This Jupyter notebook covers the various methods for accessing the Allen Institute Neuropixels Visual Coding dataset. We will go over how to request data, where it's stored, and what the various files contain. If you're having trouble downloading the data, or you just want to know more about what's going on under the hood, this is a good place to start.
Currently, we do not have a web interface for browsing through the available cells and experiments, as with the two-photon imaging Visual Coding dataset. Instead, the data must be retrieved through the AllenSDK (Python 3.6+), or via requests sent to api.brain-map.org.
Functions related to data analysis will be covered in other tutorials. For a full list of available tutorials, see the SDK documentation.
The EcephysProjectCache
object of the AllenSDK is the easiest way to interact with the data. This object abstracts away the details of on-disk file storage, and delivers the data to you as ready-to-analyze Python objects. The cache will automatically keep track of which files are stored locally, and will download additional files on an as-needed basis. Usually you won't need to worry about how these files are structured, but this tutorial will cover those details in case you want to analyze them without using the AllenSDK (e.g., in Matlab). This tutorial begins with an introduction to this approach.
If you have an Amazon Web Services (AWS) account, you can use an EcephysProjectCache
object to access the data via the Allen Brain Observatory Simple Storage Service (S3) bucket. This is an AWS Public Dataset located at arn:aws:s3:::allen-brain-observatory
in region us-west-2
. Launching a Jupyter notebook instance on AWS will allow you to access the complete dataset without having to download anything locally. This includes around 80 TB of raw data files, which are not accessible via the AllenSDK. The only drawback is that you'll need to pay for the time that your instance is running—but this can still be economical in many cases. A brief overview of this approach can be found below.
A third option is to directly download the data via api.brain-map.org. This should be used only as a last resort if the other options are broken or are not available to you. Instructions for this can be found at the end of this tutorial.
Most users will want to access data via the AllenSDK. This requires nothing more than a Python interpreter and some free disk space to store the data locally.
How much data is there? If you want to download the complete dataset (58 experiments), you'll need 855 GB of space, split across the following files:
Before downloading the data, you must decide where the manifest.json
file lives. This file serves as the map that guides the EcephysProjectCache
object to the file locations.
When you initialize a local cache for the first time, it will create the manifest file at the path that you specify. This file lives in the same directory as the rest of the data, so make sure you put it somewhere that has enough space available.
When you need to access the data in subsequent analysis sessions, you should point the EcephysProjectCache
object to an existing manifest.json
file; otherwise, it will try to re-download the data in a new location.
To get started with this approach, first take care of the necessary imports:
import os
import shutil
import numpy as np
import pandas as pd
from pathlib import Path
from allensdk.brain_observatory.ecephys.ecephys_project_cache import EcephysProjectCache
/opt/hostedtoolcache/Python/3.8.16/x64/lib/python3.8/site-packages/tqdm/auto.py:22: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html from .autonotebook import tqdm as notebook_tqdm
Next, we'll specify the location of the manifest file. If you're creating a cache for the first time, this file won't exist yet, but it must be placed in an existing data directory. Remember to choose a location that has plenty of free space available.
output_dir = '/local1/ecephys_cache_dir' # must be updated to a valid directory in your filesystem
DOWNLOAD_COMPLETE_DATASET = True
manifest_path = os.path.join(output_dir, "manifest.json")
Now we can create the cache object, specifying both the local storage directory (the manifest_path
) and the remote storage location (the Allen Institute data warehouse).
cache = EcephysProjectCache.from_warehouse(manifest=manifest_path)
This will prepare the cache to download four files:
sessions.csv
(7.8 kB)probes.csv
(27.0 kB)channels.csv
(6.6 MB)units.csv
(51.4 MB)Each one contains a table of information related to its file name. If you're using the AllenSDK, you won't have to worry about how these files are formatted. Instead, you'll load the relevant data using specific accessor functions: get_session_table()
, get_probes()
, get_channels()
, and get_units()
. These functions return a pandas DataFrame containing a row for each item and a column for each metric.
If you are analyzing data without using the AllenSDK, you can load the data using your CSV file reader of choice. However, please be aware the columns in the original file do not necessarily match what's returned by the AllenSDK, which may combine information from multiple files to produce the final DataFrame.
Let's take a closer look at what's in the sessions.csv
file:
sessions = cache.get_session_table()
print('Total number of sessions: ' + str(len(sessions)))
sessions.head()
Total number of sessions: 58
published_at | specimen_id | session_type | age_in_days | sex | full_genotype | unit_count | channel_count | probe_count | ecephys_structure_acronyms | |
---|---|---|---|---|---|---|---|---|---|---|
id | ||||||||||
715093703 | 2019-10-03T00:00:00Z | 699733581 | brain_observatory_1.1 | 118.0 | M | Sst-IRES-Cre/wt;Ai32(RCL-ChR2(H134R)_EYFP)/wt | 884 | 2219 | 6 | [CA1, VISrl, nan, PO, LP, LGd, CA3, DG, VISl, ... |
719161530 | 2019-10-03T00:00:00Z | 703279284 | brain_observatory_1.1 | 122.0 | M | Sst-IRES-Cre/wt;Ai32(RCL-ChR2(H134R)_EYFP)/wt | 755 | 2214 | 6 | [TH, Eth, APN, POL, LP, DG, CA1, VISpm, nan, N... |
721123822 | 2019-10-03T00:00:00Z | 707296982 | brain_observatory_1.1 | 125.0 | M | Pvalb-IRES-Cre/wt;Ai32(RCL-ChR2(H134R)_EYFP)/wt | 444 | 2229 | 6 | [MB, SCig, PPT, NOT, DG, CA1, VISam, nan, LP, ... |
732592105 | 2019-10-03T00:00:00Z | 717038288 | brain_observatory_1.1 | 100.0 | M | wt/wt | 824 | 1847 | 5 | [grey, VISpm, nan, VISp, VISl, VISal, VISrl] |
737581020 | 2019-10-03T00:00:00Z | 718643567 | brain_observatory_1.1 | 108.0 | M | wt/wt | 568 | 2218 | 6 | [grey, VISmma, nan, VISpm, VISp, VISl, VISrl] |
The sessions
DataFrame provides a high-level overview of the Neuropixels Visual Coding dataset. The index column is a unique ID, which serves as a key for accessing the physiology data for each session. The other columns contain information about:
If we want to find all of recordings from male Sst-Cre mice that viewed the Brain Observatory 1.1 stimulus and contain units from area LM, we can use the following query:
filtered_sessions = sessions[(sessions.sex == 'M') & \
(sessions.full_genotype.str.find('Sst') > -1) & \
(sessions.session_type == 'brain_observatory_1.1') & \
(['VISl' in acronyms for acronyms in
sessions.ecephys_structure_acronyms])]
filtered_sessions.head()
published_at | specimen_id | session_type | age_in_days | sex | full_genotype | unit_count | channel_count | probe_count | ecephys_structure_acronyms | |
---|---|---|---|---|---|---|---|---|---|---|
id | ||||||||||
715093703 | 2019-10-03T00:00:00Z | 699733581 | brain_observatory_1.1 | 118.0 | M | Sst-IRES-Cre/wt;Ai32(RCL-ChR2(H134R)_EYFP)/wt | 884 | 2219 | 6 | [CA1, VISrl, nan, PO, LP, LGd, CA3, DG, VISl, ... |
719161530 | 2019-10-03T00:00:00Z | 703279284 | brain_observatory_1.1 | 122.0 | M | Sst-IRES-Cre/wt;Ai32(RCL-ChR2(H134R)_EYFP)/wt | 755 | 2214 | 6 | [TH, Eth, APN, POL, LP, DG, CA1, VISpm, nan, N... |
756029989 | 2019-10-03T00:00:00Z | 734865738 | brain_observatory_1.1 | 96.0 | M | Sst-IRES-Cre/wt;Ai32(RCL-ChR2(H134R)_EYFP)/wt | 684 | 2214 | 6 | [TH, DG, CA3, CA1, VISl, nan, PO, Eth, LP, VIS... |
The filtered_sessions
table contains the three sessions that meet these criteria.
The code above uses standard syntax for filtering pandas DataFrames. If this is unfamiliar to you, we strongly recommend reading through the pandas documentation. The AllenSDK makes heavy use of pandas objects, so we don't have to come up with our own functions for working with tabular data.
Let's take a look at another DataFrame, extracted from the probes.csv
file.
probes = cache.get_probes()
print('Total number of probes: ' + str(len(probes)))
probes.head()
Total number of probes: 332
ecephys_session_id | lfp_sampling_rate | name | phase | sampling_rate | has_lfp_data | unit_count | channel_count | ecephys_structure_acronyms | |
---|---|---|---|---|---|---|---|---|---|
id | |||||||||
729445648 | 719161530 | 1249.998642 | probeA | 3a | 29999.967418 | True | 87 | 374 | [APN, LP, MB, DG, CA1, VISam, nan] |
729445650 | 719161530 | 1249.996620 | probeB | 3a | 29999.918880 | True | 202 | 368 | [TH, Eth, APN, POL, LP, DG, CA1, VISpm, nan] |
729445652 | 719161530 | 1249.999897 | probeC | 3a | 29999.997521 | True | 207 | 373 | [APN, NOT, MB, DG, SUB, VISp, nan] |
729445654 | 719161530 | 1249.996707 | probeD | 3a | 29999.920963 | True | 93 | 358 | [grey, VL, CA3, CA2, CA1, VISl, nan] |
729445656 | 719161530 | 1249.999979 | probeE | 3a | 29999.999500 | True | 138 | 370 | [PO, VPM, TH, LP, LGd, CA3, DG, CA1, VISal, nan] |
The probes
DataFrame contains information about the Neuropixels probes used across all recordings. Each row represents one probe from one recording session, even though the physical probes may have been used in multiple sessions. Some of the important columns are:
ecephys_session_id
: the index column of the sessions
tablesampling_rate
: the sampling rate (in Hz) for this probe's spike band; note that each probe has a unique sampling rate around 30 kHz. The small variations in sampling rate across probes can add up to large offsets over time, so it's critical to take these differences into account. However, all of the data you will interact with has been pre-aligned to a common clock, so this value is included only for reference purposes.lfp_sampling_rate
: the sampling rate (in Hz) for this probe's LFP band NWB files, after 2x downsampling from the original rate of 2.5 kHzname
: the probe name is assigned based on the location of the probe on the recording rig. This is useful to keep in mind because probes with the same name are always targeted to the same cortical region and enter the brain from the same angle (probeA
= AM, probeB
= PM, probeC
= V1, probeD
= LM, probeE
= AL, probeF
= RL). However, the targeting is not always accurate, so the actual recorded region may be different.phase
: the data may have been generated by one of two "phases" of Neuropixels probes. 3a = prototype version; PXI = publicly available version ("Neuropixels 1.0"). The two phases should be equivalent from the perspective of data analysis, but there may be differences in the noise characteristics between the two acquisition systems.channel_count
: the number of channels with spikes or LFP data (maximum = 384)The channels.csv
file contains information about each of these channels.
channels = cache.get_channels()
print('Total number of channels: ' + str(len(channels)))
channels.head()
Total number of channels: 123224
ecephys_probe_id | local_index | probe_horizontal_position | probe_vertical_position | anterior_posterior_ccf_coordinate | dorsal_ventral_ccf_coordinate | left_right_ccf_coordinate | ecephys_structure_id | ecephys_structure_acronym | ecephys_session_id | lfp_sampling_rate | phase | sampling_rate | has_lfp_data | unit_count | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
id | |||||||||||||||
849705558 | 792645504 | 1 | 11 | 20 | 8165.0 | 3314.0 | 6862.0 | 215.0 | APN | 779839471 | 1250.001479 | 3a | 30000.035489 | True | 0 |
849705560 | 792645504 | 2 | 59 | 40 | 8162.0 | 3307.0 | 6866.0 | 215.0 | APN | 779839471 | 1250.001479 | 3a | 30000.035489 | True | 0 |
849705562 | 792645504 | 3 | 27 | 40 | 8160.0 | 3301.0 | 6871.0 | 215.0 | APN | 779839471 | 1250.001479 | 3a | 30000.035489 | True | 0 |
849705564 | 792645504 | 4 | 43 | 60 | 8157.0 | 3295.0 | 6875.0 | 215.0 | APN | 779839471 | 1250.001479 | 3a | 30000.035489 | True | 0 |
849705566 | 792645504 | 5 | 11 | 60 | 8155.0 | 3288.0 | 6879.0 | 215.0 | APN | 779839471 | 1250.001479 | 3a | 30000.035489 | True | 0 |
The most important columns in the channels
DataFrame concern each channel's location in physical space. Each channel is associated with a location along the probe shank (probe_horizontal_position
and probe_vertical_position
), and may be linked to a coordinate in the Allen Common Coordinate framework (if CCF registration is available for that probe).
The information about channel location will be merged into the units
DataFrame, which is loaded from units.csv
:
units = cache.get_units()
print('Total number of units: ' + str(len(units)))
Total number of units: 40010
This DataFrame contains metadata about the available units across all sessions. By default, the AllenSDK applies some filters to this table and only returns units above a particular quality threshold.
The default filter values are as follows:
isi_violations
< 0.5amplitude_cutoff
< 0.1presence_ratio
> 0.9For more information about these quality metrics and how to interpret them, please refer to this tutorial.
If you want to see all of the available units, it's straightfoward to disable the quality metrics filters when retrieving this table:
units = cache.get_units(amplitude_cutoff_maximum = np.inf,
presence_ratio_minimum = -np.inf,
isi_violations_maximum = np.inf)
print('Total number of units: ' + str(len(units)))
Total number of units: 99180
As you can see, the number of units has increased substantially, but some fraction of these units will be incomplete or highly contaminated. Understanding the meaning of these metrics is a critical part of analyzing the Neuropixels dataset, so we strongly recommend learning how to interpret them correctly.
In addition to the quality metrics, there are a number of stimulus-specific metrics that are computed for each unit. These are not downloaded by default, but are accessed via a separate SDK function:
analysis_metrics1 = cache.get_unit_analysis_metrics_by_session_type('brain_observatory_1.1')
analysis_metrics2 = cache.get_unit_analysis_metrics_by_session_type('functional_connectivity')
print(str(len(analysis_metrics1)) + ' units in table 1')
print(str(len(analysis_metrics2)) + ' units in table 2')
21842 units in table 1 18168 units in table 2
This will download two additional files, brain_observatory_1.1_analysis_metrics.csv
and functional_connectivity_analysis_metrics.csv
, and load them as pandas DataFrames. Note that the total length of these DataFrames is around 40k units, because the default quality metric thresholds have been applied.
To load all of the available units, and create one giant table of metrics, you can use the following code:
analysis_metrics1 = cache.get_unit_analysis_metrics_by_session_type('brain_observatory_1.1', amplitude_cutoff_maximum = np.inf,
presence_ratio_minimum = -np.inf,
isi_violations_maximum = np.inf)
analysis_metrics2 = cache.get_unit_analysis_metrics_by_session_type('functional_connectivity', amplitude_cutoff_maximum = np.inf,
presence_ratio_minimum = -np.inf,
isi_violations_maximum = np.inf)
all_metrics = pd.concat([analysis_metrics1, analysis_metrics2], sort=False)
print(str(len(all_metrics)) + ' units overall')
99180 units overall
The length of this DataFrame should match that of the units
DataFrame we retrieved earlier. A few things to note about this DataFrame:
units
DataFramebrain_observatory_1.1
session are not present in the functional_connectivity
session, many of the data points in the unit analysis metrics DataFrame will be filled with nan
valuesAssuming you've found a session you're interested in analyzing in more detail, it's now time to download the data. This is as simple as calling cache.get_session_data()
, with the session_id
as input. This method will check the cache for an existing NWB file and, if it's not present, will automatically download it for you.
Each NWB file can be upwards of 2 GB, so please be patient while it's downloading!
As an example, let's look at one of the sessions we selected earlier, disabling the default unit quality metrics filters:
session = cache.get_session_data(filtered_sessions.index.values[0],
isi_violations_maximum = np.inf,
amplitude_cutoff_maximum = np.inf,
presence_ratio_minimum = -np.inf
)
print([attr_or_method for attr_or_method in dir(session) if attr_or_method[0] != '_'])
WARNING:root:downloading a 2723.916MiB file from http://api.brain-map.org//api/v2/well_known_file_download/1026124469 Downloading: 100%|██████████| 2.86G/2.86G [01:01<00:00, 46.6MB/s]
['DETAILED_STIMULUS_PARAMETERS', 'LazyProperty', 'age_in_days', 'api', 'channel_structure_intervals', 'channels', 'conditionwise_spike_statistics', 'ecephys_session_id', 'from_nwb_path', 'full_genotype', 'get_current_source_density', 'get_inter_presentation_intervals_for_stimulus', 'get_invalid_times', 'get_lfp', 'get_parameter_values_for_stimulus', 'get_pupil_data', 'get_screen_gaze_data', 'get_stimulus_epochs', 'get_stimulus_parameter_values', 'get_stimulus_table', 'inter_presentation_intervals', 'invalid_times', 'mean_waveforms', 'metadata', 'num_channels', 'num_probes', 'num_stimulus_presentations', 'num_units', 'optogenetic_stimulation_epochs', 'presentationwise_spike_counts', 'presentationwise_spike_times', 'probes', 'rig_equipment_name', 'rig_geometry_data', 'running_speed', 'session_start_time', 'session_type', 'sex', 'specimen_name', 'spike_amplitudes', 'spike_times', 'stimulus_conditions', 'stimulus_names', 'stimulus_presentations', 'structure_acronyms', 'structurewise_unit_counts', 'units']
As you can see, the session
object has a lot of attributes and methods that can be used to access the underlying data in the NWB file. Most of these will be touched on in other tutorials, but for now we will look at the only one that is capable of triggering additional data downloads, get_lfp()
.
In general, each NWB file is meant to be a self-contained repository of data for one recording session. However, for the Neuropixels data, we've broken with convention a bit in order to store LFP data in separate files. If we hadn't done this, analyzing one session would require an initial 15 GB file download. Now, the session is broken up in to ~2 GB chunks..
Once you have created a session
object, downloading the LFP data is simple (but may be slow):
probe_id = session.probes.index.values[0]
lfp = session.get_lfp(probe_id)
WARNING:root:downloading a 1967.383MiB file from http://api.brain-map.org//api/v2/well_known_file_download/1026124481 Downloading: 100%|██████████| 2.06G/2.06G [00:44<00:00, 46.7MB/s]
Tips for analyzing LFP data can be found in this tutorial.
Analyzing one session at a time is nice, but in many case you'll want to be able to query across the whole dataset. To fill your cache with all available data, you can use a for
loop like the one below. Note that we've added some checks to ensure that the complete file is present, in case the download has been interrupted due to an unreliable connection.
Before running this code, please make sure that you have enough space available in your cache directory. You'll need around 855 GB for the whole dataset, and 147 GB if you're not downloading the LFP data files.
if DOWNLOAD_COMPLETE_DATASET:
for session_id, row in sessions.iterrows():
truncated_file = True
directory = os.path.join(output_dir + '/session_' + str(session_id))
while truncated_file:
session = cache.get_session_data(session_id)
try:
print(session.specimen_name)
truncated_file = False
except OSError:
shutil.rmtree(directory)
print(" Truncated spikes file, re-downloading")
for probe_id, probe in session.probes.iterrows():
print(' ' + probe.description)
truncated_lfp = True
while truncated_lfp:
try:
lfp = session.get_lfp(probe_id)
truncated_lfp = False
except OSError:
fname = directory + '/probe_' + str(probe_id) + '_lfp.nwb'
os.remove(fname)
print(" Truncated LFP file, re-downloading")
except ValueError:
print(" LFP file not found.")
truncated_lfp = False
If you want to analyze the data without downloading anything to your local machine, you can use the AllenSDK on AWS.
Follow these instructions to launch a Jupyter notebook. Then, simply point to the existing manifest file in the Allen Institute's S3 bucket, and all of the data will be immediately available:
cache = EcephysProjectCache(manifest=manifest_path)
Once your cache is initialized, you can create the sessions
table, load individual session
objects, and access LFP data using the same commands described above.
Additional tutorials specific to using AWS are coming soon.
Some people have reported issues downloading the files via the AllenSDK (the connection is extremely slow, or gets interrupted frequently). If this applies to you, you can try downloading the files via HTTP requests sent to api.brain-map.org. This approach is not recommended, because you will have to manually keep track of the file locations. But if you're doing analysis that doesn't depend on the AllenSDK (e.g., in Matlab), this may not matter to you.
You can follow the steps below to retrieve the URLs for all of the NWB files in this dataset.
from allensdk.brain_observatory.ecephys.ecephys_project_api.utilities import build_and_execute
from allensdk.brain_observatory.ecephys.ecephys_project_api.rma_engine import RmaEngine
from allensdk.brain_observatory.ecephys.ecephys_project_cache import EcephysProjectCache
rma_engine = RmaEngine(scheme="http", host="api.brain-map.org")
cache = EcephysProjectCache.from_warehouse(manifest=manifest_path)
sessions = cache.get_session_table()
def retrieve_link(session_id):
well_known_files = build_and_execute(
(
"criteria=model::WellKnownFile"
",rma::criteria,well_known_file_type[name$eq'EcephysNwb']"
"[attachable_type$eq'EcephysSession']"
r"[attachable_id$eq{{session_id}}]"
),
engine=rma_engine.get_rma_tabular,
session_id=session_id
)
return 'http://api.brain-map.org/' + well_known_files['download_link'].iloc[0]
download_links = [retrieve_link(session_id) for session_id in sessions.index.values]
_ = [print(link) for link in download_links]
http://api.brain-map.org//api/v2/well_known_file_download/1026124469 http://api.brain-map.org//api/v2/well_known_file_download/1026124034 http://api.brain-map.org//api/v2/well_known_file_download/1026123696 http://api.brain-map.org//api/v2/well_known_file_download/1026123599 http://api.brain-map.org//api/v2/well_known_file_download/1026123989 http://api.brain-map.org//api/v2/well_known_file_download/1026123897 http://api.brain-map.org//api/v2/well_known_file_download/1026123964 http://api.brain-map.org//api/v2/well_known_file_download/1026124068 http://api.brain-map.org//api/v2/well_known_file_download/1026124429 http://api.brain-map.org//api/v2/well_known_file_download/1026124262 http://api.brain-map.org//api/v2/well_known_file_download/1026124724 http://api.brain-map.org//api/v2/well_known_file_download/1026124242 http://api.brain-map.org//api/v2/well_known_file_download/1026124863 http://api.brain-map.org//api/v2/well_known_file_download/1026123537 http://api.brain-map.org//api/v2/well_known_file_download/1026124326 http://api.brain-map.org//api/v2/well_known_file_download/1026124684 http://api.brain-map.org//api/v2/well_known_file_download/1026124216 http://api.brain-map.org//api/v2/well_known_file_download/1026124603 http://api.brain-map.org//api/v2/well_known_file_download/1026123685 http://api.brain-map.org//api/v2/well_known_file_download/1026123877 http://api.brain-map.org//api/v2/well_known_file_download/1026123377 http://api.brain-map.org//api/v2/well_known_file_download/1026123651 http://api.brain-map.org//api/v2/well_known_file_download/1026124702 http://api.brain-map.org//api/v2/well_known_file_download/1026124793 http://api.brain-map.org//api/v2/well_known_file_download/1026124884 http://api.brain-map.org//api/v2/well_known_file_download/1026124569 http://api.brain-map.org//api/v2/well_known_file_download/1026124500 http://api.brain-map.org//api/v2/well_known_file_download/1026124293 http://api.brain-map.org//api/v2/well_known_file_download/1026124194 http://api.brain-map.org//api/v2/well_known_file_download/1026124517 http://api.brain-map.org//api/v2/well_known_file_download/1026124918 http://api.brain-map.org//api/v2/well_known_file_download/1026124152 http://api.brain-map.org//api/v2/well_known_file_download/1026124109 http://api.brain-map.org//api/v2/well_known_file_download/1026124348 http://api.brain-map.org//api/v2/well_known_file_download/1026124625 http://api.brain-map.org//api/v2/well_known_file_download/1026124179 http://api.brain-map.org//api/v2/well_known_file_download/1026124007 http://api.brain-map.org//api/v2/well_known_file_download/1026124309 http://api.brain-map.org//api/v2/well_known_file_download/1026123803 http://api.brain-map.org//api/v2/well_known_file_download/1026124405 http://api.brain-map.org//api/v2/well_known_file_download/1026123847 http://api.brain-map.org//api/v2/well_known_file_download/1026124645 http://api.brain-map.org//api/v2/well_known_file_download/1026124545 http://api.brain-map.org//api/v2/well_known_file_download/1026124759 http://api.brain-map.org//api/v2/well_known_file_download/1026124804 http://api.brain-map.org//api/v2/well_known_file_download/1026124743 http://api.brain-map.org//api/v2/well_known_file_download/1026125021 http://api.brain-map.org//api/v2/well_known_file_download/1026124840 http://api.brain-map.org//api/v2/well_known_file_download/1026124085 http://api.brain-map.org//api/v2/well_known_file_download/1026124368 http://api.brain-map.org//api/v2/well_known_file_download/1026123824 http://api.brain-map.org//api/v2/well_known_file_download/1026123625 http://api.brain-map.org//api/v2/well_known_file_download/1026123787 http://api.brain-map.org//api/v2/well_known_file_download/1026123519 http://api.brain-map.org//api/v2/well_known_file_download/1026123725 http://api.brain-map.org//api/v2/well_known_file_download/1026122596 http://api.brain-map.org//api/v2/well_known_file_download/1026124422 http://api.brain-map.org//api/v2/well_known_file_download/1026123943
download_links
is a list of 58 links that can be used to download the NWB files for all available sessions. Clicking on the links above should start the download automatically.
Please keep in mind that you'll have to move these files to the appropriate sub-directory once the download is complete. The EcephysProjectCache
object expects the following directory structure:
cache_dir/
+-- manifest.json
+-- session_<id>/
¦ +-- session_<id>.nwb
+-- session_<id>/
¦ +-- session_<id>.nwb
+-- session_<id>/
¦ +-- session_<id>.nwb
If you aren't interested in using the EcephysProjectCache
object to keep track of what you've downloaded, you can create a session
object just by passing a path to an NWB file:
from allensdk.brain_observatory.ecephys.ecephys_session import EcephysSession
# nwb_path = '/mnt/nvme0/ecephys_cache_dir_10_31/session_721123822/session_721123822.nwb'
# session = EcephysSession.from_nwb_path(nwb_path, api_kwargs={
# "amplitude_cutoff_maximum": np.inf,
# "presence_ratio_minimum": -np.inf,
# "isi_violations_maximum": np.inf
# })
This will load the data for one session, without applying the default unit quality metric filters. Everything will be available except the LFP data, because the get_lfp()
method can only find the associated LFP files if you're using the EcephysProjectCache
object.
To obtain similar links for the LFP files, you can use the following code:
def retrieve_lfp_link(probe_id):
well_known_files = build_and_execute(
(
"criteria=model::WellKnownFile"
",rma::criteria,well_known_file_type[name$eq'EcephysLfpNwb']"
"[attachable_type$eq'EcephysProbe']"
r"[attachable_id$eq{{probe_id}}]"
),
engine=rma_engine.get_rma_tabular,
probe_id=probe_id
)
if well_known_files.shape[0] != 1:
return 'file for probe ' + str(probe_id) + ' not found'
return 'http://api.brain-map.org/' + well_known_files.loc[0, "download_link"]
probes = cache.get_probes()
download_links = [retrieve_lfp_link(probe_id) for probe_id in probes.index.values]
_ = [print(link) for link in download_links]
http://api.brain-map.org//api/v2/well_known_file_download/1026124040 http://api.brain-map.org//api/v2/well_known_file_download/1026124036 http://api.brain-map.org//api/v2/well_known_file_download/1026124038 http://api.brain-map.org//api/v2/well_known_file_download/1026124042 http://api.brain-map.org//api/v2/well_known_file_download/1026124044 http://api.brain-map.org//api/v2/well_known_file_download/1026124046 http://api.brain-map.org//api/v2/well_known_file_download/1026123601 http://api.brain-map.org//api/v2/well_known_file_download/1026123603 http://api.brain-map.org//api/v2/well_known_file_download/1026123605 http://api.brain-map.org//api/v2/well_known_file_download/1026123607 http://api.brain-map.org//api/v2/well_known_file_download/1026123609 http://api.brain-map.org//api/v2/well_known_file_download/1026123539 http://api.brain-map.org//api/v2/well_known_file_download/1026123543 http://api.brain-map.org//api/v2/well_known_file_download/1026123550 http://api.brain-map.org//api/v2/well_known_file_download/1026123546 http://api.brain-map.org//api/v2/well_known_file_download/1026123541 http://api.brain-map.org//api/v2/well_known_file_download/1026123548 http://api.brain-map.org//api/v2/well_known_file_download/1026124433 http://api.brain-map.org//api/v2/well_known_file_download/1026124436 http://api.brain-map.org//api/v2/well_known_file_download/1026124439 http://api.brain-map.org//api/v2/well_known_file_download/1026124442 http://api.brain-map.org//api/v2/well_known_file_download/1026124446 http://api.brain-map.org//api/v2/well_known_file_download/1026124448 http://api.brain-map.org//api/v2/well_known_file_download/1026124728 http://api.brain-map.org//api/v2/well_known_file_download/1026124726 http://api.brain-map.org//api/v2/well_known_file_download/1026124730 http://api.brain-map.org//api/v2/well_known_file_download/1026124732 http://api.brain-map.org//api/v2/well_known_file_download/1026124737 http://api.brain-map.org//api/v2/well_known_file_download/1026124735 http://api.brain-map.org//api/v2/well_known_file_download/1026123901 http://api.brain-map.org//api/v2/well_known_file_download/1026123909 http://api.brain-map.org//api/v2/well_known_file_download/1026123907 http://api.brain-map.org//api/v2/well_known_file_download/1026123905 http://api.brain-map.org//api/v2/well_known_file_download/1026123903 http://api.brain-map.org//api/v2/well_known_file_download/1026123899 http://api.brain-map.org//api/v2/well_known_file_download/1026124867 http://api.brain-map.org//api/v2/well_known_file_download/1026124871 http://api.brain-map.org//api/v2/well_known_file_download/1026124873 http://api.brain-map.org//api/v2/well_known_file_download/1026124875 http://api.brain-map.org//api/v2/well_known_file_download/1026124869 http://api.brain-map.org//api/v2/well_known_file_download/1026124865 http://api.brain-map.org//api/v2/well_known_file_download/1026123993 http://api.brain-map.org//api/v2/well_known_file_download/1026123997 http://api.brain-map.org//api/v2/well_known_file_download/1026124001 http://api.brain-map.org//api/v2/well_known_file_download/1026123999 http://api.brain-map.org//api/v2/well_known_file_download/1026123995 http://api.brain-map.org//api/v2/well_known_file_download/1026123991 http://api.brain-map.org//api/v2/well_known_file_download/1026123702 http://api.brain-map.org//api/v2/well_known_file_download/1026123704 http://api.brain-map.org//api/v2/well_known_file_download/1026123700 http://api.brain-map.org//api/v2/well_known_file_download/1026123706 http://api.brain-map.org//api/v2/well_known_file_download/1026123710 http://api.brain-map.org//api/v2/well_known_file_download/1026123708 http://api.brain-map.org//api/v2/well_known_file_download/1026124330 http://api.brain-map.org//api/v2/well_known_file_download/1026124334 http://api.brain-map.org//api/v2/well_known_file_download/1026124337 http://api.brain-map.org//api/v2/well_known_file_download/1026124332 http://api.brain-map.org//api/v2/well_known_file_download/1026124328 http://api.brain-map.org//api/v2/well_known_file_download/1026124229 http://api.brain-map.org//api/v2/well_known_file_download/1026124227 http://api.brain-map.org//api/v2/well_known_file_download/1026124225 http://api.brain-map.org//api/v2/well_known_file_download/1026124221 http://api.brain-map.org//api/v2/well_known_file_download/1026124223 http://api.brain-map.org//api/v2/well_known_file_download/1026124219 http://api.brain-map.org//api/v2/well_known_file_download/1026124697 http://api.brain-map.org//api/v2/well_known_file_download/1026124695 http://api.brain-map.org//api/v2/well_known_file_download/1026124688 http://api.brain-map.org//api/v2/well_known_file_download/1026124686 http://api.brain-map.org//api/v2/well_known_file_download/1026124690 http://api.brain-map.org//api/v2/well_known_file_download/1026124693 http://api.brain-map.org//api/v2/well_known_file_download/1026124268 http://api.brain-map.org//api/v2/well_known_file_download/1026124266 http://api.brain-map.org//api/v2/well_known_file_download/1026124264 http://api.brain-map.org//api/v2/well_known_file_download/1026124270 http://api.brain-map.org//api/v2/well_known_file_download/1026124272 http://api.brain-map.org//api/v2/well_known_file_download/1026124274 http://api.brain-map.org//api/v2/well_known_file_download/1026124888 http://api.brain-map.org//api/v2/well_known_file_download/1026124890 http://api.brain-map.org//api/v2/well_known_file_download/1026124886 http://api.brain-map.org//api/v2/well_known_file_download/1026124892 http://api.brain-map.org//api/v2/well_known_file_download/1026124894 http://api.brain-map.org//api/v2/well_known_file_download/1026124803 http://api.brain-map.org//api/v2/well_known_file_download/1026124799 http://api.brain-map.org//api/v2/well_known_file_download/1026124795 http://api.brain-map.org//api/v2/well_known_file_download/1026124801 http://api.brain-map.org//api/v2/well_known_file_download/1026124797 http://api.brain-map.org//api/v2/well_known_file_download/1026124806 http://api.brain-map.org//api/v2/well_known_file_download/1026124571 http://api.brain-map.org//api/v2/well_known_file_download/1026124575 http://api.brain-map.org//api/v2/well_known_file_download/1026124579 http://api.brain-map.org//api/v2/well_known_file_download/1026124577 http://api.brain-map.org//api/v2/well_known_file_download/1026124582 http://api.brain-map.org//api/v2/well_known_file_download/1026124573 http://api.brain-map.org//api/v2/well_known_file_download/1026123975 http://api.brain-map.org//api/v2/well_known_file_download/1026123978 http://api.brain-map.org//api/v2/well_known_file_download/1026123973 http://api.brain-map.org//api/v2/well_known_file_download/1026123966 http://api.brain-map.org//api/v2/well_known_file_download/1026123971 http://api.brain-map.org//api/v2/well_known_file_download/1026123969 http://api.brain-map.org//api/v2/well_known_file_download/1026124614 http://api.brain-map.org//api/v2/well_known_file_download/1026124612 http://api.brain-map.org//api/v2/well_known_file_download/1026124616 http://api.brain-map.org//api/v2/well_known_file_download/1026124610 http://api.brain-map.org//api/v2/well_known_file_download/1026124607 http://api.brain-map.org//api/v2/well_known_file_download/1026124605 http://api.brain-map.org//api/v2/well_known_file_download/1026123385 http://api.brain-map.org//api/v2/well_known_file_download/1026123383 http://api.brain-map.org//api/v2/well_known_file_download/1026123379 http://api.brain-map.org//api/v2/well_known_file_download/1026123381 http://api.brain-map.org//api/v2/well_known_file_download/1026124248 http://api.brain-map.org//api/v2/well_known_file_download/1026124246 http://api.brain-map.org//api/v2/well_known_file_download/1026124252 http://api.brain-map.org//api/v2/well_known_file_download/1026124250 http://api.brain-map.org//api/v2/well_known_file_download/1026124254 http://api.brain-map.org//api/v2/well_known_file_download/1026124244 http://api.brain-map.org//api/v2/well_known_file_download/1026124709 http://api.brain-map.org//api/v2/well_known_file_download/1026124707 http://api.brain-map.org//api/v2/well_known_file_download/1026124704 http://api.brain-map.org//api/v2/well_known_file_download/1026124711 http://api.brain-map.org//api/v2/well_known_file_download/1026124713 http://api.brain-map.org//api/v2/well_known_file_download/1026124715 http://api.brain-map.org//api/v2/well_known_file_download/1026123691 http://api.brain-map.org//api/v2/well_known_file_download/1026123695 http://api.brain-map.org//api/v2/well_known_file_download/1026123693 http://api.brain-map.org//api/v2/well_known_file_download/1026123689 http://api.brain-map.org//api/v2/well_known_file_download/1026123687 http://api.brain-map.org//api/v2/well_known_file_download/1026124073 http://api.brain-map.org//api/v2/well_known_file_download/1026124075 http://api.brain-map.org//api/v2/well_known_file_download/1026124071 http://api.brain-map.org//api/v2/well_known_file_download/1026124082 http://api.brain-map.org//api/v2/well_known_file_download/1026124079 http://api.brain-map.org//api/v2/well_known_file_download/1026124077 http://api.brain-map.org//api/v2/well_known_file_download/1026123879 http://api.brain-map.org//api/v2/well_known_file_download/1026123881 http://api.brain-map.org//api/v2/well_known_file_download/1026123883 http://api.brain-map.org//api/v2/well_known_file_download/1026123885 http://api.brain-map.org//api/v2/well_known_file_download/1026124205 http://api.brain-map.org//api/v2/well_known_file_download/1026124208 http://api.brain-map.org//api/v2/well_known_file_download/1026124199 http://api.brain-map.org//api/v2/well_known_file_download/1026124197 http://api.brain-map.org//api/v2/well_known_file_download/1026124201 http://api.brain-map.org//api/v2/well_known_file_download/1026124203 http://api.brain-map.org//api/v2/well_known_file_download/1026124507 http://api.brain-map.org//api/v2/well_known_file_download/1026124504 http://api.brain-map.org//api/v2/well_known_file_download/1026124502 http://api.brain-map.org//api/v2/well_known_file_download/1026124509 file for probe 773463023 not found http://api.brain-map.org//api/v2/well_known_file_download/1026124511 http://api.brain-map.org//api/v2/well_known_file_download/1026124519 http://api.brain-map.org//api/v2/well_known_file_download/1026124523 http://api.brain-map.org//api/v2/well_known_file_download/1026124527 http://api.brain-map.org//api/v2/well_known_file_download/1026124525 http://api.brain-map.org//api/v2/well_known_file_download/1026124521 http://api.brain-map.org//api/v2/well_known_file_download/1026124529 http://api.brain-map.org//api/v2/well_known_file_download/1026124299 http://api.brain-map.org//api/v2/well_known_file_download/1026124297 http://api.brain-map.org//api/v2/well_known_file_download/1026124295 http://api.brain-map.org//api/v2/well_known_file_download/1026124301 http://api.brain-map.org//api/v2/well_known_file_download/1026124303 http://api.brain-map.org//api/v2/well_known_file_download/1026124305 http://api.brain-map.org//api/v2/well_known_file_download/1026124922 http://api.brain-map.org//api/v2/well_known_file_download/1026124924 http://api.brain-map.org//api/v2/well_known_file_download/1026124926 http://api.brain-map.org//api/v2/well_known_file_download/1026124928 http://api.brain-map.org//api/v2/well_known_file_download/1026124930 http://api.brain-map.org//api/v2/well_known_file_download/1026124920 http://api.brain-map.org//api/v2/well_known_file_download/1026124156 http://api.brain-map.org//api/v2/well_known_file_download/1026124164 http://api.brain-map.org//api/v2/well_known_file_download/1026124160 http://api.brain-map.org//api/v2/well_known_file_download/1026124162 http://api.brain-map.org//api/v2/well_known_file_download/1026124158 http://api.brain-map.org//api/v2/well_known_file_download/1026124154 http://api.brain-map.org//api/v2/well_known_file_download/1026124415 http://api.brain-map.org//api/v2/well_known_file_download/1026124413 http://api.brain-map.org//api/v2/well_known_file_download/1026124417 http://api.brain-map.org//api/v2/well_known_file_download/1026124409 http://api.brain-map.org//api/v2/well_known_file_download/1026124411 http://api.brain-map.org//api/v2/well_known_file_download/1026124407 http://api.brain-map.org//api/v2/well_known_file_download/1026124311 http://api.brain-map.org//api/v2/well_known_file_download/1026124313 http://api.brain-map.org//api/v2/well_known_file_download/1026124319 http://api.brain-map.org//api/v2/well_known_file_download/1026124317 http://api.brain-map.org//api/v2/well_known_file_download/1026124321 http://api.brain-map.org//api/v2/well_known_file_download/1026124315 http://api.brain-map.org//api/v2/well_known_file_download/1026124350 http://api.brain-map.org//api/v2/well_known_file_download/1026124354 http://api.brain-map.org//api/v2/well_known_file_download/1026124356 http://api.brain-map.org//api/v2/well_known_file_download/1026124358 http://api.brain-map.org//api/v2/well_known_file_download/1026124360 http://api.brain-map.org//api/v2/well_known_file_download/1026124352 http://api.brain-map.org//api/v2/well_known_file_download/1026124627 http://api.brain-map.org//api/v2/well_known_file_download/1026124631 http://api.brain-map.org//api/v2/well_known_file_download/1026124629 http://api.brain-map.org//api/v2/well_known_file_download/1026124634 http://api.brain-map.org//api/v2/well_known_file_download/1026124638 http://api.brain-map.org//api/v2/well_known_file_download/1026124636 http://api.brain-map.org//api/v2/well_known_file_download/1026123805 http://api.brain-map.org//api/v2/well_known_file_download/1026123809 http://api.brain-map.org//api/v2/well_known_file_download/1026123807 http://api.brain-map.org//api/v2/well_known_file_download/1026123811 http://api.brain-map.org//api/v2/well_known_file_download/1026123813 http://api.brain-map.org//api/v2/well_known_file_download/1026123815 http://api.brain-map.org//api/v2/well_known_file_download/1026124183 http://api.brain-map.org//api/v2/well_known_file_download/1026124187 http://api.brain-map.org//api/v2/well_known_file_download/1026124185 http://api.brain-map.org//api/v2/well_known_file_download/1026124181 http://api.brain-map.org//api/v2/well_known_file_download/1026124189 http://api.brain-map.org//api/v2/well_known_file_download/1026124191 http://api.brain-map.org//api/v2/well_known_file_download/1026124013 http://api.brain-map.org//api/v2/well_known_file_download/1026124011 http://api.brain-map.org//api/v2/well_known_file_download/1026124009 http://api.brain-map.org//api/v2/well_known_file_download/1026124015 http://api.brain-map.org//api/v2/well_known_file_download/1026124017 http://api.brain-map.org//api/v2/well_known_file_download/1026124019 http://api.brain-map.org//api/v2/well_known_file_download/1026124111 http://api.brain-map.org//api/v2/well_known_file_download/1026124116 http://api.brain-map.org//api/v2/well_known_file_download/1026124114 http://api.brain-map.org//api/v2/well_known_file_download/1026124118 http://api.brain-map.org//api/v2/well_known_file_download/1026124120 http://api.brain-map.org//api/v2/well_known_file_download/1026124123 http://api.brain-map.org//api/v2/well_known_file_download/1026124754 http://api.brain-map.org//api/v2/well_known_file_download/1026124748 http://api.brain-map.org//api/v2/well_known_file_download/1026124746 http://api.brain-map.org//api/v2/well_known_file_download/1026124752 http://api.brain-map.org//api/v2/well_known_file_download/1026124756 http://api.brain-map.org//api/v2/well_known_file_download/1026124750 http://api.brain-map.org//api/v2/well_known_file_download/1026123849 http://api.brain-map.org//api/v2/well_known_file_download/1026123857 http://api.brain-map.org//api/v2/well_known_file_download/1026123853 http://api.brain-map.org//api/v2/well_known_file_download/1026123851 http://api.brain-map.org//api/v2/well_known_file_download/1026123859 http://api.brain-map.org//api/v2/well_known_file_download/1026123855 http://api.brain-map.org//api/v2/well_known_file_download/1026124653 http://api.brain-map.org//api/v2/well_known_file_download/1026124651 http://api.brain-map.org//api/v2/well_known_file_download/1026124657 http://api.brain-map.org//api/v2/well_known_file_download/1026124647 http://api.brain-map.org//api/v2/well_known_file_download/1026124649 http://api.brain-map.org//api/v2/well_known_file_download/1026124655 http://api.brain-map.org//api/v2/well_known_file_download/1026124553 http://api.brain-map.org//api/v2/well_known_file_download/1026124551 http://api.brain-map.org//api/v2/well_known_file_download/1026124549 http://api.brain-map.org//api/v2/well_known_file_download/1026124547 http://api.brain-map.org//api/v2/well_known_file_download/1026124555 http://api.brain-map.org//api/v2/well_known_file_download/1026124557 http://api.brain-map.org//api/v2/well_known_file_download/1026125023 http://api.brain-map.org//api/v2/well_known_file_download/1026125027 http://api.brain-map.org//api/v2/well_known_file_download/1026125025 http://api.brain-map.org//api/v2/well_known_file_download/1026125029 http://api.brain-map.org//api/v2/well_known_file_download/1026125031 http://api.brain-map.org//api/v2/well_known_file_download/1026125034 http://api.brain-map.org//api/v2/well_known_file_download/1026124814 http://api.brain-map.org//api/v2/well_known_file_download/1026124808 http://api.brain-map.org//api/v2/well_known_file_download/1026124811 http://api.brain-map.org//api/v2/well_known_file_download/1026124816 http://api.brain-map.org//api/v2/well_known_file_download/1026124820 http://api.brain-map.org//api/v2/well_known_file_download/1026124818 http://api.brain-map.org//api/v2/well_known_file_download/1026123659 http://api.brain-map.org//api/v2/well_known_file_download/1026123657 http://api.brain-map.org//api/v2/well_known_file_download/1026123653 http://api.brain-map.org//api/v2/well_known_file_download/1026123655 http://api.brain-map.org//api/v2/well_known_file_download/1026123661 http://api.brain-map.org//api/v2/well_known_file_download/1026124481 http://api.brain-map.org//api/v2/well_known_file_download/1026124479 http://api.brain-map.org//api/v2/well_known_file_download/1026124471 http://api.brain-map.org//api/v2/well_known_file_download/1026124473 http://api.brain-map.org//api/v2/well_known_file_download/1026124475 http://api.brain-map.org//api/v2/well_known_file_download/1026124477 http://api.brain-map.org//api/v2/well_known_file_download/1026124761 http://api.brain-map.org//api/v2/well_known_file_download/1026124765 http://api.brain-map.org//api/v2/well_known_file_download/1026124763 http://api.brain-map.org//api/v2/well_known_file_download/1026124767 http://api.brain-map.org//api/v2/well_known_file_download/1026124769 http://api.brain-map.org//api/v2/well_known_file_download/1026124771 http://api.brain-map.org//api/v2/well_known_file_download/1026124097 http://api.brain-map.org//api/v2/well_known_file_download/1026124095 http://api.brain-map.org//api/v2/well_known_file_download/1026124093 http://api.brain-map.org//api/v2/well_known_file_download/1026124088 http://api.brain-map.org//api/v2/well_known_file_download/1026124091 http://api.brain-map.org//api/v2/well_known_file_download/1026123830 http://api.brain-map.org//api/v2/well_known_file_download/1026123828 http://api.brain-map.org//api/v2/well_known_file_download/1026123834 http://api.brain-map.org//api/v2/well_known_file_download/1026123832 http://api.brain-map.org//api/v2/well_known_file_download/1026123826 http://api.brain-map.org//api/v2/well_known_file_download/1026123635 http://api.brain-map.org//api/v2/well_known_file_download/1026123631 http://api.brain-map.org//api/v2/well_known_file_download/1026123629 http://api.brain-map.org//api/v2/well_known_file_download/1026123633 http://api.brain-map.org//api/v2/well_known_file_download/1026123627 http://api.brain-map.org//api/v2/well_known_file_download/1026123791 http://api.brain-map.org//api/v2/well_known_file_download/1026123793 http://api.brain-map.org//api/v2/well_known_file_download/1026123795 http://api.brain-map.org//api/v2/well_known_file_download/1026123789 http://api.brain-map.org//api/v2/well_known_file_download/1026123797 file for probe 832810584 not found http://api.brain-map.org//api/v2/well_known_file_download/1026124842 http://api.brain-map.org//api/v2/well_known_file_download/1026124846 http://api.brain-map.org//api/v2/well_known_file_download/1026124844 http://api.brain-map.org//api/v2/well_known_file_download/1026124848 http://api.brain-map.org//api/v2/well_known_file_download/1026124850 http://api.brain-map.org//api/v2/well_known_file_download/1026124374 http://api.brain-map.org//api/v2/well_known_file_download/1026124370 http://api.brain-map.org//api/v2/well_known_file_download/1026124378 http://api.brain-map.org//api/v2/well_known_file_download/1026124376 http://api.brain-map.org//api/v2/well_known_file_download/1026124372 http://api.brain-map.org//api/v2/well_known_file_download/1026123521 http://api.brain-map.org//api/v2/well_known_file_download/1026123524 http://api.brain-map.org//api/v2/well_known_file_download/1026123526 http://api.brain-map.org//api/v2/well_known_file_download/1026123528 http://api.brain-map.org//api/v2/well_known_file_download/1026123530 http://api.brain-map.org//api/v2/well_known_file_download/1026124428 http://api.brain-map.org//api/v2/well_known_file_download/1026124431 http://api.brain-map.org//api/v2/well_known_file_download/1026124426 http://api.brain-map.org//api/v2/well_known_file_download/1026124424 http://api.brain-map.org//api/v2/well_known_file_download/1026124437 http://api.brain-map.org//api/v2/well_known_file_download/1026124443 http://api.brain-map.org//api/v2/well_known_file_download/1026123729 http://api.brain-map.org//api/v2/well_known_file_download/1026123733 http://api.brain-map.org//api/v2/well_known_file_download/1026123731 http://api.brain-map.org//api/v2/well_known_file_download/1026123727 http://api.brain-map.org//api/v2/well_known_file_download/1026123738 http://api.brain-map.org//api/v2/well_known_file_download/1026123735 file for probe 846401828 not found file for probe 846401830 not found file for probe 846401834 not found file for probe 846401838 not found file for probe 846401841 not found http://api.brain-map.org//api/v2/well_known_file_download/1026123956 http://api.brain-map.org//api/v2/well_known_file_download/1026123951 http://api.brain-map.org//api/v2/well_known_file_download/1026123953 http://api.brain-map.org//api/v2/well_known_file_download/1026123949 http://api.brain-map.org//api/v2/well_known_file_download/1026123945 http://api.brain-map.org//api/v2/well_known_file_download/1026123947