmVx15QaVPM1wCPeDQkqiguNOomZiONCPSJdDRGoz7ucttCBOzEJm02Ji1RFcIxMaWJ6pbJW1b4BTIRTFWFXuY+G+97x9r6Zx9eipuS8dZhqUV292PvAw20PQjVKv4ATr245u6YEkPGi5v49QvpwpHVLeJRyL+GajMval/je5nqfhwxDf/2/ejvJzJwIMNtS1NdYJKR6rpWQr/J1p/YCMBjUvaWWw+es2zD13pWjg39RpLbBgmE1CZAfCNpQ5BBgTxfqSNbZ/QzWM1lCFwQVVi4IheOJIJLsw5mmd63ayfZZS1xEgO2W6pJIGOmccWtZJ31zjrK1Dguk6pPxLA/C2UtprEgVZ4JzPcFZsjHg1unamkZmdkHzQ8wI2+BE/KpzfFTXzMQFeQiou/ULOlwPPiTHuGjznLyfST3Az/VAJzdnByHnEa/R/CCuXGBtTjiHx2O03nAcJf6lEH0tryCAe0O5a6kT/JTW6gva+4fXVhBhzHpu4FKVQJyRxEXd1Vzzuko6fzjnyCWrBnGdHCcM5sz7rltRKyDiYvZ7n5HHaWLi3GuzdGJ+39YH1CV5uoFXt1eqmBivMVAD/pYxrva/Xp7OEEzdGYxHsZZw3UnoC3Ny2XhGq+Rbrplw6z8GLCrq2QipiYSl6XTMwFfjv0ZG7oJYlrHX1FAkfHHuXYMShIXehg4LVI/a+SxMT1sX1yfoZ+mk9QCwSousdjl5nr5D+1iJi4h8IYCvB/CTYe/1tar6NSLyVQD+DQB0af5KVf0mf+bfh7lFHwD+LVX9U/77LwXwNTCl8e9X1d/xkeO31OHXxgApYEC6mOsrgN4GjpFVAlcf8+ZifHJ4CjDQahFVdfpsSPgU9Ditlfvh++fJWD7I2RTkPLGD7ANeLRDlUGKWagQTEarSTnDrbhNYuo+5Tc854Qpng2orArkvH7geSvF5lWGSYy0++0XiUJAQkhBI6KrpBQUgKu0FrZ5sPBafYKaHkd6A3Ce+m3+X4PhzHaWuL1U5hYOkIwfVFFE6mES9IFKL/0Byv8R1Fdm2nI8eYkXE6NnlCGE/rMrq8ch8+/4iy/7FmhwtlpJEuTnSGnSiKF5Q1QvQXrsl4vWkqyREASeBrK7hnoTlyczFQMJwJSzsu3yeGRvkGYl9Nzg0u4YkUTkxXZp2wVYI1eqBOJ0Zfi4bd/E6q22G6nPiB77rVG9JECpuehnqErR5GksKzC9j1cnT7lVTBT2vs53bxy257AB+vap+p4h8HoDvEJFv9mu/R1V/V71ZRP5hAL8cwD8C4O8H8D+IyD/ol38vgF8M4K8D+F9E5E+o6v/5kskEsVBTDTRp2A/F1pdKlPS0caTZ3J2SxuxTLZaVw0MCTOY/qkFxwNXBtzUowV2KmTBV7zLvoh4mSHrHqSrm9NpI4H8Kfhxx0m11zQMWEk99vrxjXtd0MUUzojNwHrcijMsLec2I7QC2tI1xXcdhsRuTpKeClZNMW4URmEjPfkNIYqf9GyYhiXUwE0guaQTK+vgR04HJs8mF4HgnFYSXIAlIerMlkqsgE0ZfV3GFV50H1Om9hRQprJezIt6IzTDpZJdMzMp1MBXusiuV2OSiggbo1c5gEiolm/yRxnGIxHvMsEAKy4ELB0IbQdOJeJzgMtaQkocCYAonX+gCZ5MXZkvCEgG7Uu10SCeLYBjm/qZ1mOZ08Rt45uYu+A7r1xgqAKoO+sQ4PPr0QBUjKsQ36sRtrGf+mfaxEhdV/W5YtD9U9YdE5C8A+IJnHvkyAH9UVd8C+Csi8pcB/GN+7S+r6v8FACLyR/3eZ4nLOFoaroBwywxO2xd4721i5OOgUrVC75htJJeLGSFVt8GTyyABoRIHIbefCPFyDYdYLAXjcK6ZwJnIQI3LWXXkweWVzzxoK4xWhMBrzlmHS3a9v8yj9RHIchwDCoFqS23JWPpdnq+c18R9NvbXpmd12J7REaDObfWqY59M42G/I9RB5Na5v+Mo31u6KQexIGdZl2uRVIp6e1lPIi6cNjVd0QvWdaQ8hpWgHD2Jy5ThmYjbo7+DyLAn7oHDyBBNYqkAs3WnEf8CRp2gQIrtIG646TcAACAASURBVGCmEMSJEfE/5RzkGakT5ADia6zzmk+BnDNCXWOowhsRAjSr9mpz4CJzbrowSLhs1X19Vrsx79vFC68/nfa7cBux3Zqws84l8IxO4FHf+zSuf6dDRhAXv3/gaRz0VPu4JZdoIvJFAH4WgG8D8KUAfp2I/CpYuplfr6rfDyM831oe++tIYvRdy+8/97nxaECvOtUpk7Gv/+HZkrnw5FTDW0Msd1DzCpNESEGknhHpSRislkohDg1gevwToSjAlJ4+mCpGrt5IySXVgybp2VSn51zfbHy0+2KpyIm5FBOqOChYajWQOIm3AvSTr6I2nQLM1dYPNT1lnlETTkvCd3Y9weDaLsjqGJKJAOOZspZiyRqbBw/W2h2q4p5WtTQuMJxKHujmatWcC3ZEwteOcSpBqYTH13NiNIe46y0f9FvDuSG5SsY0hKs5JUNHVLoLZG+hr4+9ZfxUdO7/PKuyJflszEYSZyARfhqjV8Id60rmasFmp/tjsn5ueACqxFORZNMUuOHzc4/MkI6nyeS4dQ4Bu3xfEj96kQb1l7kjagCCiSxcQpFcplecmDSJs6ql25kxqoQZgR8mybhKr8AkvYR7f/NzyPeVi7Xxvmp27FRzk2C9O4F5EXERkR8P4F+DSQs/DnSKX6apqv/kC/v9XFjqmH9HVX9QRH4fgN8Ke+XfCuA/8XH/PzUR+QoAXwEA/Sd8vtVsQW6eVg+fsplHz1MvQ+yAUkLpFi8zerNyqhysAgqRbPFUUUoqd8u+LLv31wCphatqygV+rEhTM0FmcG4rR8t5UNQnYnKg057PZxDc7FFTg+EoXTBJZwAeMxY4oUgpwz9HcNwIrqh1c2M93LZBuwFUEiH6eAJAj6Rt9npO+ByZdEono1mBpGEcexwKeiJ1e8dQVZU1NHUA8KmbJY+89QNDBdux4XHfLO16afe9437reHzcDFYOc41mypdaMXEqvFRhk/e4oZZ2GYOLQigbIA8DKLnkdHiur4GodWPiVyIdlq1tBybJUAeg0tJzyOGSOadU4OrBFiVRKCHZehaYgiOtCT4xzT+kTtpjPDkrz54600PJtmoRchxN2ColxgNpOsxJSRFU1dAZS3WxD23MKkiHfXN1R3AFOnwJjp5EoKpNV2/PmIj1ESouJ9bS5NqbrFJPEk6EU3wShZiaxv1TxnAthPdqTnx/OROWY7RIFhvMyzu0dyYuIvIzAHwLgJ+I62W7mOo79XuDEZY/rKrfCACq+r3l+n8O4E/6178B4AvL4z/Vf8Mzv+fEVL8WwNcCwKsv/qk6EZZL0RuJpAkQ4WOeb1tzk528S+Jg1Jc2TkkDKsolXbibizYZlisNEU11QAApIdjvbX5ieEjbnDqDlQiJeFePNA11SIFoPq55UE4vFZNHsXnkuK2Z6B053IoxH/G7pKbODfhWe1yBbrEsJ2lkIN1DgZTK1PJnUaqK2jkCq+3TFG+2LfJrAYhSw2w1en1z/fS9WXLH0TWQMFNwYBegROZXZt5SmxiwTEx+WVt+H85AtM1SvUSQYuvz3tdGGkViXy8VmJvznjk802OwqrcCBpMBqeMGjFSpq6pd/dFgHJimBJjAOtYKfr4CdgFKKlexUKtkSoQcZ3S+NNlDARInd2QeCKP56sDAz1Qhxn4tdrZ4phIN/lX3wqxzW1ToACb16uS5tfCRwIyDYn/jt/k82jgZ0zPZioHJxvYjJbn8LgA/CcDvgCHo71LV4/lHnm8iIgD+AIC/oKq/u/z+U9weAwD/HID/wz//CQD/hYj8bphB/0sAfDtsWb9ERL4YRlR+OYB/+d0mwTFt85RIt1yvsSgCmPcOH1zdZck1sF8CRBHVM10LExNKIlXBkhdp4Qov9pbSSkgtWFwMeVO8BFmZpX8/qGvtCD4WjlhEOpNUhEQ6Y16XGL+qEEamsoi14z5wXpxzRVDqHJmkX782U01KSxflUDnuzRJH7gUjdbXCV1sm9jSO3wiadsVdFG+KWqWqcGoNlpuXtd21ocvAm6bYt8zZFQGeh1i54CUGIvZ5+PDMFkE4qGvqc5PNpJZtsxQvg04LOlKa9P4jz5n/T3fm8mMg+NynBTF5ZgHd64bZHohLqVphoBAVZdZdwHKgFcmG+5QZjzktie2vuDai8wO2CmFZVGAMBq7SR7wQMDNN9bpfqx6EgcwDNyxnqhLedV/rGXAYVbr8VaYM5fd4idofplgv/ly9MW3ufKxE2YP30KHHxlvtuWG0PyQkHFWHYVfb/0gRl58H4L9T1a98wTMf1b4UwK8E8L+LyJ/z374SwK8QkZ8JW6e/CuDXAICq/nkR+WMwQ/0O4N8kgRORXwfgT8FUdX9QVf/8R45euYqe/vPWyA0VhH4I0F1dw8JijgTO0olOQCauipnEdQXGJlBiY0WkWJBVb1wJDOphgXuq4QyE04HP14opTpzQzP3xcNbTIcJ8Vy51rYCmnjpiYFnLMrYj21DDrQSGhIFIjhILucSwLUmqCRzpqscexFiucmyPLYp72X4Jxk2tOIQoRC2xZHCLTaG64a0gbCtbt7r2lFxIWJjCfqjY9+2IoEVzAhCLLzk69see9jrG/RQEX73RYm+dmIZxfFP0hwPbqwOvX93DPd4IfsehAFoLHiIQJGMgKBkt3G4chYETYw8VS89eJeayBzaWvw9VT5REGPvTfCgBmMF4klpqYTynLBU2CHNKghYM2pJwddIa2P3r76EK5aXiKm1nSKAsRoMFoQofLGtRJRLCdLXdsLmtJOhrYUavpKkYD7i2JTmRYJ+VsdW4YSFWDmeMF4vbfB3HIRBNT8Dw9Dscuayw8Ux7CXERfIT31Uubqv7PwBUWwjc988xvh9WYWX//pueeOzWpRuX59+oxsaYZ0dEwuv1FTN6BbQLQIqU4whc3luUbD0cKEp5WAMLuMdWYn1425wo44JHNO2EGzM+HAra8b42ZCSTj+m+U61q4l/XAkZASGSrOc2F/CgymUK7zU/9CN9qCoNJmkVNJzywjelOmaUUUfGuPQHssyKsBcncu3k+iVA67CYYCAxsePWvCth14uO1u5LfyxFsbeGgHtjYsl1k7sG+7ZXTw9dlHw+Ox4XHveHO7RYEvRrPPQWwLcQFmbymxyp2vXt/x6mHH5zw8BnEBLM7qURTHvWMSC31jpTlhaUgngYXAXTXeq6Euy3VkkGB13BB6MBZCVRl71Mj3vZWEnmXOZASCSXNOW6hQ9jOzHuFCEMILbHoZFJ4934sGeWOgAKCxOHGRCtSPuQOYAjSSU4Jbbavn5K32aHg6X6x5pV1S+mQy2Ixr8r+nIOiUSy7r2fCZCS8kEZ28SEm0KiF8x/YS4vIdAH76i3r/RDdN6aDq0R2Z13TjESswrF7D2CTK7tbgsJp6nwZj+oqHdICC1zeTZMxQlvmZQtJhygqckRDcI0mBs9H/qi22oGQdT8tyikk4Zwpw7rQSucWuIiQUlQ5p6aPOa53qcCcFIh0FanEt6ubzfe2AW/yIJIfoxZDaI6I8MefQOiLQcJ6zE59h+zt2wR3AeLAT3ZuiY9YG0xbDTL+UbpoM7KPjcXS8OTZ8uN/wuG94PHpIRNPS6xwnwlK66td6s0SSn/PqEQ/bjk9t95CaRBRv2wYR4N41EnlWt/cQZ8KTMTH/ifkXBAomQQlnDsLFQMTrBCNC1VYpkgZy8oGjWqj8mCZHhlimaNj+svBWrdMCl1jIvARYLUi6qnnqeUiXZWJ3JLwz6akzX+Z62/I2EjGeB3Uio3q2Y5KZXDUaWpx5NP/m4UISHjaXgKTNmg/ijSAK63EuBKZeUDJonDNfqoyfN8tpbZ/ELxftJcTlqwH8KRH5Bar6LS947pPZyiZV5N/9t1rutW72oXO8AwMqj6NhygrcM+35GrzHvWqi2LzkbM3bNB2O0ohkqD4ZaKaGqhIFn1sALbxElkMoyCSZEYhJPbjfO1YvFqqpCuc7SfeLC3FwX5xXkURe3IaXnXZikATD32Gx9TC9fbsjvaX8PBOJnmiuANpN2hm3jn0XHK8b3irC1VxEsWvDPhoexoFNLL39637HQzvwqf6Im2PaA4J9dHx43DD881DBwLlCJoCQfB79PsDgg1LSQzusbotv0D463tvueHzoeP/hAR/cH/B4dDzee2SNjnirGvFOVceR3K+g7CelRaYb2WWSRCwAdEbgQaRHekSxeNyAhO0m4KV4yVElF+o33wdmN9BgkFx2oJ2GKtIFRlcDvS6wGveOBYmKr8lkNylaiKLNYCfPORXU8z9GTbLJ35Hnd8H3wZAWRpgw2Jq711NlyGepUpRC3HS+Hq5/65pVD9CRvFvkFfwRIi5fCOCPA/jvReSPwCSZH7i6UVW//gX9fjwtkLEtMoVtxjmYpIIp/QtbkyxSxFbTs0zDLJxoFb9HAxo0OFLeQ8J1EOmHrjuROSCpDhtUFMzZlG1idW5nTiViCdg/XYyLqD1pFxwIa1ehvoD1JycpaV0UR1qrDz+n5v1Nr00zjTiyIpcbXHX5Xt0tqzSiuYQYJHrlH9fEz1zbff12s7PpYZLE3hpEOvpo2KXj8TCPslfDVWJ9R5OBIQNbs4k2GXjVdxwqeGg7hiccuyIuuzYMbXhQc4FuQjXcEXVZ+OyAFQjbRIAO7LpjV5NYRhfsMIISWKK5fY8xOVSPuJ5G6T3IIF5fv6hDE5xRYU7q9hE+uJwh2SAQOQlY3M999/mk6s2563qPZHJPG0By02Kzzxy3+u+rbTTum1RHTlhikoB0n1s7n/PqVHCKH1naFP8Vr8UomzmBpd2/zre4Oy/HOV50ZZb8wmQH5RzW6VIzUqT8l0grtb2EuPwh5NR/pf9bp8Yd/uQTF8CNpC5JUD3WAIUZSBvTHoRqyp9TWDnYkUWqtOQWylQJEszBFM3tBKBvA0MUzY3kDYouwCHNCYsnB0TO40zQbGJ0I/QrnEneSy8qHthg0cuCDGRA5or0eF8lCIL5UMdgWABc8+/Sb8GVOUwQrHp7ev7Eoh7ZR1VbAPk8Sn/SXBuw2A6upBctvwUH7t5f972f9qE1C7q83zrebDseR8dDO/DQdqzZZE3qiECR+C2uq2Kne57AiYcRly6Ku0s0Jjn1pW9T0VGde4WcTk0QjIoFBfrSNZzhALk2V7EcdjthbXrFbFRrkikJicL3FXodDyQkVhfwVv9WZilnlv9XDn/pKiWqhYFCMjghvcQ7ICSUyUX4oukJsJZrHDLeKc8MAyLHwAkXrARGax9xvVJbHop1LReJprzjk7E7T7SXEJcvf8G9nwEtVQX21ZG3Ay+jVHdpztidAaEWqVqNguF1UfSsUZSpBLFNkc3FviIOGc+pyXivcXxyArCAdCEhKkRolRiA+TCWwxNTq9LBk8tauC9/fr6OBGDM8G2qlgRiLUGAoabxgmwyABHz8iLhmF6DiAg5dxmwzMNVPfZEq8WRYllUcDhhYdXBNMwDb/rAm9uGV9uO9z0A83XfsXmGbdpl7HPGzgBAcwkFwOQQYN8bhqj9VeBx9LDlrJLPlSQEIFQyYcBW2neI6GyhYi8AcwBgKJDkX6vKqamCPO1xLuwJpKrU62CQkoiCBaziporYGAC7GLQzAj0HqtkRTjSGRCVsnCRu5/uCieJHwmMhPHMKoVzv6SV5rUgeUn6fMko4A2jCJAlL6V8EJ64B7gmIi1aJbzCGy8KQ+FDFWPCJejqdq6DT59o7ExdV/bqXdf0Jb4p0r4ufqFeV0LeGvQAzgQnvnkJUsAAWXf7iGUoEDihDG5iEdT8G4HEAhxtiQyrSEtSkRAzz63CeUb/looV6LIBMwsZr8/a/S7BWcEI1PuM5AoOCMCpRVl+P6VBLShlUN3oKGvRUgcjwQ3iUOTX/TpfXMnamSOGPSGeAAatVr9k375n66LAaLFFHRTLqnxJo2fd7U9xvG95sB7btwG07vMzwARHFrZnb8ubVIdPwb7+R8Kz2mObMyiOAAU9Do1b46xiWH68SpqhXo1lpslacpBQWGLMg0EldRffXBqCZd10wAP3MyYZ6dOmLY1ixOk0iE/utONkEWyJ2Xg8mYtEkoI7LZz0z8ElVXQlL7HfhcCrSLQxVuLHTM479krEjYp4Wg4/7/4u6rhKiOQBT48xFd5Uok5jyK899dXaoa1N7Ko4M+VtZBq53XbanvFY/on1icov9qDcFlPEWRUyNj++wkFNerUKEAIR0Urkd+72M1yxdjA7gjSKM/1oQw3O1stNop4GoG0Zkxj1Bw0cQhSlISzR0yAH8TaBSCntxWouUkvEzC4IfnonZH8/18/sccVhwJDz2qJwoRwrDn5NwQMCJC40caesScEx/LghT9W4CUmqpHPou0H2zebubdDv8WSKKbkTmkcW9bgpsnu6mZzG61oY5jPThMTMDm8fMNJyDYElsWKb40BZ5zqiWY3AnHU4e75sVubt7fE3o0h3JlTWbimlBI7FT8EId6R3W1CTIMHBzzTThppcARhK1wyR9upgDKEWuksDoYTauOJsVJk5I7mK8Q6Bos91gEpHLvxNw8K/M94l5s1EtO52BTWwtjjkGxTvDUy01CJJOBb6OubZF0zBRfhTvN0SetUon4xxXwquajMVEdPxvVy8wFgs3v8Iz+GNtLyYuIvIegH8elmTy8wH8XQDfCeC/UdX3X9rfx9qo0gh4SO5Ay++XVB7zJqpLPKFzLUQrArkwP8sDPo6GYy/9Kyauc5WIpk48RiYiihsDGX0iF4CRLp56yf3VgE8zHuX40nXxrCnTib4qUakcpb+ewgC42mvqgVrjfJAHUUUgcfD1jCi9L6pKZOXccraG7AYsf9mhZw82Ek8iDCYXLUSl7Zjcbo0QCcamxt1vCt0sHYxuarnHmqVukXaufNpbBmtWvfoxxEsVC/ajG+Ph1wQ41RIiY3Lsc+BmeIVVGCXMNiIs3xd36YarEu0ejRxypwDf5jnp2sjcdEDkpRq7G716qobDZbfudRPLZlCdSlZGxe6cn3epg5KEUANxZVsoezypxJ5iwMhE1pQv/ht2YyoMtt+FvV+ArOwLUI6tGLzHIxwPfn8D6ByRMTh8iTIOrwOpuXhqTuXe6TmevxeILy9NXPnLAHwdgB+PeYoK4PeIyJer6p+8fPgT2irMTcSEQHLlNVHf3JGXDONetDyf/cnM4bP7YvsYh8DYw4IwnesDCtBWuHSOepWaaIeZ1Dy6RDJDPT7GP5OolKDPyPAcj1g6+8n+srZpjWZxWhm/oIBWuV9yTIr8E4GzF8h+tQA8aCdYwJH9cT2IAMttgxz0psYpUxLyLtYzWiUdC9C0v+EaXZwK2t2COscm0JsTGufS0RXHZskiRzcis28NfRvhOUhJBEDEV00ZmSunC6B56hviRiVh8Xc0SaC4kE97mN6SoXIpAbTp/2HSgzgBqXvL+IvW3aGgBCgPErymkfxwKjG9ZK4wSbmk2697kFMOeJWWLuIBcwpkOpULYK2EalLdolCapdXfawyPn3VVTLY/e5cy5MTI5XhB8EfeqMCkApxUdX6+4zxVwgA924M4JpIYnYhQIVB5bhD4iBLPE1ady/aSxJU/G8A3wgTmPwzgT8NqsfwUAL8IwK8A8A0i8qWq+h3vPIOPsV0yMwQuRtKuXiNccAJIILYCyJUzRD47DUxx35GSwtU9Nbir6llRgItTdf2vSUaOtZ3znL3H/P7yPZAGZqAiQLH2CTglWQjks3rDhVjV6Q+4bQl5UHh9mkfO5eTaHI88D+g1eeAUc+Bjm8HaapOEtbrGPNR9rPaVooqjxCI14BMIRwAZgB6C0QHdAO1mu8CuQDfiI90qII5j4OgDx2b2mK2PqWZ92k7ahLQAQ6QyqipqzgodqqgCl9Uji9Lkml4l19FhyyUWSigApnVlHRwGIdtaeEyYS2Kjz1UsCWurfXJ619N5QKjD6HwD+J6Ucyru8XaWthPupjP91JmdFrt8LjYYATKzALtY98nxxuSUQMISasrCQ13MQVpZB71IgLs8U88x0VV1IZ+CvNfzByfSw/DLj5Tk8pt8+j9PVb91ufaHROT3wrImfyWAf+EF/X7s7SQ1OyCe0qRT9GzlgYJwjSN/x8WfuCVJDoZ9PkVUKmflhGQwVYUsfvyyPIf5WgIdgQuJzPlYJUiFqJ7cLZdDOel5pTzP2Iq2PHwxn/hc/pKryznNc14JahAVHpi6NgKouZ2BAbBZnbNwa8y8QF382hZOFHBiIyn1NXpoHU5kFJZufjSzO2weROveh80JC7fQiE9Lz6LlHatbfdgdDkuYaWo/JLEs84w+DpddGN8Cvm/568GQa+YJzqHJbPuRck1VcZM500XFhVKeiQDhphhHEssw0rsUToml2gZpfxSX3MPzahBuioTGd3t3fHndVGxurmJ8ju+KGCK+/SpN2hQBlHijpT/1sSLmZh1vITIZxuA/u2QXsLqc/x71q5xBHXRwkhPcPNdemrjyv7ogLP4C+m0i8g0AfskL+vzktWpkI2Ep4mo1nFXCwnYpDa0I/3Lcq4sr22PzynxKElzOQHNbSgEKwu8Fwo2/9TBMRCWfmzhlcv3ri0re/2QgmXNMiYzPfazt1GeRYk5SlrN79MpZCaOUfmq/IkiNJFUqrpLheTKu1Ptras4NsKjzVu1lVy7OxF/cNy/EhW6fLVhRoDqsMBcG1N3kuJdjpAsxufiqR6c6pHqxhcTCCPvTvArj0tSySAuZJAQDkGrXdB6pkkaAj8x1QKrXUm/2vKWqETNflfnQXpR2JgtkVvcuVFHPKFwZhjExDTMnLi59jdzrIMzJGF4GVcakcN2m3x0ewwZzZqqm56jKHbnWZ8KCKfNA8DT5gpPJJxm1hfnRDD+olwKmC0DUsxRaB9T3kQIH79ZeQlx+LOZqj1ftrwH4MS/o8+NrpNxa4lYNFgGVKKpk2XQdyfYSzNgBiEbkd6hLgMLxPTHuFUBrkTomN9oF2gMIi4dSqMdgBver55bxrhNi2g9TzqIFSQNPE49T5b/1nfWZ+xbOX4PTZDLB6+hqEpZawtjqfCeBuZqv+n/q624IKxHR5LrLXFhodqgHgjMGzI4Quc+YsHFxjQaQLtecwADCOWEgpZhic2g9EXW6vEv8FhpZ9kOiMsRKDUTuLiTM13nEWpb1FZ+PS+gsbZBUMp+x+1MiHCpm7ivcck2ZY84K1wHBtVGCsj3y9wpOGzNTAUx2KMaMSUcUU6vMQjCPi/YgzmGc0YvDGhPMtQezCMTeaNhDQ9vxFKGq/fHvE3vEeQZzxzmPtROuEXxsAePtyBzPGo7cn8p8Bar5yMlft5cQl7+JrFf/VPs5MDvMZ0CT2dedgMvfhhtsXa9O/Xng9wDEClhA7ByBs9AbXTHo0ogsqvZliqxnR4t4Ks7lBDdDg2yFieB67D9TfVwg3TjQTljGCuWpd70KlHxSapnGP7fwshNkLEYgL1weiiv1g1ysj71XIjQFQqe/9jWrV0i07XOtJ1I9AGk4zsSamN2aOQYJ51Nn1eEuqm1CnIFN9/SqzjhTCJTaKBKZnq8KgAWhWxBfSC01noMAX9bocvqFkM+qVXOlbuX31YtvctdXBJHIf7iEoRpTRrVh9MexqAaKdy2cTjyPJCyFgatrO41dYT/gqPwmWFyK17XCmchFN/Nv5RhMa5ZzPAMWYTYZueIAUoiefc3xVrtWEOtC3N+1vYS4fBOAXysivxHAf1wLhYlIA/DvAvinAPynL5vCx9iuAApJUKQgCWMUBBgu0g7YhapaWGMtQjTPn+2Dg8klkqkHrgBdUDRX1bTMI8b5k4AFgeGzUx9lpCe4ek4jIrirLYhUYJn7ZGN5h3bNOSGRX1nXEO3XZ6nSemIupwPNvwVpcbyJqPA1SWCig4qF+S+5E+OONQPZCBPcm2mf8rdA6GprSwcPRlynO6ogKh4uaxF9sxgZbUfVbljgmMXlKpEJolP2xDyTNNYonT5waiKzIb/OcarHDneZLp3UINDYo3iv2bsMSttMOq6YTSoRowrQen2P8q8QD7qxBw5YkGuOub7sE5/53QnLHJuT2D3KGFQccjVYJdJ+Pk5MSlH7pZZASrr9pLiZSw6g+ss0GX4mJOfzrF31HdpLiMtvBfDPwmqp/BoR+Z9gUsrfB+AfB/BFAL4HwG972RQ+vlYPHIAELEX62MeBRH4uiR2LZmDiKDMHkszAx83HExygSyBnZMcUMdaJQMI+cGloW8V+oMzjBVDCA1efkwqwSchOOtnKSdXzsiCwashV3sAhZH6ueijls/nPurU1XHPDVYIVqVDUODfmawr+sCKaQhRm1ZJiynXVEJkEzJbihmcSm0i26UiRB50ETjExDAqvbV88oTL327xNwvU+yvUrROl4LtINCbI6ZRAbzSBUN+Jj8cxa86UZYZkN+tOaL/f6ck3f+duIPShSi889/qqpeuIe98rLw6VhpzlPAAh1Gz3+joSNeVGX3wrynh0eyjgnwqLTOTFbSHOAn8/ps06YgL3zaU4LcSxS5vwwAleke7n/Y/kFpIQ82TtfwDiyvST9y/eIyJcC+M8A/GIAP2255ZsB/NpSnviT31ai4r9JRSQoOLISEo9rqWdsOm9UVa0bnXuYSJS/k7upSCzgUfI5f4CcPrmfafwAiCsChgkZT5e4FAJDgK4auhSzoh8kZ1s56SKByAqdRDBFHx+eQiqIEr+xVhyjEjOdlyTeQTPn4gVyrYSFc6VsVIngpBLwmiPBdDSueaaoCbuX23zSg0iTUSEyg2RGgrLuAkQArFBSaUlwWOfmaj+qBHsiLBd7qOSwu6aNIAZCRs67d1jfsoREK67sACLbwK0ds7CHlFDauhkX8He8AItVlVimViLRLF6UT3aAzM5wrOs1L9csLSzzrmtdcYUjkilVP4w1JEGaC/2VZ8vZr/3G8JN08cT5fOKda4cTkQGQarF8J0q3T2o5nmgvCqJU1b8K4JeIyBfAIvR/LCxC/8+qolEcfQAAIABJREFU6t940cifhFaRz3QgEJyGll2NhIqVyMRD8+bS2ZBeIafmyPd8lpxrcKPxzLVdADHci2ZoAQIkFF7RhFDbXcwLCGIRPjiLpGKEjWoSzHVx6nv4/IJLvpjH5GPPKesw43ZR7TGoUxbOeHqnpd9QrSAPDeMrJh0+P6pMxJHlXcOO4cXHfAVyfRfGlZJnSKHxXphUrbGnTsRpV2oDRtQPlBT4mNQ34R4fFKksxgWiU4eLSIHvRGN0WBBp5z7wGY0gvubpa1ifqLczwqZKjNmYmSngGC1KVrDvVeoBEPE8a5+T7SsW0xkCZ67gexWR7nT+EHPhflr1mwSplpgAMDOOC/jTvflJOjidwedaOVtBjKYFuMRPLnr6Y5ICUPSZBAH1rK8ESxE53HLtZUoRJIJMy7PA+Ue1v6fcYk5IPvOISW2i0Aez1GdFPoASgMbKlN14gpsJQnHVyEkuyCc/VKSd/ZpqReZ4EK3PlTFFPR8QJoC6EmerHedJEZzqBAfgqSSq98vIaPGguSvpbArSxDxeJSoCRA0dBcxFtx1BBKSMWWMpgERKq2txcyzMVChHqE/ambAUzjOWeIi55h4CubcomBUpgzzPFpMxUoV0sZSBvMxzK4kLSwXoEAx/URKiRu7UgWeCu6IWOwkknAcJSWSNKHAuMM/HB4XeBuRmUsnqxRdr2TNzwNbPNpXmUrQRl4yyf66FasyJUANw9/Q2hycGBWDecu2IgMqpTXs/q88ojVoJjULh1+b7MNnGxJ91SfRaLYZc+ApPF6+deQYXCsHnyBSu2SxO2Lyes4W5KBJw2iKXwNQgpkjYqqrZGLd89wUJJ6EXtM/exJUAdPPdJVEZ+XVWySwEwO+P+yqRAYJATWMVjvDJRiC5QNTsRJfvYeeo/RfCcqn7lgTCeXLrZBFAH8i7xpQUNVidb42+BhJJrd5la+xJVXPRiB+2lZb3Vs63ehXV8fi3liQ56e7XdfFroQpjAGXJKTbxGh4zYV24Yq0yDs9sdR2PhKfCF6UcEpardY55FBzElDi0nUxwV/KZanfCsin6baBvxwzfyHvbun+YVVxJzG38yMisRtTrnJuryfpyDijlRExP9K0+B0BlTIzEySZ2teTTu8jFb+Xfk2e2XJPl7xPjhUMHLsacOsczOGF59mKOQIGNci55bidGQGGBu7J0RHym+fn8Xk8M/kx7kriIyB/03r5SVb/Xv79LU1X91180i4+jCSBbcYNS9dQfmtwAcEbeBJ6qliDiLYCu5XMdc/p7da204L6wIEZKVzxMNLoWpD2pmk4dY+ZWnqN3rh6bCMATyG4KXrzSHZY5xVIUFddKJK7XRML2yLFGec62S8P1lc+s0tQVUZnuDWIiaYO7uJ+SiRK7FWkyKaP9U8bG6PJqJCS8vajNgnBIXn9KKCBBifHqXzZXh2lXyDZC5VVjRrimp/597RvMNmLEeyb2TPdPSbH200RxQNAxTF0mrFVvcDPGXC6gMh8KJ4gRy5LwMjMWZcILYj01XyuVJRpecFKB46l+T33WBXOEvCLu9Uzo+lyZ7zSUXN/DObkaszKAVc0bNtTah8/zkrAUVbVN8WUE5jnJ5Vd7T78TwPf693dpCuAzgri0bQQ3kKk/Kvs4I+rqbZSYXQrGAujFcnJvjHErwH8Ed6vASVIpfc4GQjwJ9KdofcGZojxFhy4kgvk6QKCfDOV+YKhemGwipa93MRLOMRMMkkQgISIc6odZqrp6Ha3rcPXuE8EhYue1K4LKC09RZyKn5otBPb3IKSGq8AAXpqTSKSgy9T/y74T8RL2WDcL9NcYncWoKbO75tVkZACMuJWmkvz8R/KAqxX25hhMWEQHaMLwmluqfRIVJNmMpihQ1pKO34Xtme2cZn1spMYE4d9WGNmwKs90s4G1G2tzHuqfTvvE+uvV3TaZtTe8/IfJc76mf2kgwVM6JKf28BjPAR3R2ua/I/wS4zxCWxqzidT083Q5djysAVcIyqVkXFYpp6Z7gbC7ac8Tli/3v31i+//+k2eGKb0RS1Kk/IVpmQFGh6oXoaBAAOyCpOz235FBnpGeIZt7EmIKiZO4lt66pJy61GNZ5nUT7eTmebyujr6AiCFMEdVkPqonSdnJFnGT6rDjPNQIg/acxWoxDgmbL4WqwTkZAnxynvvP6/czu++WLmCVyuoHcC9IRVaDP97CAnJwQjq+dlKV+ak+I/GK85fcaw9IS8ahnNAazGvfMfM01YKT7cbRYg9YHVCw/2CjnY+uepqYboRgwosIMzjFdEiJvzREc1Wm1RADHT9d7MiG2IFJgZPISq5JyXZO6jld7KjDHmZ4pWVRgtXhW4rKOwQuyXOOVBWmf9N3LdELd/FFnsb5PzIV20CQsq+fmlRgW8VHVjrd0zy8qdfCPbk8SF1X9v5/7/pneRDAbolUxRNLtU+Y8O4jbZEKgk5rFEdqEZAP4y+CVGz4ITZVg6BnBTFLT8jIxpxIrIUXaWgE75v8coJTr4gQspB7ekvO+8o2nV415tGgSTZ/XyhSuffBilRpD9TbOSRzFI+eD+176P71LGTPfmetTQOMiXY0CuaaOwInYzaWanJ6fa3XueKinY/G18VxklSF5Ui3ixIMFzE5lhguxmSUWTU686ZyTy9fr8LFpOJ8CEkeDNGC4V6CttT2XruT2LInLKNLH6h12wEsEFOJCF/RaYqLuE5D7OqXmCQLja32mH/54Oa/rdproBa2EqUTXxz7o8kzpVxwRrPSj3nolWYU3VtWQxEXvY2XK6u+Fcam2zVMA8Zr1YoK3FUfoPN16pq/ihp5oL0m5/5sBfIuq/pln7vl5AH6hqn71O8/gY2zVSDwflDW7a0m/AVzqo4EkNHVjKeYfXjBp4vCHlMy1KAbjGbk+2chalBxVFF2rcfMUhXxaCMwien0/0UDaKzVY7RahmgogVAQ3PtpVCqSLd5rndUoL4lmDJwlONOJiVJp5mom9R3ij9eEu24U4eVoUDYyM+bABbqPwd3CuH8GtznNtZY0C36+672HusaxpIlFHBuHmzHiadFvO94wCZM3+hrt2RRqF2FRCQ66WzaLakbBYkfUoKpL6DoHQWPAMkSF5MAVLRfYR0a8T7Mf+XmkGyqKOkQiTkurYm52bu0D2ljyOx95ICQqtbQpALVy/NgBef6YGPk4I+vIcJozHLwUhxzmvzElZR/E5G2wi69nwrGghNFdDS8JXrh9CBcbvdKkHZM7w4OtwYmxWu0ychUVt9xHtJd5iX+X/niQuAH4+gN8C4DODuABBPKq7rLm7ps8+2+GukE/lZ+SedK+HLgIcakbK+95TD+0cxDgaDnL0rahIxhMAVcciTqkATgJChFLvJQAVVVwgj0AAF0SNsTbkkDA/X+8NBMpknkyvH/OMGZXPZ24uvhY9PW9lfRKK8uqcHwMwyeGap5n1PdkTPKXKOCyTNO8PpFwQX6qzPOajGMBXovcUx7zG5RBBspCXblZxUUvaFj18/fz3yF8ngHZYbIp7e1XJe9oTFBiYOF9HeuGC6sjmaIF8pRDu+j/XwubhthhRjJ7IKgg/50uiFsxPBU6dCYyc17FKoYkovUZNKSUQgB97uMBVhdUgfn5/z3mQCMsqtVy0S7Wz+ICqJc2/T6PavvzdW3eYKuMNDIi2UKE+2VbiwvVBEuMg9FXC+6hWGZT19ycY66v26XZFvgHPhcR+gppUwmI/EQm0phFpXP32u+uKx7Ly5BNImLZ+YJMRG3wfHW/ahvveZ6MlnJMNbOxIsx4Ewm8yrydOSZuAtS74MpcgQAJUOLgIrAOmOI0gPJwPi18p5gO6zDPUQDB1WBwmB8yTVwqJek2jEu+8YntHtl5VEYoMdKXkQqLrk71KRzJUwEwsQwQNA+NwpNgKYqhzcwP49nBEzMfq5l0DAWknspQow1POu8vt0XBvGkSG0gyKNENus5H4Dd8DenttCtk04YZu9Dx9V0hASYGrS7sTtb1mIJj7qDDHWkZyiM2jKbiYk4Tsj0sv6qUSnEfkLk6ALFWL2w6vJJmKwK+CWmPfnLkhIFYQ4qRqnEcwQkZYKI2dDOIXLe2vgGgyKWEwbzoVZKvEOdSSXaN6Z47XUG26pzGBEzHWsj6TB52SYbnISXb1frL8vbr2ju3TTVx+NoDv+zT3+SPWePir51IGg+kUFFZ9909urP5sE3vmVd/xuu9oothHw+PoyUUPDZdL46BbHKqnGPqpEf/W60wRcnFtVXeRsEitO9LEYyDywVA1qLvZgqkqEGqcySBdiSDPtBMlznviihfPmchlVQ9gXRM1r5sp7sSfF+re6vqQURA9RZXTDdbuExxoaDJcNcQ1cQQFhJqk9YHbduC2HXjox8R4RMVIp9BUnfY20B0ueO+9WdT4MVgQy20a4ogALfaH5RSYS06d0ElXSKfk4gTWo9NtuwomIdLxfsJ7DUjEcwhYxpmPkahUtUlkBnepVJpEV3M1RWfaBqw8hXcqtT9fW8tfRnfuwokDxaYWbH2k4qmIW4jUSUDjknNQhXmrqiCFmhMMET7VfE9IDBNDoamqMySebvsVjip/lOPYv94Htn4EHrJYHyPIw9eshiGcgqCnfUZxcECcGagEEQaQ+GZ6sQITyx5MmpSPILi1PUtcRORPLz/9ahH5BRe3dgBfCMs39kfeefSPsQmSsLQCSBUZ3NpxQkoAsBcWnxwqAGxiSOy1E5etHdhHxzZGBIntUNzRAQyMIaZnlf6sh98KCKk3RgBrlRfj8IZ+XPKrwu4lIkn92mkgcpWThFImtXo6cWy6RgtSZ1yJStYXsfHVkZXF6yAO4URwOV7NAyUA40vCYaC8gzltcB+TiThEsfvn/WjWz5DJUJxJJW3yTD+zdSMs790eg3gF44E5TsPmYLC0Zv3FBsihs+MA4Yq2A6ptKrEQT4pIAuO4NJ04kFqhQKK5IClREkli9lq8as7tJx4r/R51j5I4cf+Uv/E9gIRVyTnGOrR1GoWR8PdcpXdemyUuDThKvW4s4XxvGEsRzg4flWIoYngUCXcO8/D3SGR/XlLakawktFd/BCByhHMD+w2Vr79WODt4P3VOgGQaHC3nrBK4aSIBEbFmkyMD1+XdaUq0j5JcfkH5rAC+yP+tbQD42wD+S1jq/c+IttpVrmI6mig2Eph+YKjgpoLdCc1EXNrA1gYe+oHX/W7ERQyxPI6O+zjcM8eC/Ewn2gKZTRtIRpzcCbm+4cZ/jZ+hPXNiBXdJyHNOd0ojE8zgAjGVQCzAZcZkcvt+e8Nlwr8nIdEJjOySRdjUOOmxwVLuiCEv49axnJ5CWMt869hVYtn6ga0PPGyHqzlzn++jo8vAsVnKkf3oJnn4fhx7txr0F2qI3gZu/cDmtrXadjXiso+GQ5PQHEXqvbur7n708KyaCFuofeaUM2kbwETwBl135RyzMEmJQuKvZRMxwUOqTAqRAkxyGsmg2GdZCAvKWIkUZyah9C8wKWoQWTqydkajDJ5bTMKrMImoOnUwxT4dF3yNQIZnzH1VNVUIqS2l3coQnDzeqOK7cmKQdAKyd3bVGco5dMLSmknDXUaulzOiUXLB9zTUXkOSgfP50wkDQ0zFyb2/eNcT8UDuu9BdHeUe9su5vGN7lrioJosuIgPAV32meIK9SzPuY0nf5aLyMRrQgK7jErjYKhEC0v4yINhHx67N/g0LErPcSRK2l8HaGwVpnhjIyoFy38t0DGH4Z3oYIRlenbsC3R9DrVvSglQN06R/JVIDQn3FImpVior7qcIpwD/lFtMyz5FG6+jGJ/EUM53jYPKEEs9WQBWnOVYkwQGoPXLJVQfEESFjOA4052DbyYJYswKMilyBU7Q6AN/zFioz2lz2w4MG3ftt7O4FV2retwNuX8p3ZXS6lPnk5PivIJfKpXNBSTXq2rblvkIM6ChhLuXLPfG+Lh3XuYiPd3F2qvrz5CEjdX7rNSdEHIvzDphzWChwENJzYdg4NRI5QZ7lKqFQ0qweopZNoLm3XXr+xdwj0aPk+ikHRKG402tZIOoyTkilQVxkshlplW4rk6plPgtROTlNlDl4Urt0PuBUG7fkuQM5t5fYXL4cwJ99wf2f+BbR3jXrJyyCmNdbIR4R8FXUHsACjDCu9Q1uAGCfjw0f7je82TfsRwvD/rH3dEWuLpJLC933WFRRH9UcFvnPf3LXyIK0YpBl/MLVKbmkVt5ZxZIhEpnx8cLlh/rFFoenOMcIJIRERJVwLlOamGU3wjI1fOueysQJB3Ni0cAZtu4ijQRj0QwQunqwYBDTORsvYIjmPnowHRVGeJ0R549Hj9iPg27po+HYbd8HgxXdqI4hVp54IP5CJQo/Rb0YXy/1RanxTJMqZIKpawZJBWlPW1tByMBMJ2bp1gIcK7LXgtAm+CNc0M5WmJaws3FOp8nSrkEaqQE30gijxeMLcKnIJ+Xjhj3QVYyrBMN9jCEmpE+PPycse9HltYxvIsIPrn+4W7+aGjfg0iWbASkajfK34gZF4gsn6JPjwnR+kYxg1+n8VqYjc5Mt/4DTmjwFQ1ftJfVcvu6de/0MaAoL+LK6FPOCiZhdZGAA+4bRJby/AAMO2l2aKHpZ8KGCx9Hx6Mjn7b7hPjo+vN/w9r7hOFrEvBz3ljaEJZ7BBkpiEuqnCYnDOZI6+QJfE5AQyUshMOU+eN/k3rQQJepCihcNPbkkRJe5q8IP5fAx5+S4ZH7o6VYOULxfhxEW9+SqebLS/dj2ZNdmSRMDYSSB6aKwFP8jVEziUg3QTJ1RVB1UnxmSUjM7VMnICcj96Ljv9m+oV0t0tdfYm3GaezvZkmQ3h4uwTfk6qovZVCfSoK6Le/lMWJb1m6hDXgs1yxXucGZEobOXoCwg2zI4NrjdQmBi7+KaRqp/2wt2pHOC1BMs+MZKI4WJd+PeVeJEe5StgeT4ZEx6gZ0i5QbSn+JG7P1NbeoeftxDAbQj7YaKSd1taj+N/WFGgjEEd1hKHGo3pkBRl1ZIZMKpBTw/kgGzdf+EkhwsjqcwERk8vC7wR3vJvWt7LnHlz/eP366qb8r3j2zPBVp+YpojHT0EeqpPYYf6kAbdzM5yLOnEQ0xuAw3JFVOyuQ+TTt7u5oL8uHfjdKgKOQQ4mnGr1W5RNpYfQ2IhsiBRiYOaFEeD48acH6kQmfCq4SCVuDiCmsCrEJAa2b22NfYj9MM83BWQyVVRWvEhLjnjynEVwmnJFytyuDKem4qpeojlfIsaqw00FWivxMcDMlUmI++A7/9oGJM61KCAUsvO+Ka9G2HZS6Di3ox4eCr/ICTl8ySlEvH7mkbcAiWrEDGWf1y/guwvKQiZj6AM81ZNBOZCjEkbQOIspVfSxd4Z4kM8k8B+nlrMg8N2SgcjzoO45EJbht2vIbGGTappautIWG4D2+0I7y2e8waEmmqKT6M6m4Tlzon5e/tc03stL0dqGz8TOgT3vWPrIwOuh+EJdZX5VIF0yOSCzY7Ni7CuI73wEN6FzDkGSk7DJnkOhn5ZsORT7TnJ5Vtgy/IPAfhL5fu7tP7RtwAi8oUAvh7AT/a+v1ZVv0ZEfjzMOeCLAPxVAP+Sqn6/WIKirwHwywB8AOBXq+p3el//KoD/wLv+be8iabGQkKJNMF157qGCox/YuqCXehI1cK51k16oLnt7bHi7b3h733C/9zQOeyxFREA7xzqphDgw50CDbDHKRtqP1aWwqIGA5Bi1EhgSp6q4r30MAzrxhRBFevwUrxoGEganWLpRX9sp9X7lpvkeggRiXqtcJgoBDc4zu2MJYB6cXtKTDN+rA8AuLW0w5Eyh2NxBobeBDiNAW1V3HoXQS7qoM/aEGtWreBdzEnA72705l9vCndqkk4W4eK2XVfV5qhPjHPFlsO36U2FAanoaAOkue3quiofcp9LXigY0nU0mlWZlUhY4PTPMFXoskDSyFfP5UJupw1721919WJD7wYSbUuBHOjzoViGeuHN7MPfyNX7J8qO1SJQKJMGIInJUZaqdM6N3JUaqMnLQgHFK7seRrus8nseetjgSmMAVY2ZGgngrbMwmyWy6ihCiEahZJRdKR3OMzjPUfd3Hj2jPEZev9nf9vuX7p7PtAH69qn6niHwegO8QkW+GZWD+H1X1d4jIbwTwGwH8BgD/NIAv8X8/F8DvA/BznRj9FgA/x+f4HSLyJ1T1+58aWNU2UQJRJvfM/EokIPR7N+Q1uzDffEUOFxce94733z7gw/dfQR878EE3w+whrIxrjVwORXd6dBEwiDgGDOn4s5H+I0rTptTC95pYpZVLlfPnmRF1IlJjUhSePsIAWJpayVv3dHnoRyBuAHg8Ot48bsax3w2p4q1xeFPBrDK4/ca1gMXtMHkgU8QXSUxEM7q5594cR8N9kLtMrEx1WfeCVw83i0N66Dtebzs2GaHSpFoLSERlayuTGzpg7ue3fkzvDjXpZT8a9seO8XYzCXWXkEJjHXZB2/39j3k7tee/cbPASUbnE9sbjDoX0AvPQKTWFNgUYIlipq0/BNiLlxNBgl+ViLEAyJEEpMKG+O8hXcceAq0j0uekg4cs8HbhXix8xl/IA0fhey5d0bcj9pRwGBUw1SSCx/vmC3JAN3I0Dgces/Tewx3v3R7x4MHPgHn9vdk3PB4bHveOt/sWmTYOZ7JqnI0FtyK1Bb6G6rAacD7cL07M4+s4BEfw4pLEx/9G/NEuM8wwDqo5fDw4DhGdDfd+TlhF9LYdIdEd7rXIRKVKRnZFGaLUW7yIAjyXuPKrnvv+6Wiq+t0Avts//5CI/AUAXwDgy5Bu0F8Hk5p+g//+9WpGkm8Vkc8XkZ/i936zqv4dAHAC9UvxbMyNBCMRUkghLNUNNUoOd3FXSE/XgOExKwgx+PHoeHzcMN52tA86+oeCdpdizEYkHdSuwCbzASKihzrnhlnicD0xtjWx3hO7fnVw58sLRvPxCdzOIUuDpfnwewRWN/2hH3jYMh4ovKhgyFiPBtzNSN0epcS45DbYzf5FnANbiHAQlpa5mGjA563DPfD2ew+bBtdNuxhyEnc3hWVheL3teG+746HtGHQjLva06v33eHS8OTbsXtRKxN+/HZPKrbogh5t5kVaf0krFPhVpzVy0FXpTjFsltHZzukirwcDmM3aVGZpx6NurHX0bmRp/N92+aI2YX4HDYcL3SyqyI8NEokjpusK4u8KPLpZsswNokiWEVYKo8nMuSJ4R5lHTB4Vu9mpNBtARQYivtx0P2x7FyO6HqaVbG9DRjMiBlUyNwXi17Xh12/F5D2/xudsjHvo+E5fNnHA+6Df0priXKqajNQxP0R9qvo3OAVw7wx0K94bkeeOHYQ9PthQSIa4Dz5+HIMjhzEhVk6P85TG6YCwzrmYE/Kq6d+QwJHgCzYqP5pl9ZPvEVKIUkS8C8LMAfBuAn+yEBwC+B6Y2A4zwfFd57K/7b0/9vo7xFQC+AgD6T/j80C3SSJv5eGBuoW5kZw4lsyEqsAHMettVgziNIXi8bzgeO+TDjvZGsH3gQEEuoyVXNyARO8LUHkJ3U1AlQIkBwc0FgqmAfNUI3HR1rq2q1EJ1hUAixjU5hw34eOnFAiAOaQ02PUbDI4ywjKNB7w3tsaG/ceISMTjz0MHcCSzqm/MTrosTli1L8lJaAcdTJyyPPXNP8V1vwMBAd4jvTfHKCcvnbm/xqf4IAEZgfHKbJNHYR8f7xwPw+BpvsGGoYPOA2fe2R8/GYFLPY/E2DARd9sjsYozrSJgLZOFwMm4IoqI3hT4Yxz4leyRhCWLsyjr34kO3SpMPDzsebhbv83h0vJWbORaoIDJ3E4EskklNGSS7c8532L/d/oZbect/E6HpgnEDhktilHTaHZAdQaSo/lVXXx0PAv1/2Xv/WNu+rT7oM+Za+5x7v+/x3qNiLC1N+CH+RINGJbFa0WqDSUttgwZb6y8Qy69qWk0KqWkFaYmhbUyLjbRF0lh5oqAiYjGGJpVaLJpSAWsiSlt+WX6/x3v3nnP2XnP4xxifMcaca+1z73kP3n1fcSb37rPXXmuuOcccc/weYy7Adus/aXMhTIATwpR1s15wW6piACboiSxeUNQtDa7hnDwR9tlywXtuXuJjTnd4azljdQ530QUvthNebid84PwM7182vLycoCq4A7CtiwVYUE0MoSfxUV0ow4Zk4EjcB5DFS6mZKDU2BHOg0DEw84kRk1Ro2zOWEJK5b0HhpOEij7AL4hacHkGvyrBH7SlVkRcAt6r6Yrr+T8A0ihcwn8kPvf7ro493AvhmAP+mqr6/nv2gqiq/QOELqvp1AL4OAG4/6RPMNwlmwqYUEXWeuNiWRI+Olht7MQbUOyCSdtPLeYGeF7QHwXIvWO4QzKWvtmnChFsQgs5pIooCYT9VOtnLxiWxNQAWWFaVvHvFWEqVVSr2vwOyJCJ0JlMyvSDmJivQHSbVh0EnOjWWTU3N3h4a5L6h3Yszl7IpZiLEYZV8C3VNjZJhW8zxuq5b1OwCTGM5u4mnnxvwkCY4ANAmYZtmePm6bMFY3nN6gXcu92lSQcMCD2l2qnnXT8ADcLecQrtZxZjLO9YHrLLhvq92fetj8ABNQZVhwtakNQtUA0xLjXVegH6j6DfGWPBsw3LahhpsNXGPPrDexZfaFlkWxXLa8Pz2jOenM05tw93Fw+QvzU2HGWUWrr+ZsagzgQfDieXO/rULsDwgtBbieJTL83UMBnEyRkNz2nIHrPfeNyVyWD99BdqtmXyki0VqA+hrC9xntN8iPTRIamfMO1KBCUHrhuenM95xesBN2/DO0z2eLWe85/QSH7u+wFvLPZ7JGQBw1hUv+g1ebDf4WU+I/kC7jQoMl20zwa2ZNcPMdFlPMPKXNnHCLBHhFTgBh/NF0M4N7cHXoLmWRrz1/SmaWmItuzTkqUmhC35RO7waiLySOdS8oLjWQIn3Se0pmsvXAPhCEflbVPV9NhD5XABlo/FDAAAgAElEQVR/GknePl9E/n5V/eFrncxNRE4wxvKnVfVb/PLfEJGPV9Ufd7PXT/j1H4WVmWH7BL/2oxirCXwCzJT2aEvNBbaoyg1bsqR9Ue1ePxSpNaQNIPvS7iGmDw3tnNIdCepg4gJCKsdC56KFC4ZDvaVpTP3+QB7G9JMw0zxSIse2s1MeSkfAYBMOM4zbWsNuvhX7ro+9AcZIe5GAJCXoGiV3viy4PCzQc8PqjGW5A5b7BFv1J4TixOgh4rFkUhzLnSxLx81pi8rTm1otJob6ws1w7dyskoHAfBUM93ZYndqGt9YHvGO9x8eeXuCdyx1OslkRUW9NOhZ0nHXFSTZ8sN0OGflNFDftgufNiE8TxYvLbZ4nzxvFhYeiiXHdukut2hraGUlcnLnobYfcdCy3F5xOWzDUrTcTZLqEc1uah1WrOZRVBW3RHVFt/tvdesJ21gwG1JIiF+YYxxPHiXaxdVxfAusHgeVBsd7bgmnRNFjrTly674s9u52MwYja3lhfAusLxfKgWB7sfhVguxX0k+D8DsFlMzxpZ8mqEO5X4zqwOoZtmzGacWl2sNmz9YJ339zhXTd3eLac8a71Ds+XM37Z+kG8e3mBt9o9nrWRuXxwucVtu2CBYpUePrnzZYkFpt/n9nTxtXELRldIE/Tm+TBhevAWDEMgZ6DduxC5CLZmWuuhWkHNsuDYGPjivxSN2YKXgMu2WBFVheddIU24WrRtZF/STJfXXiS/12hPYS6/BsCfJWPx9nsB/ByAfwPALwfwBwD8TrxmCRiP/vqTAP6Kqv6h8tO3AviXAHy1f/7X5fqXiMh7YQ799zkD+g4Av19EPtbv+3UAvuyVA3DNpWZhW/lxiaqr6WPQ2MhmTjAiNJS1dqbUzjLYoasQGxI07ciscLso2qoQtxH3i5iPo8Hstd2pbkW2YhKhRtWWlGr7xSoQyJZSPKCDNATOl8zFTRN5lojfG99trrWIJ53f577g7rLi7uGE/rBA7hZjLPcu5Z4Ran8vUm1k/hfTAeFEX0sW+etRNLKJ4uECbM59tdvaLCwv4zq/CtJM5G1tHTftgreWM9653OE9ywucnJNuhcEAwJ0qzrqYnR+IUGQmUa5tM8Ykkvek8yyznRek+YTrtJlfqi9wh7NGcUq96Wi3prHc3l7w7OaMxc0+Zw9vJoEIlGjq54KYfbW5T4LFVJ8tl1irpVkwRAdCwEjgF+nYNWfZ3BT2YOt5eqFY7xTLvR113BegXRr6yZibMRAXPk7AWQVyC2weuLA8AKcPKG5+vmO5696PQhfB5fmC7baZJtQEG4MeQgsnQZSAN9eDiYg0b4ozn5vlgneeHvCxNy/w1nLGu5aXeGu5x3uWF3j38gLP5IwbMfg86IqTXHDrmsx9X7FB8IHLrZkVT0Y6m6Sp7Wa9RDCICEzIcuRWaegXeIReIeBKC4HE/ujUUFaYkCAwrSOsFsg1H5hKVqqIRtO+m4gvSwOwppbeWwjU1/gGo0JVuh9T8XrtKczlVwH4n/KF8skA/nYAX6Gq/4lf+zUwR/rr1hf71QB+G4DvE5Hv9WtfDmMq3yQinwfgrwH45/y3b4eFIf8gzAz3rwCAqv6MiHwlgO/x+76Czv1Hm0s+5nh2yEbuCbJCrH8KfFG7pU1qB+TcskQH3IpzzjDBfuNEr9nf/QRsz9T+ftaB5xcsp47T7QWrJ3FdtobLsuDsm6c7s6K/pTpzecgQI6bWpWeJESxAd8R9MObUPQQybMBkhlHrq2g0VLn9M2iu9/9wXgDcuBlCcP9wstDrFye0n1+wvGhYXyRjaSzNfoI5Zl2KraaxvgLbrZuDbjrEk9uWNaO9TqUischScg98Lah5uZbE6Cy9WFb1ZbMEx0tfvOZXC4ZCh/CDml/lrCvetz3H+y7P8f/cvRs/+fIdeHG+gSpws9qEzP+y4aGv+Jn7t/D++2e4f1ix0efjtZroL3p2e8bzm3MkzT1sC17en3B5WKFuKpPWcTptuL2xaLZ33Nzj2XJBh+DnH27xAjd4eXcyouHrZZFzriG7tGm+Kd1VEjg1i5S6rBu2tiAc9gxvRa4JqwMADsuLayzOWJZ7zzfx4JQoe9+BdlFA1eDf2hBGu9wbY7l53wXL3QXtweF5s5hJaCm+QhnxhL7E82XBnQtWVch58EixrQvWRXFyp//HnO7cBPZgDKWd8THtDjeyoaPhg/0WGxru+glnXXHWBV0tR+okFrzxbL3g4XT2KEkN383NsuHSG164b8ZgvuAMoKsCWAYGozRDu9+q+q42qpOeu9LFYqr7idGFaYmggMqIyvD7bHaDujWiXxruzw0PS2p2OjGVKDEDe2+UTmqscvD67SnM5V0A3l++/2qbPf5MufYDAP7x1+1QVb8Lx4ofAPzag/sVwBdf6evrAXz9674bNIHBtBIU6ffQw0OzAZ2O1AguHg1WpO5gSh4iGH+fLKR0e1bs6Lcb1tOG29Mlkr+6SkRC9aWFycH6KQhEaUVK/kbrQG9xXomUccVUiuYiirSpO2EJ7YrzLuY72qz61nBxwh7O9IcF/bwAdw3yIH66JsLm3p1BbSdge5YMJsZTzEG46ZA1I8NiCTSrU8O/1zM/0onsBHHS0vql4XJZcHc54QOX29A6XvSb0FwA4KwL7voJF13w/vMz/PzlFj919xZ+7u45Hs42bzLyh75gbR0P24Kfv3+Gu/MaiZOBY66xrOuGZ6cz3nFzjxsvhHq/mSR5V6J46CN4tl4sXHq5YG09ItW24huEZhKvlCQZSpxdLXrqrq0x3oChrzXoeC6MJbLnw8kupp0sQF8F2y3sQQoGi2C7NaZA5tJX2w/0ofRV0h9DoWUV9BvjitqAfrvg8rzh8tz621woMwJa1rib5G1CDvNSjLlsXmYJ8PSQYra91xNOuuHOojywacPSOzZttu56wn0/4axLXHu5nfDB7RYPfYmAAVa8riY5vqdGTYq4F4O+t0Bmw8mgN0WIywRUNw1TsVxs30gpe6NisJnPoVEwEjATdK1+HfYRmQOH8X/uo9Swmz6tPYW5/DiATyrf/0kALwH8r+XaO2G5K2+PFpoLChEqktLM9qjS+rPS3cHJGlC1Cyeom2+GvroNfTE7Om462s2G08kkSCZvUeIxqRN+/GqLyJQs0KhBPPJfGQMK0S2EgvW4cndP4/Zku+F8diKwh4UK4KHaliBKX5WeG+CaHCNf0GwzeD6aw8G1txMyWq6MU2865KRo65aMxZnIZVvw0DSSHVnjK+fqodrhmS4al0twl/OCFw8n/PTdW3jYFry43OLZcg6TFoAoOvrQV3zgfIOXlxPe9/IZXry89UoL5sh9uCz44OnGiHhvVuLn0tDPZCy5Ma0sjeJmtWACMhc6oLn+i1iyJiOg1hIw8VCk8n5uliGuMKnWz4Xhcbmxrgrcbys6BHdiRPThsg4wI2OXTUJDZmh8aOEnNUZwC1w2W7B2CzQn4hbhJok7mtpwRL+tTjwvhnCX56bNtGcpRG03DZe3BJdbwfktYHvuWv9a8BfOXFxz673hXtY017pPZlmsMCk1xLvthA9cbnDupp2cxCoSb9pw31e83G7wsp8CXhUfHvqCD5xvcL+tOG82Z64LGc7dZrkxFw+L30qU5pAzxfDiYgbmuTfpjyxh560ITFoEP/YXRzBoopwgUiwiJwmS+XGkBwJITXvnmF3YZjAAcel121OYy3cD+GwR+fUA7gB8DizR8Vzu+SSYc/1t0WrdpvoRf7vji+J82qAR/gk67sPxTzMSEcSlLV01/slNR1s3rDcbbk5mDlukD7b8EGaamqFmMSzJg4aMiAwHagFDgcTw6TUFVpdyVmogSAmQ0qtYHgGROpI6iWuC9BV0Z3geBVNNhO2cIZXbDTK8ci2a2213act+jFwjDzdui/ufHPZ2rnh3G/aKzRM3WaeNWgr9FVynoXUr19Eb8PLOVMoPrjfDwV9zfbDLZiV8Hs4rHu4tf4mFA7sA/X7BfbtJpNlK3ggoICB2Za1dxXetYv4ANjtTqEdSHwnY3bbi7nLCi4cbPDysxlgiUMP9gR2AZ7ZnpvmCl2dP8ARC86FTWkQjZ4MhsEmsAFZN0FVN43T7/3YCWql/RgKpBSdr6HkN3mhnElPBdtPi3d1DlqmtbG+lKVlPmgKOE83uxSNJUMMHynay3x62BadtxfvPt+gquFkuuPFQyK52oN/ddgrm8XBZ06dWkjMfLis2teoLPF30vq3JXC6nqM4xVKgYWtFegIwOtCA+bDfwfYpgLIBXF0AfKxYrmUaxZhw1t7QkYXETpucgRbAQUZWMyDXETjNcsRq8qj2Fufx+WMgxnesdwFfxRxF5BuAfBfBfPKHPN9dUMtySrYR5Rjo9TWCMNKKa6Q5jqY5GwO5fEaoqQ0n1ZGYeKbka62IZxnGIVW9Rjp3Z5VGET3pKIkVTqUTEyrpLlHKHh15xQzJbm1UBeAa9tKptORN0sxTfxXDo0HY22zhx7kiEMEuYwrA6b27GVGjuwq2ZA3lAEn0mgEv3nhipgJc1z9wjqunb5glydEpyHZmHtOQmqaYH2QR6FpxldUk/z9EAMGp/vnlNC2nAvUeiRVVaIKMREJQzToxstvZZ6DMjcy5q5onZD0Ln89p6JPSRsXzw4RYvzyvu7k7Y7lfIgzEXOnzRDF5NOv35gBYG7LAOrdZ/o0asKwA4Xi0aGpDSKX2yIp3UPuUtCaEqQNACDLlfalNkYMDFCaq6s9pNZ8qQ/QXOUIBOoag6rNXLsPi+i2RE4vWi6GIRW+fLgpdygojiYVuGKufnzcykd5cVd/cnC6O/0PQFLB6dmIVLbYLL0rEtW6zf1iVqCW5bJtoGL6mAqRqL7w/1Uz37rdMMHrk8CZXLug1FOaMahY59V7SkeTxK9JA5OR0hDlXBSJ3uhV/vie0pVZG/T0Q+Axa9BQD/map+T7nl7wPwnXibnEQJIBzxlKwhMGczkRgatYMAjDkgpWxH88O7AMSm1sWIaX9rg5w61tvCSKRIyF3Q3QZ+2Sy8NE0qiKQ5xtDPTX2Ddfh7eymQ6BKdPuujBASYFK/2d2f48mLEX04dN88ucaQvx3l/XnG+d3OMO8/lnBUIYs833yCLx+ufOpZnFzx/fsbz2zPeeXuPW5fUL71Fkc/att5wdzYzhXagX5YIY958ow2F+AivtRtWcx8rrKbXWSIiSs4NuDQ78MkDHngAW/DP4jwWokOfcMC/D/kZJzMNWdCGoKNHLsTmR1p/4P4GW29DEihzahhWy5Dnu23F/bbi/XfP8MEXtzjfrcCLFeLmWAoH3RHPQkudWRQNrntZeJbxEUEEGtgAKgHT0FAt0qgb1jDnRAxnhPW8qlDmzxBwWq5Ffb27xXxy3cOuTxkZ17xMDYij9FttLSKfTGJH1OUTP66gMv3otym2M/Ag5pN5eX+KfdM787EW6P3iVSSaJ3V6P4viclI8nNTL6DgyhIbd8bJEaG7nlscoQHcFI2nPIiGX1Rhg2B8XGFM5qfuCE6zMpXl2c/YDxjS0qPuHU+QtDSV9aH2JonvIXLNVBstFJoWWpfS0iN7dbnZNMzpoT8rQV9XvA/BvXfntLwD4TU/p7422iZMLnKlMEqyp4NTrkZJwMZHZA+WTCwbb+LJoFo3zxqq6Z7/RChx6gUueD8EwRMkqAAAiJp1/A4jqwyx0VxFM3H4ehyd1j7lvmnjnWgtL159WCzK4XS8xPtVyhgUK/PokEVFbOilwu6GdOm6fn/Exz+/xjpt7vOvmHjdti5IqdJLWsjH3WEdmSskUiLyjrr0AhfDWou0ZETLG6+fSU+PoCN+Q+c0wmHeGSLnCZKjFMgBil6HuxN604ioMSDDB88UCAliKg8dqw80eF6/g3Ls5++/OJ9w/rLjcL9CHln4+HjGsrn1eBFazqpm/JJDEtLUhJN2jjKRqA5L4u2+GjwwNb6sltDLrfXf6IqhVpwb4cF5xuTRcRNGXxXM6FO12w83tBc+feX2vpUdV6fvzGnlT/dwS50DNzOAq7sPIXKag48Zcu1HQKoTxyAvcLwFTK1FU1rO5SUgVuqkfe6DAycJybd+5oOhh5XmYl5MLYNCIA5kacs+gRHuRGRW8VuSeVpUQPhqy1mE0v2egZZOwdOijl/Ezxlz6Oo52Om4fcvkXLzT5Hliuyftfdf9HbdNEJFTtL+wosEx5Tx1IZED8ruV6OMPDKT7rqMkctGBc3xLZ6aSNmPaePgeAiJMqbObaWLhtNQOFw44SKRFZvdQMkpjWRMXVj/E9LRsaFGdZ8LAslhcxBQSQ6BJukcNzsnLmp9sLbm8snPadpwe8tT5YoUgHZBPFgyzhbyJxDZD5fDlYpSBY08CDmWsycxI7hb1LAGVxSCeCgxZCE6ikIKlSmO+0+XaoVIlz+Rcw76UKrte9Wlqz8Gp157BImFM2bcZYvGy/lXdnwARsnQWAKkTE8x9cg+k65NJEiHaElSEIry5we34haBW/JsGBmvTqgSi36yUI3MxclmK6bE3x0Iyxbv7+ZTUt+dntGe96dofb5YKbtlkwxbbgg+0W98uCl7jBhRqYoCyG4xwrKDPUXjD6C3upeddtv+FiZk55cKYSx28jwtgBEyDoH1KBF6j0skgq2Ji0ReEu9gLz4oA4kDCCPBzPfI2YBBu5KqDgKKGxs8DkZWs4L8tQzy+RcGQs4UsJGI2gqzA8PPqg7rkreH+tPYm5iMgK01w+HyVyTER+CMCfAPA1qvr2iBY7IhRapE0SBoVLgQhAi2hkIGPJPtJvsWcsSRC95lYlyECYscJJq4jy4IqGvnWIm44q8sTfrq1UM174jYqPhuGQnIPUQcQ9/rhoHBO8+Hk2TRhMkDCqMFVuGJ4h4fkpN86sGPnExhIdzdVHnuI4n/ZJAIuLgeF0DIksCUkc9iXqcFSImmlHRMpJfgibN/8OtNCkp1rwgeCmEU+7m6GcAPTVfQWLTpF5uc4bGnpXtCZQD2duJ8V5M2f+5r3beUCer8HIsCj8WRmFV9wu+SiMjAOcWM7nqjcNQsg5xtlbxV+zS7CrNF08O72Ndd5m3AGArXFNx1DyZe24vTnj2XrB8/Vs+SLUahsjsm5w2RbTDJSZ7ppmNYif8eIbVhB+r5S+EZpM31owAtmo9SCrEUzCREj5sYeRfp0ibMY59sQfKXCtyFW3HPcko/wEYV0wk25JkhXTvC5t8XB1x2FlhFwbGUu8xP+1ZL68PgpEGqbzYYDdCtg8tT2lttgNLKflH/O3/zAsPPnjAXwizLn/WSLy61T14ckjeRMtODWp0rwqOpQxDytDleTm3IBmzscsie/PqB2pnIUxZUQELSVnqFajPG+niNQLwzDjWR4wxNbmOaVkbshUqcV4X1fLcuZJm0Es+K+NElEgpzMY8dDbNh3gdemW7c4ikZS8Lm4Kof9pcNTHXJ0g0tdCBsNNIUlQBDam5jk6ppg4Q+0eeuuSez95AuGVPCcyIQZDdNcUAH+/L01n7g4jm3hUgNjaC4yoq5jPyx1gVqFY3KwC07QuWzPG4gEeQ00pykA9P1VkYHZ0rrP6Av1iRizFSq1UyZi4UUJRDyVX+nboTFaBqOSZYBOTsUc0jp9eWoefAh6JvxRcWPGA+EYh4+FkZYW0a2oKLYUAsBoLOX9T879Vhzr3LXGIkWyFcepi36tplEU0B+3V36UheThMR1nN9zkSL0swQtzkguhc9DIYoMbrAG3YRAGs2HqpCO5nBVXNKCcnoYGbwFM2iO/l8MnKnGDJhU+Yv257iubyO2H1u74NdgbL/8kfRORTAPxBAL/B7/vqJ/T7ZpqUfIgJoex3OEJ0YKUq7ssVTAamXRREYdTLEPIL+AZ1c1j4RHITM1u3+i8UAmZDMsT0sCmJh4wmMSBMVkSUILyU8Hgjr/n33hs27XGc75AQVjesUOKlxAjE0arC+xHmroee+QEAwtfy0BfLmtdmeRxbRtzsJDHmG8WyUOOS2PBBRGOubgbstrlsjJ4UePKgBod9NZUFLgBR88vgxkx0Gc/bWTW0F0QJ9mnDFphrF3QRg7cvd+b0NI9cWoCKLz6m8AFpDpOETFXs/VykmvoyoxHh1WUE9ZEEDBK/hq7pG1FFhOYCxjS6aLy3ChELoyNgBSXjWANlKH7D2jasbcPN0nDRC24uG9Zl873CPWRrHueNxN5NX9JgYtIK/xGW6sJJWCSc8Jp5zdY1TG2htmYfg0BSGYyHcVObmvcwTaZDZWsy9Cps+jusEpTtIUY7AvDUADLPofN8mFoLNfXIn0nGN1Tc1iJoBHwPJK8r7SnM5bcA+H4A/4zqcIYdVPX/EpHfDOB7AfxWvC2YC6A3HViKnVQQ5hxpWd7cbNiwbPnulXe3spBFHTdE9GiP1qNeGEAEn9UDl2wKc+Bml80X9yKjBkIm2CaERPl7krB2iOL90HQU/SIJm8jiDsMW2c39QPUOBuNOYtbQ4sbu3Rz37XyDh23FqW3DMHj+xsO2RORL75InePb0s9QDq0gUZBEovL4Vw2ZpZpiXnX4BX2sI0BnIoUgzyRmRr8P+NEJjNf1vNZgBOX899ThGNyKvfC2C0Lnkb0l+hjw8U72rBU90Vi6OKCi4/d9MJ20+SwWASBkPtWeXSomuQexcyg+0pHASN+bvqprw6HbYHgWmZdKQm5/auQbue8Krz4NJw3xu6w0vL6dgQM8ANLFw7JtmdbtOqyVJbksruIrE42KBiOCVylQ4J2dMUoXCRQKuARsUOE17rioe1fpQ1xnc1xRU61ES8TCyMGvJ+TI/WfMD5nwcLkSqqp2O2QD4KauD+XIYnH93GlVNwDyIj4y41rwz5lYWlIzlinx71J7CXP5WAH9kZixsqtpF5L8D8KVP6PONNmEGsgAsDKklXJg2ZZNo7Jl+aZkrEmqwhpnJoj3KaXle6RiwDdntdv8uIfIemWJAMwow+AiyAwnpKm3FJqHs3BXe12hOHR2wu9e7/wPdEzx7Zj8HwgKpAcUmTMmH2b3b1nB2JsVsdL4DAM5ejJE5AsOZ87FpEH/nphaouP1dFKKVGbU0Rfh7dvMl4LhG3EDdN1fVXkhomGTq6xJnsQD2Wxsl5zoG5fJVOuRa7dbL9y5xPZl/EWBUMqekYb/nKXXPhFLGflheZJaaj7y+Mo2Z989jB4CmAtWexSTVcCC0F8k8LQCBF2csuLQNl9bQ1PKBaimVHMDR39y3R8xcgtiTSKdgUPomI6XPlEylwG3gIUSdeTwUVhRmgZg3+NQ3TchmKr1ySjzvn+AQjn9fuzAllzWSEIILs6SVYbJGHM3D3i/TRB9vT2EuD7DyLo+1dwA4v+Kej47mnHsoZ89PImgBuiilZE0zTAG0ACEdHh1opWrmDxHBposjwERlHmukgVeQ1Wo5OWOZ/SxhO0VEIu1ggXFT0km4dUGXJRyxEfI8+yauID0JJTPCt6ZDqX6+hwetdc8VYIQc/U/DSY41jt/UlZTc6Ueo0uEUrjxsmlnKY/6BE97RNq6mlQwHtdEx7vdRY4ucEaTmCkB87ap5hkcGhLVlWLe6QEgzBkyb1lXCdAogNayIWCwJtBXHnakMdepIfKGFGGlhSEkQZ1zhZ1ztgGrDih5ViqNyBIDmPifbF/bu5kLHQ1/QNo2Dvx76Yg59N6EmDlIMTxClgzSZNCBD5YQ8DC9rbhEupNPVfzjvNaMFlYEVDlMI+o5BD7BECB3Noxvb0k2brQKJwJMrNYSBXMuybpWxFOYyaKG8HtrsxDxLy5p95bkntqcwl/8NwOeIyO9T1Z+cfxSRj4OVhPnLH9pQ3kDzBUqHKxfcifAMVGE2q46OcEpMLgWw6KSVjkgP7GWz0iPSOkTb3kx18L5xrEXyxP5TGyOCxmf4xeY39klyoDORRSIYP6lRRLTVxGBiL4WkqINP4QI7ubMfEKaLZ5FvXvARWghCNdUAg2Oa8w0/C8NzXUsLB36FsdYxVmAUeArAY3oNtgl7qcSaOFMKCfKsnQh+mNoQ7RfRbznKYMpa1sWHLPT7QIAF6AxDjrwMxJHC5iPSMFPGGpG40R9EUw8jnYgrOsKDAKya/ZFspCoRub9FhKP58ThHmgEBq/3FDHdgwdknQ+Zy7gvOPStXqB/ERfyohDgiCWOtJcxgQWzDt4l9eHbDnpYOTGJi0sBkxShNXNAZiHiBXQggSS/iIMDFhAcTpDTyklC1Yu77HWfwdSxJp4Pp28cRJ7zuBMPyzMAki6D2Gu0pzOWPAngvgL8oIv8egD8Lixb75TBH/+8B8DcD+B1P6PONtsH+XhHDgcqImCGZKJ6rHSUxEXeOCco1f09zp3GXaY2GxTcxbMBnwWDaqJ8habEj32Cvkjaiakkw1eMHIszRYaEVYec+KbgpBUgJCZJJo6pjwheJJ7WXMDF55FZs2uKLiqmqM4BFMw+pAG2YF9e4wqvCHWVe1dxX4T4TiOYMjMEWEf2l43s4T835BdNgCPNmzII+sDlUnUyLzDLwQ4x4aZW+S9FDalrU0qX0Ja1k2MOEpq4t/Ek74acOp+L8pInWOdtJrZo4oJx2MhZAPefJTLC1aKSd+pjmUisa2saTYv3RmqQc60ktm9puNYdF8IYg/BEhsUytCiHVYhFT0vwi5bYwQaaZkoyFgQdt0RBEty5ozSLCpDlus8+duVVjbBoJtRLoEoEc/DsYsI6FaQfhaxJqiIvgfn4FYSntKeVfvklEPh3A74YfFTw1AfDvq+o3vfbbPwpblYBNem2mqRSg5waauZILsI4P9V4WK+wDxcHef8FueQuJWWEGr21NK0xyYHZTyGF9/0woejDZ5sS/EOBZ7S/vtE1capIF4xmJTzzSZ7j6XxORDQtEeZ/lO7Cj5D7cgFGeRAXiYbQR81+YVfRXpTxenkIwCaOMRpofQMDpMEqwgB6YiW3BnTJ/lmxRmYbekJn3zhC1wX2DyCz8GDyCsKWtHyjhd2MLiaFKsHoGiFsAACAASURBVIZUTTSOigDM57Uz2Za5DNUlYD4xS7SE43gbKowzGo2abeSDlWoDInqAioRjXQ8ZPodQZJUwNYJMxrXfeD67zfUQDU1PhcKBjMJFfO4J81wfkMmU4mbLYHhkLK5p8lBATpL0Kl6jAE8T3b/Uxz3/dERXju55zfbU8i9fLiLfCuDzYLXE3g3gfQD+EoCv9xIwb7/m0mc9HEy8fMa2aQKYBKQgJNycYjkGdq9uLH+u2FaP3/dM5YgG8nwUHtkaEgawl5Z3UWG5SQYzGCUVNyNZP5Q2nBh4xWH6PapEeeTcD4ZaLwrM7+AEM/x8/HuDq/UyEGoyOJRPTtOId7fDzGCBE8GLnPCElAp/F0OAtXw2+AFjGgX+huOYnUleHhb0ZbGSKVyDSoA4pjpxn6NuAjQJv0toMHFyKX1N++dCC2Nr6nW6FH2ZAh1C8nSC3cjQbGHMFt8Gn0uMmzk2jGyr1LEKFr7GUZOK42Qybs25al7Sh6XvnXpUXAL6JIAl/vTORD9AVdFUI/R6aRkBtamglecPtWpqcr4/ZPXIvGLCU5oI1C0BvUjfIpYu4KUCArcqIxj2XH030jTKGwatRQt94C2SNb0ElmPVTGNlkdrOsO0avSplADPx5zqq1a4bwtzntIS93Da20reICSQdThfr79eeP2hPLv+iqt8NK7///41WgUWC7ZKQQPZJQ06nq8lAqjqhABPkQqptGpoMn91HQV0Z205yKIwopEQJibM6u8Wds1UraU5sl+ILkl5MFkfSC4fihFRVI97f/Dw6EOVA7kmFrufOtKKSmNmNHMQRetEwAbFPrWPz80BG0xE8pNIYy7pulrS3ZBLn1s3MAtixu5CWU+aacjmPWo0wqtUcytyHJERfh6hHN2/4Bi9iqKZVkaj5+g4micH3gd06ZaVmnUE/NoXB1iVeVo2wIwkkCkGGZlDCoE2bTw12FkhkWnYylupHyrlpgK2rYHHA1KoQqgJsC9al4+KMWHkUgPu2ooikV4Mg/Hr38+u7c4OuoS3xSGx7XgazYnwS3lUYIG14jPlEP2VfaFwkf/fkzIbtbHXkqEEmo09YUYmiwKVuNguRQRKW877QOpdyMULLaxRYERTqWUrFN3Aw2eP2IdcWe/s3lzrhTjegLAo3zuQqCwIybqjwL1QJo1koq8oYRllNSyZxXxEFdkylfA4O7mlzF4kpHY2FCPrGqFFsZusmLu+jyaoJSBqsPy+JI5trKEiBjVpEhRMZC2tQDZpLSLrd/DJ+QFr3ki2kFsYAFNB0DAsrP8cGcgdp0ziE7eSlawAzs5xLqf/trOhq9a4EGpI6TU+0ACmQYcfFb8LtbZtbQvofnKklOTOu+Tqom/TSdFhgRjoptpY7TPFnhBowgTJrXEcEwYlY5EhQY/EcrnoccQRQLH7ipTToST3MfIp00/1bI2qrasgukJDpECeYxc+adoTTplnwU7s4nDRMSOtp84PB7HlaCLZF0TcxDUkEgh6EW5rDn7XlyAsi0s4WISR3mrtqtJatVM45+XsCofoOfe1tzQU8l166ZvUHMvouKSwG7IgTnP8V+lEFmPC15G/CtapCEmfjMO+lryAhR1rklfZk5iIi/wjs7PrZLPYf+7HFb5tGghCAr3YX2iQrEoXqm3ZWXt41IlE3MYXJYzvj8GDrOejDbsrvjHJBkVTnZ0i8dE9WRicskcXtEczDGe7NjsUJt2gLyWnwBXE6jrDxdxBghPYEIPIfgDHfJkvMUN1PpFaIlT1XmEkjTIi5gVpj8U1jLDfrBYsDbWsNsi3Y1uYVAHwzM+zYaeC8h6STwaAENeS8wueiiCikqkkO0XXEjSgh43ioB7gkTgT3Kz2utyZe4GDdd50iiTuKphJ17fxs92SK/o4F0E3BI3PVfVgdo09SAVQzTfgiZ1yf4UwhRPLoYOmKB1njWOm2UpqAR1rZgV7r0kMzB5Dh7+LJnptl/4dDXc2ULdI8p0nCzBb/4Izd93EIHUdbtuxl8iF+ibplRC5lwIkYs1YFqytDU0hJcy2CQSkANPPRXfWd1DEFfcvx5PrnPhWMgh+rXthcuM8O5n2lPbVw5R8B8EUHr/h0AP+yiHytqr5tosVCcxH1RcY+bJBsHgBttf4l/5w//fcidCfSlYWXuug7aXPsKj65qfTg/uk7pRZuiGtRhJQYDe9l1y0DERzXyrg1HeM0zx2M46hlzSmE32cmSmT+UiRYe8bDcYc8FPuz+WZi4USe6khCZcqRhOYWDPaxTVP4V0rjI1rkvT4QEmUUxtKn/gC3aZfNHrjkNzUYgXG/zrVxBjMk3Z3/xfjKYB2Hhrp0mgxFnGENB+GFtFsZRwoIQ8FRf1WcyDjACWVP0CzqU5bxpE5eC81mSRGItevIWJZyFg5aMzOamkDT1YWVEt1nH+p4r7EXI0wXcE1pBvSVVn+ve5XfySQ8clS3DEYJM9Sg/U7/4H5Nz+caBI8jmkDaMguxWoJbfpHa7FG42kTkSwF8MYAfgmkunwTguX/+q379i0Xki38RxvmL30p0RiCW25jHDNZEwPjnRNZKxvQo+RHhgodSTr5zl8x0SBT81Tr1MfcZzEpDvY+ztVEky2va0gyWaTNRAq3vJ63JDbjvp+ZtWEKmJ2iySKX/6yUqaEeQdnOcvpexVlNkBFKoVRzYOotijmPawfiRjTeYoBVpalEM+T+V6O8lyPwMOabzXzGJEMhHY/L+eNRDJFCynAi11JafdX20j6YvDrquafyryXcl+qzi1OBXdNOUDshRxn0A01pJmfXobM1K5GXLKDeWmalj6ZChltlxm4TIAZ9GGD2e2nE0EfiaaDJ7f+WRQEhfXPhiH2uBp/aSGoW3H4eO83kFY5zX0eqVIZNWj/bjI+0pmstvB/BjAP4BVf25cv2vAfgGjyL7Pphm87VP6PfNNBUr5cImsGN9MVOFsnBVRKDAzLBAyTNEQhD1zVUds2lh8zDRFYCm3bu2QTuJ0GiTYLV2NiMWk7BWi6Jp6xZnnAC2ac+XZTAhmI06y3OYKc9UbyLb5WIHmkU4qPta4M53rB640ACcFDj1IHCAJ9Gp2smQrqUwb4ERMsMmmRgpTUdhu2vqR/Mi6oSZc1pwkYb7y4pNG86NZ8fD65ctOJ8XnO9XO+nwoUHO6bcI8wXf69U4eAQ0Vt5EHDLGwpL4lYiEmYWXuP502PIaI+0c9rM0Kk6wpfRn5Ys6dB2TKOXUwVpRFRcDlDQHwwX4BjN31bDqVccMdvH533bgpqPdbFjWLXDqKOpwJxW7oMb31j2WQR5+CqmePMfFznU5X5YIxBD3gzTXRi/b/oiGWlesd1unoeoDEL7P8Wx5FObv8xgSLSW1Vhn7yTkiNIWIqgwTRt5npYQQFRSGPB0ypeKPq8+FsEi6ENrOwVzYl2AcQxWi/ad+aVGiirAKvBOPUHzN9hTm8skAvm5iLNFU9WdE5JsB/GtP6PPNthodVD/rAmj5oS6aYxj9A/XsdwBh1kwfBI45P4dAZCstiJFOWea7poUYZm6DeAQNS9HE3crQ0CIQ0xxGoggJBqMwBGN2dNiE/bU1/wL+N7wqdCtMTVEIT/eM/wuruV6HjQ8QIHPhvZVwcxyAMyvgLOYAvri9YfP6ZX0TY5I8I+Us+/NO6vspyfs5NeFc97GwYsFwXALHwjHWuTD81ZnS4Bub966Kzd3Hpo0RPvaPp4zyWRGLnKrEW48YNxvDqGfQd75a49wUrArcdkg5hbJqxBFlFJ+Fwbifkn8DCEGM5q5casHDZhrLvR85sLlGaz47GzeFnu4CxXCOfGxEjAEFvTAVEuKZIPM5/6RmETB209pVZ3q1ctC6EQzGf5+0wMFEbkCIgJKZSQ8+n6ArMpZkOhqaVDwp40CuYdWMtJhJg9E9QXV5CnP5aVh9scfaA4CfekKfb66pSyQE8iRJWSvIN1xWWPmX3CSUpo4zlbFXeSsj8yzrQ8TwxR7oQiGk+Y6UCFnbajn1kC6HnBaYpmJTlnxNz3DRKIMjE2Mp0W7xbpfOsDhdXRRgaChzDwpMor+OOBZ2CO0uRD0JfCJ+JOHVTUYNSWEFQiULJYrPV3s545ynELoTey5nw0ghvoPENc5ncaBF9dopYU3r5p3MIyKwE0PhSYc59P36c3G6J/n59q71y0igWccsEuzU/R0g7hWKROLnQRO7c380o9gUzlBPinbasPg596m1INc3aHAymJjZtL8k4DFGD25dQls5n1czlTIsuinEoyssD6MIKWQudR9xm5JgEpZcr/n+uoC+LpHvA6RvVIuf6Bq9FQqNTpQlr0fGfllDFGZbBdE9nzigU70iGFL4qvbZylTqZ+1WuceRx3ioM9QnsZanMZf/CsBni8iXq+quOKUfJvbZft/bosnmkRCl1HZqr0XKmZkLkaVV/4WbMsIk4NJib/5ZFj+a5qcUxKiISNyo3rGDeyR+0CgpQcZCB2gvobAkBFqQOcx4IMFIZmAhm22EBx36eWsQqmAslWj5e5lEmuY1DLBhrkc4upOPj61sjmS2ycQ3ngbGOfhJn3M5c9M6yjuE47C/dbU5jQUrrc+hLLo/OzMWZbJlXVM66v09h+bwg40v3YmSP8Ry7YvDuiaMbt1DWmMi7FeKOKy45nllcigJ3nLTsZzsXJV6rPFGXwjXBAADMZLBHPQ/MRXAos62noekXR6WZBphXhWn8RKMRy/NcnQmLSTWwgEdJiYyjKLxV1gHT5zv8xDqcIZfmdsg9Cj3WRnPAaEfBAWQweT+GhNs+cm/D94v4/dadiatLhjoUz2dsyZ2g+t5bb4H7SnM5csB/EMA/gcR+TIAf0FVVaxexT8M4A8A+Fm/76O/OYfOUFfAsNExhrbG+WRH2qsFCHOFE8yoGgEnZi5Fp0o+IfK8UI7RFckilFfH+46SuCJfoMEK4bXxFMjBBObMI5DYpxPSXelzGP+kfSXC5thl0TDF7QMJklnlu2Ta275hmptSjihvZSoVnuxfmd9TmHxNDtySsYybqPQviICLMdsdKfHSAZ/0a2QsDVl+hvBvgAg1AzUGUN8pU18o7wwm4dqyM5alREsR3lbXaxqvyhThN+FSvEsLPtl71tOWp0Y2LYJIcbYH/DLS73WDR7oTS5rBLjRduilW1m5TaJ5vo+LHMjTo2Y8HnxiGwb7su8n0E+sWyFNg7HhRQ/5fS3InU/D1lEUj4i8YMLskF+O9NJH5GgQ4BRgPBrPx7coOcT+W7xpmN90xsVybsr/pg+qSQWZkqjVX4RXtKczlewHcwI41/h8BXETkpwB8XOnnxwH8ZRlFFVXVT3nCez5yjZKJw1JozFZk5d/Bjm6/81hb9VpIm1rOR6+ShfdfnWJ5fjmJMqZNPSFZUzRfzQrSo0Sm2ZkpJZJmRKL6DBlS9hHEn2Xk+16ziE3bRmRlYMOy7H08lK6oyQ3miKn7YX2GTYhkrEU6rQrg4O+4tDSD+DGPQ96Jj2HYMD5tDbMFkkGEfVpC8AgpTzFqcWS4RVIczBWUaLukz4Tvr9GDFRa1eZ/No6YsFLfHWvZuDu8Ivy24XWFHBlWd0PmOHprvsnSc1i1CfbfpiOp4RBLfjD6/HoPZPNiDFRTO9yv00oCHFqc58jjtfsnkTwZRCIUGrYxesjSOUfUZjcem4km6NUm5/Hyk4dV7iOf0L1VzVzmVdtiPdelFByYSKO/0IIRE9AyEuQBxIm6LiQ+TFCCiWocIVp/jUK/NGfRhDt0T21OYS4Od1fLXp+s/Nn2fR/Xhj/Ij0cho4EJHsTcmsklycY+U0s3XSQ/skXXxepGSSGB2BGO8eJSHcY2xDBnv4f/ZT5N9ZS5JInuNIkqJP+cfNuIDosmosCi/cTBG69YnH/PBwfkzOYQhLrgS5+CIKBvF16/nbyEgUFPhfWQsR6KoyxGKvEepBUiR8KrNPvrVEFjQNLSSMDGh3lvGDhwfUFXneKUpsoT9UXWFKITYZZzwwLx1/ARCSLCE1A2nthXr7R5wNTmXk7LpXQlIkXFaketU4RqwGPGqmoR2TOCaoILxfUf3ScWdSqtnIcdxazBpxjhS+zczai6yzPCv5uDu99UqDdO+5oBaU2xucsncHQ6Q9/GapiBRNejQOEs06xFsGFEmv0hmMVX9xNfv9u3VjJC4g24iPgMBIn0jEkDCOna1kYhX7UfFMoNLUMD4jP1TFQu3lAzTPAoYqHWFBIlELJjJRDHApMPeJjM7GZiHHB5NhyYaKYgW0T7OcFpoW9lDjItMBQp4PTLtsDLzg/RXXkjzEqb8DKf6Wne9AskBkYyFjvrIQZFc05ko1P6rf4OCRAFGmNYUGQZMBtQNn+p7KmEfospmRloJ2bAABwuiyGOSkccZVE00YB8EvxDlxXA3asPNhMzxjj6WqgWzakIk3/p7Y+3FlAD0HQ0dQD1r1+zLmDPiuIAwL1VTa0goPq04rloOCP4IOntO9xc5fDI4MUYazxQGggrWiclR01XsGUz2I4iTMQVQX8OGXup6CdB6RJ0eCQ9MpmTHKcjV8Uw5d4rDcZv2I0nUiI8lAOF12y/h2mIYiEsyjZEIzUgX9/rGAWSQdqLNBKIQTYHFi2ufpBRf2JB6JoSqJofZ1NWGexCMZTSLdas224FeuAt76Q0Q9fIum4+tSj6MKpKCrECo8pGoN29abgCxqLIOe4f9fmAy0QIwvqvlu2rCY5z/csQVCceemufAWKrgUJaI6ysKMxfAGW8r68zcBx48FbxTPDeBmgKsAq4g17pjzK2osKoidiWQlXAxhLzbOm26QFo3hYlrMHUdWqmmlCodFpTijK/6t6jREp8W6cFMLMFdPHnRSwcBu7UXtyvWSEa2Jjr0D6QAtDULSOlxvKiEYBNEVO1+YYRiXUAdcWTP2SbCSXyr91WYpyyZ1yJHaTShhXzT4VFiiZ5k5nwu6rkxj0iNKXU0SMBMocpSL8TNgyToykgkYfTqRgEEXmBXdmbnwWJxqOoft1/azIXNN3VKIYJ5Q4/35zNh063SEn8+ILLWWNJE8l7vNswnvkFqmZHKZHY+lkIUWNpkXbqXQPHSF/6+LpYVX59XZUCChI1XPeChahGxwSkckbFISrI7012Y3GDSMJwwcEPVSYJzH6XuZFyEC011bntnSQ+3mee/sl4sZRIMpu5IHcOBXcCQpsZABJlHUBiPVD8OYIPzsTAMtSoMAEbznL87aZfj1UzMBiRx1NmcEDWFtBbXI/y70kqaDH1e2VUJUJkCKGYGxWbaitX/QmsQ6SF916RcwLSeCAyQfF5EPRsfUWNuU7HTSptA182q/i7NiW49NyaJtM0fKWzX9Ym9XBe2TIx7lHhCYa/eyz4CP0pZFpR1LO8V+LovZRmd0aTmIKXsjq9p96RL9GRCkaNrDCb2MCM4D3xeOfQrK6jTFw/uiPSDKshI7sGrCHGl/f/MBUBQvVlSnBhGbUQ0/j1LwYFJA9F0n03X/M2RNjdHEoGoZhy/79XiYUzOWBg1tIjXWhI1KbI3o5NSD4gij0uNyHaIUzZGFXGsRXOxZ+mE1CKNIudwYHqg6cOmJYOpw55z5stNzXeQ0QTjVUQKsxP/QTyuAkIhOKGZjtAbFjAYTc9cqHhCPXS5hjHXOXIjRidJvNn3YBKLSZFB0bdXRlfmoo5bFgXEPJa6Li0YPuFZcTwEW/qDCDsgJdSpWWHKwnjE3r1QcwlhwwUVyYPxKOyQmQROUhOiJL4twNItcXfpxly8mKO0hL9yTmD0lMGAOUPKKCr1iMGZQRfNxaaU6xQa6xEhLbALHKp41cd72YmhBHOmvGPm2myIow0ir0gkyEf6UpyRlr1Vjz0YhAlOE9esAilshJreErr7qTtuPUFrAX6pM5eo6LsngMPXqkYfNAYAKFIQ4v0zPudDGJAh3AeOqZEUdyAxRFgvSIg5FXtuZiz5jI11614ReDcPCwPNhE8Zxzm1ylhk95504Q7Rc5oJlKUnQ+5iKqlAkxmxfbOKmIkNU//hD6kVflk/K6LFCtw9ZHhYh6YDKsTrB6bgl1pZd1/DigO5ruUd3skOv47g7YLMcFnG3+NZX2NzrPVwkFdiMijROv1j9878M/epeUHI1HhNSctjsFM7mvZQM4m7tc1L6nes0suaNpx7M81lszpiTHrNd+Wgh0oXdX84wc0SPNMCzmtAocSfDcI97dlDq9oRHtT9PNe94w0Vt2l29rWj0BSSxcHcYtkin4cwx86iYGiRCZk1yZXjZHJnCpoJo2qK5jue0n7pMhfRoXRIXi7S5uzUmgicPWwdaFOPOy+YWZBjWBcSoBIdVCOwouhl65NGUAg4MCANnfS9N2izE/7QrTR+FADsYslpXstrL9XMyY3JXGgz5gmbNg+BlAq1vRCXyPMJwi8uUZa8mXxxILNUeBQQV4l5GLKbvyLRkyHCccIkJlPYxOidEOjCvx3GNXLLUcIYU87dAK7xexAVYGBOrB01CDOVkF2jYsgxB9MAsgSNJ3cyIgxA5NQMUVslokg4TxJT0cHcWRm5OLxNYLDwYx6XyGTH3sXDiEehp7YmFsXWF4tyulHBVgSf87bg0q3Uy2Vr2C4tSrmEefTA5zbkS02VFmh1CJC2+unGx4mZK/GO61gSY2sjPtaAxWH9XLiIo6bLufcDs3BaP4yDfk2uRw1vJ5oc4EltqWlLMphqmXmk7SNPgQGQT2Awb5S5iMjXA/j1AH5CVT/Nr/0+WH2yn/TbvlxVv91/+zLYEcsbgN+hqt/h1z8LwH8AYAHwJ1T1q1/n/cwnGAgZEbPaIEgoClEYnnGGJIwic0RJSWZaEX/ngGySRKKW8ail4e1ddQIF0dxJv3WBbM3MXv5enmvRe8PFN65uRTKcGCW6WLIhv1PCUyNOYdtuii5+UJSQuCCrqVbpU2XI9wmiWaXIxjXhupSNVXb4cJ1EjcdGX5Kx2HkkGKTMWAoylWbl+5lFr0yUrGse49foS7uatlrWI5hIEUbiwKk5zNgZKo8IGNYy+izfS1QRGUpbexQkHWGVTTQDKETUbPdS9aAkYoF3wWhycqqCrQNdlmAkA3PpWaTV7uda+WezkyRbU5yXBeuyBaM4XxZsveHysGa2/ax9TEJHBL0Qn9y8VM1V8X4SevG92oyqB2Gf7Y9uCo4ijdXkVNe7wrv242ukhOmiAefdXlsk50q6sFjpJK5HMFRfh7HwJh/EgHdh3vbagIN2OzPLajZ12A6VNcqEX1m1ubQ3rbl8A4A/CuBPTdf/sKp+Tb0gIn8XgM8F8HcD+BWwSgF/m//8tQD+KQA/AuB7RORbVfV/f/TNgizlUeAlLrGEI1aRiD0kt2ntCkF9K57yv+i/MqdCQENi0vCHCP0mxbehaqXEZ4d+ZOl2s8tegAyPVTeDOVPplxZRKnu/A3JzFke10mTVBapuC4eCYZOR8kXmssmYPEoiULPiK5zEmUrJag8J7gCXdwQBMiSBGXOBS7LzBL0PD3ONz0XNAUspk8cUDERFQiom8xyUjiqdysg85nW+RsCDWZLZaEYP1goM9ZCsIQQYGMxUNIWIdPRu59ho1bCBorXoEE4+hzXzmTjl0TVgHsurW0H2mTaJxZw3P45iWZbod7s4XnopHZwFbSvCjSPmYGFAXAZ9YFbCZ1zzqBG3SDjZbX8blRUykQMBcBAGdnZt7AWHeM7XuAiLmOBpc0ceaVzXdzE4tUV36wo1ga7TEO4CbY28G97TJrPxpMEEY6mfjf32qOYQY6xhpq9ob5S5qOqfE5FPfM3bfyOA96rqPYAfEpEfhJWjAYAfVNX/GwBE5L1+7+PMBUgHa5s2uGg4BytzqUzm0DwDjBIoClEpoXxDCO9kaqsRV0vTKCseQwZcmRh9GlnCBlA0CBAl0LfLgu3sTIVSPSV9xahh6T7ZUJzZWlBXy1j3BtRjeUNT4XuK/Tv9HmO0TRJ7cW1BLJuZ31sODT4kSpdD4MAm5Z99b6wXRmmNS0qNpcFMTF7F2Y5A6MFcWHEgzJFFI0vpmJu7EumUOAcbtv9tuSN9dxbJ5syeRx+oIqtS0zxU8IPHONNRTh/IxY80YNa7qKCLh1Ir9mesSGo/lbHUsQHJVOiH2bzCdBQf3bLPQOtKyJqfBLootrKgkRl+bmgbskp1ic6DGHPQSRikmXN3Jo2vuTF9sRgaRj4u9qkwPIswbTYpn1KEnTqfEE5TEKlMphXawtDweS+rCvraQ+urUXVt6Z5OMJ6safTJJGAVM3sPzvnCYOA8s3ugy6zBDIyFEZfc8x6WPKQ9qHhF79drb1pzuda+RET+RQD/C4Dfpao/C+BXAvjucs+P+DUA+OHp+mccdSoiXwDgCwBg+ZveM9TYiUYpkZFHk98lTFdVmlGWuPBbS+7GLGnWHIRr0RdEKCZA1uOAfR6JzJ5rA2c2vRvjATJcsXtpeZqN6hnpnJp3nIOgr4I3+Pt1swtRmSAHkfDrss+Mj7BdjNUKClzVj00mw9MFqBWIY4hCRoS8OZIli1Dg/0QLjaOjlYyFyW40X1By98q/JLbmSyiEwCU4mhDm4Abh2k9rzGip07oNQRfVX7V1CZ+G6rYTVogTa+uu3fbyLBkL8gRR0cBJnnef0Xal34mxzFoVtaGuXonYtUW9uKAynWUzmLVAgiehoRqeFZPWRdAuyM/CMIKpCK6WYZG67ijrTMGLOEwflGsCR6Yie96Fyur7iN/senMTVmiinOe0VnNOD3wNes+D0OqZNOyHZnHrLwUGO5W8Q7WlCX8aH5lma54z1E0wZP5VCEdO73LvuLAKg18wITKg12xXmYvIIF8+pamqfjhM648B+Ep/91cC+IOwky4/7KaqXwfg6wDg9pM/QXeMpTYBwp6peVEBQ3iXfnbqcpUIAFdD1cy8sjc3gK9BSqeUQMU3A0M66aA1gmREaENDU42Kx9Whys2PjUX9rhB7UMIbJUNGQXFecWM3xsaMdJUMhTSJRzMnZJJ0VPyZCme+GgZbqwAAIABJREFUH05InFlb6RTd31ByR+KaS6hWGt/WpUtGibGLNIMBnfWY6MRXY8wRsSMo0mNPeANQz+3guu7s2FxPEoxC8Lrb8pXBEMW5zQTFpuYzI3No4nklgQdpCqtO2HrCJzWhfMa1GB0PsbM19FT6CTdrC5MLHtk3PsdcHy1Jxj7vEl47aMoJ9h0wpWgiwSdqtyl7jVRLCn8rzwCT0IEJ1wMHCjzqO+pz3i9x5VrbmS/hFTjQcPEAmwiEkWQ2TC0Yc788H438oLuA28V8rd0FNcfNJomzysRZIITFMIs54wnYcI9TaHwCR3iMCfy5Y1D+4jZV/Rv8W0T+OIBv868/CuBXlVs/wa/hkeuPvMj+DeowGQN/DzuKxMazjGYSgaRwQ7gfn41OLXFRRLGJ7I4OrkMCjMBZ320XKYZ4rxMhMSIUBLswKHAYrhWIj0Uhg3bF+6j+z4R+sCe7b6RKkjUQQYmRa/O9SW0HYJl5M9WUeZe+wrYuyAKOHEwZQ2gaJLAom4DvkkkiQ/Y51DPrmVfDFe0bM/JNM2PIbT2GOdfjaDWR61DwSkSxLc1PAzXTVjV9AGn+2Ip9e2kdvTnuaEbmsZBkOMe7ndjYexaVLJiI4SwdzqEEZqjY+nQzgA5SeIs1NPj15hSIwRChYpQl04TBMJiEkBG8DtNSFxOwdSnCjy/zoL0QXwUYOJPme/k+LTijLlBoxa86prr/Of6OMCkOCYbw5EYxMxa0oWsyfMKNzHheZ651Z2DEZUlfHi0TK9B1qkDt68jUguqzsflaGLpM9E2appnMBTSNcGiXMuLveZ3suh7+cNyuMhdV/czX7uUXsInIx6vqj/vX3wTg+/3vbwXwn4rIH4I59D8VwF+EgeFTReSTYEzlcwH8ltd5V0jI5fvIVBDSHamXIBlMSE6BkIX7x4Rsgfulg4W0SNiuSX8hnW1Wabnav49MLcN6+y6UgiTaxI/E9Vsl514jYmLDUpK3yYUEB0FWd6WpgM7vVo5RbmIgoJ13EWCD23SnKCtu/hmhC7OZ56pLvpvSpNhOz2XYxPIyugCb7s9bCWD7p2fhi08Z0tDFghYIo+5O6yEPaOgkmdjQv+Z8xWHYLw1tUWxbC6l3eGTSdjZppU5cAYcsuzNcLluJ3uI7fV5jpCAJlmlmDFtHb1HTrmpFrXXUki5t6ZE5rvTpzACgcDa3iRGRSEpHHIswJKimHJdMpghC1qX32Q9eQcd+MCVNE+ncOGZPdjbBLRlY8DI1ptPV8KIfBKDs/G/+GVYKmll5kmYE0SBwX1ofhCGaZQfGQo3DrQbwUJvQpEJIgx+XAPM3dZoJfY7THoxov0DHY5p11N50KPI3AvhMAB8nIj8C4PcC+EwR+XTYLP4qgH8dAFT1B0Tkm2CO+guAL1Z1pU7kSwB8BywW5OtV9QdeawCF2w92miPGwvt7YTAHz2RFVxJkd5qjYTsbUdRCSFPlrszDGFJIL+rSvmhoKwaTa4BNSma2ZTW+JsEjXfopc+NmW+YNW15UpL1wZjKyzf0TAttwIoremjEZlfFQsBpVV5nLtVbHU6Nv3C9g5oTxPoOP7ImY+1jygowwgAfpsrSKujDga6tbRtvthqylz1marvctlvOhi2I7tyG/h/3s/CyLorW9syHNHrn1j7Qr9lmPUog5U4rtDWibL5E5weeadQBNNEBbjKOzBM1gtqlrcDTm6XeJvSPQVYCLmxOrjV/mTw38MS0b4XsjE0jmUojswfMVTqEpwRmM72FTVSTus6MAnJi3ZdSGJTsUhj7PJrNpTSKcXm2fyQIPxGiDnymCSggzvlBLPotFMJjO7UynjiuYhXAytm9HP1zCiOB6SnvT0WL//MHlP/nI/V8F4KsOrn87gG9/+gicq1QmseucnzPBoLiMQ8aSKqm6c0zCOaZloccQVQAibubyciwuOW504gPDuTHGJI7Er8JMmpumGjecv1NzgjQd1DIb/GGUlDEkebVyCuLCAAQ1STvA08Wko5mxBAwqoAtzn5fFkT2c5uHs9zm4uh8Z8w3mZG7HSzzxnWxdLI9FBAqxIp68zvNDGPZaBI8d8K+0MNVtGiHYem3nkvhtboZCSr6Dn6sw2mr22mnjNSpINLSN0GRJtIAwjy2DSRY7fGD9OXGqfKSRpwS8/23Oj+rSTNutDHBmLPZkuSRTHpUOW3dvh53GR5zT8Rp9pqPQWe4TifNmdknZDl9173jgUahgSLpBra3HbKyf7pphwbMh0m/YJ7m/YtyeSE3/TChgWtZRAEZ5yDTEnTXhCe3JzEVEPh7Ar4VFat0e3KKq+pVP7ffNtQJx6t71Ev8+2vyUZg5aIJgW6SYkOxmlJv9nznBjRJS6mcNCrSUibvz9UZ5jp27YZxj+yjwEMvoz5ug3zq12x+/NfozDzEpE1VKkQ9OWPJu7mpMmiTwYLF+rGVM/NL8vNJcyz9G4eaVNDAoYiUD+Vr4X0wiAodDgcEjY0Yac31GHQrNgIy5gJKCERbluJ1eOfaqvA5QCvo+TjIUHs/F9LhVTCh/7p8CSTHfO1ubvhnPN8S9hWPMsBiYe63TMXOi47l6nLM4nWXJsGdmZ43Ag+JxNELDgxYq8B/xI988fSxk43vfRF6U3n2+YpjhZhOVD4mJeo3Ai/veuIkBhPhndVpmcYMDdqiKTaZFe0EQ9adS5cXjfDKwPvT2JuYjIvwvgd0/PHZHitwdzId0YpCpfxGaYwZphbAMRnvDx0C5JiBRnoxLRwsRTCR1GZAUOTQvDHPy5INYTEu/KuQDuPO2RzzEcoaokTr47KtJJaiwWXt13UTKdDkm1TdGADKUmQjszneuSZSnzQtx4r2DIWI7oml5MCxexc+0ZETcTf9HC0HVM3CzaUBBIXztVRGkR6cUfUH05NLlJmhZ3B4Bxzeo/e2GuKYWNKkgAiJwiCgNLRYC4CZHw2JMhDozQ58zTRE1A8HGrZDj74pErHlgSIcglx6XCqiaeDgEoyO+HkZK+juEP8tIvdS/wOOd8TtL0N9PAMCElUyLclWvIPTKDMNatrBmDQEgnjtYPUx+S+TEDQyRTKcLmILhJBquET1NGxhIZ/YCb3HQUEgJvLdR512LMM12ZJvMI2Xmd9trMRUR+K4B/B8B3wjLivxmWYf/fw/wmnwfgPwfwH314Q3ozrUpbmbMi0z3TQ7P0dIRslc9ofmogQJE+Dp4botCm/rJjH7PL8FUYCTt2mAuI04Voe8kPVcmIn4qAlThfaQyfpkTYa9mJuCfnwsg1RmjZDa/A5hlOsxTH/JpiXtiNU8onpcsgthqaWb6zCBmtmDlIJGq/zPivAsJEnKSO95pgWJ+fpj9qW6nJDQyaUwiCNEmplbnWvzkXR84wu6pic23F8luan13vBJq+PWlQ6QjzWhlKDrswJCAj8Gr1iIuPuWnSye6JoAOhTuYS9ermOcakOK/CrCtucm2qkFf6qaa1tEqUpaivqkyxMDfhOEOVYQf5LpaMAUvGhMBYrRgT6rD/CWf2kasY8WCeJ6aJVVhew9VH2lM0ly+EJSh+lqpe/FyBv6qq7wXwXhH5LwH8twC+8enDeMNNATrQr3N1pJtFJ2jTL8ENXdtVw/7BMMJufX2chz9qMpaKCFWCpdZUu08zRn4/RMQZGSeGETxWUQhSMpLeEz5BkODjcjMdnw9TgEr0H2+Id7GYItKM5r6EqHp8uIHKZg7CajfvTtgsc4JrmSR4NGFonDCIzPgnMakmwiOTTs0+nxuJ2VGj5B+CQV4z18C0hgd9U7M6dAsR7oD5PxrAk+WSEUiU9wlzjHL9fc1mgjTLRsW0yz5rBQmOhbPRTYaS8/DxDQE0g0BhazMH5FRNdCf4ccy1myoRAmmSHWcTjCqU/IpfZc6Ri0I8qu/hmtRgGTI0JLOue2asZYeDNgkWsa+4BAcIGECemMwT21OYy98D4BtV9VKuLfxDVb9DRL4DwL8N4L/50IbzBpoipNOdY1wxIqEkEg2I4QgrFYnl4L5rlziGA7V01EiCglyfjtZyDdghFf+85lgd/y4bF3BGiYSDShAgqc8V5tCLRDn0iTKVSeoewnAxMaJW/DYxP4nxzAxeCcMqHR6BzzfaHC4aEmNE3jkNUriNXRO8nuFfw0gH6bWAMWGI/YCOzK4FB6sZpDJDEexxeJ6jYIB5MPMug7NeYOaxwlucqSBMSyFkFdxN/CtDnzQGG2ven33KyCTKeDVKnmCP3/7MmINS9woBjjHL/AgRrvlYqoXhSKvc/ZF4FDBwis4AiOuRWSW3LUChuXXasFB4beqvMq2Lw2kQquukHsGl12hPYS4nAD9dvr8E8O7pnu8H8Ns/rBF9JNsA0AmQpc7OTg+O5yeGMjOc6LpIsUX6OOQRhQhm6LBmBu6gmhwPfSDSZQwh/RRzSEaNkGDLdVx1IkvJ227XcGTynZRe2V/G4+cGp6PRotimsdfx2MUsWTFIi2OAQMBCyJDt9krbXqlEFoIgFWbF98Qw0UHYEBhjWXJdZYI1CQ4ACw2PqgojwA/3dL3W5nEGmA6e4/tz7Qd0FkmHcXmMhEdVB9/fsf9vfPFwT5GUxyeSmWUS4J62mymJe0EKLI+Z1vGwch+HEILrfOSoH/HHapDowEiGQefacLsGLpWJ7d4v07+5CTCYvef3zQz9FfO7yjsel19fuz2Fufw4gI8v3/86gL93uudXwHJQPvqbwqu44irF2dH/+b4qLR/0b534f6KjeWQw0dgDWfo8I2/YmBA3SB+hAZQxHBIYeLmaaWK+sWdzA6XtrK9W5m/JD5Ej07WFaabCKcxg1Fpc2h0OORJ4Vr+MgN7NxQmUUOosC0MwkjgWYXVHbK8yTRsbvKTNsLlnAlWHVE0bAVNSkyIZoqx1fGow1Z157JB4TYSpIGfvqa0OzI4M3H0y1ReQ81aoJ0XWwpvxZvrOUIRlOqv9lzmSq8K1av4zY8p+DeAiCOYcihXRvruw0OZ19fksV5jFwFTs70eZyrzuhRPT7xbHf8czE/IqkpHs3qXj/VUo5b0Mnfd9mK/JfTvD9LrGWt53jaHN7ReAsQBPYy5/CcCnle/fCeALROS3AfgWmFP/cwD8+V+YoX0EWpVgXkeKOSKA83X+VgkENyM34Jw1W1RoEeT5HAXRm28qFzZj/I9t3t34JswKs09oEuUR/x7C4YFWFglbqqlezy0YjJRN5PfGxtKE2SA+HzDz5ptFdYKfEyfmXMz5NGRgj60bx4v08+wkwCpQ7CR0JykqQciZxT1MsOJGxZXd2KY5zveUMRyuveObymgWHGnhDEvep9jBHymBMzT2KDos4VGGfQ03tfzRMBDw8b3l/h3zxcEcJoI9r1f5eshsYm2O5qX5Wd8h86Dqj1cuH/l/XPDSct/VWm6TAHb8zomhzW346XU47+u1o/qi19q3Afg0L7MCAF8N4H2wiLH3w8qzCIDf86QRvOEWjIW23mr7HcxK84P8p/t/LE0y2eCDsUh5MTdnub7bsNwEwYB4veQVsOn0jxdjvGUuWkJ555DO+f75HcFYgNASBgaCNKMM94xgHJ6rcK9+Ez5b58f3V0JTwmvpYI/6U62szbB2ZW6l3xEmIzORgcEgAiYq/uS5NcWnUOca85gAEuuTeDGEbJf1ThNkgdFuDXO+Vp37AF/nYUxO7AH+SMFjCPOd1xL5zKsZSxlvq/sk98cIm+kxSRiN+HrANDnE0r823W334X3+r2p+w1wr/nKdiRMqBx0Bw55gaDvxJZ4v0XAqw36KQBYObFj7iW4Rn47owPDbtd+vLdjj7bU1F1X9Bhgj4fcfFpF/EMDvAvApsFIt/6Gqft+TRvDR2ibCddVWf3S9EmIyhsGpm0g/x/8fSiixSflJAl4ipo58FUfIoNPfjHby+e4KZAqgg9g4PhtJYtDo7pARDPAYxzUSrv2QH7s+DMjLA5D4M2SYJgqp9/qFwWwfN8hujPnoSBxqd8Pf7uNgrgofS8LJd8ywyb/nOnJVo4prfZ/oaK/PcOD0EVQcnMYtV56f51V+BxIXx+CHvH+XNMtr9fcDhvhaibGlz6PvoVlLhXe+Z/RVaT5z+KLEmej/cN0BaImWm58LnCl7p+CSEF8lXzBDY1d1YXh3edeETynMHNCIA9rzaH7da7QPq/yLqv4QgC/5sEbwhhstNBnC4z84ks+RP4fSVv0q2CNU3DNeH0xfA9KWUhyoEmoyleM2b9QD4lCQO76Lhh9ljpWPm0ro6PwTCXhECVWGN0n981x3byKI6u2VOB49XzdOYYTFuBVX6uOURHfVCV5F1o74t06/DVKkh2EwVyb29zVAlHkOYCu1o8ptgRe7d1NimPs7APLw3JVR6TEjO2Ikuyb73/dOZ44X41IC0/q8xpgeaUOFB4In/FUjA4o/Zxys2tkB6iQ6HBCNQfiq65lrFcENjGQdCIQPTksfM/5OzCL8mkegqvfO+Das2dOYzUfrYWEfmcaFbHTyjcReXcqcnd3X+hkZxRGRvjKMGQmmRa21hA6lJZ3+PmoTU6mbQpq4ox4lKqsOkA8cMCvXXsJ3w59rRvhMyybn/zyvw/vqWI4melUyK79xvef1HCT6ad0q05KE0WtFaU4MJsZxzc8xzO81uj/wSY0axcR05vkdhZeR0AKDADJHIA6VfSf/ytFchvwt9vcYT5g9+nV8VeWQcUxx21H/Fa8mxj0KI37bY0KN+wzjmSOh62gtgxFP4yJ+VgEh8OQAXypjOZrj3Pdhe2QBypofd/zq9pQM/X8Wlkj5L6jqjx38/isB/CkAX6uq3/LkkXykm8AiqAAYJCfgBVOZFvxIFR2kQRxL/4qxgikKvZbs9tFFPKIF1VNbkG0ImRzuxw4ptWueV9EfwcYd4gMRkUSJs451mDMGv9LMDOQQptfaqwizT76XZLPH+itrOJcLCeKlaoU//d2sZHAoNE+MPF5zgGbDGGbBQXHV7LWrMxWvPBAAav+D3XJ8nx7gzjUmQA1qMNHUkiaTVj5EsR3BbFi7g3uOhKqIZKwMlS/EgOcDo2hTRwzTVgZkPDK+md6qRuHKOScux7ufEBNhVafQ4thbYvsSEn7CIaGSOD4m98TnbBUZtZBKeFDW/go31oOfXqM9RXP5fADvOWIsAKCqPyoi7/b7PvqZCxClxgGMUnJhKhEKqNxQvjDXkI2N6xeSSuEgdXNgMnUctFeVMB+JSGoQRyamYX5UpwfmOT/wCqyqxGfSSAbfS4VXQf4BqWffzoDv5TfSr2umEq4TtY0jIsux1yke7b1557Pm3PTbHB7Ocuyv3pTTy0moBX5IlUdnHUnlkSeDAcbHWlUh2o+Yw0K4mHOPSptzKo6nRQIYT7Gz/b0zMSzjGm9/fJ/U50ikx7yUK0IJgXfw/p35uEwlh1Wkhhm0fP9sugpfK3JdtJhxyWC0mFEr3g+weUxyOmrX1n+aw8Sgn9qemqH/ba+453sA/IYPaSRvpM3In8izi8xBTWLEo0i+zyD3TneZwZXqHok8dr0Sl52jNYZOSeaKcMrnqTXt5j+8sgzlmqiJPfMoUuJMbHdt2ijJD3R3X2gOR4M9vFSTTQ+IRmxmjjHvZZ7LcShy2Xxk0PUXRWSKR0j0DAMSjP2wp/sASI4niH3d8Mp8IzmyNA7E8HHbfyHC1ESPNNgjWEupHHFUZaK+J/CpXHQBLvfb9GjneT31HVPnV2Sh0fSkA4HeT6gSfjnuR0t+ywGDsaTTfZfBzyuDqcIWP10L0p7rmUmfuf8r/gZc6oA06dUr+c5Ao8Zxc84cx1MT9p/CXH4ZgJ94xT0/DeDjnjaEN9gGPM+FqCW++ftI1K9AepayeG3axHm/DBt63wey1EN53SsZDBLRd1niPgAJpOXz1wjJK0TFAyaye4JEozKUMhcykDk6CpiJu3emZT5Tf/b+g2oGuzHnpuHul0LEdxIzn5sI965gJM+SIXEegjA0l2DmlQc4kuPRAxhgqKVW1zKds55vE1qLE7f5Xf58gKWuVyXIOq5Vfd9oqsFxG5gM31MYy1HysBih7aiEdHx+6DMI7iTk7ASCRwQVbpw+wodWgSFXbe5CyvqWeQeD2b1P5wuceFxRoXk3GbCLQukn1YJrJQjg0Zi7iTblMPbPPJWxAE9jLj8FO1r4sfapAH7u6cN4w20i3Ed4tzdHzdRhlByqWr57bNfLSIgG4uKIHlI98WfqaJfljpLYSAZTh1l33sGmfyVTGV71OkxqHOthCOkRAu8Y+/Rb2z8XElvdPJX4zA84A4tNXJl9edc8p1pYMIhazOcAglrXmRRn/J15D/aVNveZ2XHMknkVHGMwEbvAr7tWGIvUPlzTUw+XHnKz5jbvG63jnISlefwV15xgivjRDZJr3mBnvkvR3AYHvmDEHQXU/WPhc4vfDzZfGQP7HEKYHc4SeOMh96Wu3NU2AD5D9Y+bBPwG/6OWf/VuLlnsj5b3x6T2JtUnt8Hk97R+nsJc/jyAzxaRv0NV/4/dGET+TgC/EW+nopXYS707ZD18iH/otJgIRAhCMxMlwR7HlQxmlHqI3+M7y/cqxJUQxsF3UaTPfbXfg44lnxuI+jyP4buGZDd0JdM9dYPHx+sifyGAc/SMcn4HRPhVEhd5bhUGCsE7fMBhM5hymFOj/lKHSYClwDvOej+adxmPotjcg3EAM/7U53YMq7ZqUpmjCyZCSAY44uAEd0z7p4yvaoQ76VjqZA6GKc7+C3wj1B2jiTi1LCKUwTdKF0kBTMWXD6FVBjNogsMNsnvGXpk4Ma77tAY7xsKzX0o05qQ1HUUNZt9zTTMgkfxgoAfDeipTYXsKc/kaAL8ZwHeJyFcA+DMAfhR2IuU/DTvrZfH73n6tSC7RiBjFNPOo47FspiB0FflfhdwHSBJqOPf1FXU8cL6VirSSG2GX9V+JwNDBOMddrDv/HJIVMSDgbr7DtCihJXFRuc5gjsuv2Essi74wwvrMtUbiX5l2pT/BHPbLQY2m+t4I7yMYsd5ZmCdoWpkYfTwjXvW560TryeAnQiYYg1JKX1oIbtR+K4IGgNQ2BGOdtNL/Ln+2mFxa6zviLsQpz1Df1acDTNtqtjmiQrEogIZNFa3Mc19Vu4z9aJlFQ8vRYdwH99bfq3BX8EMElsE/wfgxR331vex4NoC0VOz7zH7KmBV26Bvg/qfUmA+j+YYgBKRpdYCBT0DK97lNQsRTkyqfkqH/PSLyRbCDwv6w/6ttA/CFqvo/P2kEHw2tbraZvh8Rjcds/CVKKQQ0sbvGfg6QQiaCPWxIZMHIWegQTURSElrBfkekBLhvRRqs9wfyHiCW5OyBsuH42xEuDq/OG45DIcs9MzwmZh4huNeIic6fIyFlKHURgA/GTqIgSTjr+GN8uXGHGm2EMUvSDAKHTpFoE6HnXAuRkAYES61awUAUyrUjPBSWgMceX3bzr53W2mL756TAdNC6al8EZwnlFQG2WldMZ9jC76313zimcZzpC5rezb1XcWJiMnb9QKh6rMVckwYcoXS1VBwhnDaYdjs/1+mkF8f3Cdkro9AJHlXrjEd1es6/ztpovf4KFKntSUmUqvrHReS7AHwRgM8A8B6Yj+W7AfwxVf0rT+nvjTcS2x1XP2iHUhI/NBeMklthLHub8DVCikCCymQCGXul3og+gmEcMpjyTsFeE7k2x7qpj+6fpSAGJwATsdG8mXA57K/cV99xyAfLRuwHv2MCE7Bn1uL739eIZe8fpa81csYZ7r4aLTds6WjBeMhU1QwpEQo7RmECBwJILvCY4Bt05pEJTAxKaG+b4LwTKGZC/IQWVRuC2B4TvcixedVGrPhd8eDAjze855DJYFjT4/Hvcem1xkdN8EDGu/roJAAcRp6FJcPxYxYaKkI8pmnMTOPK74dZ/q/Znpyh7wzkS5/63NuuvQ5CFAYCTEzG2xDNUpkZClOoXVYpj0SsRhyFZOSdOlEa+toR5dxYQ/TMwTxHH0uR8I7CKIdXXEPm0l/Nvzkimkc8p16L99u7/l/23j5Uu227D/qNudbz7Pc9596be5M2ISYtV6VgaEGQ1iioVAqlltCgaKSoJKWQf1pEzB+JtNimFQn4h60IxYghidIvCGmDpK2xJi0ilWBpaUUrQRLba9qbm497zznvefd+njWHf4yP+RtzrWe/e5/cm3tuj5Pznr33WnPNzzHH9xizuOHOnK1Q/YM6ltRyeAVWelgHMg45HbR+QExl/KtScJ3s7GGWzhkES9HxSE6IWth+cqswQZjWJ35KqJForTInWyTvzD0koAlOeGIWYm+LtJGE89aAZRrrzGQQ0VWrVDIQxNALBz8DxEHXTFjmfkPijGEXiX6qdzAdfjfMPo8hey37UqbhYxtrC6SzxQ52iOj0NyOxW1JKecfb9gzm4qOd/sWhh9VaJb4BOFxM5q6OEMNTvTNmN0ozZBIXFxHPXQdwwZ4VgD86tDNA5EEv2KvWL48lCUJ6rwUW3iE6DKI3c6b0++EhBvb1C7cEhJSxry954VbpK+9el9Ece0QJzOjL4z/aM6JlR1zosBd4P3xf+sHdPVVPLoN4MNwcbI/1E4xFrIe/TJvLAdweGdODMECTsEjr5qXl36vC7nGJ/mgs2VZIG4ppUSphObTXHSEqJ2YBH0VbJKh2oyJRHaSsz0zY1M9jcEfrkyDszNSOsODgb57bEUMRwNvpfBwh9SAOvL+gdeH7pxTmTdgqZ5S2R4WrWbGHKT6iLPFN0yoakQ9QbhIXEfmN/utnVHWjv99YVPX/+WDD+TUugUQxkJghkEeAML+LX4fO+lEvMzp0O8Mkb/gOsJBulWyoMwCqPvePel6p7LmwSYc/5rYnLNzOzcMVBCbaYWRysKY3hZ0De4M1d9D37GHzhq0r/RO3Vx0lWFXlFZ1LT/sSB8TyvDH2L9a6scsyrKm+MeKvY78V8sQPA+4Y5uaEp4dIVQeFjPoiKJko0Iej+179RITe29fJRhJtP6kw8QvpfGIsAAAgAElEQVTCQmlkIkOBpi2KvyXpNQk9oE5Ai7u+Vljex5wYMOawdwTlxrhvTZMYhiR+cY6P2mXC0rTuhwC6ASLE6CnGunidEmhdxC4ecP31MXyXsOTr/sZ8cFN5THL5WR/GNwH4v+jvNxV9Q7sfnsIHLw/owRU3s4cWc0zxbVOoENcxb8isJoimYvNFLQAvORfvV4PwjWthcwz+Q7rUYLuDg1BEakjeezJLW5XzpTiBady1D35/gDR9fkUdTAzRoa3mCBnMqqBZPSiexTruP+G24lAHR5rz13oXSDZNnDm0HiwnMqrz3P111PWcbUoigBGWBt0i6nxwl+z5VtpRqRKk21sUMJhhpML2El5OXkt/rx1QUXSKHg2ppc/jQ21r5NOS24i3rMu0Tm/CJLEGfg52Od+mOdX+ZXAuhehT28lY8BB5kR4bpNyeB52/R5H9U5G0OJIPm9XseefEXQSZLii+KZK2To3i6Dn9fYvofJGIyw97U5+f/v7Hs8zidQCmYB8wRRyT/WmAHOJ42ZOQVqYAu8LhA+YJ5vfJy4Hro32oU+MY9IQQRgV85mKJkN0qgbzzJx3qHawdEJ08+RPSmeqUIcwIyE+FzGM+gnXyrNFWiUaZ1i5ZoY+j3LNzUHwddghCbsU/B1cBq98twI0jt/vW8mIpJY474Wc+/JN9iVPLzATmVjlWKyLVcp1UseOitNuIMJ1MBvAdl4Cl2ZvrCHEx7EWVICwzz1fwrEJbhZO9O/wB4ThgrB5bx8F4EZwys0Njj/1/o4q8nDVJrosTltZQCMM3+0Bge2n78kQ0fYuwzHP5gOUmcVHV73js739syiHCPojIJQ5eddSJ+smADibQSnCcTKAElbsCzJHbUzmYCoAAKw4xS1kzIOh0Mnfv6vyGOO1zvIVICuI9AFritLPWETcr05ym90W9w7aMx1xtHEmkXl5gt39GX3nQb7Sx4zBvVM1l3+fRKi6lgbQCsZBaQeOVCrCJxS1EDinH4ztnC/8GQEnzYgTG68no79a4D/ctl0aATvgxiApnOD78kMd7u14xOj+lMOJMm8cj1fM9E49bDFFlhubYr5teo0qEJ/br5oa9ocxn96i7Sb1ZnBeyHcIdccaDyULcrSTU10Tc+Wc+pzq/CltLlK8M9dWXqkzG0FvBT7NRj7mHpBeaTEcVchR1kw44qVR3BAFqrBKSJ21yBKvtVEwpkcnBuI6waSCxqIhnnZ0bo8umgWMue/Za2euMa1NcF0C9JroFsWDu9GBU3CXVu0nPhAhMsM4zlT+aY2xFXnssNSeYxlgfR+bsNSiE2FSP1/QQwc740Lnk0sdka9sNSx1W+RHDHdtofF5zFP2xx2DMbaJrRxz2TPhmyXYmrOU8j2c7GJlVjDG5PNw8BmCnOrqxhcd2kNvflXZvwPzuRTCLypnWD5jG8vuNAR9Kls+jNs+5z2UD8EdV9Y8/UucPAfheVf0KIVqBkIi1nIOf+FDQpoYuPZE0i+NRN+BIMAyS8yEgJJ62FUwA6H0c6k8nIDxiVI5ccVN6SXtN7auUTus0Fz0Q0ZkgSvxvWtNdM8+gYFS3Bm0eAz8nRGTpqSdSrX0HOBT1woRUAl6KKoXa381txgMSTe6JUOnvcEJavj+M9t/ZDx4pgYQUNVnjwbDQCZZi/WIsRzYBiLl9M/E8YHbmzkKqTuM8E/1pnfbG+eNp3tobwYjqL84Y3pHBgtR20w3bGTsmPAwHzGxMcHOTUSqMp0zvKcj2iBEiAlMYxRvn64iRusnjTDasN5XnEAFHk0+q9+EvAvIQGpstIc0U4oLxgAlMPj6aciBkLZ/tXAwXQDqGu6E/P+T0aBhjHsbm7V1yZ6CcPuvuhSM6kIT3NcNPcTqY2pQDSDwOWPS+4tsDbvh4fvST2i2HoqjAQDmYBoFoi6KRaq6ruPdNMAni86n7dVSO7jdhwjXXVedw05bRZOxVzlv284r1SEriY1vCDqFoS69zx+Q+egM0gVinQVTsGdcbxCAJSjorIKUXTaZJylhyfcKVemaqZjiZi1T4kukdAHekQcJU9YYEWLq8mSfPcbE0BXrDnhMDpI2FSdMI28DmofNgWe0WZT7TUr/LM9RRJR7CP9l0gaHY+9hPGfs2jWc/6PrnIeF5Bnr/YksYnwLw+ovc5pe8PFW0zdc76eOAE5EbdfMbDIQZhE7JXXjX5/Fm1/50IjDTXA6IQ5ECbhz2Ac+j7tAY7CjRccgIE5QDbvP2QdOxTkflsDOUtT38jJrcE4up7sRJpnup193lbZvGEirTTLMl6ra1aa9mUElCqYNrFJjDAhEWho0S8X9UkjhLeXboco4D5BVc+gQ3mZgxH/J32O8hESvioeh7xe09r23aD/v/LsDwgNiVxdFBWDTU0jIBqEwSKgZsavye9tDbh7SqfuOs0l5x+0GKxIjSYTqnMZAdk8Lz26nEcXusj2lmn1seJS4i8q9Mjz598AywhJW/EcC/A+DvfZHG9qUtzOE+oW5hKZhwwLlFsJ6T3lPdY6M5UxM93tyQTuTGeXNkF+6h9R0SKe0Obw7hQG02DXHX5RhxbfIGkEtYriXO1DFRGn4JE2KYxl7UYU8p2baUKek03txRqfuXXSMQzS3OrnR5XJLLVkduR9TTkfvUT3Dmg6BNn+yIRMxTds8AIxYzd5tbE8/KvlIzjBSDeRDsYOvxMmftpbaAx/d3x+RJEiU+stNHB0tNXpbzHBxm6tmbUig9pi5ihgyYCJTehpFSR24zSsGNHvE1jzKj08sDhu8Q9p5R3iS5/BQqWH27/zsqAuNrvut5Q/hyllvYGseHVOwbvn423u3zMVHEv6BwqXt9axyoR8bjh+Yml6Sudgo4J2DUEs8yTUut//R7iiZnQGIkHFxl/DqfrSPpib4bnGadXk7ziEA++vsBESjESYZXFBGs7tIDqyQhctu11/c5VCLAONtpW2OCiFo/+nlOBHtxQYbbyR4V5YjpiTEepZDRWBdfvj6/l0MpZSB/Wl9mYOabGvVoQwlGw1jO36Sq6waReqrenwF6XrIDAsMSXMnUnfMLBkRqG3QmD2PR6B3YZXqeFw/vCD7eUG57Oh4Q8HxHOOGI4Svn7Ynr7uVNxOWPYaCp/xjAX4MRnLlssFsof/LorpdbRUR+AMC3APisqv4Wf/bVAP4cgE/DAje/TVV/WUz5+icB/G4ArwB8h6r+Tf/m2wH8YW/2P1HVH3rSAGZ3ywPMNm9YuBrndbhCKjFGqgGIzHEU4oMB/HwQherMhZHpXFTz0+MxTwc4ulak6iXR1tHBFpjufAJMpZ/Cc9phe63fTICaUgVz5LtLquZDwWzVPOdpnLH2PC1XSzDSD2miq6AtHawnTycA9QBEttMkgalII+tNROUGGzredZi78iYJV8nQuBpWihR90GynHFzbDQ+tkFqLxxiOCY5guEAvRABiDJFIk5F6fjhN0fuOPGZcVSJeaceh1CWqRFjKu51E96ZysC/F05jaOEL4mf06xlO0FH6+xPaseAbuCFCFtzq2ozET7uG6MndRz8rsAXvITD72/gnlUeKiqn802zYE/qOq+l88v5ub5QcB/JewAM0o3wPgr6rq94nI9/jf3w27M+Y3+b9vBvCnAHyzE6M/AuC3wpbkfxORH1PVX36050Sq/Gz+e/+cbwcEMLzFpvaGZ9i06TuOKeo7cCYnJ/WDN21uHLbFx8cHI9qRPVcLsMhP94gwcEZgV5M9M8lEw9fCiNwB8bjFMY1a/uKAO45hsX1j926/LNkyGVAHQyAZNJh7CL8vY1EADdJ6ttu7ZGQ9Bxkm/gh1FbBnOFSwy+DMSDBgherKJsB19GNbqONuj0jRf8sbDp4fLAhVMFNF5cNjRPEGE0ZaQobzRYE11ogJHCUCLcgYFeHmC+qb1yQyLBy0wfsJDKIi9PuTymO0nTklX6NypQOvC+BrI/XIUlsm3Vqb6hqGXRaP/PQRInM01qxD45psO+HplvbceF8Ci3mxp/X5AIQFeJ5B/wcBPI6wn1lU9a+LyKenx98K4Lf77z8Ek5S+25//sFoujb8hIp8Uka/3uj+hqr8EACLyEwB+F4A/88YBPGJzOdQ7G9Y0sb3R334gk9MjwnIo1QaCpCtd+YAOIy7yvRxJHlyeeqiofvbTKjzOnJoA4/KnAGImEAXR634sMpaqDJaQYenPn8kclQ3rK3J1lRQv1DJzfEXaCC4xCGoQlk2Ah2Y/fW79pNBzhzTxjAlOWK4NcjWkL1tdJF0IATOy7qjSgSBVlbqqS2gy8IITgnaV/N3aF4/OVyg6ZAGWtaMtHevSsS4blqboPuf7y4rrZcF2bdZGEKoYIyd2dO8v6T7ma4VnXQA9+1hPHe1uw3resLS+UyGKoHjmwfek0x7EM9V9PHnzPW7+fXzXexv7q0bsM5XOZFPKDALh/Rl7UgaK8ZIZABVIEK9BW3M/dxoPzvLAkivTXrF6uppUlhkFYGs/dzaI1Y3zIczAjO9DfWpnUsuYsglvN4h42vwCJ8yH6teAuPwhAH/ig3XzrPJ1qvrz/vs/BPB1/vs3APj7VO8f+LNbz99YjlS6h0Ql/8ae2wPyQII5QweOQ52lSKbwAIKj0NEP/ywDPmiPueenlhwGR0PT/IgbzfrBJU/cbNbbcTo6/V25MSaq+ziFyolXqcOIchPFsvREQFECsRqHCEOacRB5SrHcTjTkYghYNmMebCsFWJvnJRPoVSD3RlzaxfY7t6AR8h/TMES9EYwA1v4qplraxrNc2xjHFt8Kwc4Yu7jH2Lp0vDhfcGodS+voKth6w9YbtAu2eX2ntR7Un8a7Cdpm22jp9kylE3Nd1o7TuiVB2zUrikYw0CFJYHbrT8+BIC5DYmzOJGw+994bNOgG29GA8kfGcYWNMAeHCUYrq872oMIPqe+LTrgj8qw5k4DyDZ8Vn4DSJgZRK0djIPu00egBIwq6K2c//TrfskXeFjO3vsa7uh+QsADPIy6fAfCJD97V84uqqrwxOc/Ti4h8J4DvBIDlqz9Z372JqACFsEgEFhI3M3TUDmzBNSQCJkTSXTwOGOtHKRtGyZQQ0Uwim+BK3gwFt71H/AUbsifiUlN96HQe6zezJLZrj+bQbiAmOPcb7XeSHoOwBGKLdesqaAp0aYZgt+ZI250ddgTGNkmuDe0qkEsQFwAqxlB2Hbm8LoL20CAXYHkwJAwM4tJX4/BZPSJBIBTui2xcqzh3mnnkWJ1B42REx3YzaaaWWpeOu9MVL9YrTm3Dadlw7Q2XvuBhW3Dd2oDBZvOB51+LHK3CRnc1Qtg25Pxyr/uYmDTFad1wahvWpY/1nPeR1pollw4pzxkMZslHVbB1e9Zh1yuHFJPj45/PKTMyDThjGxRA2gkkA5BNxN1AXcaZDxvKvKVKqZfy7zqG4k5dApinCd468ke2ksI87hm71MRXOvurKs8hLj8K4PeIyEtVff+L0/1h+Uci8vWq+vOu9vqsP/8MgN9A9b7Rn30GQ40Wz3/qqGFV/X4A3w8Ad5/+xr0fIBvFHgPYICBRjwhLwlVwN6wai0Meomf8Y/sNqG3Qc67vXJAcIObsZzfmY/fZJAQHkgR7vYxcR8TlHLUDkGH3IHrcS2OuaR4+gNZ6csRdBdharmNrJrEsTbFGcJsYkr70xblmoPtmhBt0zj8O/ObSyFXQHoAWBEP8pzboVVNtKBfBci9oF6BdHPmqERRdYLaNRQhpw6WhsY6zyjHVaBTQiwZT3TVYYk4fsEW6A+pBlCE93K1XvFgvOC8bGkyqUxWTAFx92BeXUb3NTAgJZ2wURuxiUD0QKSzQID3HYoeQe3BaYoLA1o90mX5LNwZRaQ5cmSBCRvLMWaWWcDExCCzR7lVelBHjsXLrNRN1YKT0j7WZzqd0k1rthExMzBGyZglOjypRTsMbqjGOZ4r4qagnE5yV74Xr+Joe0C4aygcqzyEufwTAvwzgL4jId6nq3/1gXb6x/BjM3fn7/OdfpOd/UET+LMyg/3knQH8FwH8qIp/yer8TwH/0xl5mboWfM8DyBsn086jZg3eD4NQdlD6eS4jUOjVEagsN9UXrBahmA549r1zjoY/vTFAmSYJdbq36YMPSyM/vyZbEdpEcA5BrKqI77jRK6NtbEI7eoDO3SqWJFrUKgN3fMZ8Ys9laXMX1IGj3guUBkKuPz9VRfXWkoUC7OBEK4hJ2qCAuitR6xGEd3K49c2HJ1WhqxvFFjWAE8WuAdEuFL01GJPyi0JNCzh3tZITlxXrFadlwXjasYkQ309rQvsgSTMTQtSccbwLty4BBYEhMsWfBLJGev6iyEMRiSJFj3SX3xIJJ67tZVdZT7B/7pq7qq7aXsZ82aB9swPNBmv56tolV970ral+t8V9lTZBVHi1Fe0Gq72xGqR/+LsbEjKQ60xGEhYtYSir+m1srVY+I99HBymdvmOSN8hzi8rcBnAH8cwD+toi8hkkV87BUVf/ppzQoIn8GJnX8OhH5BzAC9n0A/ryI/H4APwfg27z6j8PckH8G5or8+7yzXxKRPw7gp73eHwvj/uOdP+EdSwrzO154QbGh3G73YAed4PC1uZUbmxBFA1Rd3SPM3VAd2QPTTZUFE4MgCN51zfxa5x6GctFRJQjUsvS0izDxCDuIYAD4UBePKOhG78IepTqMuYZkRtusFtu2huvW0lCs3W0w9A8KYGvAQ4M8GHFZHoB2b0QDMCIjG9AWpJecXIfE0q5jO7sjneaZ9DlXm5D6RJsRoX5ScxgIp4GlOiikarQL+laJi6yK5e6K02nDi/MFZ1eHBXK/9mbqMG3YIguAALJ0SzXUFG3tKTlCgetlMYLUDa6MWBKjw1yw2462rWHbGi6tQbYFi0uTuQ9BCDBsKkdq2YCLWyW+Y+N/ZDfoWyseYsmtMzIvTU/9xPliovmmEpk0SrO6P/pFHY66htk3DglLfG7VfJOS4OnBOJ0pED3Ys7oG7NF3QNGmtmX//Bl05jnEpQG4AJhvmdwt61MbVNXfe+PV7zioqwD+wI12fgDADzy13/xujc2YFpk4efj1qrucYKwW8292wENc0GGMwQzrO+7qIGeYOMfrXkHJiU4qrdHm4MJ2Y/D6QVgWuu62jAdIPTiAROLSDPmhDz1QjGNxtVYg/o3iQoJISCALlyTCVfLaJqLUBdvVEIkZwO3AvSbVWqZTOXJHVfICcg+sFqqwi6DdA8trIxghkegDoO8j1UjzmUsVlf+O9B6se6uLve8r0O+MqOCtDe3uivXUsa4bGq19E8UifWd3iN+bqBETMZVgd8T96noyO8t1xf11weW64Ho1oiFNsZ7N+P7y7oIX6zX35eG64NXDGa/bCduyGHFcBXrytQok1/y8AMBVsL1e8d4meH06YV3N7jL2WnDdFiPsW7sdEzSXomtyosI59wiW+XwV5uboAjhvp1wXzefBEbxMZwNsD/OqeVdQq2PN8cS8whswY3airv8k6bKozXcPp29FDjKL6CBmMyqLM0Kqau4j9qZcDBfrPecl2xHrx8uTiYuqfvrpzX4FFIH76ddnVsaGtEVLrIMBfMuYhQy8yw2sSDG4fFHiSGtne0LEL9KAPriIlBb8CmR1hXbqpFnVdKCXzoPuel3NNgW9H0k+dZm4veLJFYozDQ42bMiC3s3IHkQk23IONwFZsCPk2o1oZFBhp3WKJXXV08492A+UOKEOA3u7mO0k13MZNtrw7kp1FpBEpq+BaJHu6KkGw/6ZiiFlPSn6iw7cdawvL3j54oLTauqsxb28FldrhYrrvGw4t2uqu5qLQde+oEPwejvh3csZl23Bew9nPGwL7h9OuF5bcvUiJqmsy4YX5yvePj/g5XpBE8XDZvapS19wWRdABZsKdBF0J8KHyKUL9NLQFejXhu3UcFn6cIbqDdvFxDi9kuQVezHdgpqLXJgzOUxNE8PIz8RxKrdHksJh0ouAWc7wXOZIVEIAAnBTYTaaQxCq4tCDYddamGrJSFI7aUNKvBOpnffrMk8GQ2rJ8dZ1SKmYtAGZOSJz3A3CksSL10cwpKgnlq+Q1PhfgiIwVQH9DaAQiuaunsE1Dt1xH5sCpAqoTUQoECoj4YLwd5urg54AVk/omebj8UvXdBO2jLuaksTN4DXQc4EH26mpmkg1Jjlv+2QL1YSrxELdNNqygXbzF0ZXUrG5KkXnb+L3KQC1pCXpAmxAi5iR4Kj53MY7vks9pA7nMqWLqbO2QUBUjLBsbjNpVwz1VzAQXqefge3FkEJMKqkuxDM86WKxDXruWF5esd5t+NjLe7x1fsCpmc2kwaSQtXU0KF4sF6xtwyfW1/jYco+7dsUL19dddMHnry/x7naHq3uEvfdwxhfef4Hrw4rtYYFeAi6t//AqOy8b7pYrXixXh2PBpbu01DqwOgguJrnsEA7HwVwEuC5AU2yXhr5oxpSEazc2oLFaL7j5sDUR8WcbYiJqCvwMvqmU1CzEeu8R305a1/FsR1h478g+kvDkDKkEw0kOEXAbXjCdSXyK44RNkAletQ2NgRYHgphrmQc953GXyY/nNciWCEtoYbg/X5PUmnhjcrBUj5UPTFzcgP4xVf37b6z8oSwOJMQxDB0+PPUHsCy9BIqFzr+LDBuBqzXWxbhPANhc550cexKYqgoyDlPt6ttgw3x8tqG+2SkpYRCZAAJ46pY0+qESlQNmo7wLQHPRWUI95vmVBniBbBhtXImbEpfV79o8/9pwUQ2VVkohgawO4gbs7yAW/r4j4z/alSQL99wJKWMmCGk/iHY3c7MN9yVdge3sxEKQUs1yD7QHP9Op1gKuH+voZwXe2iBuW7K5NeiF0rU4TOmqkFPHet7w1ssHvDhd8IkXr/HWejGCQlLJKh1r23DXrrhrV3xifY1fd3oHH2+v8Xa7BwC81+8AGJF56Avevb/DF95/gft37oDXC9q9pDdiP3XoXQfOTmxcrRaqtIdtwWVbsPXBJK3n4fkVaxbBiv3SoJdmwZYhkbi9QV19DBXzN7kGISdufhEntgZr6ld624FjxDoIC39fUtyIuXIr1LzZQuJgFXaekwO7TtEixPdE7ObiDGdII2m3ApLJ6oJxiZq301bK8ABiwlSKGo8l9nDqsE2kscQ5K/TE2bfiCkonlvBFaX+nCnsD1ZA3V5nLs4iLiHwMwPfCsh//eh/26u++GWaQ/8OR8+tDXYKAsMTiz+MQsi58FHf1JG4g4i3WNqQc6cAiwOa2ESYu8fcmrhLSViSEBDTmZvx7CQ457AhAAgjfx87f5JSLuswrqvMkAugGhNdJd44rvL5CWsn0J9xGGaaPSxQSUcbB+TpnJ6Teyuh1OnThBivJudK2bSMGI4zu4e5blqsQF0N+4sQlCHVfjGhsb3dsb28Qt8FtDw3b+wuW98M12Yzw17cU+PgFp5dXfPzt17hbr1hax8N1xevLitf3J1wfllyfcBc+n684n674+It7vFwv+NjpAedmSDxUXeE2zGWRjpNsOMkVb7V7dDQ86AIAeH874VfuX+Dzr17i4d0z2q+csLwvSRD7AmxvNWwA+p0xRNet4f664kEWbNrw+nLCw7bg4bKmx1bAMgeobl1wuS54WFZc9QRsrma8AOL3n9jnI09ZMgBBq8RVil3QVYHVgzKVAooDVCOAk2OEEIg/CJmY9IOAWaSUwC76u7gxcTwsmo4aygi+BNzU7yCmyZDF1yck4jbsIJEtIFVRdH52Egv3ScRlMHxeMYhBfEzEQIGRYWPnBR5nEdDe0BGqy2GDLFlKEgcSwUIluodZM26U59xE+VUA/mcAvxnA3wLwOQDfRFX+DsxV+fcC+NATFwEG0eD1JZVQlDllRSf1kDiQdvV6gj2XxG27/r/EAyQRsM2sNhyU09U3MWKQxkmxXFg26JE63NvlCVdJhogUczctuEpPDdEGwPetDYP5LJZPwC/N7S9B0FxKEVdxxe8RKwKJQRJhuWKHWHjNMtiP7SPelvC5mbfDEVQ/A9tLRf/4hhdf9Rp3J1MX3V9W3L97Rj+vpoITmAvwxy74+Cfexyffeh9f/9Y7eGu9xyKKdy4v8IXLHX7x1dt49/U591YAnE9XvHW+4MV6wdunB7xYzYYCmFrqqobYm4yI9tdtS+Jzkg3dJa+Ohne2F/jsw8fxC/cfxy++9zbuP3+H5Z0V518WLO8Dy8VxxsnhYTH7y+W64L6t6QZ83RoeLmt6fYmYfXHx4MiXpwtObYOIYtOGh+uKLwDYLgv6xbwZQoqcPZ6S2LMLdsO47bEZR25MzSQlpJRaJdeiquI9jVigVFeRSzfB9fhG3T5pyFvhyD0SZR4c3ZIzrQ3CEmpw6eKaDNsjwTi3gzE9urEVOcB95D0R28AtbAMpTUiJcig20mZMozr1UVHSIAzcNjzIfCx9qOTTJnQk0T1Snpv+5TfDshH/sIj8EVimZJuf6isR+Ws48PT6MBaFibNpL891s2fdVQsXLPnBMIINDxgRxcOymvrMPWaK8f9IJPf+t2vDdllMpRJ2hODIwvaxkNsoAEjD1heEAlR0SAvCkkROR4NmjY4nAySrHozqIvXiysThKoO4cJR3MDhhbGcJSsaviAPCUom/jMBDVm0BQwLpJ7NxeCQeZLMo+XANzpiTCBKU+lOXQQ9DEulvb5C3rvj1X/MOPv1Vv4xPnV+hScd71zv8v68+gc+99zYeLitUBad1w6fefoVvePvz+Nq7d/ANd7+Ct9o9NjR87vJx/OLlbazScVrewsN1gQhwWja8dXpISaVJx7UveHU94Z2HO9xvK96/nDJdTW6ZMyHnZTMD/OmCt9YLrr3h3csZv/Dux/Duuy+gn7vDy881nN4B7j6vWO8B2RTbWXB9GchJ8HBa8CBnXF7bcdfN86g5zGkD5LxhudsgZ8XdesUn7l7jE6d7rG1DV3MeWJe38Qu94b4L9LUtrnSyT7HNCWOt0/bF+zzVyX86fk9Vm8PByMTs0gY6RewAACAASURBVMYC6KlDVkU7bVjWob7uXdCvbe+lFqpjlWFXdEmEj061AQ7JIqQ5zn1mkoNCVpjtCdXTb+tT/rM4DDf6K9JWMHKhQp4k+XK+QlPAKj6XfnqXIdn4OczUQ4EjWOo7prM3Geej8hzi8m8A+Cuq+sOP1Pk5AL/tGW1++UoQifiTuF6gUv9iGPfv0gYiADZFbw2b62HnAMbZpTfa7NeWhEUiqWDTHEa3e3qhShwQGVl388nJMNBMkfmd3C4PiIs2G5w48bI04V6fPLWKgTEOABsDNaSNCUrdoGh3doy2GGa7B41JM87WjOluGF81x9Iv4lH1NH43LKsTyZ1NIAytJ8Xy8ooXLx/wyZfv41PnV/jk6RVOsuHlcvE4kYZX6xmbCk6tm+SxWA6vDYLXekLXhvu+4qGvuGorwYMiSnYVIywPfcE7D3f4wv0LvH5Y8fCwZvLFUgRoi+Lzpy3teVsXXC4rLu+dgPdW3P2KEZbTK2B9rYbk1dRPaY9yQt4vAmyLeQZemiXeDGJwUuBUXVzD/nNuV3Rt6NpwajaWtnQ34JvUzkx2FiImoZaMn4fxFcQAaSA6QdooClGJvU1kWCWaUEsW1W1oDaLtZKZMdcnqb1Wgy8ANAtRcZzc4eBHFQv2EfUvVU/1IMGuxYONs7LQKH6QQg4yQk9hO04fElgZ7AWZ6wVk7uO1IQfXU8hzi8o0AfuQNdd4F8FXPaPPLWDxGI4riNlWODQ810sx1+0Hb+rBVHLVb8mypq5nYvTYQMwwYZDUCxOqpMMJFyg4AKb2kyJwEQBK5s+SQEoTXLzaPDsvY6raG/E5RXUqfssIaIM6Sl69Xt+eBSApXJYaIIlGiLgq965CTYlm3XAe9DpfX/G7tpn5hosb678VtaUvHWy8e8Nb5AZ88v8bL5QF37YqTGwk+vt7j1d1rLK3j0hfz6JKOrg2vthMa3gZghvVfengbX7i8MGnkumLr4sTAJtUhSVheXU947+GM916fcblf0V+vJkEEVxrw0cxed13WwZBs5qW1vN+wvBas7wHrPdAuA67CjpRSXiyFty/ehoSE2Yx5CXB52sb6d0EsmiGsCGJMe1dILJ5vrRCWEBSc2zaVckVczJwoqW2COzeQHUh5BPUOB5K0Rzowi7h0M0kgEacDxHnt5dxGzNYcFFyWhYhKEKPmTJ8ixsdcIEjyiGzoeyYjXZ7DBsPv4k+mhGy7icfb4ADyvEcl9Q2In97uLqg71+Zp5TnE5R0AX/uGOv8kzBbz4S8K4haJa9hJBBSAF0iW/f9FLa/QohAHSN102nRHyrOs2Umdxf8Q6i4MGwjbNpgYefPpNhhZdIHk9pIrpDkAGPrsbMc9znryPcc63sLRCAqVc4KmBZLpGx/L4ECJwMR6LTY/BdKVtp03i9c4bRkJvm0tg/TiMCwelMjSozjyaE2d+1ac1yterhe8WK54a30YXlRi9o+7Zi67FqBo7Vy14d3rHV5vJ3y+vUx10buXM15dznjn9Z2p0QCcnQi+vq6Z7+vV9YTX1xNePZiKqt+vwPuRNJP2k/J/pRDa3QZ1NU+25cG82WwtxTzeTm7IvxNsL5DPGI9kHrwkZJoSHntadTWC2KC4asPrbcXDtqJ3jygVJVdvDOZABkHRxcajUzyZJGOjAy5Zko12iLgwUWF4srxezoR51oY5NipgI69YaIMQPKVYoPEIbO1k4KjqTKRnKSfz1Ph9pdQt9F3xAA1bKuo8xddUBO4NqHWNDpD+wCuD+bJO6Gdzx4oeXqehd6a1V0xOPE8rzyEuPw3gW0Tk46r6zm4ilmTydwP475/R5pe3kBoHIAo9IeJ0L+S/CSHHBWKhQjrkKLxu7R+HQDEkCxnqI9rojP3g+sDgTGP8Mh1YTGNXVOIhyL5CMkv1Wbw/cIIYGBBOJIITQq0b34baSsz7pOS5Aor7ZWb/PW9Ylo7z6VpcQCPNyOIG1vMysvRGiaj2pXW8WK5YW8e5bVibBSue2ma2EJxxh+vwnGob1ragieLaG15fV7y+ut1CBVdtZvy/rni4rLhclkRm5hVl6rQor68nvH85mSrsYQHuG9p9KwGdEFdrNYUuntinwwjQ1RwY2gPSC6ufDOlsMPVUulafge0lsL1Q6FkTwRsHG0yAE4K1mzGfEOKDS1pXbbj25oRxTYKeurAW2Z19uznYdIGpMkOCCruMEwTAVbbd1GsZs+Kq4VR/MaIDxjl0OB/xXSMXbTqQEM8i8TyPgD1VmNZB6Kyww85cIjuzKg7T2qT6zAfZm2B1ar5JxKDZIEr8m8/ZpMCJiIYk0QENtXUQSEE9b4h1mc47H4vyTMbaLJZqyXABxfcxkXpieQ5x+ZMA/hKAH/fU9VlE5JsA/NcAXgD4Yt5U+aUrCvPZZ04e2NkhGLZuSoREdMJjrJQADN4Z5waMA5SqBw6A2ABcW22OB1QQ8vCuSffPABomdlK/02iSmKnsQsmbCxjp5N11M42zk45WTWk97jCJ9ou7qPcuKAbTXCup+c7CNZxzj53aUENEjq3IDAxgZOCFerT75jaTDats6Npw0Yb3rme8oy8AIAkO4JHwKk5YTnj1cML9w8k8rC4t1Zp6bX7/iq9HA+7PHQ+njoeHFcvy0ryutmZ5vF67xHJpljTz4rE3QLpMd4n1tj86FE39GoCzLd32AiO9zFmN0Hg2AF0Ucu6QpWNZLVq0b2J1pRkBX5yw+MVfrRkiufSGV5cz7jdDD68vJ9xfF7x6/w6X91c7N3zdgO+t+PjTAeOEvEBNFGbnccLSrgyAUlzH+wnA6ocvnUY0O8yjpILMUDyrqIAC0KLmVQkAWx9wBZhjzTXPxyz1GqHvXTI0wWBcMncbq89U7V6gTdrwDhVTv53bBtUtv+c2ulpmBCY2s3OQEXV61/bjzSBtl+awNWg6vASRwBCOfF8CV7Bd0pwwnoIAj8tz0r/8FRH5Xlgsy9+F5RmDiHwOwKd8uN+tqv/Ls0bwZSw7GwWJkQUxAob0SE3BHAUj1mL/wKgTAYqDtaKNChHXx5BEjsfofab75rTPc390FonDRCUiwcmQkX4eVjCogLfh9pFy4H1tWMdvw6Z1CLWLB6IlMYnvg7BQbE0kcuTgr+u2QHV45UXCRC5BVCJYsImiOWKJuJJNwg6y4tX1hIduXoER1Bh5ux76knejPFxWXB5WbBFM6B5X7TriO1K6UyM8FxVcAyF199K6d1XYNvYgTQchTXj0vy62mEKecsOzEJkAs98pcO6Q04ZltQjyZR1xV1tvhkQ3MfVMR7rwslZ46w1wxL+IxV5FWpntGvYtIWnCCFa0dzh+AbkGS9YrfNLEeIfUkgwJMS7pPhueU3x+SxuV+886ydgBRdVzi9FxQrwR0Qj4Kmox3kgvfKtmax1zCWebYALDjTkStvKCiMcDiXO9EcBdcYGrBf0s9mAwEfYeVAkklijxjAzjf8QTtXlhn1aeFUSpqt8rIn8dwL8P4F8A8DU+pB8H8J+r6v/0gUbx5SoBmBSMOOsp06OCP5s9XmZEz1yCA6oKhkjOfRBSjTEMwDrgFGYddByWOKyiQMSYeP048EgPH3/nBFT7AfC4Xrl47DQYt5uu0l43YwBMV5v3g+QUxN/D9N3TgZhzs8nBYbQgTpNJMi6jeQoWjcwAg5jEwQ9C8yAL1tZx7S2DXa+94aEveO9yxsN1xJusy5bJIbtaEsbr1nC9Ltgemkkqnt4kAkLZFVeac59+X4w2d2fn+nGN8AxDDYOA+131EEMY26KQTaAnDOKyOlF5ecVy3nA6bThxMkyYCufhsuIBwOa5sUqMibrrPRouKujN1q41syFePAFmcrzNYUwcHsJo30P6cM8+H7+KEx91IuJ7hlizYHoafbsq4PY2zkM2pGpfq0CEceb4nAQc55mpcF5Sn4RqPBg9h0PDt5Jnt895BovNZdhTOJlm80wOs0cagN3VzeVMEOzv5jWVkkljcQKzKES7ERahrBjZeeA+LWsn7jigGAzjM4UWAB8g/Yuq/iSAn3x+Vx/yonJr36wIKpKe3hXWaxfr4UTFgZb7KofcWJ/8JvoMroZF1lklBnX1mkFqfhvf6OoHdeH0GDbO9KoBwa4jA81AOE01SuZNojHPd4REsk5DHiMoM6WXPAm0jBOXx5eFdbdhlPgDV1eEjWVtfaR6gXHhoRMP9dn7nhQyEjZetwXvX9aMUg/PofPpivOymf1hsyzDm6sZ5Crpyjvunae122xtbc/HOmRdnXBE7lUwLvQ8GJlF3dFBXXJxuDkZcVnOG87nK17e+aVhpC65bguuraOFqqZRNgi1VD79YmDUFrMR2Fq0JNq23rB8fOnh5faD1d3HuyG27uowc3HuwwjtPxpg6e9ozVIt5oRFT70QliPbR8JYcH9RhWFrlixKnM2A/+EEI6669bMZTW3WoLnH74ZirQll597GHm2tQRbFtva0a8X4ZwIV7XCdXCAgYTmm18NLL1RkOU+1C9k8Vq1f2/Dmi7US5N4otNpnYsFiGjPOe0J5ToT+J1X1V57dw1dYSWQefvZp+NSMoQDrkcvHSITNkcXqRm5JY/fYREku0hsoXAqqcTP+zgM3pANxqCk2H5dSLHq5Z06kVDNxfrDg4kiqiqjgGGxEQM9quZHqgvp1jzmLm5GhH456hFXiwATw1yR7GGviHHYQGBFYBl+XWK4umdQ8cCbxRGGvn6tHrl8uiwWzdslM2Jfzguv5AhGTlDIQLjIL0N6rGOLVgTeSk25x94sHfiZMkKvujrgQPKVqMmAwQCXUaWGHah5d3zpOB3anWI8i9XYxpNkBtMUQ4aYueUkJSoS4J97ihP5qcKlNLCo9EoGuah5idxbcGMlhtdkkdBP01uxuGSYIQEorOGnmbTskLAkrU7TtXE893EAxmBLG4w7nkcsMmM5jrzCKeM7wH+ctjrRiJO4MxmwB+tqha8M2eTLu0jNN893lByz4X4rUvywdKiMOR5qioZsHJDzZrrijkDWekfqyeUQ+x7G5JClr/0CqsedILj8vIj8G4IcA/GVVPkpfmWVcIeuIGahAogN+tamJ+IGsow1CxkEfMP0U5wwwAwoAiLsCqhGI4nnCGxoIyL2nUmKAc7MuGgUygqgTA1giytXyIi3kzx/ZnTMRJR1Cc02MsTqBcSCu8QDjUJTCSEyUDPmaVxiECjgICf+7Fag27nRxGq0tub9NGrbe0+ganmRbbyPfF411uxrB6JfFEzIC3dUyuQV+A2bcJ7NDiMGEqCCyAovCXcIten25h3l6uS1DF2C7g2UhDndeXiuADjwM2Ufq9lk/4WoY85xzYupEJC7tuvSG67Zkhu7coj6+j74DwXffk7YYslo855jBjRhhboq+LAb+4Z4f0u2pGyOzBCMjLhWIMWenEauV8OoqQE7jktMMGidI+OEL6TgWJWDz6kxB36QYw/Mn4owLeVKFu7ATMKW4tqF7HucRSGIT7s4ZSxRr0hR6Wcra7gihn+3SLiqsZT2iNOEfJ4stZFs6erpaG4FYRLF5QDaEmCA1pii0HpkBIF77/sk6CP1uPI+U5xCXnwXwbwH4NwF8VkT+OwA/rKp/5xltfHiKAHIKyoEBOJMHRmYOhT0PDybAATTed8vZI4ktR1cJLMFx8wY60RGMQwZg3BlBnGMerMjm7CezSh+ErOmu9dD3hh8+J9G09CO96H6PgqVqAJn/jH6V4I4QcAKlE8W2mNurT8kAe+rLJI6sUcfJUhZgbqybBa8G8ZuTbUYmhKJbdyQQBvm8I8aJy6Zex/X6uondXhlzjSGEDSPgxvXa7d4uIZNN7CKyixMXcVfhcNUNO8NCCxDeVFdxjt+4+iPVe3eEcJWTZS7uDa8v2zDib63c75JEQA0exdV7Nh9nsjwiUlfDJufTNfON3Xm6/tfXE967O+PhsuDhxWrOChj2BVbLpeH7Flx5/eEKPRiCuKYh4CkFBbeNnU9mH7s7XXG3XJMpsRs5Lb3O5brg4bqgb8Yk9KtT83DpJ6kg1UCpujVPs8hOIZ3OdpxBkYE3XAqSa6QmskZN7aeTWg4lninfR/uFCY2++OPxTlfFtnT0RfIOqhYqcLEkqJmFvQ3Jxtpx77JwMfdFjrO6rJurUitz8qbyHG+xbxKR3wbgOwD82wC+C8B/KCJ/CybN/GlV/coIoPQiUzxEcubMAU15xKIOELjd0+U3O+ThSspJ37L0A84zCteNPshdF8BQPxH3ppmfmzgLGXWP0tHEz2GPGECWAPwIEGViO5LO9oAn48eNKZfph4TUzZNrl0LHpashSVHfII5LkTd0JuGN3G19cKCiSMSKTapQ4JS+by09bAIOclixTm60zkuhHGn3vpibMkex878pY3PJ0ebIPy42U8Hw3uE1833WqzkOdGm4tCVtJMGx9/Dy4g99rXaFYJwlyUU0Xb0Bl4pWGxCnFwrpJoj7FvFaom5Y1mJ8bp7ahnN1XZ1I5uVyEwFQaVDhCPpIV9PTCYMlGu5vqH0x9lMwkH54M9JapyqS28jtkrHvE6Dnd3GE2V09ptMsnin766BksYOptTHSOsQ8giB2V2d2xz2wNSqZL6JPxic+QAse7pRvzOxvjbI/Q/aM4GPlud5iPw3gp0XkPwDwewB8O4DfBeBPAPjPROQvAfhBVf0Lz2n3y1IEVQIAUncdLrAA0DWMdPRpnE1H7NJDjDa9ZeFC45uQaDwb7FAH8D/NccEJyGzbKKoTb1Kde3KzXFH9hITRYdx3Z6nsiIvEJIHEw1tFUe01byiR7vuWFMR7UbxyiMgfjoGIpuhQVWlwkpxUU0GGeNqL8NDKw41xrTJ7IyVmROqk22o5t1RNUurXBr0qdBX0s3/mcULbHdBTetH0sAIwXJq9/6T14V6aBFCTp0gJOqS0MJ47UUkHAIDmJsmlJ4JaNDMiJBPzyF4uHrS6kFdfeKdtvaG79KkAEQI7W2H7Wlo37zZYf3Eh3U5SLcTFkGHWafAUOy29ADc1VaCpRgcjlZqISSOR5yU1EyQluHccJptoahr4/Dqx0cUq9MlQPqtVoRGE7fAEVC9CzATMy2yUUKfwAfNQs4Up3SdDeIwJDAA0F+yHG/SQQj9o+UCXhanqBZZn7EdE5NfD7nf592AE51s+aLu/toWosoxFFiC5HQAQjXTae+Rph0Fpp8KbpFeO3RGGbkSYohEXp00UR3JOqdYiBDuGHgfW/wxVDSNYuLFOxO9xCKIzAJfnPFaFkDI/nFdPMQA5VB6klrsVY6BdSookDvoa1w6MsQW106mv0fa8oPAU414viFkQFrabxHpR0BjchXY4XyCltORyo1tHRG21mJJ1Ne+yrSkunoxyuzP34V7ch4246OIBj4LqHh6CaFD6wHPkgaiO7FiVGsQw4cGDOyUiBAXuOkxr6yqZcDGXVYs3YsDDpoJLXzIGZvMknXEPTdjJws6z+XfdkftQa1WptEqoGE4Y7jzBnoxZL4hna7i2BpEFcgG2xRZx2Jmau1EPu8u4rM7bcgIa67hzl1eY6lO72cBiUYT/aRJq6QosjsRXI0ratcTkzHcU7QrDcqjGGZ9Q6EQhgv5t2hdVIdoqDhmgguFMEwRGoeoeZ4QTkznQcFl/WvliEIHPAfjfAfwfAH7LF6nNL30RpJQyX2N8UBUh1pcyA0gCGrnmwhHjJhC0vYgtGPaVVr9lroGN/YHYjwyUs1RiAN+cgGKSDCJFDH3ngNmZszsomSk6EFnor2GcpTSmrMi2k1jQKhwRDuuaFziIBa11Ibj0s/hqUrsKFvoQVxSnvntV81RixKIgrzmUg660T8tiHHioT7e1oZ8F/U4sADoQAgUYRhuMOMaSR/yR7Mft+5iSzAJy/iAi6gkxJRwgmlOs6IP6DoIaXlrpcNEtziXg6UEi/Y33JiZ9ZDBrEhakc0FI/ta1wVvvLZ0lrhgc83VbcL0uKf3tJAwQcdkarm1J++G9jzPVauGs4ucv7iPSIoWO4GKRWEdiOAWGcP3KhhIIHUOjc5r4Xlzj0TUzd1gWh4AtKURqdxVBMjFaww8CvrXC4hC/B8zYuRp2Fxugz9WlsHBlHpJMJfhGUIbTzGM4YS6/mmuO/xmYWuzfBfBP+BR/BmZ/+dAX8f9FBK2VYei+ZdB+VOcYG9QUzaOkAefg0ExpJQQD/k0CdauE5VB9xQRlVkfJOPTMeiaiFmS7lg/KxhNpPwCUw3hLBZW/ptQhQyKAEQ7tOubm4wlxfUekHSHO6g/O9WT9+asd4cEE9IqUWhgx89kg+gP3BMSqQNzrofQBEzzi+mOf4uKoFogJwPXUoX1Dfwno2dsJKaEpEUNya3bEoc4edxVzKda9F6F67JKypEX69SGtjfFLl0pQ29ijsBkFYTWC2rC5RBk3WcZZ4Vgk9uzrLuVcN5MYwhsxBqYqcO909G1B7wqhfFu9i6XICZUeccoysKsboAFIs8Sdbo+LK5nZwSX3MmGsMgp5/vicEEJuSzcVU7iNExzuELcfbg17qSKdAbSZ+km7mISTMIXBLMSzWNOF3hVNA8F74glnQtklvgGZm9A/E8R5D4rvqrmCCzFU1q6SjmdPLc+95vhTsJsmvx3Ab/UZfgHAfwOztXzFpH45KsHtKB3mAkAzPjtaaD+gRV/p2Vq7czOFa8Fof755kgOoQlJI7is40ugi40hG3eBYrRNQ6hZHJI6UVMmzp3gVEbKnMczcS+KWVItpqm3sWwxi2Fv1lmujjeMgLi1/DgIhg3PLxqgmHXgN5EmVWF8ewXp8JW14VWUcUVMLQHU7WOzZcO+21psYgTqfr6Yme0sSCYc3VO+C+8s6LotLO4AjHr82N+6bB6reXhdHNuduQYot9pGI/YEa1yQ5JCc8u/7mem3uPOHwM1LVBQFzVeDJ5r6dL1jdW+y6ma3jclnM04tgMJKodo/3GRJrVhhMwWxTCKSughEMaN5kG2xemeMtcpjpOBfhhZXSiNC+TqpxACmBpmODu/p2SobJ38waBHak4SzNWwRs8jk6UCHnEUu4pPeL1nWLbzUIFzXgDE0GpJIaLdyzgcEo6TLhgoCFGZaeUJ4TRPkjsKzHnjYP/yOAHwTwo6r6+vldf3mLM4fmWeOAPNxyibtpnp/iTYsrALOXOx2914mb8PLRoW2CDiThxNRdB0fKXKmr7TJpZNTjgxDIUmFiPh9gUiUd2VHiMJRbK2PcMi2O63t1nlOXmuAxGKrd9wdrQcQiEUTsy05nNDXSKCI9CToGUmnkx5+fCiEyQ06y9AxCTXfvkFriQHr/67IBi3lPhdH71DZLxeKZlS+yVJVNczVlrI04cowUKURc0kbCRn6a9rykOXfZ/z28BYl5ucZeVxiKIN7uBFxEPd+b5O/b1oYxnhgpCcKuxLxMaqrU7vAkJh4uOHSQhIrriC2JdDwqzrm7O3ka5lM1zPBwAIMB88l0KBoGF1+EB2ccpWgIaB4yxgPOYHxDEhD6jiUqAIhrmsc4Jdcl2yS8EagpeLIdnAN1Ti49l+uQ2Z76xPIcyeVfB/D3YGqv/1ZVP/OMbz98RY2DjFQU6e4a3FSU3qAT4AVyUdpYbtfaaNiUuZdg0QcgH20UExP7m9kZayAJV/xjIObvg8DEOwyPstT1dgyEBgyOSLHjKjllevE+ogNbF4p+xpjn7AWYvi+Hpn4/fpc9kSGsZMsgeTiHLn0ak6sCOLtAprvh6WQg6rhPhvdw2OzGni5NsUjHed3wYr3kjZQRMX9xQ/e2dGwwl+c44OI2FEsbb/0rZacOGwvfwphInP/FYvigikpwRqqx30FYLi1dtHntLYhYoNJNHdWaq1WtSsSnsGpKHC41EZlhWk1CMDFBZE96FJkFUo3ARc7blvDlhEiUeb8dvO7OWcCcjn0Nz8zQDhwFec6EEKLWP2kxDvvNxxOnMBGwqDLjiTyTyWyNNU1bUTBEpZ2oF3ivp9qeLyZke+pTy3OIy7+oqv/rM+p/yIsfANWh/5zFdPivMwEhHeVRYY+o+T4V/3yPjEntdCtYiQ9AAgwwdPmFI6H+4mB3IjCJdMMFmPuQmxwVdCYOc0d+kBmR0bdH48t6sSZk+L9JZOKB6JgfNTGeEfeXYwnCoOV5ukQXbt2ooiwWjLou9Urco9LECIulY9ky3T9gwX0N6q63QfwmtZQDTxL94IhjXVx6mKaTiEAmZ4zH1OQa6rhQqV0Fcm0jBmiWXNQZgmW4CfcuUDf4ROAj71vGiPH+BwyFF19hkoBMjDo5V5QJsZqZ1kIc0QqCqD1SFBicYhQZ+wBApbkG49YaTuMDRr9EPIp9JqaQixRn700Dtm8b2XPh4RJ5p07aU0D9EXNVxkAHWeH76M9i/8me+iUx6P/jRVhgC+li33wtcalWjIIYHG+rtpnxErnZO7fL9M7RKv1gEJSiSrhRMrYluO3gvENKgiFWy25qCD+RbajN/EyaJDMFYT4G3PkdwRnbpB7jbCa4TILYRr60gOtU68WEMN7VRsYz4XqYxlg+8N8YAcU+pEpwfJgeYa1j9TQoCxmO7OIoSZUYEJyuG0m9z66WpTn+zTa7UG2GRGLjA0I6S7VSIZQSg0hEsNtDIvp7yTCYGpckri1T14DtC8DwaHK1Z3C7dn2vNcyxKawSCwKjdfBgySqmo+EKPGWoGISOzlSchYGtPZ+d5u8a8EVu/8gqznQVMWQ0bqEj03uM75kZ5PniQHUGYGdXHY3NBO6g7RxWMCWDOPWN6CRQ47fmgzGXPPfiKmsp8yvS6zPKV4bb8JeiKNAflgGcsQmOFAAClgnZp/F8ruftMnLKz5oCiNQtwysjVGjh189GzSwzIIpC1vFcprFIgwdrmvHckhMGEgok41rrLs4lEoYO9RLhAVVKmpiB8poxImXuMUbmkLyurISkRNNuUGwenslAPUV9IkIiPnORef3jDzU71FjCikRUhmfbbq/D1iJ0xwzBRxrxXU8pMghGxmyo3eIYe3Ppi91oq5N6dwAAIABJREFU6ZeOjZxngRwIcaoFwpWxcVEZa+XqxpIf6ohzpTXSbbQT6qmStYDjaiaaALU6CjOop9t9H0xS2R+CVQUscWVkLmAbhGAkWm06HDF8jsULzJklWzvzVNBlOD8kbFKKlXkdNDByWVcadzNGQDo5coCQfnhsshG9NmElvEFZWiUiV41NPt8Y4+wEFHBIEnRbPBvD5lQn1onPix47SqSOT1HdtHkydK6fWj66xAUY/v/uqhcXMqV46kCzc5GFmjqJEd5UOGApOPEIbKr1wt3PAahL/XZ0ar8JKD6hAmsGTyrMOJzZm32QfOCDK4EfWCkTrMZIIPnmdLEEhurCD4aC3hGxzmabE3KO32Ef/hRbMAYnGOxYHi4am9SzUEj6TIRunYtk9+bnNI5oQt2u4GqeWTUa+9BhnONlW7BJG8GFOu5H6fMhpuHkaiS3jxQ+6pxc/59OHgcVD2BUArFi/pa+iXHkPhATphFD4ecnaADp8Mcs5vkNpwVTa07rHzDdBhIuaY6yH83FEnfNlo6BQBvlfGs0ImZEcqH36wpgzBGtwHNhPA/P7Ggj7S6CIS0/tcRCJYIfbsRsR7H0QB2ixvmpwx/Ho8VlY7odzJdKgE5VbT9jzF4+usRFMVxn/X/BQAyDmKSxMEsyAwOwdwu/kz72G8NEpXjO8LiOmpUKVBzwF2qV5EaaEQU4UN3iOqSM1fthbxevJJDxfLJXQD1YDDGWMnKrN6dZl+nnoxBPP5moTHOyc1dVAjuNxqwiomFmCXdtWofeG66b2VR6kRqxy+KsKtgAbNsy/u7ibbSMy5g1IVZ3jGdWnZU5xyRjTY+4Tl435UY012mo0iY4b/QtqZN4MJ7j0m2LcW64f+qYm6f1SicKUm2xdCh+HlM9JVQ/YcngXQVDnSaoEjHgoFhYkH0JZJoEJrzAhNZAEoeMLMN1gRJJw6XnW/1hv88xQA5H2H9Tj474fCOerHIHbpfZMWgH3crB348N/kb56BKX5AbiT0mczGLkTi0j49MhRbxh5VMSQqrB1Puq7n4YBx40tlBTAS7i80vqxhFNEhn4gWsB6HwY+UMUiIqo/R1iIsJWuHqdGgwEyIFfonVtyxRoXNOcMQN2rD8FANY1sEbq+OkUKv2d304DC6JEiEnV3Yy3tiMsS+vDQaIMRoqTwHWjPFd9Wm8Y0jt0PWcE6uPb5XyKvWeusxD//VQLoafmTP0ZeyuFgDO/JMEcAQMuZsw0eemxp1LYHEc0O43BJRMl2Ir0RWXm9MdYE/8Z52QHo4Nw7UpRZ+uoHnvBiSB12KtKCcmuLt1huRX5vmM6CGbnCHrl83Mwn2Aed0IlE988F8yF/OrKR5i4YBzchIIQWYnieyoNAIkwpTs30kiXT7CRwV580EOMV5he1PvX3oof+X6ME3FTP5Az8om+dGSeTQ+qiJVouktjojLoxIzsVSe7Sf7UBPK9UXqsEzDpmAloi846OEAdbezdRr2f8JRiW8+E8Hb2qiMCFUgH49vyfjrIqmLBf80rxHBkuKrGdQY8R5ZY5gDdm4X3NhEr0ZhGc9rGN4kYmbDM0k3OlZBILq8Fv7rGz5eiDraYBgIvpVqVkGTsezxWqYQl7A9BaOe9CMIlDcUzkxico2j7aB+ozMGQEicmYle0wNEw2vsn4ZLLuGNeoFx3Gt6EHwSjTdyACeWFjqDkibFge++jKZv4bAT6iUSZMV5UOMsp3WjyTeUjTFyYowHSOFqoBKqdIp6pBwnGoeDTOM4AHdoozJ3tkWp8mESB2uO+g0glcs56NqHwUkvdtksvCH1vwGAgTkge9P2Yj9et2hoY843DJWTABAaQ2uEizyFFMSSyL/04Cz7uMPIK9VWWOPZxDK0SFkJwQWBvEfYYQx5KsUSloPk3QNESWSyTRGEXeI00KCPeaTgIRHtmMx7woBORHFLjNL95ERjBARPjwL8fzNvhr8BeSs4OTwmDBm8pFZd2ZCTITK4ICIllzN0o8xie77YHjnZgJJMMmBYp3aXX1yOwF6qtIj3v4JjW3DkcVvVGX6Py8brvGLLSgS9Fb0mpi9cZUJi29CCU4VCQMVlMlKidQ8GjMBji/+lgkmmwh8TkTSLYQfnoEheB3cURyCiAbl5D5n5m7srPmPC3oUpLhKWDS4nU51o9cSCg9AzROBBG06P68X7H9ZOBPLMBhLhLxKPgpE4Be0wkdmtWCcvshBDuo+VCs/l7DASaMRaUXNFojRARGLr+4VUWgY+0N96eGStp/RV1D70PKYhXzPOJ1jgvCduJPGNtLaXP+L01y4gsGO13dS8et61lehDPGVVyWAHmlecsZY3W534x7HVBfcNby39Xt7MNFStJ0gkXY0o8vbJdDBcijjE8pTyL5orqpbYQs+KEJdQ3Ava6C7XanHPOmQ6CybYGQe528Vec26JCjau8UXL75V4zDMxuwSrpuZYxb+IOB6G24zWNrpmoFEk5kIT/6qlUdKcujnWSpMH5vY8zLgDLfvu4RK3G58k0z4lZmIOqWV39GAEpc3pa+dASFxH5WQDvwAT/q6r+VhH5agB/DsCnYTdjfpuq/rKYH+2fhKWneQXgO1T1b76pjxGIRhvCB42AhaXvR9tkPMZcUhAeB7LsZ+bCpTYWKtBkkoJoFKSK4WIc9p0gWiRV3VTHNOLq6KBWgz61hziwdOh40vO3uS6Sv1c376nyvMhHB3cmXKUzFO+dEiEdLpfZhaS9qwSHKhCXXFmbhMAacs5pQBW72iCSMs5JbqE1fmmsdY2YtgOPEaFPBKhRDjOzAbW09ahz9qEyFBihwibzMHZrVX9SVH43poav+N3bAujbR0sAcux/Tniq8obGHAYburnve8xWvpbhpjueG3PFXc71QhmQvlxJ3OngTzqjciYPCQtK5dzzuPhNgAyyjjXnDTqwrYpg3MvCDEao8HcqYcYHBM8S/e/Xd7efH4CwAB9i4uLlX51ut/weAH9VVb9PRL7H//5uAP8agN/k/74ZwJ/yn7eLwCNadazbxAFBMFKRx3csfiZQUbO+YcGV5QaG9HHkLrr7WccJODAyt8ljVqcrE2Swm7BxYJONhBFd6NpT7TPWIBZoNiSyE0ICMFDq8QVfyu/8pCcuiTN2QDjKWGIcuq8XDe2zNIcr6AFmUPIIJOIigQBlqh/OEYsWTlwBoDe/O8dSCmVXhMBT3ZFqJQx7RGyfaBLEmHtrlgx1rKs4E6qIUBgAKdkBnl9LfW4hAR6t2QFhSQITREZh9piu4zK87JS5HxADoNOaG4wOOAxGZazLDENHXlQsxWWMWmGqgnAEY3XD+ZfGlgSGmBI7vsHZy0xbso0az4UxDow1ZC/QmHMyikDFK9mcWKofHYxfEqggLBRnU51E/KczKdpiFWYcN9aMOr5NRw7P3HH5sBOXuXwrgN/uv/8QgJ+CEZdvBfDDapjxb4jIJ0Xk61X15x9tbdEBMGoHBwQoqd/PxHUGgSEmW736Dbq6Hp52KA5fEIIM8uI6qD/L74x4QBvPGLl+Jw448XP0P5B7OdDhuqy1nXJY+MDMbI+g1NlzVjFUGW3MuH7WWWfbWjx/ctwhPRSChYocvXFzBZVx0P2QJv7jyHafXzmM2XQ4ckzEKubsMTANSJhJt3NeB3cX7V0sN5f3k3EdQLFNNE87E5xrdxWhIQ8YEgK7prt6TeBS24RUaCxl7cqGHDw/qCbRLrkuF0KW3YuPi5wGdFr3hF3kesS73gWL8FrFfOpAS/6s2Bd6l+vA85gZgPkcAAmfVZqhd08oQ709vLcOXeUBRPDvkcNDnivE+t0asxMYr1I8xnfn7ElTeHL5MBMXBfA/iEHDf6Wq3w/g64hg/EMAX+e/fwOAv0/f/gN/VoiLiHwngO8EgOVrPmldBMceKSBi4SmlSvM7PoLj0vQaQkW+isxsuwPe2Vlg5hZ41lxt5iiA5JiBenCszjGQz+6umUMr+oTcBq5Ecopj/fUwzjKi1zBgs6Q2HZIy5luEZUIeOXdQIk5MSCFOE2LfqIVOebOybv0mDdaTWkz8mmqzKeznEmsclzBlQtRJJ555q1za4YwNZfqOHBZP22/ra6nQS04yh8G0yXSDOWkwSYOyImT1XVyMjr9DpeKpVDTUYgcwot4vc/w7OMx3Hmnv0tWwF9C6h20NSG487HMbRqLMwunnwGaCTx56Dvd7I37dJzaml3JAyMZa0bvHkHTgiaNXCb4ETA4zIxbIX4XEkvOKF1K9KP1fEGl9pP8dL3XAQD2nfJiJy7+kqp8Rka8F8BMi8n/yS1VV2e3+48UJ1PcDwN0/9Q2aXJ8gOYlcWz8gQkQmPMp2ySgLt+UHkQ9bSA1xoOLzSJee3AQj7gAzAvRkPnXHXVXOfyBE9W936jAC3HkuFfj0kFjuvikHDAOhhqE8uKwj6YT/PjzQc/9jnXaxMzfnkdNxqUYeT5PC/SrG/lM7e+7XCQccUfikdsZWQhh9A0Q9gSqrguhgp/TiBt0I4mwcgR7wGnsdHlUpjWpdR9W8s4YTVGpgoA7neCNew9dlZ0yyfpWZk3mPD/ahb2286zTfJiADyFhbSiujhfDIcCghAhIeieGey1k2gimJ8xFtFTUTjmFrVo1VtXg9f6n6ExnSQ5/WiX9Ge0EMgUENmBnkNZ3XlmChEPkYSoQlaI0ryvWf25tU3m+SZLl8aIlLpPRX1c+KyI8C+OcB/KNQd4nI1wP4rFf/DIDfQJ9/oz97vARgtEDYjsxjg8LopjBw5FQw8U9GW0GIpG15sMJLqMti+9LsoKogdepGk4RuZcJoOERxBuJAjilXU9wHB/51mGqkLGxwgXQoAwhbrVfmFggjCFsgs+CKScLjy5F0I1tTYF2fe0m4eYtASCVugRCHWpL+0Z4orUNFqtRRfqsl31nOedaHd8IDqfceDABLPhN9ru3wALYYK0khMTUJV1xSq8WXXn85FaBxznvUUQByGvfVZAyRgi6LGjCd8B2ebeT2vls3Xy/bw16fz+2VeQ1JonhWBrFckZdWJaHdTBrMvSEYr2veDNSIAB3l5hoSyCQ9sQPEESFl+yuvR5EcnSlIJtBVgW1aiCyVKNkjqXuzVdiZmbESVBsxZnQGmOBlup7AAzq6KjCSo3XcVAjpm8uHkriIyNsAmqq+47//TgB/DMCPwW7B/D7/+Rf9kx8D8AdF5M/CDPmff6O9JTZtepRUmvX46meMkWakaPEI/fQegic5bMF1CjZd6BDGHCeEyoiJuRKRQejGwxxTthEIqnC/42flPGIOpZs3LtfhsyAAs7svbD4pJTBBDueEYoSd1mLq50glF8bN4k7qc7Fpav6d9UMCIUnrkMgJdYSwsWCsmSID6njcJWbmiMtLIkgIscMub5vZwwZTa3VBlzY7ftnw2baQ7bdsIohQJEwdbswNzaKB67oGkm1wVe4Ya7FjjceDMWH469Omkj4m16470qL+bXs8W0ZjooddGiZgAhsfv5I3ZiEspDJi1fJAtCDCjOx7B9e7szCIw2zTCXXUiOtCEpvS5KR1iPrpWs/jBNKRoTiq5JLXsyjlbFSblc4SOYDKANGaHOHMR8qHkrjAbCk/6pl6VwB/WlX/soj8NIA/LyK/H8DPAfg2r//jMDfkn4G5Iv++Z/cY3NCMXIQQdUTTRy4wYIjjqZsen4soNhG/6ZA5jwFIs4/7rnj08wgSG4AQiIJjPxg/VV02yrssT9WrBk1j8dzXKAzLzE3pIdt30P/cwfTsluaT9e3szRMW+ltG0vyVxrpLnhmHnNeSDljov4vrNv1ehhy/51bQQU/kJiGAlj0Ou0kXgTQBtrZDFPx357RCtEeRALIx59z6GG8upMVVWWS896k0ZrJdzAQ69iqvW07kSgSX18ezNxeCoe54IbQemIgRTYEToALwgMf4vhLM3L8uwwOLY6GOwIxVRQUv0JowEaE6Ozd+BMGY+qN+d4QJWtzeAfaAnM7tRFjmTBHRfon6NyR1OPnCkGH/+1PKh5K4qOr/DeCfPXj+iwB+x8FzBfAHntcJUOwWM7CymiLqzgF/ACBhUnZxM4gRKncSkcUZaRuSjeqQiFpwOZP6JA4d9oAwAhcrwRq+7wGpz4CMHWc21uxIRZLR1sKLmUP3gyflm9sdHL+sRHggKzIvIW4JxERk95LQOMQ7N2daxzLewMVxIMPVeSbUN6fk/oN7+pnfhlPJGFME8nnKIHNBy7G1sMWIoqugtY7eF+zKAbEVmiPPddsapPn9IJMRGSHBHcAA/0ukyKoU2qtwxw/JrzDPYe+RYBrGGdz1S5IIP9ONCDUTRP8hHcO2ExNwglmJwq0zQ/A1rV8p0/paRuTwQaRs1yp5bndwx4wQdZ+o4OZZorrx6wx84Z5M6tqdFmDGRc8oH0ri8mtWdPqFAo5YTN0F/JVN0soxidlZJLzGnDBxLIM0JlxBiBxSBAC7IDKHMwNS5phiF1SMsTLHNnM6UXbPeC1Gn3wQ8jCW97F8fOpoTjMnlwhU9/OiimGY5TEcDheJvgcHl+Pbj7forN90QMuYidlj+xvXOxwjrb+PLyOn5+rOYKT6pAMq49pscQLD1x80UWwkMUQ/MwHRCZHMcN6ap6HhBI0xZkXlvIlw7tZKMUkxTkEYPqOLeRH4Js72yOZIxO5oEi/xb1NlfOtzrze3d9wP/yTEOxMCBAEZnpkcVc+SQ1Fb09+7Me/5tRzq0XFAwM2tiZc+NNXthVHiMajjtw9AYD7axIVLcJes+3wK0olCB8cM+AIRyZv5qviL5PbtIFtgWdXFytCJ5vim8caYJ3vHzk8fmBAbnCCRQd++LEAFejzaJQSRCIe8b+jARD+KvXv28cGo/Y0/ZTw/AnIfUyDcbJqI7dNctonLLQjlRr9AjYre6b6prUCECO4QUFKjcl8F5/l4+hZBfOJOI70YcZno7NyCwUiM96dKNAP2kXuWewcYIgqV4BFypnVK3b6rHW/aooRggffEpYs59qyslaCmTIqGesCbDMcOoeFOtrvSN/e1Q+xvID5xTjAIDEgaYZfoJCxaG5iDSUu3vlasTi1jynoyAL5USWCYVOiT9+m8rQ01YecTy/9PXATp4SGTURKoiDruZNAZMfFmdKBfWzlM88ZpGGkii64omqtAUk0WTL91uO9PBoIZieywyxSbTgTEwaobbCfpPt8D2HmOzR5mgTTFA0a1ECZMXNBBfETMraRFD8LFnNLeYA8JNaQPIsfjebCaktpDSruHkkrxsPJDdEQoqH+VgcBysmS7KfONtc/3jsRpfXMetD7xIIzjuSZNXTKGpf9vNexqWTq6VNfVvrX0dgwpWlrNjQYQA+GNscrTVLuNYnQIEyugG2hd/E3TgWwpa0LeDNkUGimQfI/yNs1QXwV8RGxRDHHWAHT6Ccn9kPgWXNcN/74/Q516TMyObBipjTggFHEeipbC16w6GYAIgD0vOe4OYJ+JuqaUh1on5n9ADNJGSjnOdhciRr8q5Zbc52jXP9rERXihx1W2TO17R9pSIGoXXh1xUFPDt1PohyHRCEyIzclpxbjgXC37/deGRt9HMnKOa2/oL3VurUvhtsZBqIFr8INKAD+9G+qno34OuK7gih2Qy5lloJ/tOERgdHNJyt3GiuE960uu2845AMi2y+HmJgJpMoIIVVWrEkHOlVxE57TpJVs2dPrVF4Hdr1XzNku7DpkxYQx/uPKOK4LNkyyudw4pR+e1pHY4T1dc2FU8zKY1G04msWa+F7FnQQmdsAgTl7DzHIi2afOK9Tx4fwjSDi/Vk42aYdsNwb7NZS91s5p2F4jM+xjGeB7jLhME/5ThvBCP3BtVfC84ttfomi1cPdYxpgNGSmhfgmHQkdom4H0E9Srydstb0uqN8pEmLsG9taWn+3DiYEEuevEh1xFEObsPFn/5QyTO3CESUoaXyEQkHInskGiZA8q7WSXFUdx7mwVhkZt6HxoMSwDe/rAPUKvMaD2CDHaAH20Hh9T9mARCE5QbMtO7T2hMXSGbG01nu0Hpm9b6EJnFmoE4w9GQ+FiUmyLpd3+oUfajBOYqIz3uY+QvSyIZn0VwoNpdMa1VLFb1+xgcsxOZoZojIhPjpDbCGWAg3Ak58trFYogRs12bDkJCUousCllMgg8vNdU2kD4wsGlMvmzTzFQFped1Rz0HqWoLjDrw8OwleGisl/FuH5wsZZ/QAoaozgwcvO3xs9ucxYNGB+K3SsWmMqnHsi4fb3+T8Cf7uTFhSdymRmAy+PMZerGPNnEJiWVRNFG0NmWd7Q3dVQ7qKgF7ZwscXF1zw2UGTF45oAXAkf6JOZd8dsAVFKQmu28ywDMIS74nwkKAVsX3GaJBBskJ8eoEV4W7Q61L7xPQcy5Hhbk/JGGZucBhxB7rEjER8V0cgjwHM1KSieAlu6u7sXNJIkrtCcbBBzBx6+VrpJScnKNzjaB2ZTAAO6TGe0sIUbtAF0X3TJl9MhRH/SHB0F4KEZlJYprtOXv+YzAas2djqDsLgYHbXmItQ8JrHW3RJMx9swra3d4yMUsz2BbEzZJR2XuUfUlHA1qfWyX3Yz7Du+ND65pnzfd2jlHjNub2+JkTDSYw47tpbeZzF33zoUoYtL8TJmj+jwkmO2L6hvLRJS5iAN6a5W1qTbEuFu08xN1umW7zXp+4HwJJ+VvT5Bq33rBJm3JJjU3NUjgZqbDNGz3paqsUMwCncKZsNU7JioD+McOd9x868tEvphiD0W70D8VIWe/9BzeffZWDs59vqgVyrKADpENFyG2F8VqsrhEY69BsBBhjnfXpjoDECZI+gyuLdSjbURgBrndMLMrUWcVS6oGQViXC8TyuGh7tjN9DurklaaT7dqg2gyrHth2NmySKwljQr+IItyypMwhQjKBLv6dEfP0b/J6WphVWjwrDRhDJ0D7MiBoxHwy4jD5uNU+MWNpA59iaWwg3pMauxDxIhb/d4MKWeLDuNP6YHkRTVZrSc0gxh3On56QOLgyNCtJzdYK75xAW4KNMXODqsKVjXTqaJwYEgM3TxCcBARJxMF5uzb5dPRX65brgAvu2X0bFEWQ4cQuECHNUsdERbxGivN9docTRx7NEGGyYbq6+izPqaTYyALSppW45UncEJ+vtZooN4n74LvF0VWTiJcEhzuec/irEAyWVR5ZCnIiwxFiiRQ82zeYD0TQAS889KOscBytijniIvB4zhzgTqfERD5y+IaN2HFSqU1zdo+tozvdctrGuQYC1+0VkfqHWzkuQcG/8bZeg1bEyApmlDu3NmCr1VEYZ+6Ij1f8MJ4GUfKmG08YURxRnI5GpmJNLE7/SYLRf7C2+D5FhWJtkIHFs0SCOMT5vB95XQ96lpJ0ZpcFYFScBGJzs7UkDzuNeJLiqMYcaRveiJqR1CBgIt2BXEca6hoow58jr7uMP+98b8X/wDerpf9i+k6rDZYyJz8Izy0eYuNSiKklU7HfXZz+BWvc8mDr+tREUxa7HIvU62yMXwHrw/GWbuMB503slAtol1RDj8Mv+DnBWzhJxYOQWQwh9eXCdWQTjdNI88s+bCBhjLOUD7NPEt8hFZgMXQiSW+deliJi/p06BG4xD9ZIlDcfzYJAHduekkHVuc4c54ILkpzUtE6XxlDFE3zOR04EoVTIfXcmSS8hr113TqvUjRie79ij2yIsVSSaLG3Nit5ifk0++YjrhSQ25UgAxO0qow3K0HxLnkDJGXfayLUtIBF9cIine9L6OSTiizQaUaCMFMVYYRFN4XcZZr9HvsW/Dzf9mIQLrs/d+dUekwqW7rDszN2GN50LHh9dpZBuR9P7kOsqwO3mGIqb3xPKRJi69WyzKldJqBHHR+H3y+mKdee+R72moxWbRMQ5oMdzTu+RQAl8xVwzGMeowFNivAlS5glXdvz9dObEP+GP2rowJhMgqPoZztcmBAnkYRWEInUSVghiY89QZ8ql96BDvk9MbxDYzSUf9QJhrJ9Whr1uoXNpQvYzuJZFEnX+ofep6DVdlrszjJkJE68fjL3Mu+1ARZqH3Ecl+Q/USiJkvi0rDLwVZjsZpGMF5uDQdnK86AUr7DNUvKpSUXp3TboNpwnhVbOzJZNEVxKzKKwtErrRMjKQ50g3YPvJM01B3EpzGGJ0wpDdX5rpDRdTBEARCblqi+9MuGfvF/Yc6LNYgYPr/a+/Lo3Urint/tb97ASU+RlGcuJcIRGMgRkgcHuEqMhhFXHm8BKMR1DiuPIdkJWLUiDGDmX36kiiJeglPAlFkUBEikAs4ICIYBCJyReChEAYBRS7DObveHzV0de/e3/nOfO85u9Y6a59v7x6qu6urqqurq3vMXbIKzwVM8sLsjmE6R5SjTCYcS+UvdGuM3pG5PYMkkKrxkhYgVyZEYeOmB/8KrGLhIox9Go1rSwCc0EvzlWbpeFS0PMK0bfQDfo4gM7tofldOObmG5kIieQf5BECakGgoTSIjfK+4cIt1jbfCXIB+IkdRlubxVQslV1oiIUTmxAh8MnYEQlhtFNSeaY7ORArtzBpKhcZnrrQAsts6EfAMppeq8C9/c2DWRTe5uSfn0AnagmYApI1zY3SFQCnryH4UQoXCe/NLVXryVam5rxqji/0XywgC1MLuu90dRkalUEuMPCoYabWH5JBhbVRc3eQ0A+0BgF2HQWtS+SkN5zw3KHxeKUFjiMW2clZW8h4LnRJRK/u+2pb0OXn3BaHA5KutjpwIAjdbAWUr0HmCCTxrQqTvGm0zUqTqcA4IIz2DN7lsWcXCheWwIxFnK8OoncG0wvhRJ5VHJSVgOk6WiuAQ98oUkt61KKZKiG/2CR+FnpgIkrkt4adAKZwIx4kWvvsmuzXLNS0E6te0YWIxQQ8mwr3rUliLRohOcXRzk5UTw/EbGGE74yqYXmmbR1cISJ8kYUUjzmdLIYQy00ubHyhMDYVHBfarArIKrVvi3lvgGGHfIQp61rGr2hRcwMS+B2Kx/t7qD91uOZjdAAAgAElEQVTmVzrHfTE3n4VCOoI6FG3mEaN3StXH1Z7tx1iZuW8J+16Bh3xpgxCuMKXsLE7WB/DxT30buqxYtWdKB5ArOr2N1ocLmKLMsu9d2eRkHQAQ3TL6NrzTxjmSohHMazFfx/nCP8S6kQRQpzIbO0o/EPrG2tbpw1RPiv2mr7I4bJPDqhYumGry8Sv7zwbBgNSd0vz0Y+5CBnlYfpvbI6DV0Ps+ieNFWqSiIRy8SpuvSasRzcY0tULDofwwVR7pt9C0iJ1hubYE0xjVY8Wa3ySvnmZNm/zgAdnshVztK15LeUdkp4GzDgr9HYUMAc2ohYU48RxBQy8h06Ar45HhpUK7EzHaGIYKFSqZjTJ1ikKagiuxtUfNCVFj8WsZ4mHWTiNKNTL8GwWKrWLtg+2JxdPyfUuhcsPCzryoluqKv6988uYbTdiVyhHvaPYh26cx044VAFWYuMhn9BDQlCxlO8ybsFA4kqTPV7Ucol30CDebijZHYlmqthTYaTt1XtZ5LiV6isqGZQ2WCHEmCO2JjF+fviJVr8BMR1HTFvW0MbXFcEcueCkvz4sozbrK8/J5PB5WsXAh4IGR2hXz1xFMSwHgzIFHFS0A6ETjpfJbuRHehglMpAMoWjgzo0ULGjUheoAMLo3CSsGES7FXI0UG4cEquKLNPGh7hCQcSAWKoQU9aDpaK951hFQmqwDhthJHTTVQM+ulidioMGVn9tYOahijNbJPMlLh0rJ6Rdkmu+Yp96fKSdTZvIzCKQy0T8y2X7D4alDNTC4wlFlYmS5YypWEevi4B1tpu+5oqTa2Nk6GKFx+cClYbNyKDXMv3zip0bOtzqaR2g35n1vI9cihD3z1TJDVuPaH1UVNq4sYQkOteDOmJXIaF3eWMHOlVhHNwOpS3IS9mTaYm704Jr9t0gYzKj/T0+XRALhJy+eQKyc1t2KWfYc2jQszgsUhRqFIiPmK0kLZGH3L5FFTsiqrJtTCuBsNUqRTM1lGhbKljmDpWC40fdpL1HGOV02o0ivXFTTJQkIpigKV/GsGWMXCRSfUtMajMogbxprGYUQdxTBjRE3QMssxMMZW0i6QE4rZmkFgahwBmY/czWMaVmFGytJAhQcom8CepmCkrsUBMJOWXzZV4mHZRB3NlL+s+WFiS3pX/jLckmddoZ1mZZE/O9ptTBMEizDSMbGRoraYNSwKFtTHr2YOsX4skxkzKwVjUqF9M5jLImp1Q3GDMoKGg0kJnTbFfR6qtbenOa7EKB3LgUd1hFFB27nCx+dC0Q/GrIk0vl6Bm7be9xoVATJmFzqCwGga+C2VTjuapGlY9joZyZSk/5uAAeB7d33Ey3rUvuN2b1lIPMSSCS0oLZ42zTlS2syq03QU82QJTKtI7zPBEmk1lklRqSraZoqBmV0BUV71fiqQ/EaT9+sksHqFC0Qw0DTS/SwV04RPQGN20XWRIYLJhYsKn1ElUKOVFdag1b0R12DEMyXbUCVjzIkQwEhnOCgrPhVphFjjrBwYcUbMWp5qV3mdaVJYHr+rvCD2mNa/j4Hont1q+dVVUay/0qb0TfCqXjaVTRbW8atsWlJIPxOY8OBaXbaiQC4AtPrcTMiJy0dNtSAHN1VRMFvEsDdWVIVxsuGhzN49gQhZNOFMmbKy9H4Z20/0w5GGcmWsMqbunlxNN5m+x6jVu11slVzSqNJH5bcbs3roxRUaBJNtIQhd6LUA0IYQKJQLAZJ2sTkaBNOpe+4h9GdhvYiQkRjFgbdyQ5rY7r6wQ5GmTLDWyJgSf2AEd3WCe1zORrAAq1y4oDNIlBNX0E5q+UiXu24TVULlIIyqg+2MgtNKqUxvdbc2oVol1mLpXsqewsaXNhN7KCMTKjkhlyuI7L54y85JAHTuS2dkEyTi0LEzIzGedroB6TIv7rXUGEtNYJa2eK7NC+LuhPTlFXXSZuMyJg1H2rD0JgTKqMglM1B6YmNgVk/WRtcUUp1I/6MppHtNsAT682G38bLhqgg/z96qzs8h1EsUMuiOVSzHNvwZGuLFPgWTrYS0IYzMCQZwJSNzftA+iq7ibYzQYLTpK1P55qYl1dDdtIeibEBWJGDH21fnzh9CX1n2hlN3hn5M4YsS7lWzvKPBnW9UjCXreFHNXG/4ceinOEdLUGESx6KMvD4prF7hYhOoJbe5utkiKo5OtRAbtDFwJj3XgUwwsGp9HO2ZQCLsSCFliPbCpGUaopiQpDIPaV6B6PAVGXIWBbYz+SnHLTC8ZEaQ9k5HLcsZtzGwMOktgTG+kN77nvL88T0zQG2Tfe8Ix1i/5e0B1/DN9KFj5NF4+0yEHYmi7xi6GY6szzL7vQUs1Pr8mwntuKdl0HAaq6wrlXFHtHSwzekjlp+1IwopAL56ymiTgRF18Q2f42FaWbFToluju7h/MFM3BoUiY3zWxa3s4fC0tVHyRA+/mpmGQ4UpIkagzyBgPBJBLCcKFdfkoX2d9iFqBJd5uJEqEyY8NV/mIMlyXsfNaybgejbNbdhlfoT+bxi0JtGWrLBI6jblLMxxt9wxZ2Maz+1k5nOfq2ncJoHVK1ygWsQaZdg2xj3S3MwOroW6z3zy1mA9Kc4jlnLjxq27i1qZ6TuFwUzIlWcXkIXFkJf6sMnWBEI1V9tM0yuYdO0sByVt1DQeu/ciEyAloyjME36PTPhu7ZY+rJfDahJKTKoQPsjT+/va8sTej9K/2kQ9f5OfhcnLLtpj6Fq/okE8kZ4x94gu5z9iXTUTJqkCUQWlPzdR6gFAipUV8j3vJ/aoBTCNNDBgRKaNJNidkQV69H0F3QNhn0Ble4Caau59G5wSoimGR3JI0hUAINtUN+eCalDIwM/9d6RRE6BgjXwhGg0VBNSRkWRHEIKAMeYbnjFYJ0Z5futXm3e+82PCx8anHEvA02M67RZ5ANBRuDzOaAOBhk2w2N6UCRNTCuyMUhAmkSf5HT59FpAKrF7hQox2hzZ599S0LWUYZn+OdkdzO+UpCt46GnZkbQvSMP5xSZ8xeiDbfPRBNe2sbdJBphYg3TDlNa3GBNNCgoCJodO5JWC6Ec3PBWecqJR5CHmbzc2ahXBTaHeItmoxrirKG4Uy3ObcYXCUn/KNxOpeTsgZgZZb5bmFObE8kOYTf5Sj24zUUaFJgUsbLatl8rtSPIRPaEY73WDqYei9MU2mcffFMOtMWNZ9qjFgppXEoPNNVY9pFdvKYcw8KkNSLowRefsLZqJFyAFj87Sa1n5g8hPcstdIyrA4SF84o0yadeg8IDE5JmAq0GGbcGSiZLZEymfN8JW/7W/6hnwou9anlteHRYVjmx+k9vS1fQzSuREYvCkr0Y2+aVJgW+seoyuJCddg+pFGnYI4OxNGo9zrzfJy26CdIqC1QGQaI1GPCADA9NTI9yuJg1JQKHlkiqPFPiMor1MPUGu4R3+o8MkxsIqFC/KQIaXt0wTKKGl4cbno2kdDfirbNGIy76rAZEzTqhFuR7sDwJmNCzBTDLWUh/XI1LPc1dZdTVsLepcYe0eo1nBoleCsXhUuFJm+5bU+M5yUeDvmGbc3atYgqNIB6jpjqNl7XRiFsUnpzQMtMlB96ialXLUgAsYEU2PoFgyqaVq0beMCxDela4zM+bkyMtfYExMetw+my4JMG/U2IWeCXQZI3X4vhHBMGr0A3YUXDcjjWhkThl+WxyZUamVm5Y/hRqx83g7tKS0wRfoJQitrXiIYQlL2PE/bzeNPKodMyqqG/VHX81RRaFfwqMx5Q1K0LLitfWup8biFxG2KQeau2az5kvnUUSXI8YSmgV/74Q43SPip+S2E/uyOSXxtpkPS1Zsd8MzoTPtlBoUowuoVLoDHGQLgAsY1QT2XYlpe2uCW77axaFeA+kltEzC1MTX3vvguaI0G2VWxZTlsA58+pN9K8EoEZm5IGkuFEdYmXcTF8uqEo/gMxeblJG85m5fyIxD1BGaU0tG4dFmNnjgZgw0Cq1ZuBNbyUkwxW7k0yV6PtDkcy4uHT1n7xE1JkZlzXmHVgSLDyCqpJMmEkhQeXcw7B/ECRHs/s9BwA+TzAKkv7NZKq0o8wrQ+WzEUYyhMVXFxoZ8+chCcRm+OltFg2IccJ5tc4Na6sdLv3p9KC7kHVJo3tsfkYBvaGQNHVfDb6ov1gKTFP+uzdCZcSwVB60AaG/mfsrrLazl8vnoZnFdu5nj7BnQ7MIy5/w4Cd1JY3cIl2jX14AU5EbKHOinNB4A5mTD8ClBjKJEBzsI+WfV8IuVYDfVMlMSEs2+GTy2Pl40QGDIIlcAMxnmGcFGW71cRsr2mpFEGhuP1mvYfcCoEkGuioTFE4V2ot+NJZ8qCTl5CXo7VPY3Gz0l4FzL5ZCUSKwTFBLEfDdxVlRMDotSPaX8rjGenLOuPKMFjR5d5VMD4Xgh8/Ev6k41gEZbMhGbUYrqVp5kNicVsMz3ViOJkByujuY9UpFGoK9RhaTLHAVNKdOxcLCu9OM0RZM9SmbmH+C/Mp0a/mccfceLRZT9b/zZ6KFCVx4yTWlvs8KN9alRIlGeISuHvCgqjRQOMGO2oxXTbIAW3FcVF+rZn5z4Ifh4lJazmbWngJlYOnpVBuHPYj43XcMv84PGCIwqZWcAqFy7ocgxfSiAnHEKuHdrTsyVG0DGB2HcCSg07O9tQbnLbxAPXl6OBCTv0CTVnwqoVFpOOwjcrR0xieX8YkdZMiNDDV3boCoBqgmFvIDo5FDSd7skoVKfSpGMTwpSAaPoqGTEIbIdkm7Rpa+cmrPyaSS158YiQa5r0rSN4XcEQ5p05CATmmgmIUsMsFIDkraS42IZ2DBlkGrU7YGhaDsVGedvq3glxEY6oFa0Yui8w1YCnm4STmWFMYHALP1hoYxIh0FvmNKDEZxvZNJKne2E1AK/J6Yc6Ji5OCo3v0wWlQfubqMwHP20eTVmZx6IKYMQQPi1kn9OGyAWTNTylMy2LwWi5xRTJjv60HjidbmUfqw37WZ4/4we2FULenja6VIfq2ei8x4ToqxfifJ5rl4PDPO8FzsP5TACDcCkmdOcbkJs8kDbWqsEPLV80TxC7HbmMAJBlC8TuZTbpsBeAjpAoNa8MnBEYDqiHcKgJKTWvmdbDYd8GQVjEethCRNjkZYhGXLjs+rNkAMogKa56Sii6urrhaszbJox5wzCysCsd81StbO0L2fQt6sjqVEHUWhf1uIxHvHohTX5Bi13Y+T6aMTHV8skHC/n+Q1m3C1Vyc0/rt1TBGQ1PNcmjacRJYDqtIFcCyiaZ0DfzDUKcL6tb8Sej45L5W7+qguJFx+HKzMdal0XHtgCpOsczL8GAGxiigBR7nElfVG2sM5xBoTEGHQQSRg1aAFMIioLyjXa6CTwi9illkTymQ9iDdEV1l990XPozHIu9u3LOUGGArswD74OmHOh+WN3CxZaOXBCoEQsT2imAmsbD5bNOcCN6AIkKrd8t3EjG4NRFuQl1GWEFYuGCIzhzjxpt2A9yt1Q3YQSh4IeqgruzOSrUGF+kG9vgJBUOBDVf9GgutvlYmA7sDo3oLt2xE5u5SCd/XAXGCVPuC0RtM52XCO+MCbeQjdOGxXWY0vu4EnAtnziFwIhQm7xaJ4WxFP6p7Y0H26LpJTA8VzqcObL3hfchVHC1AKbIaYYY0r/Rg1A/VBewUSMnUuWD3azC0+RegV42JGZYO9UEwR+VmS5j8phyZcBSGxdAFI+C6TVNHnXbhWocV9sLKzwdo+ONpXOZ403m1O+OVsLLNtijN1halQdzWljtel9k5jQCplnMX4+MipU8cgUj8A/bR2QQeDr0ayk8YsPa1BekuALR44tDgwvTntFjEwZPK+mEqzJeOSGsbuFiUDKusArwTTokQkcLP/sBIMUUkswIBeX/64TIovjaxPG0FCZCeKri4GdQKJ+8vucR53kUZFahtrXjLlvrE3DhyYKOlhgrzSIgG6emsPIK/Rz3IkwzKgVX3DDvbNjbv7VDh/bbBbgeQrS2FJpmZLhpcuuQajuqbtHWRjdHKB0Yc7EV3rj5GFegcWwiA2xYGI15LsVxNuWEUxmxPzLbujHZgk58f44p3eVRMpaSoXP8HgtL5TNIzCgV8koISqZIO/FiN1Kpne3rqPYv/4d5aILDVkvGOMuaa/g4bavwGIWE2T5Nlzn3Akt4KTsMbTiV00c88thkL8j7TStp81VzMi2HMWltrhndpj7xVUcciOJn9jLyouzb7GB1CxcjbMoJJoXqlhccmYcNJnviapmi6aeNbP9cnWhSdrQEyDNofhSYOwrvqE67tCDThqOSNC5fleBiu+CzI2mIUesyYVab0UVVlSTuZlukzVYyKDVXKug+NSJtZBaf7RmYqq96SDK6K6eZB6PJw1aSHYEWBrBNgrFk5rX+sHbGVYuZSAnkjM3cw1Fo/JkzRrmSRmqnY8XwzfAogJzxRWZr5ZTmPP/WbQzHMkIflCvOVE9/n8gzvWvlitUODUVTJBmjJaBcwnEfPQBuYmTA+9gikfvqPK5YMmRVMBlNAS5geqHPEmA0bnRqK0sC4sl6V5BMmGdmwqwif6Yp21d3wMFwdJfsyWF1CxfTmNTumy3FCSnWU7Yjqk9KhJfdmwLAbZiF5pSbQKB1qF7vNpmcR2XHXTR/GUQuhXYITbO0NY3fCLFoU+lG2508yBhfp1xjbi6Uu2V04oNFTRim7aJoXymZ7B3loe2BZBNWBuzCo4Tau9iWIHTcvBnOEMWQ+3HrwXlKa87hhWTRPhq3n5StWJXRyT1CyuR8vCkTdOVmbV6vVOq0hiK9JdHx9bLjhjnnGrQJ4bwNip/t/4C6uPTuD2i/tBrMksycGxQMxzNqQtqh5RywuoCqQKmfOWKgKVbRxCkqeAzrE8swNIJVwummb6zNdFlRBlJfFOfKYppIn9zND0I4SFtWnkeXThlS2Wm12z1vNQmsauFiBx3F1RjBXMVoicDUBFdI08YoTT4VFPFSK82uV6zG4QvEGwfI91JTGIiOMhMZRkZciYFnB50KjTG66MYJVY0zhsKdt6CmeH6jdG7L2s+p3KrZzTN1CzGtt7a/U57jSMJJGV30wSb0c3IKwsE0s3qTAzOP74Lo8L7mLI/ft9LjcerlxJVZKc9NwJhDyCgytzAWRrthtZrvUSEpB1nDYMPuWjdrnX7y3L53BDV3xt4VpNDtuTm1KIeL8pHcamWFJsIwc6bsEJw0wvcI/L6YghaLPFXvKnsR8HWTnQoCQmnKTumSMAtu0dGt2cptgmAJbatCljc3aZdKktFLPncqAq5Xw0EuWLJ6etL3wOoVLsQeMqEZtWjKDTpqwNSiJSpO+6qpQk90m0YDIPitM0r31jKAZAYsJ3ftpHK22sn2TXJhUDtRXBKBneVwE1J2noPSxPa8NqP6tKl4YC9vg7nodoMEIqunc6FYpHMT4KYFZgwJXcIPS3c2tCn0m68gowC1ejkFi2TOyop4+X5Q5ACBOfgekzNJyq5J5ia101e8sV/N6aG1vSFhZNNtvjJoRhqttk+qG2jbsggR6I5nuR/DTKBRXobRjm8YA5nQ4DAukWbcSaJNlXEUVF6N0qcrCuSrUdZ+js4iGdh4miAnCYHElfMrZds9fxR0blUo6ov91FKay6H+NEclijOZwJvKpm6KJ+jCKmtMKi/wiixPFp1Du9PihQVPUI7zr5wrCANYIyIToAjJhpXL7IBKgRKeDpUlPAVit3g+6TASpTQ2QQG/RbFPWSBbIlukZZusHeJDTtRtXiZF+nG34SiE0sHATrFGiGSTntPEiXX7ZM6Fp68kmHxyeF0c6jAbsTLbTLBYOUrg0UaYMbI+iPLRxtbXhYW2RlBBxoUgTBPJP5X9YAKoPIxHlDax414dLBhHv4IR22lRGqI89KozzVUfFcUlc4f2Pgnt824gJZcgjCxdoEMPy2J9rGMrdRfMp8a3ZtR+Aw3FMyaNnpVqTehzanOkGaV5qnWaVxH7rpg7Rh81IQTkCmKcg0UTklBGMKMpXzA368p+aCqYEoP3fR/OPD3tsKbQYK4URZxzbSKMEWWJuhD24rJV5yxgVQsXZkLbpj0460HXwO0sS7FPUIZ3idq6E2vbAE3pcmMZ8olf2m3l2aMpGFG3xeRyRloIhlhAVFg6fdF9l28oxLTKrG1vKmNwYaLrPClXOGWRmSIemax6zHQ05CxzmlBjTQuevtOakLmmxaErfGK9yoQTw9OyqN59mWDPPnSVmBTXKtQRmJehny6xCu+CQI2b4tGE26FZ6wbiwMAKiIcHzdkhnv6OyoCd0SqFdmhjtmGlxTqNqLDwTW0Vbtx31sKETFlXrDO2KdBavvJVZYBD2B/r55pAcfRLwoYri35OxwRLGM+8DUlI2iimPAhjqcpSiF5eIJO3keqf6+0o/+eeBONhRQkXIjoSwP+G7Hj8EzN/YFx6uzO+NW+OoKHY73I/Ipk+RMDEGxize7oJoLZJrsLhe4xZFbDPcEivKqqRbWIrs6VYVpjcdWZZeceUaykxbUdrEU7vfdT5FnCzt9a0iJqWn3vpabZCC6+680ZbdUcjs3wTTgQKyFW/UxqLbLJ2nSuioOOGO4K1d+GSpcsTmfu5R2soyyCouTPXeGoCJq+062Jd+x7NYt6QSJvZBkuqP1v1hW8Uxj9nYHVFzFbytgAnLvKayTIqLp6es7Ji2/JP+XypCpawIs/wt74IzF/aqePfoJChuWDJzfFFN6QGdS0F8XsUnPkWcFHmGDqP6cuV6ATZSlgxwoWIRgD+DsBhAG4F8HUiOoeZr+vJ4aHEawwxg8hI9bQ3EWf3nDjxBSLikhFkdtAeLlNOuHJwbaIxUhhtBNpiV/hybbImPKw8F0iVNB0BF7Q3n489WqLhYdoWzI4bBEOMGGArolqRVlc0WXXO8aQ2RatxJ2RG2cb4m2sJKpISqe7uCpQz82bXZTYUE4otV2elnkDe7WWB4WnjYibRKFgK5hQvk3NmZyfn7btGo3CGFTVoo7eOQpQalVZ9Y5hy1hHyZ3w2zk3b9zIX8Tj+7kFWWQFmOJXeVyXerANRKinR9IZy/CZk2KX8LH5XV4s1ZUnzlSsfPzQcaC67W2asoKjQe4dF9fCsHlgxwgXALwLYzMw3AgARnQbgaAB14cLwSSObr4VWUpyKl3c6P0cpUGB2sLJwqxUKSISYTGZ190JuikkTIShWfZ4cUZ50wDSm6uHJQgsqK83oLkzgyMgKiu26xUrebD/JPO10othKkrRNJRPmsuxgXsg9f5SxZp1RdMy4lYoJz2rWxBE6Mc0qMji2eWyVJQbhThLv3ZZhl1t1VzA2JmEsemjBzWFtUoo4jmHY0+C2kcupnKnqP8Gdvm81xXHAysbXzL6c6J+1/owkTcgAyeXXJJDek+BCSeugQnlxxcVoWGnJ5NJYGCe4gpKRmkMpTVQAyGi7J73jj5DJHomZMAiNzh9TqPRTqI98Huax6rIKIhZF3WW9lSw9sJKEyxMB/L/w+1YAvzQuAz8iJ5JpSp8mMCyGVhlLyUwTRGmAQqgXisKlwmgyWilDjjQsG3OujUkBHa04Ek2cJKCKcMhaG+6m0XnMJiRDvqDddBhKhkdg/tZfCP3m7S6cJryocMYoSw9nAFRqdnFikwgmC6+SHXwtJ05VSw0TP++mwKQVmko6bY+dZ+rUVZorWhebXShWdi5YzEtRFRRbYVhIHdv3iqtvUbrDWLDRUcQxrUoQPcF0VeArblO4ppRO/UyXKjN9+4LWLJhZKcVGs07qKFDOHEWAphWsvgshgjIh6soFkhnO2lPGuTPTYfRWZMjZqLFzJ2tU8X/OuIGKkIhg9OVhZorzJr1oUMrLlFb8ZMoW5P4dE8B+6JJV/wv9zcWz2q6YJtQ9C1hJwmVGIKLXA3i9/nzolt96xzXLic88YXcAdy03EvOAAf/lhQH/5YVtGf+9Jkm0koTL9wE8Ofx+kr5zYOaTAJwEAER0BTMfuHToLSwM+C8vDPgvLwz4b/0w7uzwtgZfB7APEa0nou0AHAvgnGXGaYABBhhgVcKKWbkw8xQR/TaA8yGuyB9n5muXGa0BBhhggFUJK0a4AAAznwvg3AmTn7SYuCwBDPgvLwz4Ly8M+G/lQDwb/8gBBhhggAEGmABW0p7LAAMMMMAAWwmsaOFCRLsS0ReJ6AZ97tKT7jwiupeIPle8X09EXyOizUR0ujoKLBnMAv/jNM0NRHRceL+JiK4nom/q3x5LhPeRWu9mIjqh8n177c/N2r/rwrd36vvrieiIpcC3gt+c8CeidUS0JfT3R5Yad8VjJvx/mYiuJKIpIjqm+FalpaWCeeI+Hfp+WZx5JsD/d4joOiK6moguJKK9wrdl7fsFB7l3YGX+AfgLACfo/ycA+POedIcCOArA54r3/wrgWP3/IwDetLXhD2BXADfqcxf9fxf9tgnAgUuM8wjAdwHsDWA7AP8B4OlFmjcD+Ij+fyyA0/X/p2v67QGs13JG2xD+6wBcs5T4zhH/dQD2B/DPAI6ZhJa2dtz12/3bQN8/H8Cj9f83BdpZ1r5fjL8VvXKBhH85Wf8/GcDLaomY+UIAP47viIgAvADAp2fKv4gwCf5HAPgiM/+Qme8B8EUARy4RfjXwMDzM/DAAC8MTIbbr0wAO1f4+GsBpzPwQM38PwGYtbylhPvhvDTAj/sx8EzNfjW6Iw+WmpfngvjXAJPj/OzM/oD8vg5zHA5a/7xccVrpweRwz36b/3w7gcbPIuxuAe5l5Sn/fCgkxs5QwCf61sDcRz0+omeA9S8QAZ8InS6P9ex+kvyfJu9gwH/wBYD0RXUVEFxPRwYuNbAXm04fL3f/zrX8HIrqCiC4joqVWBIHZ4/9aAF+YY96tHrZ5V2QiugDA4yuf3hV/MDNTNe748sIi4/8KZv4+ET0GwBkAfhNiThhgceA2AE9h5ruJ6FkAziKin2XmHy03YqsE9lJ63xvARUT0Lbi93ikAAA/aSURBVGb+7nIjVQMieiWAAwEcsty4LBZs88KFmV/Y942I/ouI9mTm24hoTwB3zKLouwHsTERrVDvthJNZCFgA/L8PYEP4/STIXguY+fv6/DERnQpZti+2cJkxDE9IcysRrQGwE6S/J8m72DBn/FmM5w8BADN/g4i+C2BfAFcsOtZd3Axm04e9tLREMK/xD/R+IxFtAvBMyB7IUsFE+BPRCyHK4yHM/FDIu6HIu2lRsFwiWOlmsXMAmNfFcQDOnjSjMop/B2AeKbPKv0AwCf7nAziciHZRb7LDAZxPRGuIaHcAIKK1AF4CYCkCdU4Shie26xgAF2l/nwPgWPXGWg9gHwCXLwHOEeaMPxE9luReIaj2vA9kY3YpYT5hkKq0tEh41mDOuCvO2+v/uwN4Hvqu21g8mBF/InomgI8CeCkzR2Vxuft+4WG5PQoW8w9iB78QwA0ALgCwq74/EHJTpaW7FMCdALZAbJ1H6Pu9IcxtM4BPAdh+K8X/NYrjZgCv1nc7AvgGgKsBXAu9oXOJ8P4VAN+BaI3v0nd/BJlQALCD9udm7d+9Q953ab7rAbxomehmTvgD+B/a198EcCWAo7ZS/A9SOv8JZMV47Tha2hZwB/BcAN+CeGh9C8Brt9K+vwDAfymNfBPAOVtL3y/033BCf4ABBhhggAWHlW4WG2CAAQYYYBlgEC4DDDDAAAMsOAzCZYABBhhggAWHQbgMMMAAAwyw4DAIlwEGGGCAARYcBuEywAADDDDAgsMgXCpARBuIiInoxOXGZbmAiDZqH6xb5HpuIqKbFrOOlQ46TpuWG48Iev0AE9HG5cZlAICITiaiO4hoxznkfTQR3U5E/3c2+ValcBkIf+mA5E6ZbeYw1daI7yCAVzcQ0fHKr46fY/6DIHEFP8DMP5ltfpYozn8G4De0rIlgm48ttkhwOYCnAbhruRFZBXDociOwAuBpAB6YMdUAqxX+BMCPAPzDPMr4KID3almHT5JhEC4VUEn97eXGYzUAb6VRa7clYOaBVgeoAhHtC+CFkHBRW+ZaDjM/SESnA3gDEe3DzDdMkmlV/QE4EQD3/B2vaTbo7xOLvJv0/VoAfwiJH/QgJA7W60K6N0LiG1mssvcBaHrw+SXIhVO3A3gYcqfDRwE8YRZtOt7wh1wwtAlyxwgX6X4GwEat42FIjKNTAexXKXOjlrmuUtcZkICMWyAa0ZcBvLJIt25MP28K6W4CcFP4fYKmeWtPW58AYArAFcX7NZAbIi9TnB4AcBWA3+7r+7ngq2mfpX1wByQK8s0A/h7AnrMYM4IEv/wKJK7dgzou5wP49YIOa38bQ1k1HE/U9xsAvBwSZ+4BAD8A8DfQOHmQC/E2aZ/dA+AUALtV8O3UMY5WQn9uLNJuQkGXNTou3u8P4F+UVh7S/roSwAcBrJ1Fn/8agEsgc2MLZI6+E5WYgUaXkBh9fwngFq17M4B3ABI6q8jzUkgswNs07Q8AXAzgzZW0u0JMTf+puNyneQ/v4Tm1v3UTtPkDmvbQudBgkf4QLevPJunv1bhy2QRgZwBvhQS5Oyt8++aEZZwGEQrnAngEEhn3JCJ6BDIRjgPwOQixvBQiiB4A8OexECJ6DYCTIIR4DmRg9wHwWwCOIqJnM/Mts2jbMRDh8gXItcx7hbqOBPAZiGD8LGSSPAnArwJ4MRE9n5mvnKCOf4AEZ7wEMol2gwTrO4WI9mPm92i6eyFC9XjF432hjJvGlH8KZOn9KkiwzRJeCblOdmNom7XpCIigPxUyUZ4P4MOQsfrNGdo1Eb5E9BKIYCGIUnAzRNi8CcDRRPTfWW7RnAn+BMLYvge5Tvs+AHtCAjP+TwCna73vA/A2zfPBkH9SWv1fAF4EofNNEJPG2wHsSkRnQ2j58xA6fC6kf3fXPMsORLQ/gK9BmNo5kP76bwCeClEm3g2ZgzOV86eQ/r4LQh/3Q9r4pwCOIKLDWW6PjLAWwmifAJlTU5DbYD8ACV7qNEJEr4cohbdDaPEuAHtA+MGrIcqHpd0LMhbrIEFzz4MIsZcAOI+I3sDM/6jJN0Jo82hIVPQ47vfO1G7IqmUaonSVMAkNRrgc0teHab7xMKnUX0l/6NGqwvcNGL9y+TqAncP7vSErgXt0oJ4Yvu0MIbQ7AawJ7/fVPJtjev12qBLEmRO253jFqwVwZOX7LorbXeje6f0MyES7sni/EfWVy09Xyt8OIkgfqbRlE3o0Vf1+E8LKRd+dr3U/o5L+Wogw3i28O1HTfxgh8jNECH1Mvx09YV/24gvgpyCReKcBHFx8e4fW828T1nM3ZFX76Mq33Wfqo+L7uJXLfQCeFt5vr304rTgcEr41kOt1GcDPz1THOFrBAq1cAPx13/gpXU+yKn2OlnELgMeH92sggoAB/EGlzxmiQD4qvN8DwtTvRVg1QVaGDwHYY4Lx3ASZq8cW73eGCI8tkFtoe/tlQhrbESIQvzVfGgzvr1LaecxM9a9Kb7EFgBOY2bUGZr4RwJcgxPF+1kuL9Nu9EALeHfm1pW+CaEZvjek1z4UQLe0ovUVyUjibmc+rvH+V4vZeZs7uuGDmawD8I4BnEtHTZ6qAK3skLBrf30Em60Js0Nv99MfFl0R0IICnA/g8M9+t7xqIdn47gLcz83TAaxrA70Im5isWAK+jIeaM05n50uLbX0MY0mFE9JQJy3sEMlEzYOaFdCT5EDP/Zyj7IYhG2kD68eLwrQVg7qYHLCAOCwGd/QJmvkdxngleo88/ZubbQ/4pCH20EGtBDd7CYa+C5Q6WsyEXxO1XpJ1CZRUVx5OIDoCYl85g5tOKdPdCNs13gFzfMF94IkTBum1MmtnS4O0Q2pnxCubVaBZbCKjdLPgDfX6j8s2Ex5MgZhRAtCkAOKTHvW8PCGHs21NmDfou1rK6Dug5u7OvPp+GGS5YUsb5DogQeQqARxVJFuLe7zMhGvcriOiEIDBM2GwMafeFMPwbALybiGrlbYG0bb7wC/q8qPzAzFNEdAlEY38mREseB5+ECMXriOhfIbb5rzLzfQuAZ4T50OrWAKdDTNhnEdGnIfehfLmm5IyBceP2HSK6FcB6Itqp6P/7mHlzpTy7636X8O6TEAXjOiI6DTKeX2bmO4u8Nhd36pmLj9XnQtDrbvq8p+f7XGjwh/rcfabKB+EyB+jp/Cl9jvu2Nryzgf+9Gar7qVmgdnvPe6vrdfOpS29XvBwyqS4F8G+Q9k5DmOpxELPLvICZtyixvw6yR/AFvdnv5RDz4hdCcmvbPhCtrw9m0499sJM++zRBe7/zBGW9HeIU8WqIE8MJAKaI6FwAv9vD1OYCC0GrywbMfDkRHQy5RO4Y6N4ZEV0P4H3M/C8TFDPJuD0FMm6xT/r2NKyPRgHPvyGiuyD7QG+B7JMxEV0M4PeY2YS80eth+tcHC0GvtuLaoef7XGjQlMkZPc8Gs9jygRHxTsxMY/4uHltKDjxDXQfMUNfJPfkNfgcyOV7LzBuY+S3M/B5mPhELfyVraRp7sdZ9KjNH04O17cwZ2rZ+AXCyuh7f833PIl0vMPM0M3+QmQ8A8DiIGeRMiAPIeXZl71YEjH5ldBJhatACABHVyqqWw8xfZeaXQJSa5wF4P6TPTtX76GeCBRu3ccDM/8zMz4bQ6Ysh+32/DLl23FYkVsdbZ6DXV88HFwW7Rnm32sc50qCVdUflWwarVbiYmWU0NtXignlvHLwN1fVUfZ5R+XZIT55pALC75ScFZv4yxNR1NBHthCRkSgH4bYiG+Wz1GpsvjMP3Kn1uKD8os7T+ncTrzoGZ72DmzzDzr0FMNz8NcbSIOC0nrQJiWnly+VL76ednWQ5qZUGu7+4FZn6Imb/CzH8IWR0Asg82E4wbt6dCTIDfi/uo8wFmvpeZz2Xm10FMuLtChAwwt7k4V351G2SlX+4NdWACGjTYD8kRYCysVuFyD0QTm3TjdTHg/0A20/5WDzplQETbqTlgIeATEAb8XiL6xUpdDRFtmKCcm/SZpSWiI9C/IXq3PufS1ydDlvRvhrg7X83MV8UEuin7YYj2+SEiKveAQER7TuKsMAG+Z0Fszi8nomcX394GYD2AC3gG93Ei2p6Inld5vxbCiID8xP3dAB5ba9sSwuUAnkJE5ensdyO4vE9YDlCYaInoUIjZE8X75/a0+3H6nCQywcf1+e6wgjDB+FcQPvixCcrpBSJ6PtU3/PaIeKp57FIAv6pHEWpl/RwR7RFezWkOsbh3XQJgdxWisY7Z0iCIaD2k3zdp2WNhVe65MPP9RPQ1AAcT0ScBfAeiHZzDzFcvEQ7fVuL6OIBrieg8xWMthIgOhmgdP7MAdd1NRMdAlryXEdGFEHdUhmiQz4Esd/tsswZ/D7HPfko3V38A0W6OhPjJ/3olz4UQn/nPqC13C4CbmfmUCVA/BcAfQc4TrEV31WLwfoh30xshHnYXQTam94DsxTwPYrMf66wwE75KN68B8CkAFxPRpyAb98+C7A3dDuANE9TxKABfIqLNkE31myF9fxhkI/ec6OGlOB0EMVVcAnF5/Q9m/uwEdS0U/BXkHNHZelL7h5BzMeshrrUbJiznE5B9xneq59R1EKeMF0Hos/SS+n0ALyCiSyFu/vcD+FlNfw/kfM5YYOavENFfaFnXKO3+RMt4BsTT8y8nxL8PzgRwPxFdBlHCCDKHD4KM8QUh7W9AVgcfI6K3QM7x3AtZQe2vOD0HyfT0VQijfxsR7Ya0t/rhCRxAzoD06RGQYw8Gs6VBIIV9qVkuusCz8JteSX8QE89nIVpBi1mc0O8pbyN6Ts0inJaufPs5zXszhGn8EMA1kANZL5iwLcdH/MekWwdZMd0AOWT4I4hZ6RQAL5ukPRCGchFkYv8YMjFfNqbPRpCDajdCVmrZeQnMfIbjAs3zCILvfyUdQTZ7L9Q+fBgiYL4E4A8APHnCvhyLr6Y5CMJM7tR6boEcLp0oqgJEUP4+xDHhFh2LOyEmkzcC2K5Iv6OWfytkMzk7P9KD4zia66WXvnHUby+FeJ89CJk3p0FWLR1awZizZBDhcK7Sz/2QeXVIDS8IQ/sERAjdBxEK1wP4EIC9Zjnnj1V6+LG24VqI0rFDJW0vXdb6VsftTKWbB5QGr9Jx7pwJAfAYpctvaB9sgQjPzwN4PYAdi/RHQoTM/ZjdCf3tIJE4vjYfGtQ8X4EIvM632h9ppgEGGGCAAVYgENE7IQrTL3BhVp5FGftDIpq8h5n/eKI8g3AZYIABBli5QEQ7QFZ7VzPzUXMs4yzIeaH9eMIAmKt1Q3+AAQYYYFUAMz8IMRlfQXO8LAxi4nvVpIIFGFYuAwwwwAADLAIMK5cBBhhggAEWHAbhMsAAAwwwwILDIFwGGGCAAQZYcBiEywADDDDAAAsOg3AZYIABBhhgwWEQLgMMMMAAAyw4/H89CY/bszfBYwAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "filtered_csd = gaussian_filter(csd.data, sigma=4)\n", "\n", "fig, ax = plt.subplots(figsize=(6, 6))\n", "ax.pcolor(csd[\"time\"], csd[\"vertical_position\"], filtered_csd)\n", "\n", "ax.set_xlabel(\"time relative to stimulus onset (s)\", fontsize=20)\n", "ax.set_ylabel(\"vertical position (um)\", fontsize=20)\n", "\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Suggested excercises\n", "\n", "If you would hands-on experience with the `EcephysSession` class, please consider working through some of these excercises.\n", "\n", "- **tuning curves** : Pick a stimulus parameter, such as orientation on drifting gratings trials. Plot the mean and standard error of spike counts for each unit at each value of this parameter.\n", "- **signal correlations** : Calculate unit-pairwise correlation coefficients on the tuning curves for a stimulus parameter of interest (`numpy.corrcoef` might be useful).\n", "- **noise correlations** : Build for each unit a vector of spike counts across repeats of the same stimulus condition. Compute unit-unit correlation coefficients on these vectors.\n", "- **cross-correlations** : Start with two spike trains. Call one of them \"fixed\" and the other \"moving\". Choose a set of time offsets and for each offset:\n", " 1. apply the offset to the spike times in the moving train\n", " 2. compute the correlation coefficient between the newly offset moving train and the fixed train.\n", " You should then be able to plot the obtained correlation coeffients as a function of the offset. \n", "- **unit clustering** : First, extract a set of unitwise features. You might draw these from the mean waveforms, for instance:\n", " - mean duration between waveform peak and trough (on the unit's peak channel)\n", " - the amplitude of the unit's trough\n", " \n", " or you might draw them from the unit's spike times, such as:\n", " - median inter-spike-interval\n", " \n", " or from metadata\n", " - CCF structure\n", " \n", " With your features in hand, attempt an unsupervised classification of the units. If this seems daunting, check out the [scikit-learn unsupervised learning documention](https://scikit-learn.org/stable/modules/clustering.html#clustering) for library code and examples.\n", "- **population decoding** : Using an `EcephysSession` (and filtering to some stimuli and units of interest), build two aligned matrices:\n", " 1. A matrix whose rows are stimulus presentations, columns are units, and values are spike counts.\n", " 2. A matrix whose rows are stimulus presentations and whose columns are stimulus parameters.\n", " \n", " Using these matrices, train a classifier to predict stimulus conditions (sets of stimulus parameter values) from presentationwise population spike counts. See the [scikit-learn supervised learning tutorial](https://scikit-learn.org/stable/tutorial/statistical_inference/supervised_learning.html) for a guide to supervised learning in Python." ] } ], "metadata": { "kernelspec": { "display_name": "py37", "language": "python", "name": "py37" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.3" }, "nbdime-conflicts": { "local_diff": [ { "key": "kernelspec", "op": "add", "value": { "display_name": "allensdk", "language": "python", "name": "allensdk" } }, { "key": "language_info", "op": "add", "value": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.8" } } ], "remote_diff": [ { "key": "kernelspec", "op": "add", "value": { "display_name": "py37", "language": "python", "name": "py37" } }, { "key": "language_info", "op": "add", "value": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.3" } } ] } }, "nbformat": 4, "nbformat_minor": 2 }