Allen SDK Documentation
Release dev

Allen Institute for Brain Science

Apr 29, 2020

Contents

8

9

Install Guide

1.1 Quick Start UsingPip
1.2 Other Distribution Formats
1.3 Required Dependencies
1.4 Optional Dependencies

1.5 Installation with Docker (Optional)

Data Resources

2.1 Brain Observatory
22 CellTypes
2.3 Mouse Connectivity
2.4 Reference Space
25 APl Access
2.6 Visual Coding — Neuropixels
Models

3.1 Generalized LIF Models
3.2 Biophysical Models
Examples

Authors

allensdk package

6.1 Subpackages
6.2 Submodules
6.3 Module contents

Allen Brain Observatory
Allen Cell Types Database

Allen Mouse Brain Connectivity Atlas

10 What’s New - 1.7.0 (April 29, 2020)

11 What’s New - 1.6.0 (March 23, 2020)

DN DN = = =

375

377

379

381

383

12 What’s New - 1.5.0 (February 10, 2020)
13 Previous Release Notes

Bibliography

Python Module Index

Index

385

387

389

391

397

CHAPTER 1

Install Guide

This guide is a resource for using the Allen SDK package. It is maintained by the Allen Institute for Brain Science.

The Allen SDK was developed and tested with Python 2.7.13 and Python 3.6.4, installed as part of Anaconda Python
distribution version 4.3.13. We do not guarantee consistent behavior with other Python versions.

1.1 Quick Start Using Pip

First ensure you have pip installed. It is included with the Anaconda distribution.

’pip install allensdk

To uninstall the SDK:

’pip uninstall allensdk

1.2 Other Distribution Formats

The Allen SDK is also available from the Github source repository.

1.3 Required Dependencies

* NumPy

* SciPy

* matplotlib
* h5py

* pandas

http://www.alleninstitute.org/
https://store.continuum.io/cshop/anaconda/
http://repo.continuum.io/archive/index.html
http://pypi.python.org/pypi/pip
http://wiki.scipy.org/Tentative_NumPy_Tutorial
http://www.scipy.org/
http://matplotlib.org/
http://www.h5py.org
http://pandas.pydata.org

Allen SDK Documentation, Release dev

e pynrrd
e Jinja2

1.4 Optional Dependencies

* pytest

¢ coverage

1.5 Installation with Docker (Optional)

Docker is an open-source technology for building and deploying applications with a consistent environment including
required dependencies. The AllenSDK is not distributed as a Docker image, but example Dockerfiles are available.

1. Ensure you have Docker installed.
2. Use Docker to build one of the images.

Anaconda:

docker pull alleninstitute/allensdk

Other docker configurations are also available under docker directory in the source repository.

3. Run the docker image:

docker run -1 -t -p 8888:8888 -v /data:/data alleninstitute/allensdk /bin/bash
cd allensdk
make test

4. Start a Jupyter Notebook:

cd allensdk/doc_template/examples_root/examples/nb
jupyter-notebook —-—-ip=+ —--no-browser

2 Chapter 1. Install Guide

http://pypi.python.org/pypi/pynrrd
http://jinja.pocoo.org
http://pytest.org/latest
http://nedbatchelder.com/code/coverage
http://www.docker.com/

CHAPTER 2

Data Resources

The Allen SDK features Python code to support data and model access for the Allen Cell Types Database. Resources
for other Allen Brain Atlas data resources will come in future updates.

2.1 Brain Observatory

The Allen Brain Observatory is a database of the visually-evoked functional responses of neurons in mouse visual cor-
tex based on 2-photon fluorescence imaging. Characterized responses include orientation tuning, spatial and temporal
frequency tuning, temporal dynamics, and spatial receptive field structure.

The data is organized into experiments and experiment containers. An experiment container represents a group of
experiments with the same targeted imaging area, imaging depth, and Cre line. The individual experiments within an
experiment container have different stimulus protocols, but cover the same imaging field of view.

_static/conttainer_session_layout.png

Note: Version 1.3 of scipy fixed an error in its 2 sample Kolmogorov-Smirnoff test implementation. The new
version produces more accurate p values for small and medium-sized samples. This change impacts speed tun-
ing analysis p values (as returned by StimulusAnalysis.get_speed_tuning). If you access precalculated analysis re-
sults via BrainObservatoryCache.get_ophys_experiment_analysis, you will see values calculated using an older ver-
sion of scipy’s ks_2samp. To access values calculated from the new version, install scipy>=1.3.0 in your environ-
ment and construct a StimulusAnalysis object from a BrainObservatoryNwbDataSet (as returned by BrainObservato-
ryCache.get_ophys_experiment_data).

Note: Data collected after September 2016 uses a new session C stimulus designed to better-characterize spatial
receptive fields in higher visual areas. The original locally sparse noise stimulus used 4.65 visual degree pixels. Session
C2 broke that stimulus into two separate stimulus blocks: one with 4.65 degree pixels and one with 9.3 degree pixels.

http://observatory.brain-map.org/visualcoding

Allen SDK Documentation, Release dev

Note that the st imulus_ infomodule refers to these as locally_sparse_noise_4deg and locally_sparse_noise_8deg,
respectively.

For more information on experimental design and a data overview, please visit the Allen Brain Observatory data portal.

2.1.1 Data Processing

For all data in Allen Brain Observatory, we perform the following processing:
1. Segment cell masks from each experiment’s 2-photon fluorescence video
Associate cells from experiments belonging to the same experiment container and assign unique IDs
Extract each cell’s mean fluorescence trace
Extract mean fluorescence traces from each cell’s surrounding neuropil
Demix traces from overlapping ROIs
Estimate neuropil-corrected fluorescence traces

Compute dF/F

® NSk w N

Compute stimulus-specific tuning metrics

All traces and masks for segmented cells in an experiment are stored in a Neurodata Without Borders (NWB) file.
Stored traces include the raw fluoresence trace, neuropil trace, demixed trace, and dF/F trace. Code for extracting
neuropil-corrected fluorescence traces, computing dF/F, and computing tuning metrics is available in the SDK.

New in June 2017: Trace demixing is a new addition as of June 2017. All past data was reprocessed using the new
demixing algorithm. We have also developed a new module to better characterize a cell’s receptive field. Take a look
at the receptive field analysis example notebook

For more information about data processing, please read the technical whitepapers.

2.1.2 Getting Started

The Brain Observatory Jupyter notebook has many code samples to help get started with the available data:
* Download experimental metadata by visual area, imaging depth, and Cre line
* Find cells with specific response properties, like direction tuning
* Download data for an experiment
* Plot raw fluorescences traces, neuropil-corrected traces, and dF/F
* Find the ROI mask for a given cell
* Run neuropil correction
* Get pupil location and size

The code used to analyze and visualize data in the Allen Brain Observatory data portal is available as part of the SDK.
Take a look at this Jupyter notebook to find out how to:

* Plot cell’s response to its preferred stimulus condition

» Compute a cell’s on/off receptive field based on the locally sparse noise stimulus
More detailed documentation is available demonstrating how to:

* Read and visualize the stimulus presentation tables in the NWB files

* Understand the layout of Brain Observatory NWB files

4 Chapter 2. Data Resources

http://observatory.brain-map.org/visualcoding
_static/examples/nb/receptive_fields.html
http://help.brain-map.org/display/observatory/Documentation
_static/examples/nb/brain_observatory.html
_static/examples/nb/brain_observatory.html#Experiment-Containers
_static/examples/nb/brain_observatory.html#Find-Cells-of-Interest
_static/examples/nb/brain_observatory.html#Download-Experiment-Data-for-a-Cell
_static/examples/nb/brain_observatory.html#Fluorescence-Traces
_static/examples/nb/brain_observatory.html#ROI-Masks
_static/examples/nb/brain_observatory.html#Neuropil-Correction
_static/examples/nb/brain_observatory.html#Eye-Tracking
http://observatory.brain-map.org/visualcoding
_static/examples/nb/brain_observatory_analysis.html
_static/examples/nb/brain_observatory_analysis.html#Drifting-Gratings
_static/examples/nb/receptive_fields.html
_static/examples/nb/brain_observatory_stimuli.html
brain_observatory_nwb.html

Allen SDK Documentation, Release dev

* Map previous cell specimen IDs to current cell specimen IDs

2.1.3 Precomputed Cell Metrics

A large table of precomputed metrics are available for download to support population analysis and filtering. The table
below describes all of the metrics in the table. The get_cell specimens () method will download this table as

a list of dictionaries which can be converted to a pandas DataFrame as shown in this Jupyter notebook.

Stimulus Metric Field Name

drifting gratings orientation selectivity osi_dg
direction selectivity dsi_dg
preferred direction pref_dir_dg
preferred temporal frequency pref_tf dg
response p value p_dg
global ori. selectivity g_osi_dg
global dir. selectivity g_dsi_dg

response reliability

reliability_dg

running modulation

run_mod_dg

running modulation p value p_run_mod_dg
pref. condition mean df/f peak_dff_dg
TF discrimination index tfdi_dg

static gratings orientation selectivity 0si_sg
preferred orientation pref_ori_sg
preferred spatial frequency pref_sf_sg

preferred phase

pref_phase_sg

mean time to peak response

time_to_peak_sg

response p value

p_sg

global ori. selectivity

g_osi_sg

reponse reliability

reliability_sg

running modulation

run_mod_sg

running modulation p value

p_run_mod_sg

pref. condition mean df/f

peak_dff_ns

SF discrimiation index

sfdi_sg

natural scenes

mean time to peak response

time_to_peak_ns

preferred scene index

pref_scene_ns

response p value p_ns

image selectivity image_sel_ns
running modulation run_mod_ns
running modulation p value p_run_mod_ns
pref. condition mean df/f peak_dff_ns

natural movie 1

response reliability (session A)

reliability_nml_a

response reliability (session B)

reliability_nm1_b

response reliability (session C)

reliability_nm1_c

natural movie 2

response reliability

reliability_nm?2

natural movie 3

response reliability

reliability_nm3

locally sparse noise

RF area (on subunit)

rf_area_on_lsn

RF area (off subunit) rf_area_off lsn

RF center (on subunit) rf_center_on_x, rf_center_on_y
RF center (off subunit) rf_center_off_x, rf_center_off_y
RF chi®2 rf chi2 lsn

RF on-off subunit distance

rf_distance_Isn

RF on-off subunit overlap index

rf_overlap_lIsn

2.1. Brain Observatory

_static/examples/nb/cell_specimen_mapping.html
_static/examples/nb/brain_observatory.html#Find-Cells-of-Interest

Allen SDK Documentation, Release dev

2.2 Cell Types

The Allen Cell Types data set is a database of mouse and human neuronal cell types based on multimodal characteri-
zation of single cells to enable data-driven approaches to classification and is fully integrated with other Allen Brain
Atlas resources. The database currently includes:

* electrophysiology: whole cell current clamp recordings made from Cre-positive neurons
* morphology: 3D bright-field images of the complete structure of neurons from the visual cortex

This page describes how the SDK can be used to access data in the Cell Types Database. For more information, please
visit the Cell Types Database home page and the API documentation.

2.2.1 Examples

The Cell Types Jupyter notebook has many code samples to help get started with analysis:
* Download and plot stimuli and responses from an NWB file for a cell
* Download and plot a cell’s morphological reconstruction
* Download and plot precomputed electrophysiology features
* Download precomputed morphology features to a table

* Compute electrophysiology features for a single sweep

2.2.2 Cell Types Cache

The CellTypesCache class provides a Python interface for downloading data in the Allen Cell Types Database
into well known locations so that you don’t have to think about file names and directories. The following example
demonstrates how to download meta data for all cells with 3D reconstructions, then download the reconstruction and
electrophysiology recordings for one of those cells:

from allensdk.core.cell types_cache import CellTypesCache
ctc = CellTypesCache (manifest_file='cell types/manifest.json')

a list of cell metadata for cells with reconstructions, download if necessary
cells = ctc.get_cells(require_reconstruction=True)

open the electrophysiology data of one cell, download if necessary
data_set = ctc.get_ephys_data(cells[0]['id"'])

read the reconstruction, download if necessary
reconstruction = ctc.get_reconstruction(cells[0]['id"'])

CellTypesCache takes takes care of knowing if you’ve already downloaded some files and reads them from disk
instead of downloading them again. All data is stored in the same directory as the manifest_file argument to the
constructor.

2.2.3 Feature Extraction

The EphysFeatureExtractor class calculates electrophysiology features from cell recordings.
extract_cell_features () can be used to extract the precise feature values available in the Cell Types
Database:

6 Chapter 2. Data Resources

http://celltypes.brain-map.org/
http://help.brain-map.org/display/celltypes/Allen+Cell+Types+Database
_static/examples/nb/cell_types.html
_static/examples/nb/cell_types.html#Cell-Types-Database
_static/examples/nb/cell_types.html#Cell-Morphology-Reconstructions
_static/examples/nb/cell_types.html#Electrophysiology-Features
_static/examples/nb/cell_types.html#Morphology-Features
_static/examples/nb/cell_types.html#Computing-Electrophysiology-Features

Allen SDK Documentation, Release dev

from allensdk.core.cell_ types_cache import CellTypesCache
from allensdk.ephys.extract_cell features import extract_cell_features
from collections import defaultdict

initialize the cache
ctc = CellTypesCache (manifest_file='cell types/manifest.json')

pick a cell to analyze
specimen_id = 324257146

download the ephys data and sweep metadata
data_set = ctc.get_ephys_data (specimen_id)
sweeps = ctc.get_ephys_sweeps (specimen_id)

group the sweeps by stimulus
sweep_numbers = defaultdict (list)
for sweep in sweeps:
sweep_numbers [sweep['stimulus_name']].append (sweep['sweep_number'])

calculate features

cell_features = extract_cell_features (data_set,
sweep_numbers|['Ramp'],
sweep_numbers|['Short Square'],
sweep_numbers|['Long Square'])

2.2.4 File Formats

This section provides a short description of the file formats used for Allen Cell Types data.

Morphology SWC Files

Morphological neuron reconstructions are available for download as SWC files. The SWC file format is a white-space
delimited text file with a standard set of headers. The file lists a set of 3D neuronal compartments, each of which has:

Column | Data Type | Description

id string compartment ID

type integer compartment type

X float 3D compartment position (x)
y float 3D compartment position (y)
z float 3D compartment position (z)
radius float compartment radius

parent string parent compartment ID

Comment lines begin with a ‘#’. Reconstructions in the Allen Cell Types Database can contain the following compart-
ment types:

Type | Description
0 unknown
1 soma

2 axon
3

4

basal dendrite
apical dendrite

2.2. Cell Types 7

Allen SDK Documentation, Release dev

The Allen SDK comes with a swc Python module that provides helper functions and classes for manipulating SWC
files. Consider the following example:

import allensdk.core.swc as swc

1f you ran the examples above, you will have a reconstruction here
file_name = 'cell_types/specimen_485909730/reconstruction.swc’
morphology = swc.read_swc (file_name)

subsample the morphology 3x. root, soma, junctions, and the first child of the root,
—are preserved.
sparse_morphology = morphology.sparsify(3)

compartments in the order that they were specified in the file
compartment_list = sparse_morphology.compartment_list

a dictionary of compartments indexed by compartment id
compartments_by_id

sparse_morphology.compartment_index

the root soma compartment
soma = morphology.soma

all compartments are dictionaries of compartment properties
compartments also keep track of ids of their children
for child in morphology.children_of (soma) :

print (child['x"'], child['y'"'], child['z"'], child['radius'])

Neurodata Without Borders

The electrophysiology data collected in the Allen Cell Types Database is stored in the Neurodata Without Borders
(NWB) file format. This format, created as part of the NWB initiative, is designed to store a variety of neurophysiology
data, including data from intra- and extracellular electrophysiology experiments, optophysiology experiments, as well
as tracking and stimulus data. It has a defined schema and metadata labeling system designed so software tools can
easily access contained data.

The Allen SDK provides a basic Python class for extracting data from Allen Cell Types Database NWB files. These
files store data from intracellular patch-clamp recordings. A stimulus current is presented to the cell and the cell’s
voltage response is recorded. The file stores both stimulus and response for several experimental trials, here called
“sweeps.” The following code snippet demonstrates how to extract a sweep’s stimulus, response, sampling rate, and
estimated spike times:

from allensdk.core.nwb_data_ set import NwbDataSet

1f you ran the examples above, you will have a NWB file here
file_name = 'cell_ types/specimen_485909730/ephys.nwb'
data_set = NwbDataSet (file_name)

sweep_numbers = data_set.get_sweep_numbers ()
sweep_number = sweep_numbers[0]
sweep_data = data_set.get_sweep (sweep_number)

spike times are in seconds relative to the start of the sweep
spike_times = data_set.get_spike_times (sweep_number)

stimulus is a numpy array in amps
stimulus = sweep_datal['stimulus']

(continues on next page)

8 Chapter 2. Data Resources

http://neurodatawithoutborders.github.io/
http://crcns.org/NWB/Overview

Allen SDK Documentation, Release dev

(continued from previous page)

response is a numpy array in volts
reponse = sweep_datal'response']

sampling rate is in Hz
sampling_rate = sweep_datal['sampling rate']

start/stop indices that exclude the experimental test pulse (if applicable)
index_range = sweep_datal['index_ range']

HDF5 Overview

NWB is implemented in HDF5. HDFS files provide a hierarchical data storage that mirrors the organization of a
file system. Just as a file system has directories and files, and HDF?5 file has groups and datasets. The best way to
understand an HDF5 (and NWB) file is to open a data file in an HDF5 browser. HDFView is the recommended browser
from the makers of HDFS5.

There are HDF5 manipulation libraries for many languages and platorms. MATLAB and Python in particular have
strong HDF5 support.

2.3 Mouse Connectivity

The Allen Mouse Brain Connectivity Atlas consists of high-resolution images of axonal projections targeting differ-
ent anatomic regions or various cell types using Cre-dependent specimens. Each data set is processed through an
informatics data analysis pipeline to obtain spatially mapped quantified projection information.

This page describes how to use the SDK to access experimental projection data and metadata. For more information,
please visit the Connectivity Atlas home page and the API documentation

2.3.1 Structure-Level Projection Data

All AAV projection signal in the Allen Mouse Connectivity Atlas has been registered to the expert-annotated Common
Coordinate Framework (CCF) and summarized to structures in the adult mouse structure ontology. Most commonly
used for analysis are measures of the density of projection signal in all brain areas for every experiment. This data is
available for download and is described in more detail on the structure unionizes page.

2.3.2 Voxel-Level Projection Data
The CCF-registered AAV projection signal is also available for download as a set of 3D volumes for each experiment.
The following data volumes are available for download:

¢ projection density: sum of detected projection pixels / sum of all pixels in voxel

* injection_fraction: fraction of pixels belonging to manually annotated injection site

* injection_density: density of detected projection pixels within the manually annotated injection site

» data_mask: binary mask indicating if a voxel contains valid data. Only valid voxels should be used for analysis.

2.3. Mouse Connectivity 9

https://hdfgroup.org/HDF5
https://hdfgroup.org/products/java/hdfview
http://connectivity.brain-map.org/
http://help.brain-map.org/display/mouseconnectivity/ALLEN+Mouse+Brain+Connectivity+Atlas

Allen SDK Documentation, Release dev

2.3.3 Code Examples

The Mouse Connectivity Jupyter notebook has many code samples to help get started with analysis:
* Download experimental metadata by injection structure and transgenic line
* Download projection signal statistics at a structure level
* Build a structure-to-structure matrix of projection signal values

* Download and visualize gridded projection signal volumes

2.3.4 Mouse Connectivity Cache

The MouseConnectivityCache class saves all of the data you can download via the
MouseConenctivityApi in well known locations so that you don’t have to think about file names and di-
rectories. It also takes care of knowing if you’ve already downloaded some files and reads them from disk instead of
downloading them again. The following example demonstrates how to download meta data for all experiments with
injections in the isocortex and download the projetion density volume for one of them:

from allensdk.core.mouse_connectivity cache import MouseConnectivityCache

tell the cache class what resolution (in microns) of data you want to download
mcc = MouseConnectivityCache (resolution=25)

use the structure tree class to get information about the isocortex structure
structure_tree = mcc.get_structure_tree()
isocortex_id = structure_tree.get_structures_by_name (['Isocortex']) [0]['id"]

a list of dictionaries containing metadata for non-Cre experiments
experiments = mcc.get_experiments (file_name='non_cre.json',
injection_structure_ids=[isocortex_id])

download the projection density volume for one of the experiments
pd = mcc.get_projection_density (experiments[0] ["id"'])

2.3.5 File Formats

This section provides a short description of the file formats used for data in the Allen Mouse Connectivity Atlas.

NRRD Files

All of the volumetric data in the connectivity atlas are stored as NRRD (Nearly Raw Raster Data) files. A NRRD file
consists of a short ASCII header followed by a binary array of data values.

To read these in Python, we recommend the pynrrd package. Usage is straightforward:

import nrrd

file_name = 'mouse_connectivity/experiment_644250774/projection_density_25.nrrd’'
data_array, metadata = nrrd.read(file_name)

10 Chapter 2. Data Resources

_static/examples/nb/mouse_connectivity.html
_static/examples/nb/mouse_connectivity.html#Mouse-Connectivity
_static/examples/nb/mouse_connectivity.html#Structure-Signal-Unionization
_static/examples/nb/mouse_connectivity.html#Generating-a-Projection-Matrix
_static/examples/nb/mouse_connectivity.html#Manipulating-Grid-Data
http://teem.sourceforge.net/nrrd/
https://github.com/mhe/pynrrd

Allen SDK Documentation, Release dev

2.4 Reference Space

Allen Institute atlases and data are registered, when possible, to one of several common reference spaces. Working in
such a space allows you to easily compare data across subjects and experimental modalities.

This page documents how to use the Allen SDK to interact with a reference space. For more information and a
list of reference spaces, see the atlas drawings and ontologies API documentation and the 3D reference models API
documentation. For details about the construction of the Common Coordinate Framework space, see the CCFv3
whitepaper.

2.4.1 Structure Tree

Brain structures in our reference spaces are arranged in trees. The leaf nodes of the tree describe the very fine anatom-
ical divisions of the space, while nodes closer to the root correspond to gross divisions. The St ructureTree class
provides an interface for interacting with a structure tree.

To download a structure tree, use the allensdk.api.queries.ontologies_api.OntologiesApi class
as seen in this example

2.4.2 Annotation Volumes

An annotation volume is a 3d raster image that segments the reference space into structures. Each voxel in the
annotation volume is assigned an integer value that describes the finest structure to which that point in space definitely
belongs.

To download a nrrd formatted annotation volume at a specified isometric resolution, use the allensdk.api.
queries.mouse_connectivity_api class. There is an example in the notebook.

2.4.3 ReferenceSpace Class
The allensdk.core.reference space.ReferenceSpace class contains methods for working with our
reference spaces. Some use cases might include:

* Building an indicator mask for one or more structures

* Viewing the annotation

* Querying the structure graph

Please see the example notebook for more code samples.

2.5 API Access

The allensdk.api package is designed to help retrieve data from the Allen Brain Atlas APIL. api contains methods
to help formulate API queries and parse the returned results. There are several pre-made subclasses available that
provide pre-made queries specific to certain data sets. Currently there are several subclasses in Allen SDK:

* CellTypesApi: datarelated to the Allen Cell Types Database
* BiophysicalApi: datarelated to biophysical models
e G1ifApi: datarelated to GLIF models

* AnnotatedSectionDataSetsApi: search for experiments by intensity, density, pattern, and age

2.4. Reference Space 11

http://help.brain-map.org/display/api/Atlas+Drawings+and+Ontologies
http://help.brain-map.org/display/mouseconnectivity/API#API-DownloadAtlas3-DReferenceModels
http://help.brain-map.org/display/mouseconnectivity/API#API-DownloadAtlas3-DReferenceModels
http://help.brain-map.org/download/attachments/2818171/Mouse_Common_Coordinate_Framework.pdf?version=4&modificationDate=1508448259091&api=v2
http://help.brain-map.org/download/attachments/2818171/Mouse_Common_Coordinate_Framework.pdf?version=4&modificationDate=1508448259091&api=v2
_static/examples/nb/reference_space.html#Constructing-a-structure-tree
_static/examples/nb/reference_space.html#Downloading-an-annotation-volume
_static/examples/nb/reference_space.html#making-structure-masks
_static/examples/nb/reference_space.html#View-a-slice-from-the-annotation
_static/examples/nb/reference_space.html#Using-a-StructureTree
_static/examples/nb/reference_space.html
http://help.brain-map.org/display/api/Allen+Brain+Atlas+API

Allen SDK Documentation, Release dev

e GridDataApi: used to download 3-D expression grid data

* ImageDownloadApi: download whole or partial two-dimensional images

* MouseConnectivityApi: common operations for accessing the Allen Mouse Brain Connectivity Atlas

* OntologiesApi: data about neuroanatomical regions of interest

* ConnectedServices: schema of Allen Institute Informatics Pipeline services available through the RmaApi
* RmaApi: general-purpose HTTP interface to the Allen Institute API data model and services

e SvgApi: annotations associated with images as scalable vector graphics (SVG)

e SynchronizationApi: data about image alignment

* TreeSearchApi: list ancestors or descendents of structure and specimen trees

2.5.1 RMA Database and Service API

One API subclass is the RmaAp1 class. It is intended to simplify constructing an RMA query.

The RmaApi is a base class for much of the allensdk.api.queries package, but it may be used directly to customize
queries or to build queries from scratch.

Often a query will simply request a table of data of one type:

from allensdk.api.queries.rma_api import RmaApi
rma = RmaApi ()

data = rma.model_qguery('Atlas',
criteria="[nameS$il'«Mousex"']")

This will construct the RMA query url, make the query and parse the resulting JSON into an array of Python dicts
with the names, ids and other information about the atlases that can be accessed via the API.

Using the criteria, include and other parameter, specific data can be requested.

associations = '"'.Join(['[idSeql]"',
'structure_graph (ontology), ',
'graphic_group_labels'])

atlas_data = rma.model_query('Atlas',

include=associations,

criteria=associations,

only=['atlases.id"',
'atlases.name',
'atlases.image_type',
'ontologies.id"',
'ontologies.name',
'structure_graphs.id',
'structure_graphs.name',
'graphic_group_labels.id’,
'graphic_group_labels.name'])

Note that a ‘class’ name is used for the first parameter. ‘Association’ names are used to construct the include and
criteria parameters nested using parentheses and commas. In the only clause, the ‘table’ form is used, which is
generally a plural lower-case version of the class name. The only clause selects specific ‘fields’ to be returned. The
schema that includes the classes, fields, associations and tables can be accessed in JSON form using:

12 Chapter 2. Data Resources

http://help.brain-map.org/display/api/RESTful+Model+Access+%28RMA%29

Allen SDK Documentation, Release dev

http://api.brain-map.org/api/v2/data. json

schema = rma.get_schema ()
for entry in schema:
data_description = entry|['DataDescription']
clz = list (data_description.keys()) [0]
info = list (data_description.values()) [0]
fields = info['fields']
associations = info['associations']
table = info['table']
print ("class: "% (clz))
print ("fields: "% (',".Jjoin(f['name'] for f in fields)))
print ("associations: "% ('",'".join(a['name'] for a in associations)))
print ("table: \n" % (table))

2.5.2 Using Pandas to Process Query Results

When it is difficult to get data in exactly the required form using only an RMA query, it may be helpful to perform
additional operations on the client side. The pandas library can be useful for this.

Data from the API can be read directly into a pandas Dataframe object.

import pandas as pd

structures = pd.DataFrame (
rma.model_query ('Structure',
criteria="'[graph_idSeql]"',
num_rows="all'))

Indexing subsets of the data (certain columns, certain rows) is one use of pandas: specifically .loc:

names_and_acronyms = structures.loc[:,['name', 'acronym']]

and Boolean indexing

mea = structures|[structures.acronym == 'MEA']
mea_id = mea.iloc[0, :].1id
mea_children = structures|[structures.parent_structure_id == mea_id]

print (mea_children|['name'])

Concatenate, merge and join are used to add columns or rows:

When an RMA call contains an include clause, the associated data will be represented as a python dict in a single
column. The column may be converted to a proper Dataframe and optionally dropped.

criteria_string = "structure_sets|[name$eqg'Mouse Connectivity - Summary']"
include_string = "ontology"
summary_structures = \

pd.DataFrame (
rma.model_query ('Structure',
criteria=criteria_string,
include=include_string,
num_rows="all'"))
ontologies = \
pd.DataFrame (
list (summary_structures.ontology)) .drop_duplicates()
flat_structures_dataframe = summary_structures.drop(['ontology'], axis=1)

2.5. APl Access 13

http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html
http://pandas.pydata.org/pandas-docs/stable/indexing.html
http://pandas.pydata.org/pandas-docs/stable/indexing.html#selection-by-label
http://pandas.pydata.org/pandas-docs/stable/indexing.html#boolean-indexing
http://pandas.pydata.org/pandas-docs/stable/merging.html

Allen SDK Documentation, Release dev

Alternatively, it can be accessed using normal python dict and list operations.

print (summary_structures.ontology[0] ["name'])

Pandas Dataframes can be written to a CSV file using to_csv and read using load_csv.

summary_structures[['id'",
'parent_structure_id',
'acronym']].to_csv('summary_structures.csv',
index_label="structure_id")
reread = pd.read_csv ('summary_ structures.csv')

Iteration over a Dataframe of API data can be done in several ways. The .itertuples method is one way to do it.

for id, name, parent_structure_id in summary_structures|[['name',
'parent_structure_id']].
—itertuples() :

print (" " % (id, name, parent_structure_id))

2.5.3 Caching Queries on Disk

wrap () has several parameters for querying the API, saving the results as CSV or JSON and reading the results as a
pandas dataframe.

from allensdk.api.cache import Cache

cache_writer = Cache ()

do_cache=True

structures_from_api = \

cache_writer.wrap (rma.model_query,

path='summary.csv',
cache=do_cache,
model="'Structure',
criteria="'[graph_id$eql]"',
num_rows="'all'")

If you change to_cache to False and run the code again it will read the data from disk rather than executing the query.

2.6 Visual Coding — Neuropixels

The Visual Coding — Neuropixels project uses high-density extracellular electrophysiology (Ecephys) probes to record
spikes from a wide variety of regions in the mouse brain. Our experiments are designed to study the activity of the
visual cortex and thalamus in the context of passive visual stimulation, but these data can be used to address a wide
variety of topics.

Spike-sorted data and metadata are available via the AllenSDK as Neurodata Without Borders files. However, if you’re
using the AllenSDK to interact with the data, no knowledge of the NWB data format is required.

2.6.1 Getting Started

To jump right in, check out the quick start guide (download .ipynb), which will show you how to download the data,
align spikes to a visual stimulus, and decode natural images from neural activity patterns. For a quick summary of
experimental design and data access, see the cheat sheet.

14 Chapter 2. Data Resources

https://www.nwb.org/
_static/examples/nb/ecephys_quickstart.html
_static/examples/nb/ecephys_quickstart.ipynb
https://brainmapportal-live-4cc80a57cd6e400d854-f7fdcae.divio-media.net/filer_public/0f/5d/0f5d22c9-f8f6-428c-9f7a-2983631e72b4/neuropixels_cheat_sheet_nov_2019.pdf

Allen SDK Documentation, Release dev

If you would like more example code, the full example notebook (download .ipynb) covers all of the ways to access
data for each experiment.

Additional tutorials are available on the following topics:
1. Data access (download .ipynb)
2. Unit quality metrics (download .ipynb)
3. LFP data analysis (download .ipynb)
4. Receptive field mapping (download .ipynb)
5. Optotagging (download .ipynb)

For detailed information about the experimental design, data acquisition, and informatics methods, please refer to our
technical whitepaper. AllenSDK API documentation is available here.

A note on terminology: Throughout the SDK, we refer to neurons as “units,” because we cannot guarantee that all
the spikes assigned to one unit actually originate from a single cell. Unlike in two-photon imaging, where you can
visualize each neuron throughout the entire experiment, with electrophysiology we can only “see” a neuron when it
fires a spike. If a neuron moves relative to the probe, or if it’s far away from the probe, some of its spikes may get mixed
together with those from other neurons. Because of this inherent ambiguity, we provide a variety of quality metrics
to allow you to find the right units for your analysis. Even highly contaminated units contain potentially valuable
information about brain states, so we didn’t want to leave them out of the dataset. But certain types of analysis require
more stringent quality thresholds, to ensure that all of the included units are well isolated from their neighbors.

2.6. Visual Coding — Neuropixels 15

_static/examples/nb/ecephys_session.html
_static/examples/nb/ecephys_session.ipynb
_static/examples/nb/ecephys_data_access.html
_static/examples/nb/ecephys_data_access.ipynb
_static/examples/nb/ecephys_quality_metrics.html
_static/examples/nb/ecephys_quality_metrics.ipynb
_static/examples/nb/ecephys_lfp_analysis.html
_static/examples/nb/ecephys_lfp_analysis.ipynb
_static/examples/nb/ecephys_receptive_fields.html
_static/examples/nb/ecephys_receptive_fields.ipynb
_static/examples/nb/ecephys_optotagging.html
_static/examples/nb/ecephys_optotagging.ipynb
https://brainmapportal-live-4cc80a57cd6e400d854-f7fdcae.divio-media.net/filer_public/80/75/8075a100-ca64-429a-b39a-569121b612b2/neuropixels_visual_coding_-_white_paper_v10.pdf
allensdk.brain_observatory.ecephys.html

Allen SDK Documentation, Release dev

2.6.2 Data Processing

_static/neuropixels_data_processing.png

Neuropixels probes contain 374 or 383 channels that continuously detect voltage fluctuations in the surrounding neural
tissue. Each channel is split into two separate data streams, or “bands,” on the probes. The “spike band” is digitized
at 30 kHz, and contains information about action potentials fired by neurons directly adjacent to the probe. The “LFP
band” is digitized at 2.5 kHz, and records the low-frequency (<1000 Hz) fluctuations that result from synchronized
neural activity over a wider area.

To go from the raw spike-band data to NWB files, we perform the following processing steps:

16 Chapter 2. Data Resources

Allen SDK Documentation, Release dev

1. Median-subtraction to remove common-mode noise from the continuous traces
High-pass filtering (>150 Hz) and whitening across blocks of 32 channels

Spike sorting with Kilosort2, to detect spikes and assign them to individual units
Computing the mean waveform for each unit

Removing units with artifactual waveforms

Computing quality metrics for every unit

A T o

Computing stimulus-specific tuning metrics
For the LFP band, we:
1. Downsample the signals in space and time (every 4th channel and every 2nd sample)
2. High-pass filter at 0.1 Hz to remove the DC offset from each channel
3. Re-reference to channels outside of the brain to remove common-mode noise
The packaged NWB files contain:
1. Spike times, spike amplitudes, mean waveforms, and quality metrics for every unit
Information about the visual stimulus
Time series of the mouse’s running speed, pupil diameter, and pupil position

LFP traces for channels in the brain

A I

Experiment metadata

All code for data processing and packaging is available in the ecephys_spike_sorting and the ecephys section of the
AllenSDK.

2.6. Visual Coding — Neuropixels 17

https://github.com/mouseland/kilosort2
https://github.com/alleninstitute/ecephys_spike_sorting

Allen SDK Documentation, Release dev

2.6.3 Visual Stimulus Sets

_static/neuropixels_stimulus_sets.png

A central aim of the Visual Coding — Neuropixels project is to measure the impact of visual stimuli on neurons
throughout the mouse visual system. To that end, all mice viewed one of two possible stimulus sets, known as “Brain
Observatory 1.1” or “Functional Connectivity”. Both stimulus sets began with a Gabor stimulus flashed at 81 different
locations on the screen, used to map receptive fields of visually responsive units. Next, the mice were shown brief
flashes of light or dark, to measure the temporal dynamics of the visual response.

The remainder of the visual stimulus set either consisted of the same stimuli shown in the two-photon experiments

18 Chapter 2. Data Resources

Allen SDK Documentation, Release dev

(“Brain Observatory 1.17), or a subset of those stimuli shown with a higher number of repeats. We also added a dot
motion stimulus, to allow us to measure the speed tuning of units across the mouse visual system.

2.6.4 Quality Metrics

_static/neuropixels_quality_metrics.png

Every NWB file includes a table of quality metrics, which can be used to assess the completeness, contamination, and
stability of units in the recording. By default, we won’t show you units below a pre-determined quality threshold;
we hide any units that are not present for the whole session (presence_ratio < 0.95), that include many contaminating

2.6. Visual Coding — Neuropixels 19

Allen SDK Documentation, Release dev

spikes (isi_violations > 0.5), or are likely missing a large fraction of spikes (amplitude_cutoff > 0.1). However, even
contaminated or incomplete units contain information about brain states, and may be of interest to analyze. Therefore,
the complete units table can be accessed via special flags in the AllenSDK.

In general, we do not make a distinction between ‘single-unit’ and ‘multi-unit’ activity. There is no obvious place to
draw a boundary in the overall distributions of quality metrics, and setting a strict cutoff (e.g. isi_violations = 0) will
remove a lot of potentially valuable data. We prefer to leave it up to the end user to decide what level of contamination
is tolerable. But that means you need to be aware that different units will have different levels of cleanliness.

It should also be noted that all of these metrics assume that the spike waveform is stable throughout the experiment.
Given that the probe drifts, on average, about 40 microns over the course of the ~3 hour recordings, this assumption is
almost never valid. The resulting changes in waveform shape can cause a unit’s quality to fluctuate. If you’re unsure
about a unit’s quality, it can be helpful to plot its spike amplitudes over time. This can make it obvious if it’s drifting
below threshold, or if it contains spikes from multiple neurons.

Documentation on the various quality metrics can be found in the ecephys_spike_sorting repository.

For a detailed discussion of the appropriate way to apply each of these metrics, please check out this tutorial (download
.ipynb)

2.6.5 Precomputed Stimulus Metrics

Tables of precomputed metrics are available for download to support population analysis and filtering. The table below
describes all of the available metrics. The get_unit_analysis_metrics () method will load this table as a
pandas DataFrame.

Stimulus Metric Field Name
drifting gratings | preferred orientation pref_ori_dg
preferred temporal frequency | pref_tf dg
global ori. selectivity g_osi_dg
global dir. selectivity g_dsi_dg
running modulation run_mod_dg
running modulation p-value p_run_mod_dg
firing rate firing_rate_dg
fano factor fano_dg
modulation index mod_idx_dg
f1/f0 f1_f0_dg
lifetime sparseness lifetime_sparseness_dg
¢50 (contrast tuning stimulus) | ¢50_dg
static gratings preferred orientation pref_ori_sg
preferred spatial frequency pref_sf_sg
preferred phase pref_phase_sg
global ori. selectivity g_osi_sg
running modulation run_mod_sg
running modulation p-value p_run_mod_sg
firing rate firing_rate_sg
fano factor fano_sg
lifetime sparseness lifetime_sparseness_sg
natural scenes preferred image index pref_image_ns
image selectivity image_selectivity_ns
running modulation run_mod_ns
running modulation p-value p_run_mod_ns
firing rate firing_rate_ns
fano factor fano_factor_ns

Continued on next page

20 Chapter 2. Data Resources

https://github.com/AllenInstitute/ecephys_spike_sorting/tree/master/ecephys_spike_sorting/modules/quality_metrics
_static/examples/nb/ecephys_quality_metrics.html
_static/examples/nb/ecephys_quality_metrics.ipynb
_static/examples/nb/ecephys_quality_metrics.ipynb
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html

Allen SDK Documentation, Release dev

Table 2 — continued from previous page

Stimulus Metric Field Name

lifetime sparseness lifetime_sparseness_ns
dot motion preferred speed pref_speed_dm

preferred direction pref_dir_dm

running modulation run_mod_dm

running modulation p-value p_run_mod_dm

firing rate firing_rate_dm

fano factor fano_factor_dm

lifetime sparseness lifetime_sparseness_dm
full-field flashes | on/off ratio on_off_ratio_fl

running modulation run_mod_fl

running modulation p-value p_run_mod_fl

firing rate firing_rate_fl

fano factor fano_factor_fl

lifetime sparseness lifetime_sparseness_fl
gabors RF area area_rf

RF elevation elevation_rf

RF azimuth azimuth_rf

RF p-value p_value_rf

running modulation run_mod_rf

running modulation p-value p_run_mod_rf

firing rate firing_rate_rf

fano factor fano_factor_rf

lifetime sparseness lifetime_sparseness_rf

2.6. Visual Coding — Neuropixels 21

Allen SDK Documentation, Release dev

22 Chapter 2. Data Resources

CHAPTER 3

Models

The Allen SDK currently focuses on models generated from electrophysiology data in the Allen Cell Types Database.
There are two classes of models available for download: biophysical models and generalize leaky integrate-and-fire
models.

3.1 Generalized LIF Models

The Allen Cell Types Database contains Generalized Leaky Integrate and Fire (GLIF) models that simulate the firing
behavior of neurons at five levels of complexity. Review the GLIF technical white paper for details on these models
and how their parameters were optimized.

The Allen SDK GLIF simulation module is an explicit time-stepping simulator that evolves a neuron’s simulated
voltage over the course of an input current stimulus. The module also tracks the neuron’s simulated spike threshold
and registers action potentials whenever voltage surpasses threshold. Action potentials initiate reset rules that update
voltage, threshold, and (optionally) trigger afterspike currents.

The GLIF simulator in this package has a modular architecture that enables users to choose from a number of dynamics
and reset rules that update the simulation’s voltage, spike threshold, and afterspike currents during the simulation. The
GLIF package contains a built-in set of rules, however developers can plug in custom rule implementations provided
they follow a simple argument specification scheme.

The Allen SDK GLIF simulator was developed and tested with Python 2.7.9, installed as part of Anaconda Python
distribution version 2.1.0.

The rest of this page provides examples demonstrating how to download models, examples of simulating these models,
and general GLIF model documentation.

Note: the GLIF simulator module is still under heavy development and may change significantly in the future.

23

http://help.brain-map.org/display/celltypes/Documentation
https://store.continuum.io/cshop/anaconda/
http://repo.continuum.io/archive/index.html

Allen SDK Documentation, Release dev

3.1.1 Downloading GLIF Models

There are two ways to download files necessary to run a GLIF model. The first way is to visit http://celltypes.
brain-map.org and find cells that have GLIF models available for download. The electrophysiology details page
for a cell has a neuronal model download link. Specifically:

1. Click ‘More Options +’ and filter for GLIF models.

2. Click the electrophysiology thumbnail for a cell on the right hand panel.
3. Choose a GLIF model from the ‘Show model responses’ dropdown.

4. Scroll down to the model response click ‘Download model’.

One such link (for a simple LIF neuronal model, ID 566302806), would look like this:

http://api.brain-map.org/neuronal_model/download/566302806

This link returns .zip archive containing the neuron configuration file and sweep metadata required to simulate the
model with stimuli applied to the cell. Specifically, the .zip archive will contain:

* 472423251_neuron_config.json: JSON config file for the GLIF model
* ephys_sweeps.json: JSON with metadata for sweeps presented to the cell
* neuronal_model.json: JSON with general metadata for the cell

If you would like to reproduce the model traces seen in the Cell Types Database, you can download an NWB file
containing both the stimulus and cell response traces via a ‘Download data’ link on the cell’s electrophysiology page.
See the NWB description section for more details on the NWB file format.

You can also download all of these files, including the cell’s NWB file, using the G11 fApi class:

from allensdk.api.queries.glif api import GlifApi
from allensdk.core.cell types_cache import CellTypesCache
import allensdk.core.json utilities as json_utilities

neuronal_model_id = 566302806

download model metadata
glif_api = GlifApi ()
nm = glif_ api.get_neuronal _models_by_id([neuronal_model_id]) [0]

download the model configuration file

nc = glif_api.get_neuron_configs ([neuronal_model_id]) [neuronal_model_id]
neuron_config = glif_api.get_neuron_configs ([neuronal_model_id])
json_utilities.write('neuron_config.json', neuron_confiqg)

download information about the cell

ctc = CellTypesCache ()

ctc.get_ephys_data (nm['specimen_id'], file_name='stimulus.nwb')
ctc.get_ephys_sweeps (nm['specimen_id'], file_name='ephys_ sweeps.json')

3.1.2 Running a GLIF Simulation

To run a GLIF simulation, the most important file you you need is the neuron_config JSON file. You can use this
file to instantiate a simulator and feed in your own stimulus:

24 Chapter 3. Models

http://celltypes.brain-map.org
http://celltypes.brain-map.org
cell_types.html#neurodata-without-borders

Allen SDK Documentation, Release dev

import allensdk.core.json_utilities as json_utilities
from allensdk.model.glif.glif neuron import GlifNeuron

initialize the neuron
neuron_config = json_utilities.read('neuron_config.json') ['566302806"]
neuron = GlifNeuron.from_dict (neuron_config)

make a short square pulse. stimulus units should be in Amps.
stimulus = [0.0] = 100 + [10e-9] % 100 + [0.0] * 100

important! set the neuron's dt value for your stimulus in seconds
neuron.dt = 5e-6

simulate the neuron
output = neuron.run(stimulus)

voltage = output|['voltage']
threshold = output['threshold']
spike_times = output['interpolated spike_times']

Note: The GLIF simulator does not simulate during action potentials. Instead it inserts NaN values for a fixed number
of time steps when voltage surpasses threshold. The simulator skips neuron. spike_cut_length time steps after
voltage surpasses threshold.

To reproduce the model’s traces displayed on the Allen Cell Types Database web page, the Allen SDK provides the
allensdk.core.model.glif.simulate_neuron module for simulating all sweeps presented to a cell and
storing them in the NWB format:

import allensdk.core.json_utilities as json_utilities

from allensdk.model.glif.glif neuron import GlifNeuron
from allensdk.model.glif.simulate neuron import simulate_neuron

neuron_config = json_utilities.read('neuron_config.json') ['566302806"]

ephys_sweeps = json_utilities.read('ephys_sweeps.json')

ephys_file_name = 'stimulus.nwb'

neuron = GlifNeuron.from_dict (neuron_config)

sweep_numbers = [s['sweep_number'] for s in ephys_sweeps if s['stimulus_units'] ==
— 'Amps"']

sweep_numbers = sweep_numbers|[:1] # for the sake of a speedy example, just run the_

—~first one
simulate_neuron (neuron, sweep_numbers, ephys_file_name, ephys_file_name, 0.05)

Warning: These stimuli are sampled at a very high resolution (200kHz), and a given cell can have many sweeps.
This process can take over an hour.

The simulate_neuron function call simulates all sweeps in the NWB file. Because the same NWB file
is being used for both input and output, the cell’s response traces will be overwritten as stimuli are simulated.
simulate_neuron optionally accepts a value which will be used to overwrite these NaN values generated dur-
ing action potentials (in this case 0.05 Volts).

If you would like to run a single sweep instead of all sweeps, try the following:

3.1. Generalized LIF Models 25

Allen SDK Documentation, Release dev

import allensdk.core.json_utilities as json_utilities
from allensdk.model.glif.glif neuron import GlifNeuron
from allensdk.core.nwb_data_set import NwbDataSet

neuron_config = json_utilities.read('neuron_config.json') ['566302806"]
ephys_sweeps = json_utilities.read('ephys_sweeps.json')
ephys_file_name = 'stimulus.nwb'

pull out the stimulus for the current-clamp first sweep
ephys_sweep = next(s for s in ephys_sweeps
if s['stimulus_units'] == 'Amps')
ds = NwbDataSet (ephys_file_name)
data = ds.get_sweep (ephys_sweep|['sweep_number'])
stimulus = datal['stimulus']

initialize the neuron

important! update the neuron's dt for your stimulus
neuron = GlifNeuron.from_dict (neuron_config)
neuron.dt = 1.0 / data['sampling_ rate']

simulate the neuron
output = neuron.run(stimulus)

voltage = output['voltage']
threshold = output['threshold']
spike_times = output['interpolated_ spike_times']

Note: The dt value provided in the downloadable GLIF neuron configuration files does not correspond to the
sampling rate of the original stimulus. Stimuli were subsampled and filtered for parameter optimization. Be sure to
overwrite the neuron’s dt with the correct sampling rate.

If you would like to plot the outputs of this simulation using numpy and matplotlib, try:

import numpy as np
import matplotlib.pyplot as plt

voltage = output['voltage']

threshold = output['threshold']

interpolated_spike_times = output['interpolated spike times']
spike_times = output['interpolated_ spike_times']
interpolated_spike_voltages = output['interpolated_spike_voltage']
interpolated_spike_thresholds = output['interpolated spike_ threshold']
grid_spike_indices = output|['spike_time_steps']

grid_spike_times = output['grid spike_times']

after_spike_currents = output['AScurrents']

create a time array for plotting
time = np.arange (len(stimulus))*neuron.dt

plt.figure(figsize=(10, 10))

plot stimulus
plt.subplot (3,1,1)
plt.plot (time, stimulus)
plt.xlabel ('time (s)"')

(continues on next page)

26 Chapter 3. Models

Allen SDK Documentation, Release dev

(continued from previous page)

plt.ylabel ('current (A)")
plt.title('Stimulus')

plot model output

plt.subplot (3,1,2)

plt.plot (time, voltage, label='voltage')
plt.plot (time, threshold, label='threshold")

if grid_spike_indices is not None:
plt.plot (interpolated_spike_times, interpolated_spike_voltages, 'x',
label="'interpolated spike')

plt.plot ((grid_spike_indices-1) *neuron.dt, voltage[grid_spike_indices-1], '.',
label="last step before spike')

plt.xlabel ('time (s)"')
plt.ylabel ('voltage (V) ")
plt.legend(loc=3)
plt.title('Model Response')

plot after spike currents

plt.subplot (3,1, 3)

for ii in range (np.shape(after_spike_currents) [1]):
plt.plot (time, after_spike_currents[:,ii])

plt.xlabel ('time (s)"')

plt.ylabel ('"current (A)")

plt.title('After Spike Currents')

plt.tight_layout ()
plt.show()

Note: There both interpolated spike times and grid spike times. The grid spike is the first time step where the voltage
is higher than the threshold. Note that if you try to plot the voltage at the grid spike indices the output will be NaN.
The interpolated spike is the calculated intersection of the threshold and voltage between the time steps.

3.1.3 GLIF Configuration

Instances of the G11ifNeuron class require many parameters for initialization. Fixed neuron parameters are stored
directly as properties on the class instance:

Parameter Description Units Type

El resting potential Volts float

dt time duration of each simulation step | seconds float
R_input input resistance Ohms float

C capacitance Farads float
asc_vector afterspike current coefficients Amps np.array
spike_cut_length | spike duration time steps | int
th_inf instantaneous threshold Volts float
th_adapt adapted threshold Volts float

Some of these fixed parameters were optimized to fit Allen Cell Types Database electrophysiology data. Optimized
coefficients for these parameters are stored by name in the neuron. coeffs dictionary. For more details on which

3.1. Generalized LIF Models 27

Allen SDK Documentation, Release dev

parameters were optimized, please see the technical white paper.

The G1ifNeuron class has six methods that can be customized: three rules for updating voltage, threshold, and
afterspike currents during the simulation; and three rules for updating those values when a spike is detected (voltage
surpasses threshold).

Method Type Description

voltage_dynamics_method Update simulation voltage for the next time step.
threshold_dynamics_method | Update simulation threshold for the next time step.
AScurrent_dynamics_method | Update afterspike current coefficients for the next time step.

voltage_reset_method Reset simulation voltage after a spike occurs.
threshold_reset_method Reset simulation threshold after a spike occurs.
AScurrent_reset_method Reset afterspike current coefficients after a spike occurs.

The GLIF neuron configuration files available from the Allen Brain Atlas API use built-in methods, however you can
supply your own custom method if you like:

define your own custom voltage reset rule

this one linearly scales the input voltage

def custom_voltage_reset_rule(neuron, voltage_t0, custom_param_a, custom_param_Db) :
return custom_param_a * voltage_t0O + custom_param_b

initialize a neuron from a neuron config file
neuron_config = json_utilities.read('neuron_config.json') ['566302806"]

neuron = GlifNeuron.from_dict (neuron_config)

configure a new method and overwrite the neuron's old method

method = neuron.configure_method('custom', custom_voltage_reset_rule,

{ 'custom_param_a': 0.1, 'custom_param_b': 0.0 })
neuron.voltage_reset_method = method
output = neuron.run(stimulus)

Notice that the function is allowed to take custom parameters (here custom_param_a and custom_param_b),
which are configured on method initialization from a dictionary. For more details, see the documentation for the
GlifNeuron and G1ifNeuronMethod classes.

3.1.4 Built-in Dynamics Rules

The job of a dynamics rule is to describe how the simulator should update the voltage, spike threshold, and afterspike
currents of the simulator at a given simulation time step.

Voltage Dynamics Rules

These methods update the output voltage of the simulation. They all expect a voltage, afterspike current vector, and
current injection value to be passed in by the GlifNeuron. All other function parameters must be fixed using the
GlifNeuronMethod class. They all return an updated voltage value.

allensdk.model.glif.glif neuron_methods.dynamics_voltage_ linear_forward_euler()
Threshold Dynamics Rules

These methods update the spike threshold of the simulation. They all expect the current threshold and voltage values
of the simulation to be passed in by the GlifNeuron. All other function parameters must be fixed using the GlifNeu-
ronMethod class. They all return an updated threshold value.

allensdk.model.glif.glif neuron methods.dynamics_threshold three_components_exact ()

28 Chapter 3. Models

http://help.brain-map.org/display/celltypes/Documentation

Allen SDK Documentation, Release dev

allensdk.model.glif.glif neuron_methods.dynamics_threshold spike_component ()
allensdk.model.glif.glif neuron_methods.dynamics_threshold _inf ()
Afterspike Current Dynamics Rules

These methods expect current afterspike current coefficients, current time step, and time steps of all previous spikes to
be passed in by the GlifNeuron. All other function parameters must be fixed using the GlifNeuronMethod class. They
all return an updated afterspike current array.

allensdk.model.glif.glif neuron _methods.dynamics_AScurrent_exp ()

allensdk.model.glif.glif neuron_methods.dynamics_AScurrent_none ()

3.1.5 Built-in Reset Rules

The job of a reset rule is to describe how the simulator should update the voltage, spike threshold, and afterspike
currents of the simulator after the simulator has detected that the simulated voltage has surpassed threshold.

Voltage Reset Rules

These methods update the output voltage of the simulation after voltage has surpassed threshold. They all expect a
voltageto be passed in by the GlifNeuron. All other function parameters must be fixed using the GlifNeuronMethod
class. They all return an updated voltage value.

allensdk.model.qglif.glif neuron_methods.reset_voltage zero()
allensdk.model.glif.glif neuron_methods.reset_voltage v_before ()
Threshold Reset Rules

These methods update the spike threshold of the simulation after a spike has been detected. They all expect the current
threshold and the reset voltage value of the simulation to be passed in by the GlifNeuron. All other function parameters
must be fixed using the GlifNeuronMethod class. They all return an updated threshold value.

allensdk.model.glif.glif neuron_methods.reset_threshold inf ()
allensdk.model.glif.glif neuron _methods.reset_threshold three_ components ()
Afterspike Reset Reset Rules

These methods expect current afterspike current coefficients to be passed in by the GlifNeuron. All other function
parameters must be fixed using the GlifNeuronMethod class. They all return an updated afterspike current array.

allensdk.model.glif.glif neuron _methods.reset_AScurrent_none ()

allensdk.model.glif.glif neuron_methods.reset_AScurrent_sum/()

3.2 Biophysical Models

The Allen Cell Types Database contains biophysical models that characterize the firing behavior of neurons measured
in slices through current injection by a somatic whole-cell patch clamp electrode. These models contain a set of 10
active conductances placed at the soma and use the reconstructed 3D morphologies of the modeled neurons. The
biophysical modeling technical white paper contains details on the specific construction of these models and the
optimization of the model parameters to match the experimentally-recorded firing behaviors.

The biophysical models are run with the NEURON simulation environment. The Allen SDK package contains libraries
that assist in downloading and setting up the models available on the Allen Institute web site for users to run using
NEURON. The examples and scripts provided run on Linux using the bash shell.

3.2. Biophysical Models 29

http://help.brain-map.org/display/celltypes/Documentation
http://www.neuron.yale.edu/neuron/

Allen SDK Documentation, Release dev

3.2.1 Prerequisites

You must have NEURON with the Python interpreter enabled and the Allen SDK installed.

The Allen Institute perisomatic biophysical models were generated using NEURON version v7.4.rel-1370. Instruc-
tions for compiling NEURON with the Python interpreter are available from the NEURON team under the heading
Installation with Python as an alternative interpreter. The Allen SDK is compatible with Python version 2.7.9, included
in the Anaconda 2.1.0 distribution.

Instructions for optional Docker installation are also available.

Note: Building and installing NEURON with the Python wrapper enabled is not always easy. This page targets users
that have a background in NEURON usage and installation.

3.2.2 Downloading Biophysical Models

There are two ways to download files necessary to run a biophysical model. The first way is to visit http://celltypes.
brain-map.org and find cells that have biophysical models available for download. The electrophysiology details page
for a cell has a neuronal model download link. Specifically:

1. Click ‘More Options+’

2. Check ‘Models -> Biophysical - perisomatic’ or ‘Biophysical - all active’

3. Use the Filters, Cell Location and Cell Feature Filters to narrow your results.

4. Click on a Cell Summary to view the Mouse Experiment Electrophysiology.

5. Click the “download data” link to download the NWB stimulus and response file.

6. Click “show model response” and select ‘Biophysical - perisomatic’ or ‘Biophysical - all active’.

7. Scroll down and click the ‘Biophysical - perisomatic’ or ‘Biophysical - all active’ “download model” link.

This may be also be done programmatically. The neuronal model id can be found to the left of the corresponding
‘Biophysical - perisomatic’ or ‘Biophysical - all active’ “download model” link.

from allensdk.api.queries.biophysical_api import \
BiophysicalApi

bp = BiophysicalApi ()

bp.cache_stimulus = True # change to False to not download the large stimulus NWB file
neuronal_model_id = 472451419 # get this from the web site as above

bp.cache_data (neuronal_model_id, working_directory='neuronal model')

More help can be found in the online help for the Allen Cell Types Database web application.

3.2.3 Directory Structure

The structure of the directory created looks like this. It includes stimulus files, model parameters, morphology, cellular
mechanisms and application configuration.

30 Chapter 3. Models

http://www.neuron.yale.edu/ftp/neuron/versions/v7.4/v7.4.rel-1370
http://www.neuron.yale.edu/neuron/download/compile_linux#otheroptions
./install.html#installation-with-docker-optional
http://celltypes.brain-map.org
http://celltypes.brain-map.org
http://help.brain-map.org/display/celltypes/Allen+Cell+Types+Database

Allen SDK Documentation, Release dev

neuronal_model

|-— manifest.json

|-— 472451419_fit.json

|-— Nr5al-Cre_Ail4_TIVSCC_-169248.04.02.01.nwb

|-— Nr5al-Cre_Ail4_TIVSCC_-169248.04.02.01_403165543_m.swc
|-— modfiles

| | -=—CaDynamics.mod

| | =—Ca_HVA .mod
| | =—Ca_LVA.mod
| | -—Ih.mod

| t——...etc.
|

|

--x86_64
‘———work

3.2.4 Running the Simulation (Linux shell prompt)

All of the sweeps available from the web site are included in manifest.json and will be run by default. This can take
some time.

cd neuronal_model
nrnivmodl ./mo